1
|
Jabar A, Maaouni N, Benyoussef S, Bahmad L. Exploring the physical properties of the new MoX 6 (X = Cl or Br) materials. Phys Chem Chem Phys 2025; 27:4383-4397. [PMID: 39927723 DOI: 10.1039/d4cp04360j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
In this study, we present a comprehensive investigation of the mechanical, electronic, optical, and thermodynamic properties of MoX6 (X = Cl or Br) using first-principles calculations within the Wien2k framework, which is based on the full-potential linearized augmented plane wave (FPLAPW) method. Our approach incorporates the GGA+SOC+U formalism, crucial for accurately capturing intricate electronic interactions and spin-orbit coupling (SOC) effects, alongside Hubbard U corrections. This rigorous methodology allowed us to thoroughly explore the mechanical robustness, electronic structure, and optical responses of the MoX6 compounds and their thermodynamic behavior under varying conditions. The results reveal the mechanical stability of the MoX6 compounds with significant insights into their electronic structure, characterized by unique band features that underline their potential utility in advanced optoelectronic devices. The optical analysis highlights key absorption properties, which could be harnessed in photonic applications. Furthermore, the thermodynamic properties suggest a strong stability profile, reinforcing their suitability for diverse materials science applications. To our knowledge, this study represents the first detailed examination of MoX6 compounds using this advanced computational framework. These findings provide a foundation for further theoretical and experimental investigations while offering promising avenues for exploring related compounds with analogous structural and electronic characteristics. This work contributes significantly to the broader understanding of transition metal halides and their potential technological applications.
Collapse
Affiliation(s)
- A Jabar
- LPMAT, Faculty of Sciences Aïn Chock, Hassan II University of Casablanca, Casablanca, B.P. 5366, Morocco
- LPHE-MS, Science Faculty, Mohammed V University in Rabat, Morocco
| | - N Maaouni
- Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University, Av. Ibn Batouta, Rabat, B. P. 1014, Morocco.
| | - S Benyoussef
- Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University, Av. Ibn Batouta, Rabat, B. P. 1014, Morocco.
| | - L Bahmad
- Laboratory of Condensed Matter and Interdisciplinary Sciences (LaMCScI), Faculty of Sciences, Mohammed V University, Av. Ibn Batouta, Rabat, B. P. 1014, Morocco.
| |
Collapse
|
2
|
Rahman A, Kabir A, Mahmud T. Computational insights into transition metal-based BaCoX 3 (X = Cl, Br, I) halide perovskites for spintronics, photovoltaics, and renewable energy devices. Sci Rep 2024; 14:26457. [PMID: 39488571 PMCID: PMC11531479 DOI: 10.1038/s41598-024-76812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
Ab-initio simulations using density functional theory (DFT) were employed to investigate the structural, mechanical, electronic, magnetic, optical, and thermoelectric properties of halide perovskites [Formula: see text] (X = Cl, Br, I). Structural optimization and mechanical stability assessments confirm the reliability of these perovskites in a hexagonal P[Formula: see text]mc symmetry. The stability of the ferromagnetic phase was validated through total crystal energy minimization via Murnaghan's equation of state. Electronic band structures and density of states, derived from the generalized gradient approximation (GGA), reveal a semiconducting ferromagnetic nature in the spin up channel, spotlighting their potential in semiconductor spintronic applications. Phonon dispersion analysis of [Formula: see text] and [Formula: see text] revealed positive phonon modes throughout the entire Brillouin zone, confirming their dynamical stability. In contrast, [Formula: see text] demonstrated dynamical instability. The elastic constants confirm the mechanical stability and ductile nature of the perovskites. Optical and dielectric properties of these perovskites show significant UV absorption and photoconductivity, making them highly suitable for optoelectronic and solar cell applications. Finally, transport properties, such as the Seebeck coefficient, electrical conductivity, thermal conductivity, power factor, and figure of merit (ZT) unveil their exceptional thermoelectric performance. Combining half-metallic ferromagnetic traits with superior thermoelectric and optoelectronic performance positions [Formula: see text] compounds as exceptional candidates for applications in spintronics, optoelectronics, and thermoelectrics. This comprehensive investigation demonstrates their ability to excel across a diverse array of advanced technological applications.
Collapse
Affiliation(s)
- Arafat Rahman
- Department of Physics, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Alamgir Kabir
- Department of Physics, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Tareq Mahmud
- Department of Physics, University of Dhaka, Dhaka, 1000, Bangladesh
| |
Collapse
|
3
|
Hosen A. Investigating the effects of hydrostatic pressure on the physical properties of cubic Sr 3BCl 3 (B = As, Sb) for improved optoelectronic applications: A DFT study. Heliyon 2024; 10:e35855. [PMID: 39220978 PMCID: PMC11365404 DOI: 10.1016/j.heliyon.2024.e35855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
This article explores changes in the structural, electronic, elastic, and optical properties of the novel cubic Sr3BCl3 (B = As, Sb) with increasing pressure. This research aims to decrease the electronic band gap of Sr3BCl3 (B = As, Sb) by applying pressure, with the objective of enhancing the optical properties and evaluating the potential of these compounds for use in optoelectronic applications. It has been revealed that both the lattice parameter and cell volume exhibit a declining pattern as pressure increases. At ambient pressure, analysis of the band structure revealed that both Sr3AsCl3 and Sr3SbCl3 are direct band gap semiconductors. With increasing pressure up to 25 GPa the electronic band gap of Sr3AsCl3 (Sr3SbCl3) reduces from 1.70 (1.72) eV to 0.35 (0.10) eV. However, applying hydrostatic pressure enables the attainment of optimal bandgaps for Sr3AsCl3 and Sr3SbCl3, offering theoretical backing for the adjustment of Sr3BCl3 (B = As, Sb) perovskite's bandgaps. The electron and hole effective masses in this perovskite exhibit a gradual decrease as pressure rises from 0 to 25 GPa, promoting the conductivity of both electrons and holes. The elastic properties are calculated using the Thermo-PW tool, revealing that they are anisotropic, ductile, mechanically stable, and resistant to plastic deformation. Importantly, these mechanical properties of both compounds are significantly enhanced under pressure. Optical properties, including the absorption and extinction coefficients, dielectric function, refractive index, reflectivity, and loss function, were calculated within the 0-20 eV range under different pressure conditions. The calculated optical properties highlight the versatility and suitability of Sr3AsCl3 and Sr3SbCl3 perovskites for pressure-tunable optoelectronic devices.
Collapse
Affiliation(s)
- Asif Hosen
- Department of Materials Science and Engineering, Khulna University of Engineering & Technology (KUET), Khulna, 9203, Bangladesh
| |
Collapse
|
4
|
Aktary M, Alghamdi HS, Ajeebi AM, AlZahrani AS, Sanhoob MA, Aziz MA, Nasiruzzaman Shaikh M. Hydrogenation of CO 2 into Value-added Chemicals Using Solid-Supported Catalysts. Chem Asian J 2024; 19:e202301007. [PMID: 38311592 DOI: 10.1002/asia.202301007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
Reducing CO2 emissions is an urgent global priority. In this context, several mitigation strategies, including CO2 tax and stringent legislation, have been adopted to halt the deterioration of the natural environment. Also, carbon recycling procedures undoubtedly help reduce net emissions into the atmosphere, enhancing sustainability. Utilizing Earth's abundant CO2 to produce high-potential green chemicals and light fuels opens new avenues for the chemical industry. In this context, many attempts have been devoted to converting CO2 as a feedstock into various value-added chemicals, such as CH4, lower methanol, light olefins, gasoline, and higher hydrocarbons, for numerous applications involving various catalytic reactions. Although several CO2-conversion methods have been used, including electrochemical, photochemical, and biological approaches, the hydrogenation method allows the reaction to be tuned to produce the targeted compound without significantly altering infrastructure. This review discusses the numerous hydrogenation routes and their challenges, such as catalyst design, operation, and the combined art of structure-activity relationships for the various product formations.
Collapse
Affiliation(s)
- Mahbuba Aktary
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Huda S Alghamdi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Afnan M Ajeebi
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Atif S AlZahrani
- Department of Materials Science and Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Mohammed A Sanhoob
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management (IRC-HTCM), King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| |
Collapse
|
5
|
Jouybar S, Naji L, Sarabadani Tafreshi S, de Leeuw NH. A Density Functional Theory Study of the Physico-Chemical Properties of Alkali Metal Titanate Perovskites for Solar Cell Applications. Molecules 2024; 29:3355. [PMID: 39064933 PMCID: PMC11279520 DOI: 10.3390/molecules29143355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The urgent need to shift from non-renewable to renewable energy sources has caused widespread interest in photovoltaic technologies that allow us to harness readily available and sustainable solar energy. In the past decade, polymer solar cells (PSCs) and perovskite solar cells (Per-SCs) have gained attention owing to their low price and easy fabrication process. Charge transport layers (CTLs), transparent conductive electrodes (TCEs), and metallic top electrodes are important constituents of PSCs and Per-SCs, which affect the efficiency and stability of these cells. Owing to the disadvantages of current materials, including instability and high cost, the development of alternative materials has attracted significant attention. Owing to their more flexible physical and chemical characteristics, ternary oxides are considered to be appealing alternatives, where ATiO3 materials-a class of ternary perovskite oxides-have demonstrated considerable potential for applications in solar cells. Here, we have employed calculations based on the density functional theory to study the structural, optoelectronic, and magnetic properties of ATiO3 (A=Li, Na, K, Rb, and Cs) in different crystallographic phases to determine their potential as PSCs and Per-SCs materials. We have also determined thermal and elastic properties to evaluate their mechanical and thermal stability. Our calculations have revealed that KTiO3 and RbTiO3 possess similar electronic properties as half-metallic materials, while LiTiO3 and CsTiO3 are metallic. Semiconductor behavior with a direct band gap of 2.77 eV was observed for NaTiO3, and calculations of the optical and electronic properties predicted that NaTiO3 is the most appropriate candidate to be employed as a charge transfer layer (CTL) and bottom transparent conducting electrode (TCE) in PSCs and Per-SCs, owing to its transparency and large bandgap, whereas NaTiO3 also provided superior elastic and thermal properties. Among the metallic and half-metallic ATiO3 compounds, CsTiO3 and KTiO3 exhibited the most appropriate features for the top electrode and additional absorbent in the active layer, respectively, to enhance the performance and stability of these cells.
Collapse
Affiliation(s)
- Shirzad Jouybar
- Department of Chemistry, AmirKabir University of Technology, No. 350, Hafez Avenue, Valiasr Square, Tehran 1591634311, Iran;
| | - Leila Naji
- Department of Chemistry, AmirKabir University of Technology, No. 350, Hafez Avenue, Valiasr Square, Tehran 1591634311, Iran;
| | - Saeedeh Sarabadani Tafreshi
- Department of Chemistry, AmirKabir University of Technology, No. 350, Hafez Avenue, Valiasr Square, Tehran 1591634311, Iran;
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
| | - Nora H. de Leeuw
- School of Chemistry, University of Leeds, Leeds LS2 9JT, UK
- Department of Earth Sciences, Utrecht University, 3584 CB Utrecht, The Netherlands
| |
Collapse
|
6
|
Ahmad RB, Anwar AW, Ali A, Fatima T, Moin M, Nazir A, Batool A, Shabir U. Pressure-dependent band gap engineering with structural, electronic, mechanical, optical, and thermal properties of CsPbBr 3: first-principles calculations. J Mol Model 2024; 30:270. [PMID: 39014125 DOI: 10.1007/s00894-024-06040-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
CONTEXT In the renewable industry, pressure-dependent CsPbBr3 perovskite has a lot of potential due to its exceptional properties. Present work revealed the mechanical stability of CsPbBr3 between 0 to 50 GPa. The bandgap of unstressed CsPbBr3 is 2.90 eV, indicating a direct bandgap. Band gap values decrease by increasing external pressure. CsPbBr3 structure showed a direct band gap from 0 to 35 GPa and in-direct from 40 to 50 GPa. The unit cell volume and lattice constants are substantially decreased. Mechanical parameters, i.e., Young's modulus, bulk modulus, anisotropy factor, shear modulus, and poison's ratio are obtained. Under ambient conditions, the mechanical properties of CsPbBr3 showed ductile behavior and with induced pressure, their ductility has significantly improved. By applying stresses ranging from 0 to 50 GPa, the considerable fluctuation in values of dielectric function (imaginary and real), absorption, reflectivity, loss function, refractive index (imaginary and real), and conductivity (imaginary and real), was also identified. When pressure rises, the optical parameters increase and drag in the direction of high energies. Response functions are used to predict the density of states and the phonon lattice dispersion to study the phonon properties. By using the quasi-harmonic Debye model, the thermal effect on the free energy, entropy, enthalpy, and heat capacity were predicted and compared. These results would be useful for theoretical research and indicate how external pressure significantly affects the physical characteristics of CsPbBr3 perovskites, which may open up new possibilities for use in optoelectronic, photonic, and solar cell applications. METHODS The structural, electrical, mechanical, optical, and thermal properties of cesium lead bromide (CsPbBr3) are investigated by applying external pressure from 0 to 50 GPa, using generalized gradient approximations (GGA) and Perdew-Burke-Ernzerhof (PBE) with CASTEP code built-in material studio by density functional theory (DFT).
Collapse
Affiliation(s)
- Rana Bilal Ahmad
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan.
| | - Abdul Waheed Anwar
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Anwar Ali
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Tehreem Fatima
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Muhammad Moin
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Amna Nazir
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Asma Batool
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| | - Umer Shabir
- Department of Physics, Faculty of Nano Science and Technology, University of Engineering and Technology, Lahore, Pakistan
| |
Collapse
|
7
|
Yin D, Gao Z, Xu C, Lyu P, Sun L. Modulating luminescence through anion variation in lead-free Cs 2NaInX 6 (X = Cl, Br, and I) perovskites: a first-principles study. NANOSCALE 2024; 16:10340-10349. [PMID: 38738992 DOI: 10.1039/d3nr06373a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The A2B+B'3+X6-type lead-free halide perovskite Cs2NaInCl6 has demonstrated limited luminescence performance attributed to parity-forbidden transitions in its intrinsic form. While extensive exploration has been dedicated to partial cation substitution in Cs2NaInCl6, there is a noticeable gap in understanding the impact of anion composition on this material. In this study, we investigated the influence of anion composition on the luminescence performance of Cs2NaInX6 using first-principles calculations. We first conducted calculations on Cs2NaInX6 in its intrinsic state and on Cs2NaInCl6 with cation substitution to establish the reliability of the transition dipole moment (TDM) as a luminescence descriptor in this system. Following this, we systematically assessed the formation energies, octahedral distortions, and luminescence properties of Cs2NaInX6 with diverse anion compositions. Despite sharing similar stability, closely aligned with the experimentally accessible Cs2NaInCl6, all mixed halide structures exhibited significant octahedral distortions. Additionally, most of these structures displayed considerably enhanced TDM compared to their single halide counterparts. Notably, the structures Cs2NaInX4X'2-b and Cs2NaInX3X'3-b demonstrated superior luminescence performance compared to other structures. The absorption spectra calculated for selected structures revealed the enhancement of their photo-absorbance in the presence of iodine, particularly in the low energy region. This observation provides additional evidence that light absorbance in different energy regions can be effectively regulated in this way. Finally, we also investigated other optical properties that impact luminescence performances, such as the energy loss spectrum L(ω), the reflectivity spectrum R(ω) and the refractivity index n(ω). The findings offer insights into optimizing the luminescence performance of lead-free halide perovskites through anion composition variation.
Collapse
Affiliation(s)
- Desheng Yin
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Zhenren Gao
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China.
- Hunan Provincial Key Laboratory of Micro-Nano Energy Materials and Application Technologies, College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, People's Republic of China
| | - Changfu Xu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China.
| | - Lizhong Sun
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, People's Republic of China.
| |
Collapse
|
8
|
Zhang Q, Liu L, Yuan T, Hou J, Yang X. Design of highly selective and stable CsPbI 3 perovskite catalyst for photocatalytic reduction of CO 2 to C 1 products. J Colloid Interface Sci 2024; 659:936-944. [PMID: 38219312 DOI: 10.1016/j.jcis.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Finding efficient photocatalytic carbon dioxide reduction catalysts is one of the core issues in addressing global climate change. Herein, the pristine CsPbI3 perovskite and doped CsPbI3 perovskite were evaluated in carbon dioxide reduction reaction (CO2RR) to C1 products by using density functional theory. Free energy testing and electronic structure analysis methods have shown that doped CsPbI3 exhibits more effective catalytic performance, higher selectivity, and stability than undoped CsPbI3. Additionally, it is discovered that CsPbI3 (100) and (110) crystal surfaces have varied product selectivity. The photo-catalytic effectiveness is increased by the narrower band gap of Bi and Sn doped CsPbI3, which broadens the absorption spectrum of visible light and makes electron transport easier. The calculation results indicate that Bi doped CsPbI3 (100) and CsPbI3 (110) crystal faces exhibit good selectivity towards CH4, with free energy barriers as low as 0.55 eV and 0.58 eV, respectively. Sn doped CsPbI3 (100) and CsPbI3 (110) crystal planes exhibit good selectivity for HCOOH and CH3OH, respectively. The results indicate that the Bi and Sn doped CsPbI3 perovskite catalyst can further improve the CO2 photocatalytic activity and high selectivity for C1 products, making it a suitable substrate material for high-performance CO2RR.
Collapse
Affiliation(s)
- Qiming Zhang
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology/College of Science, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Linhao Liu
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology/College of Science, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Tianbin Yuan
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology/College of Science, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Juan Hou
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology/College of Science, Shihezi University, Shihezi 832003, Xinjiang, China.
| | - Xiaodong Yang
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology/College of Science, Shihezi University, Shihezi 832003, Xinjiang, China.
| |
Collapse
|
9
|
Qin F, Lu M, Lu P, Sun S, Bai X, Zhang Y. Luminescence and Degeneration Mechanism of Perovskite Light-Emitting Diodes and Strategies for Improving Device Performance. SMALL METHODS 2023; 7:e2300434. [PMID: 37434048 DOI: 10.1002/smtd.202300434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/17/2023] [Indexed: 07/13/2023]
Abstract
Perovskite light-emitting diodes (PeLEDs) can be a promising technology for next-generation display and lighting applications due to their excellent optoelectronic properties. However, a systematical overview of luminescence and degradation mechanism of perovskite materials and PeLEDs is lacking. Therefore, it is crucial to fully understand these mechanisms and further improve device performances. In this work, the fundamental photophysical processes of perovskite materials, electroluminescence mechanism of PeLEDs including carrier kinetics and efficiency roll-off as well as device degradation mechanism are discussed in detail. In addition, the strategies to improve device performances are summarized, including optimization of photoluminescence quantum yield, charge injection and recombination, and light outcoupling efficiency. It is hoped that this work can provide guidance for future development of PeLEDs and ultimately realize industrial applications.
Collapse
Affiliation(s)
- Feisong Qin
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Po Lu
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Siqi Sun
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics and College of Electronic Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
10
|
Miodyńska M, Klimczuk T, Lisowski W, Zaleska-Medynska A. Bi-based halide perovskites: Stability and opportunities in the photocatalytic approach for hydrogen evolution. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
|