1
|
Ryu JY, Choi TS, Kim KT. Fluorescein-switching-based lateral flow assay for the detection of microRNAs. Org Biomol Chem 2024; 22:8182-8188. [PMID: 39291769 DOI: 10.1039/d4ob01311e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Lateral flow assays (LFAs) are a cost-effective and rapid colorimetric technology that can be effectively used for nucleic acid tests (NATs) in various fields such as medical diagnostics and biotechnology. Given their importance, developing more diverse LFAs that operate through novel working mechanisms is essential for designing highly selective and sensitive NATs and providing insights for designing various practical point-of-care testing (POCT) systems. Herein we report a new type of lateral flow assay (LFA) based on fluorescein-switching, enabled by nucleic acid-templated photooxidation of reduced fluorescein by riboflavin tetraacetate (RFTA). The LFA design leverages the fact that a reduced form of fluorescein, which weakly binds to gold nanoparticle (GNP)-conjugated anti-fluorescein antibodies, is oxidized in the presence of target nucleic acids to yield its native state, which then strongly binds to the antibodies. The study involved designing and optimizing probe sequences to detect miR-6090 and miR-141, which are significant markers for prostate cancer. To minimize background signals of LFAs, sodium borohydride (NaBH4) was specifically introduced as a reducing agent, and detailed procedures were established. The developed LFA system accurately identified low fmol levels of target microRNAs with minimal false positives, all detectable with the naked eye, making the system a promising tool for point-of-care diagnostics.
Collapse
Affiliation(s)
- Ji Young Ryu
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | - Tae Su Choi
- Division of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Tae Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Republic of Korea.
| |
Collapse
|
2
|
Wang N, Li Z, Zhao Y, Wu X, Zhou C, Su X. A novel robust hydrogel-assisted paper-based sensor based on fluorescence UiO-66-NH 2@ZIF-8 for the dual-channel detection of captopril. Talanta 2024; 277:126400. [PMID: 38876031 DOI: 10.1016/j.talanta.2024.126400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/07/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Captopril (CP) is commonly used as an active enzyme inhibitor for the treatment of coronary heart disease, hypertension and angina pectoris. The development of sensitive and efficient method for CP analysis is of great importance in biomedical research. Herein, we fabricated a sensitive and robust hydrogel-assisted paper-based sensor based on fluorescence UiO-66-NH2@ZIF-8 and Co, N-doped carbon nanozymes with oxidase-mimicking activity for accurate monitoring of captopril. The hydrogel-assisted paper-based sensor appeared a visible pink signal due to the catalytic oxidation of colorless N,N-diethyl-p-phenylenediamine (DPD) to oxDPD by Co, N-doped carbon-based nanozymes, and resulted in the fluorescence quenching of UiO-66-NH2@ZIF-8. In the presence of captopril, the oxidation of chromogenic substrate DPD by Co, N-doped nanozymes in the hydrogel-assisted paper-based sensor was hindered and accompanied by a change in the visible color, leading to recovery of the fluorescence of UiO-66-NH2@ZIF-8, and the change in the fluorescence color could also be observed. Therefore, the quantitative detection of captopril is achieved by taking a smartphone photograph and converting the image parameters into data information using ImageJ software. The portable hydrogel-assisted paper sensor provided sensitive detection of captopril in two modes based on visible color change as well as fluorescence color change with limits of detection of 0.45 μM and 0.47 μM, respectively. This hydrogel-assisted paper-based sensor has been successfully applied to the accurate monitoring of captopril in human serum, providing a potential avenue for in situ detection of captopril.
Collapse
Affiliation(s)
- Nan Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | - Zhengxuan Li
- College of Chemistry, Key Laboratory of High Performance Plastics, Ministry of Education, Jilin University, Changchun, 130012, PR China
| | - Yihan Zhao
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xushuo Wu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Chenyu Zhou
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Xingguang Su
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
3
|
Sfragano PS, Reynoso EC, Rojas-Ruíz NE, Laschi S, Rossi G, Buchinger M, Torres E, Palchetti I. A microfluidic card-based electrochemical assay for the detection of sulfonamide resistance genes. Talanta 2024; 271:125718. [PMID: 38301374 DOI: 10.1016/j.talanta.2024.125718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Most electroanalytical detection schemes for DNA markers require considerable time and effort from expert personnel to thoroughly follow the analysis and obtain reliable outcomes. This work aims to present an electrochemical assay performed inside a small card-based platform powered by microfluidic manipulation, requiring minimal human intervention and consumables. The assay couples a sample/signal dual amplification and DNA-modified magnetic particles for the detection of DNA amplification products. Particularly, the sul1 and sul4 genes involved in the resistance against sulfonamide antibiotics were analyzed. As recognized by the World Health Organization, antimicrobial resistance threatens global public health by hampering medication efficacy against infections. Consequently, analytical methods for the determination of such genes in environmental and clinical matrices are imperative. Herein, the resistance genes were extracted from E. coli cells and amplified using an enzyme-assisted isothermal amplification at 37 °C. The amplification products were analyzed in an easily-produced, low-cost, card-based set-up implementing a microfluidic system, demanding limited manual work and small sample volumes. The target amplicon was thus captured and isolated using versatile DNA-modified magnetic beads injected into the microchannel and exposed to the various reagents in a continuously controlled microfluidic flow. After the optimization of the efficiency of each phase of the assay, the platform achieved limits of detections of 44.2 pmol L-1 for sul1 and 48.5 pmol L-1 for sul4, and was able to detect down to ≥500-fold diluted amplification products of sul1 extracted from E. coli living cells in around 1 h, thus enabling numerous end-point analyses with a single amplification reaction.
Collapse
Affiliation(s)
| | - Eduardo Canek Reynoso
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy; Posgrado en Ciencias Ambientales, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico
| | - Norma Elena Rojas-Ruíz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72000, Mexico
| | - Serena Laschi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Giulia Rossi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Martin Buchinger
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - Eduardo Torres
- Centro de Química, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, 72570, Mexico.
| | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
Martin CD, Bender AT, Sullivan BP, Lillis L, Boyle DS, Posner JD. SARS-CoV-2 recombinase polymerase amplification assay with lateral flow readout and duplexed full process internal control. SENSORS & DIAGNOSTICS 2024; 3:421-430. [PMID: 38495597 PMCID: PMC10939122 DOI: 10.1039/d3sd00246b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/08/2024] [Indexed: 03/19/2024]
Abstract
Nucleic acid amplification tests for the detection of SARS-CoV-2 have been an important testing mechanism for the COVID-19 pandemic. While these traditional nucleic acid diagnostic methods are highly sensitive and selective, they are not suited to home or clinic-based uses. Comparatively, rapid antigen tests are cost-effective and user friendly but lack in sensitivity and specificity. Here we report on the development of a one-pot, duplexed reverse transcriptase recombinase polymerase amplification SARS-CoV-2 assay with MS2 bacteriophage as a full process control. Detection is carried out with either real-time fluorescence or lateral flow readout with an analytical sensitivity of 50 copies per reaction. Unlike previously published assays, the RNA-based MS2 bacteriophage control reports on successful operation of lysis, reverse transcription, and amplification. This SARS-CoV-2 assay features highly sensitive detection, visual readout through an LFA strip, results in less than 25 minutes, minimal instrumentation, and a useful process internal control to rule out false negative test results.
Collapse
Affiliation(s)
- Coleman D Martin
- Department of Chemical Engineering, University of Washington Seattle Washington USA
| | - Andrew T Bender
- Department of Mechanical Engineering, University of Washington Seattle Washington USA
| | - Benjamin P Sullivan
- Department of Mechanical Engineering, University of Washington Seattle Washington USA
| | | | | | - Jonathan D Posner
- Department of Chemical Engineering, University of Washington Seattle Washington USA
- Department of Mechanical Engineering, University of Washington Seattle Washington USA
- Department of Family Medicine, University of Washington Seattle Washington USA
| |
Collapse
|
5
|
Park SY, Trinh KTL, Song YJ, Lee NY. Pipette-free field-deployable molecular diagnostic kit for bimodal visual detection of infectious RNA viruses. Biotechnol J 2024; 19:e2300521. [PMID: 38403439 DOI: 10.1002/biot.202300521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024]
Abstract
Here, we developed a field-deployable molecular diagnostic kit for the detection of RNA viruses that operates in a pipette-free manner. The kit is composed of acrylic sticks, PCR tubes, and palm-sized three-dimensional(3D)-printed heaters operated by batteries. The kit performs RNA extraction, reverse transcriptase loop-mediated isothermal amplification (RT-LAMP), and visual detection in one kit. An acrylic stick was engraved with one shallow and one deep cylindrical chamber at each end for the insertion of an FTA card and ethidium homodimer-1 (EthD-1), respectively, to perform RNA extraction/purification and bimodal visual detection of the target amplicons. First, an intercalation of EthD-1 into the target DNA initially produces fluorescence upon UV illumination. Next, the addition of a strong oxidant, in this case sodium (meta) periodate (NaIO4 ), produces intense aggregates in the presence of EthD-1-intercalated DNA, realized by electrostatic interaction. In the absence of the target amplicon, no fluorescence or aggregates are observed. Using this kit, two major infectious viruses-severe fever with thrombocytopenia syndrome virus (SFTSV) and severe acute respiratory syndrome coronavirus (SARS-CoV-2)-were successfully detected in 1 h, and the limits of detection (LOD) were approximately 1 virus μL-1 for SFTSV and 103 copies μL-1 for SARS-CoV-2 RNA. The introduced kit is portable, end-user-friendly, and can be operated in a pipette-free manner, paving the way for simple and convenient virus detection in resource-limited settings.
Collapse
Affiliation(s)
- So Yeon Park
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Yoon-Jae Song
- Department of Life Science, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
6
|
Akhmetzianova LU, Davletkulov TM, Sakhabutdinova AR, Chemeris AV, Gubaydullin IM, Garafutdinov RR. LAMPrimers iQ: New primer design software for loop-mediated isothermal amplification (LAMP). Anal Biochem 2024; 684:115376. [PMID: 37924966 DOI: 10.1016/j.ab.2023.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Nucleic acids amplification is a widely used technique utilized for different manipulations with DNA and RNA. Although, polymerase chain reaction (PCR) remains the most popular amplification method, isothermal approaches are gained more attention last decades. Among these, loop-mediated isothermal amplification (LAMP) became an excellent alternative to PCR. LAMP requires an increased number of primers and, therefore, is considered a highly specific amplification reaction compared to PCR. LAMP primers design is still a non-trivial task, and all niceties should be taken into account during their selection. Here, we report on a new program called LAMPrimers iQ destined for high-quality LAMP primers design. LAMPrimers iQ is based on an original algorithm considering rigorous criteria for primers selection. Unlike alternative programs, LAMPrimers iQ can process long DNA or RNA sequences, and completely avoid primers that can form homo- and heterodimers. The quality of the primers designed was checked using SARS-CoV-2 coronavirus RNA as a model target. It was shown that primers selected with LAMPrimers iQ provide higher specificity and reliable detection of viral RNA compared to those obtained by alternative programs. The program is available at https://github.com/Restily/LAMPrimers-iQ.
Collapse
Affiliation(s)
- Liana U Akhmetzianova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 450075, prosp. Oktyabrya, 141, Ufa, Bashkortostan, Russian Federation; Ufa State Petroleum Technological University, 450064, st. Cosmonauts, 1, Ufa, Bashkortostan, Russian Federation.
| | - Timur M Davletkulov
- Ufa State Petroleum Technological University, 450064, st. Cosmonauts, 1, Ufa, Bashkortostan, Russian Federation.
| | - Assol R Sakhabutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054, prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russian Federation.
| | - Alexey V Chemeris
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054, prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russian Federation.
| | - Irek M Gubaydullin
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 450075, prosp. Oktyabrya, 141, Ufa, Bashkortostan, Russian Federation; Ufa State Petroleum Technological University, 450064, st. Cosmonauts, 1, Ufa, Bashkortostan, Russian Federation.
| | - Ravil R Garafutdinov
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, 450054, prosp. Oktyabrya, 71, Ufa, Bashkortostan, Russian Federation.
| |
Collapse
|
7
|
Thai DA, Park SK, Lee NY. A paper-embedded thermoplastic microdevice integrating additive-enhanced allele-specific amplification and silver nanoparticle-based colorimetric detection for point-of-care testing. LAB ON A CHIP 2023; 23:5081-5091. [PMID: 37929914 DOI: 10.1039/d3lc00739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
This study introduces a thermoplastic microdevice integrated with additive-enhanced allele-specific amplification and hydrazine-induced silver nanoparticle-based detection of single nucleotide polymorphism (SNP) and opportunistic pathogens. For point-of-care testing of SNP, an allele-specific loop-mediated isothermal amplification reaction using nucleotide-mismatched primers and molecular additives was evaluated to discriminate single-nucleotide differences in the samples. The microdevice consists of purification and reaction units that enable DNA purification, amplification, and detection in a sequential manner. The purification unit enables the silica-based preparation of samples using an embedded glass fiber membrane. Hydrazine-induced silver nanoparticle formation was employed for endpoint colorimetric detection of amplicons within three min at room temperature. The versatile applicability of the microdevice was demonstrated by the successful identification of SNPs related to sickle cell anemia, genetically-induced hair loss, and Enterococcus faecium. The microdevice exhibited a detection limit of 103 copies per μL of SNP targets in serum and 102 CFU mL-1 of Enterococcus faecium in tap water within 70 min. The proposed microdevice is a promising and versatile platform for point-of-care nucleic acid testing of different samples in low-resource settings.
Collapse
Affiliation(s)
- Duc Anh Thai
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Seung Kyun Park
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
| |
Collapse
|
8
|
Akalın P, Yazgan-Karataş A. Development of a nucleic acid-based lateral flow device as a reliable diagnostic tool for respiratory viral infections. MethodsX 2023; 11:102372. [PMID: 37744884 PMCID: PMC10511794 DOI: 10.1016/j.mex.2023.102372] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Viral infections continue to pose a significant threat to the public health, leading to high morbidity and mortality rates worldwide. To combat these challenges, early detection and treatment are essential in reducing hospitalizations and preventing severe complications. Simple, inexpensive, and sensitive diagnostic methods are in constant demand in many areas. In this study, we report the development of a nucleic acid-based lateral flow immunoassay device (NALFIA) and demonstrate its successful application in conjunction with a multiplexed reverse-transcription loop-mediated isothermal amplification assay (LAMP) for the detection of SARS-CoV-2 and influenza. In our approach the NALFIA part preparation is independent of the target, and has the potential to ensure widespread use in diagnostics particularly where testing speed is critical such as in respiratory viral infections.•Simple, inexpensive, sensitive and reliable rapid diagnostic tool.•Target independent design.•Effective use for respiratory samples due to practical sample extraction.
Collapse
Affiliation(s)
- Pınar Akalın
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Ayten Yazgan-Karataş
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Faculty of Science and Letters, Department of Molecular Biology and Genetics, Istanbul Technical University, Maslak 34469 Istanbul, Turkey
| |
Collapse
|
9
|
Sun X, Shan Y, Jian M, Wang Z. A Multichannel Fluorescence Isothermal Amplification Device with Integrated Internet of Medical Things for Rapid Sensing of Pathogens through Deep Learning. Anal Chem 2023; 95:15146-15152. [PMID: 37733965 DOI: 10.1021/acs.analchem.3c02973] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The landscape of diagnostic assessments has experienced a paradigm shift driven by the advent of isothermal amplification techniques on point-of-care testing (POCT). The development of compact, portable isothermal amplification devices further emphasizes their transformative influence on diagnostic approaches. However, in prioritizing portability, these devices may exhibit limitations in functionality, rendering them less effective in addressing urgent public health emergencies during sudden pathogen outbreaks. In this paper, an efficient isothermal fluorescence amplification device has been fabricated for the rapid detection of pathogens during public health crises. The device features multichannel capability for simultaneous detection of various targets, integrates with the Internet of Medical Things (IoMT) for remote control and data uploading, and includes a deep learning-based batch processing system for rapid (9.4 ms) and accurate discrimination of pathogen type with excellent accuracy. The device has been successfully employed to simultaneously detect Staphylococcus aureus (SA) and methicillin-resistant Staphylococcus aureus (MRSA) with limits of detection (LODs) of 18 CFU/mL (SA) and 20 CFU/mL (MRSA) within 35 min by multiplex RPA assay and CRISPR/Cas12a-mediated nucleic acid detection assay.
Collapse
Affiliation(s)
- Xudong Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yongjie Shan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Minghong Jian
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
- National Analytical Research Center of Electrochemistry and Spectroscopy, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| |
Collapse
|
10
|
Choi Y, Song Y, Cho Y, Choi KH, Park C, Lee DG, Lee R, Choi N, Kang JY, Im SG, Seong H. Streamlined Specimen Purification for Rapid COVID-19 Diagnosis Using Positively Charged Polymer Thin Film-Coated Surfaces and Chamber Digital PCR. Anal Chem 2023; 95:14357-14364. [PMID: 37712516 DOI: 10.1021/acs.analchem.3c02716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic demands rapid and straightforward diagnostic tools to prevent early-stage viral transmission. Although nasopharyngeal swabs are a widely used patient sample collection method for diagnosing COVID-19, using these samples for diagnosis without RNA extraction increases the risk of obtaining false-positive and -negative results. Thus, multiple purification steps are necessary, which are time-consuming, generate significant waste, and result in substantial sample loss. To address these issues, we developed surface-modified polymerase chain reaction (PCR) tubes using the tertiary aminated polymer poly(2-dimethylaminomethylstyrene) (pDMAMS) via initiated chemical vapor deposition. Introducing the clinical samples into the pDMAMS-coated tubes resulted in approximately 100% RNA capture efficiency within 25 min, which occurred through electrostatic interactions between the positively charged pDMAMS surface and the negatively charged RNA. The captured RNA is then detected via chamber digital PCR, enabling a sensitive, accurate, and rapid diagnosis. Our platform provides a simple and efficient RNA extraction and detection strategy that allows detection from 22 nasopharyngeal swabs and 21 saliva specimens with 0% false negatives. The proposed method can facilitate the diagnosis of COVID-19 and contribute to the prevention of early-stage transmission.
Collapse
Affiliation(s)
- Yunyoung Choi
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Younseong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Younghak Cho
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung-Hak Choi
- OPTOLANE Inc., 241, Pangyoyeok-ro, Bundang-gu, Seongnam, Gyeonggi 13494, Republic of Korea
| | - Chulmin Park
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Dong-Gun Lee
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Raeseok Lee
- Vaccine Bio Research Institute, The Catholic University of Korea, College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
- Division of Infectious Diseases, Department of Internal Medicine, The Catholic University of Korea, College of Medicine, 222 Banpo-daero, Seocho-gu, Seoul 06591, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Ji Yoon Kang
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Hyejeong Seong
- Brain Science Institute, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| |
Collapse
|
11
|
Kanani SS, Tsai HY, Algar WR. Quantitative and Multiplexed Chopper-Based Time-Gated Imaging for Bioanalysis on a Smartphone. Anal Chem 2023; 95:13258-13265. [PMID: 37611229 DOI: 10.1021/acs.analchem.3c02397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Smartphones are emerging platforms for point-of-care diagnostics (POCDs), where the on-board camera is, for example, used to image fluorescence. Many laboratory instruments are capable of time-gated (TG) photoluminescence (PL) measurements─an analytical method leveraged by multiple commercial assay kits. When paired with long-lived PL emitters such as luminescent lanthanide complexes (LLCs), time-gating eliminates background from sample autofluorescence and many other sources. This capability is amenable to minimally processed samples and would thus be useful for POCDs on a smartphone-based platform. Here, we report a double-chopper design for TG PL imaging using a portable, 3D-printed, smartphone-based device. The rotation speed, dimensions, and overlap of the chopper blades and gaps set the timing parameters, with delay times on the order of hundreds of microseconds to milliseconds. The device was capable of quantitative TG imaging of PL from terbium(III) and europium(III) LLCs, including rejection of short-lived PL background from serum and tissue phantoms, spectral and temporal multiplexing, a model time-gated Förster resonance energy transfer (TG-FRET) assay, and imaging of cells. As the first smartphone-based demonstrations of these important analytical capabilities, this work is an important foundation for developing POCD methods based on TG PL imaging.
Collapse
Affiliation(s)
- Sahil S Kanani
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
12
|
Insight into molecular diagnosis for antimalarial drug resistance of Plasmodium falciparum parasites: A review. Acta Trop 2023; 241:106870. [PMID: 36849091 DOI: 10.1016/j.actatropica.2023.106870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/27/2023]
Abstract
Malaria is an infectious disease transmitted by the female Anopheles mosquito and poses a severe threat to human health. At present, antimalarial drugs are the primary treatment for malaria. The widespread use of artemisinin-based combination therapies (ACTs) has dramatically reduced the number of malaria-related deaths; however, the emergence of resistance has the potential to reverse this progress. Accurate and timely diagnosis of drug-resistant strains of Plasmodium parasites via detecting molecular markers (such as Pfnhe1, Pfmrp, Pfcrt, Pfmdr1, Pfdhps, Pfdhfr, and Pfk13) is essential for malaria control and elimination. Here, we review the current techniques which commonly used for molecular diagnosis of antimalarial resistance in P. falciparum and discuss their sensitivities and specificities for different drug resistance-associated molecular markers, with the aim of providing insights into possible directions for future precise point-of-care testing (POCT) of antimalarial drug resistance of malaria parasites.
Collapse
|