1
|
Deng P, Shi Z, Fang F, Xu Y, Zhou LA, Liu Y, Jin M, Chen T, Wang Y, Cao Y, Su L, Liang H, Liu Q. Wireless matrix metalloproteinase-9 sensing by smart wound dressing with controlled antibacterial nanoparticles release toward chronic wound management. Biosens Bioelectron 2025; 268:116860. [PMID: 39489012 DOI: 10.1016/j.bios.2024.116860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
Chronic wounds cause serious health and economic burdens on patients and society. Herein, a wireless and flexible smart wound dressing was developed for matrix metalloproteinase-9 (MMP-9) monitoring and antimicrobial treatment toward chronic wound management. The highly sensitive radio frequency MMP-9 sensor was realized based on a bioresponsive hydrogel with the bioactive peptide sequences. Taking advantage of the flexible inductive-capacitive (LC) circuit and bioresponsive hydrogel, the wireless and wearable smart wound dressing offered an efficient strategy for in-situ wound analysis. Besides, the controlled release of silver nanoparticles (AgNPs) from the degradable hydrogel exhibited significant antimicrobial efficacy against typical bacteria in wound infection including Escherichia coli and Staphylococcus aureus. The analysis of MMP-9 in wound exudate from diabetic foot ulcer (DFU) patients demonstrated good accuracy cross-validated with gold-standard fluorescent measurements, providing great potential for personalized wound management.
Collapse
Affiliation(s)
- Peixue Deng
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China; Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China
| | - Zhenghan Shi
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Feiyue Fang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yi Xu
- Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Li-Ang Zhou
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ye Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Meng Jin
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Tao Chen
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Yuzhen Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lingkai Su
- Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, PR China
| | - Hao Liang
- Life Sciences Institute, Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, 530021, PR China.
| | - Qingjun Liu
- Taizhou Key Laboratory of Medical Devices and Advanced Materials, Research Institute of Zhejiang University, Taizhou, 318000, PR China; Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, PR China.
| |
Collapse
|
2
|
Nazemoroaia M, Bagheri F, Mirahmadi-Zare SZ, Eslami-Kaliji F, Derakhshan A. Asymmetric natural wound dressing based on porous chitosan-alginate hydrogel/electrospun PCL-silk sericin loaded by 10-HDA for skin wound healing: In vitro and in vivo studies. Int J Pharm 2025; 668:124976. [PMID: 39577507 DOI: 10.1016/j.ijpharm.2024.124976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
An asymmetric wound dressing introduced, inspired by the skin structure made of chitosan and alginate hydrogel as the bottom layer and electrospun PCL-silk sericin (PCL-SS) as the top layer. In addition, an anti-inflammatory, bactericidal and immunomodulatory substance, 10-hydroxydecanoic acid (10-HDA), known as queen bee acid, was loaded in inner layer. The wound dressing was thoroughly characterized and confirmed to meet the criteria of a standard wound dressing through in vitro and in vivo studies. Although the mesoporous hydrogel layer shows 175 % swelling after being immersed in PBS (pH = 7.4) for 60 min and 80 % degradation after 14 days, the top layer shows 28 % swelling and 19 % degradation in the same time intervals. The hydrogel layer supports rapid wound healing, while the top layer offers protection against infection and physical threats. The dressing demonstrated antibacterial properties and enhanced cell proliferation at 1 % 10-HDA. Finally, the wound healing performance of the complete dressing was investigated in vivo using wistar rat. Clinical and histopathological assessments, along with the analysis of biophysical parameters of the skin healing, confirm that wound dressing with 10-HDA significantly accelerates wound healing compared to control groups, without any inflammatory side effects.
Collapse
Affiliation(s)
- Maryam Nazemoroaia
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran 14115-111, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Farshid Eslami-Kaliji
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran
| | - Amin Derakhshan
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
3
|
Jiang W, Hou X, Guo X, Zhu M, Lin X, Zhang Z, Chen Z, Lin X, Feng Y, Zhao J, Yang J, Wu M. A superelastic, biofluid-locking, and degradable dressing for wound healing. Carbohydr Polym 2025; 347:122774. [PMID: 39486999 DOI: 10.1016/j.carbpol.2024.122774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
In medical field, light-weight, superelastic, and super-absorbing aerogels are highly desired for sensitive wounds with persistent exudations. Up to now, superelastic PU porous dressings are commonly employed, which impose environmental concerns both in their preparation and in their pollution after usage. Herein, carboxymethyl cellulose (CMC) was used to construct hierarchical aerogels via a dual-crosslinking and porogen leaching method. The hierarchical aerogel not only disperses stress at multiple scales, endowing the aerogel with superelasticity, but also deeply absorbs bioliquid through its hierarchical porous surfaces and strong wetting forces deriving from the abundant hydrophilic groups such as hydroxyl and carboxyl groups. Moreover, for practical use, the hierarchical CMC (H-CMC) dressing demonstrates superior absorbency than commercial elastic PU foam both in static and dynamic liquid absorption, faster wound healing than commercial CMC fiber dressing, and can fully degrade both in vivo and in soil. Thus, this research offers a universal approach to design hierarchical wound dressings using bio-based polyelectrolyte, presenting a wound dressing that is both environmentally-friendly and highly comfortable when applied in healing human sensitive injuries.
Collapse
Affiliation(s)
- Weijie Jiang
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Xuelong Hou
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Xiangyang Guo
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Meng Zhu
- Beierhuan east road No. 17, Shijiazhuang, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, China
| | - Xinsen Lin
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Zhaowen Zhang
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Zixiang Chen
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Xiaobo Lin
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China.
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China.
| | - Junchai Zhao
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Jinhui Yang
- Hebei Key Laboratory of Advanced Materials for Transportation Engineering and Environment, Shijiazhuang Tiedao University, 17 Beierhuan East Road, Shijiazhuang 050043, China
| | - Min Wu
- Beierhuan east road No. 17, Shijiazhuang, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing 100190, China.
| |
Collapse
|
4
|
Zhu P, Wu J, Chang Z, Yang F, Zhang X, Hou K, Ping D, Li S. Sodium alginate hydrogel loaded with Capparis spinosa L. extract for antimicrobial and antioxidant wound dressing applications. Int J Biol Macromol 2024; 289:138883. [PMID: 39701266 DOI: 10.1016/j.ijbiomac.2024.138883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Novel composite hydrogels composed of Capparis spinosa L. extract (CSL) and sodium alginate (SA) were developed for biomedical applications using calcium chloride (CaCl₂) as a nontoxic ionic crosslinker. The swelling degree, antioxidant activity, water retention, and biocompatibility of the CSL/SA composite hydrogels were thoroughly analyzed, along with their antibacterial properties. Scanning electron microscopy (SEM) results indicated that the CSL/SA composite hydrogels exhibited a three-dimensional porous structure with uniform pore distribution. Fourier transform infrared spectroscopy (FTIR) results suggested that CSL was successfully incorporated into composite hydrogels. When the CSL concentration reached 9 %, the swelling degree attained 765.89 ± 21.36 %. Furthermore, the addition of CSL enhanced the oxidation resistance of the composite hydrogels. Agar disk diffusion assessments confirmed that the CSL/SA composite hydrogels exhibited significant antibacterial effects against E. coli and S. aureus. Cytotoxicity studies demonstrated that the composite hydrogels effectively accelerated cell proliferation. Therefore, these hydrogels show promising potential for application as wound dressings.
Collapse
Affiliation(s)
- Peng Zhu
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Jianmeng Wu
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Zhipeng Chang
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Feng Yang
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Xinqun Zhang
- College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, PR China
| | - Ke Hou
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Dehai Ping
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China; Zhong Yuan Critical Metals Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China
| | - Songjie Li
- School of Chemical Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, PR China.
| |
Collapse
|
5
|
Ahmadi Z, Jha D, Yadav S, Singh AP, Singh VP, Gautam HK, Sharma AK, Kumar P. Self-assembled Arginine-Glycine-Aspartic Acid Mimic Peptide Hydrogels as Multifunctional Biomaterials for Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67302-67320. [PMID: 39613718 DOI: 10.1021/acsami.4c14686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Clinical management of nonhealing ulcers requires advanced materials that can enhance wound closure rates without relying on the release of drugs or other growth factors to obviate systemic deleterious side effects. In our previous work, we synthesized an integrin-binding cell adhesive MNH2 {Fmoc-FFβAR(K)βA-NH2 consisting of an RGD mimic, [R(K)], with an amide terminus}, MOH {Fmoc-FFβAR(K)βA-OH consisting of an RGD mimic, [R(K)], with acid terminus}, and MR (Fmoc-FFβARGDβA-NH2 consisting of an RGD peptide, reference) with multifunctional activity. Here, we reported the synthesis, characterization, and performance of a reversed derivative, R-MNH2 (Fmoc-FFβA(K)RβA-NH2 consisting of an RGD mimic, [K(R)], with an amide terminus) of an antimicrobial cell adhesive peptide, MNH2. Both peptides (MNH2 and R-MNH2) were found to interact with αvβ3 integrin, as shown by docking studies; however, they differed in cell adhesive properties, hydrogel formation, and antimicrobial efficacy. Later, the wound healing ability of a series of RGD/RGD peptide mimics (MR, R-MNH2, MNH2, and MOH) was studied in a methicillin-resistant Staphylococcus aureus (MRSA)-infected Balb/c mouse model. All studied peptides showed cell adhesion and wound healing properties; however, only the amide-terminal RGD peptide mimic, MNH2, and its reversed derivative, R-MNH2, showed antimicrobial activity in both in vitro and in vivo studies. Of these, MNH2 showed the highest integrin-mediated spreading, migration, and proliferation of dermal cells in vitro as well as in vivo. Therefore, the MNH2 peptide mimic represents a paradigm shift in the development of dermoconductive strategies to treat chronic wounds.
Collapse
Affiliation(s)
- Zeba Ahmadi
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Diksha Jha
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Santosh Yadav
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Akash Pratap Singh
- Department of Botany, Maitreyi College, University of Delhi, New Delhi 110021, India
| | - Vijay Pal Singh
- CSIR-Institute of Genomics and Integrative Biology, Sukhdev Vihar, New Delhi 110025, India
| | - Hemant Kumar Gautam
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashwani Kumar Sharma
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | - Pradeep Kumar
- CSIR-Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Feraru A, Tóth ZR, Magyari K, Baia M, Gyulavári T, Páll E, Licarete E, Costinas C, Cadar O, Papuc I, Baia L. The effect of nanoceria on the alginate-gum arabic crosslinking mechanism and in vitro behavior as a wound dressing. Int J Biol Macromol 2024; 288:138569. [PMID: 39653230 DOI: 10.1016/j.ijbiomac.2024.138569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Medical practice has proven that chronic wounds can be treated successfully if the dressing is chosen according to the healing phase of the wound. Correct intervention from the hemostasis and inflammatory phase can prevent oxidative stress and ensure optimal conditions for healing. It is important to design a new wound dressing that does not cause additional injury, has an antioxidant effect, removes dead cells, and promotes wound healing. Considering that the traditional dressings are not moisture-retentive, we proposed an alginate-gum arabic polymeric matrix enhanced with cerium oxide nanoparticles. The cryogels were prepared by cross-linking polysaccharides and cerium oxide nanoparticles via calcium cations to form a sponge-like structure. The blend of micro- and macro-pores provides a suitable environment for nutrient distribution and keeps an adequate moisture level, mimicking the functions of the native cellular matrix. The release of cerium oxide nanoparticles occurs gradually, at the same time as the degradation of the biopolymer, promoting the attachment and viability of keratinocytes and fibroblast cells. It was found that stimulating epithelial regeneration is improved through the antioxidant effect and the adsorption capacity of hemoglobin. The results also indicate good in vitro biocompatibility and recommend them as promising dressings for skin wound treatments.
Collapse
Affiliation(s)
- Alexandra Feraru
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Zsejke-Réka Tóth
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Klára Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; INSPIRE Research Platform, Babes Bolyai University, 400084 Cluj-Napoca, Romania.
| | - Monica Baia
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. sqr. 1, Szeged 6720, Hungary
| | - Emőke Páll
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Emilia Licarete
- Faculty of Biology and Geology, Babes-Bolyai University, 400015 Cluj-Napoca, Romania
| | - Codrut Costinas
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lucian Baia
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania.
| |
Collapse
|
7
|
Su Y, Xu J, Liu W, Shu Y, Ma H, Cheng YY, Liu Y, Pan B, Song K. A gelatin/acrylamide-based hydrogel for smart drug release monitoring and radiation-induced wound repair in breast cancer. Int J Biol Macromol 2024; 283:137845. [PMID: 39579810 DOI: 10.1016/j.ijbiomac.2024.137845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/25/2024]
Abstract
Radiotherapy is a common local treatment for breast cancer, and while it is effective in targeting tumor cells, it inevitably causes significant side effects. These include excessive production of reactive oxygen species (ROS), repeated inflammatory, and severe skin ulceration, all of which can hinder the wound healing process. As a result, there is a pressing need for multifunctional medical dressings that can support wound repair following radiotherapy. In this study, we introduced a novel double-network interpenetrating hydrogel (GEMC), which combined gelatin grafted dopamine (GEDA), acrylamide, nano-clay (NC), and curcumin loaded nanoparticles (CCNPs). Unlike traditional single-function hydrogels, the GEMC hydrogel offered a combination of antioxidant properties, tissue adhesion, and real time drug tracking, effectively addressing the multifaceted challenges of wound healing after radiotherapy. The GEMC hydrogel exhibited impressive antioxidant activity and superior mechanical properties, which collectively improve the support and protection of wounded surfaces. Furthermore, GEMC promoted skin regeneration, angiogenesis and reduced inflammatory in a mouse model of radiotherapy-induced skin ulceration. These results highlight the hydrogel's potential to accelerate would healing and enhance the effectiveness of post-radiotherapy wound care, providing a promising new approach to improving the quality of skin recovery following radiotherapy.
Collapse
Affiliation(s)
- Ya Su
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Institute of Rehabilitation Medicine, Henan Academy of Innovations in Medical Science, Central Plains Medical Science City, Zhengzhou Airport Area, Henan, China
| | - Jie Xu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wang Liu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yan Shu
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hailin Ma
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China
| | - Yuen Yee Cheng
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, NSW 2007, Australia
| | - Yaqian Liu
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Bo Pan
- Department of Breast Surgery, The Second Hospital of Dalian Medical University, 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China.
| | - Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian 116024, China; Zhengzhou Institute of Emerging Industrial Technology, Zhengzhou 450000, China.
| |
Collapse
|
8
|
Verma N, Riyaz M, Kaur G, Negi P, Ghawri H, Raj K. Anticandidal Efficacy of Green Synthesized Silver Nanoparticles Using Trans-Himalayan Plant Extracts Against Drug Resistant Clinical Isolates of Candida auris. Indian J Microbiol 2024; 64:1912-1928. [PMID: 39678981 PMCID: PMC11645397 DOI: 10.1007/s12088-024-01277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 04/04/2024] [Indexed: 12/17/2024] Open
Abstract
Candida auris is the most common, globally detected nosocomial fungal pathogen with multi-drug resistance. The high prevalence of C. auris infections has raised concern about drug resistance and adverse effects, compounded by a lack of effective alternative drugs. Bioengineered nanomaterials play a significant role in combating nosocomial infections. Silver nanoparticles (AgNPs) have emerged as an extensively used nanomaterial due to their prominent antimicrobial properties. One of the most promising approaches is to incorporate herbal extracts that contain a range of phytoconstituents, being used for curing various chronic illnesses. This study aimed to produce eco-friendly, cost-effective green synthesized AgNPs with trans-Himalayan medicinal plant extracts (Trillium govanianum & Bergenia ligulata) and assess their anticandidal and antibiofilm potential. The green-synthesized AgNPs formation and crystalline nature were confirmed by UV-visible spectroscopy, dynamic light scattering and X-ray diffraction analysis. The UV-Vis spectra of the AgNPs revealed bands in the range of 415-430 nm. Phytoconstituents as reducing agents were involved in the stabilization of AgNPs as identified by FTIR spectra. HR-TEM of AgNPs' displayed a spherical shape with size in the range of 10-100 nm. Results of activity tests performed using various C. auris clinical strains showed half maximum growth inhibition (IC50) at 8.02 µg/mL, which inhibited 65% of biofilm for T. govanianum extract. The free radical scavenging activity evaluated for green synthesized AgNPs using DPPH showed more than 90% antioxidant activity. Green synthesized AgNPs displayed potent growth inhibition (IC50) at 4.01 µg/mL with 87.0% biofilm inhibition. Green synthesized AgNPs coated bandages and catheters inhibited the growth of C. auris. This study concluded that green synthesized AgNPs formulation in conjunction with antifungal agents exhibits potential biomedical application and also could be used as alternative therapeutics. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-024-01277-8.
Collapse
Affiliation(s)
- Nandini Verma
- Department of Microbiology, Basic Medical Sciences Block 1, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
- Present Address: MTCC Gene Bank, CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, 160036 India
| | - Mohammad Riyaz
- Department of Microbiology, Basic Medical Sciences Block 1, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Gurkeerat Kaur
- Department of Microbiology, Basic Medical Sciences Block 1, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Preeti Negi
- Department of Microbiology, Basic Medical Sciences Block 1, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Harshita Ghawri
- Department of Microbiology, Basic Medical Sciences Block 1, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| | - Khem Raj
- Department of Microbiology, Basic Medical Sciences Block 1, Panjab University, South Campus, Sector-25, Chandigarh, 160014 India
| |
Collapse
|
9
|
Korte D, Swapna MNS, Budasheva H, Diaz PC, Chhikara M, Škorjanc T, Tripon C, Farcas A, Pavlica E, Tran CD, Franko M. Characterization of sustainable biocompatible materials based on chitosan: cellulose composites containing sporopollenin exine capsules. Int J Biol Macromol 2024; 282:136649. [PMID: 39419139 DOI: 10.1016/j.ijbiomac.2024.136649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
In this work, photothermal beam deflection spectrometric technique (BDS) is applied for non-contact and non-destructive characterization of chitosan (CS): cellulose (CEL) biocomposites with incorporated sporopollenin exine capsules (SEC). The objective was to determine the structural and thermal properties of synthesized CS:CEL:SEC composites with varying amounts of SEC, and to validate the BDS by photopyroelectric calorimetry (PPE) as an independent technique. It was found that CS:CEL biocomposites without SEC exhibit low porosities, which are on the order of 0.005 %, but can be increased by augmenting the content of CEL in the composite and/or by incorporation of SEC. By increasing the SEC content of CS:CEL composites to 50 % (w/w), the porosity increased up to 0.17 %. SEC also increases the surface roughness of biocomposite by over 2000-times to reach the roughness amplitude of 6 μm in composites with 50 % SEC. The thermal conductivities of investigated biocomposites were in the range of 40-80 mWm-1 K-1, while the thermal diffusivities were on the order of fractions of mm2s-1. With first validation of BDS results for thermal properties of CS:CEL-based composites, which show agreement with PPE results to within 5 %, this study confirms BDS technique as a perspectives tool for non-destructive characterization of CS:CEL:SEC biocomposites.
Collapse
Affiliation(s)
- Dorota Korte
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia.
| | | | - Hanna Budasheva
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Patricia Cazon Diaz
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Manisha Chhikara
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Tina Škorjanc
- Materials Research Laboratory, University of Nova Gorica, Vipavska 11c, Ajdovscina SI-5270, Slovenia
| | - Carmen Tripon
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Alexandra Farcas
- National R&D Institute for Isotopic and Molecular Technologies, Donat 65-103, 400293 Cluj-Napoca, Romania
| | - Egon Pavlica
- Laboratory of Organic Matter Physics, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| | - Chieu D Tran
- Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, United States
| | - Mladen Franko
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Vipavska 13, Nova Gorica SI-5000, Slovenia
| |
Collapse
|
10
|
Gana FZ, Harek Y, Aissaoui N, Nadjat T, Abbad S, Rouabhi H. Effect of the molar mass of chitosan and film casting solvents on the properties of chitosan films loaded with Mentha spicata essential oil for potential application as wound dressing. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2807-2828. [PMID: 39167543 DOI: 10.1080/09205063.2024.2390752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024]
Abstract
Chitosan based films endowed with antibacterial features have witnessed remarkable progress as potential wound dressings. The current study aimed at appraising the effects of the molar mass of chitosan (MM) and the film casting acids on the properties of unplasticized chitosan films and plasticized MSO-embedded chitosan films in order to provide best suited film formulation as a potential candidate for wound dressing application. The prepared films were functionally characterized in terms of their qualitative assessment, thickness, density, swelling behavior, water vapor barrier, mechanical and antibacterial properties. Overall, all chitosan films displayed thickness lower than the human dermis even though thicker and denser films were produced with lactic acid. Assessment of the swelling behavior revealed that only high molar mass (HMM) chitosan films may be regarded as absorbent dressings. Moreover, unplasticized HMM lactate (HMM-LA) films furnished lower stiffness and higher percent strain break as compared to acetate films, due to the plasticizing effect of the remaining lactic acid as alluded by the FTIR analysis. Meanwhile, they provided suitable level of moisture and indicated substantial antibacterial activity against S. aureus and E. coli, the most commonly opportunistic bacteria found in infected skin wound. Plasticized chitosan films doped with MSO were significantly thicker and more permeable to water compared to unplasticized films. Furthermore, MSO significantly potentiate the antibacterial effect of chitosan-based films. Therefore, plasticized HMM-LA/MSO chitosan film flashing good swelling behavior, adequate WVTR and WVP, suitable mechanical properties and antibacterial performances substantiated to be a promising antibacterial dressing material for moderately exuding wounds.
Collapse
Affiliation(s)
- Fatima Zahra Gana
- Laboratory of Analytical Chemistry and Electrochemistry, University of Tlemcen, Tlemcen, Algeria
- Department of Pharmacy, University of Tlemcen, Tlemcen, Algeria
| | - Yahia Harek
- Laboratory of Analytical Chemistry and Electrochemistry, University of Tlemcen, Tlemcen, Algeria
| | - Nadia Aissaoui
- Laboratory of the Sustainable Management of Natural Resources in Arid and Semi Aridareas, University Center of Naama, Naama, Algeria
| | - Taib Nadjat
- Department of Pharmacy, University of Tlemcen, Tlemcen, Algeria
| | - Sarra Abbad
- Department of Pharmacy, University of Tlemcen, Tlemcen, Algeria
| | - Houria Rouabhi
- Laboratory of Analytical Chemistry and Electrochemistry, University of Tlemcen, Tlemcen, Algeria
| |
Collapse
|
11
|
Zhang W, Wu W, Wang T, Wu Z, Li Y, Ding T, Fang Z, Tian D, He X, Huang F. Novel Supramolecular Hydrogel for Infected Diabetic Foot Ulcer Treatment. Adv Healthc Mater 2024; 13:e2402092. [PMID: 39225408 DOI: 10.1002/adhm.202402092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multifunctional responsive hydrogels hold significant promise for diabetic foot ulcer (DFU) treatment, though their complex design and manufacturing present challenges. This study introduces a novel supramolecular guanosine-phenylboronic-chlorogenic acid (GBC) hydrogel developed using a dynamic covalent strategy. The hydrogel forms through guanosine quadruplex assembly in the presence of potassium ions and chlorogenic acid (CA) linkage via dynamic borate bonds. GBC hydrogels exhibit pH and glucose responsiveness, releasing more chlorogenic acid under acidic and high glucose conditions due to borate bond dissociation and G-quadruplex (G4) hydrogel disintegration. Experimental results indicate that GBC hydrogels exhibit good self-healing, shear-thinning, injectability, and swelling properties. Both in vitro and in vivo studies demonstrate the GBC hydrogel's good biocompatibility, ability to eliminate bacteria and reactive oxygen species (ROS), facilitate macrophage polarization from the M1 phenotype to the M2 phenotype (decreasing CD86 expression and increasing CD206 expression), exhibit anti-inflammatory effects (reducing TNF-α expression and increasing IL-10 expression), and promote angiogenesis (increasing VEGF, CD31, and α-SMA expression). Thus, GBC hydrogels accelerate DFU healing and enhance tissue remodeling and collagen deposition. This work provides a new approach to developing responsive hydrogels to expedite DFU healing.
Collapse
Affiliation(s)
- Wenbiao Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Weiwei Wu
- Department of Anaesthesia, The First Affiliated Hospital of Anhui Medical University North district, Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Tao Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Zhiwei Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yang Li
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Tao Ding
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Zhennan Fang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Xiaoyan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Fei Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| |
Collapse
|
12
|
Arbab S, Ullah H, Muhammad N, Wang W, Zhang J. Latest advance anti-inflammatory hydrogel wound dressings and traditional Lignosus rhinoceros used for wound healing agents. Front Bioeng Biotechnol 2024; 12:1488748. [PMID: 39703792 PMCID: PMC11657242 DOI: 10.3389/fbioe.2024.1488748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/15/2024] [Indexed: 12/21/2024] Open
Abstract
Wound healing is a physiological process occurring after the onset of a skin lesion aiming to reconstruct the dermal barrier between the external environment and the body. Depending on the nature and duration of the healing process, wounds are classified as acute (e.g., trauma, surgical wounds) and chronic (e.g., diabetic ulcers) wounds. The latter, often affect millions of people globally, take months to heal or not heal non-healing chronic wounds, are typically susceptible to microbial infection, and are a major cause of morbidity. Wounds can be treated with a variety of non-surgical (topical formulations, wound dressings) and surgical (debridement, skin grafts/flaps) methods. Three-dimensional (3D)-(bio) printing and traditional wound dressings are two examples of modern experimental techniques. This review focuses on several types of anti-inflammatory wound dressings, especially focusing on hydrogels and traditional macro-fungi like L. rhinocerotis as agents that promote wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and offered innovative methods for application and preparation to aid in the healing. Additionally, we summarize the key elements required for wound healing and discuss our analysis of potential future issues. These findings suggest that L. rhinocerotis and various anti-inflammatory hydrogels can be considered as conventional and alternative macro-fungi for the treatment of non-communicable diseases. We summarized the development of functional hydrogel dressings and traditional Lignosus rhinoceros used for wound healing agents in recent years, as well as the current situation and future trends, in light of their preparation mechanisms and functional effects.
Collapse
Affiliation(s)
- Safia Arbab
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hanif Ullah
- Medicine and Engineering Interdisciplinary Research Laboratory of Nursing & Materials/Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, Sichuan, China
| | - Nehaz Muhammad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco‐Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei Province, China
| | - Weiwei Wang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiyu Zhang
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, China
- Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
13
|
Rajput JH, Rathi V, Mukherjee A, Yadav P, Gupta T, Das B, Poundarik A. A novel polyurethane-based silver foam dressing with superior antimicrobial action for management of infected chronic wounds. Biomed Mater 2024; 20:015005. [PMID: 39509820 DOI: 10.1088/1748-605x/ad8fe8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/07/2024] [Indexed: 11/15/2024]
Abstract
Wound healing is a complex and dynamic process supported by several cellular events. Around 13 million individuals globally suffer from chronic wounds yearly, for which dressings with excellent antimicrobial activity and cell viability (>70%, as per ISO 10993) are needed. Excessive use of silver can cause cytotoxicity and has been linked to increasing antimicrobial resistance. In this study, HDI Ag foam was synthesized using a safer hexamethylene diisocyanate-based prepolymer (HDI prepolymer) instead of commonly used diisocyanates like TDI and MDI and substantially lower Ag content than that incorporated in other Ag foams. In vitro characteristics of the HDI Ag foam were evaluated in comparison with leading clinically used foam-based dressings. All dressings underwent a detailed characterization in accordance with industrially accepted BS EN 13726 standards. The HDI Ag foam exhibited highest antimicrobial efficiency againstS. aureusandP. aeruginosa(static condition), with the lowest amount of Ag (0.2 wt%) on the wound contact surface. The extracts from HDI Ag foam showed superior cell viability (>70%), when tested on the L929 mouse fibroblast cell line. Measurements of moisture vapor transmission, fluid handling, physico-chemical and mechanical properties ensured that the HDI foam was clinically acceptable for chronic wound patients.
Collapse
Affiliation(s)
- Jay Hind Rajput
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Varun Rathi
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Anwesha Mukherjee
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Pankaj Yadav
- Sheela Foam Ltd, Noida, Uttar Pradesh 201301, India
| | - Tarush Gupta
- Department of Plastic Surgery, Postgraduate Institute of Medical Education and Research, Chandigarh, Punjab 160012, India
| | - Bodhisatwa Das
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| | - Atharva Poundarik
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Ropar, Punjab 140001, India
| |
Collapse
|
14
|
Zivelonghi G, Melotti L, Carolo A, Venerando A, Roncoroni M, Martinelli G, Maccatrozzo L, Marzorati S, Sugni M, Patruno M. Sea food by-products valorization for biomedical applications: evaluation of their wound regeneration capabilities in an Ex vivo skin model. Front Vet Sci 2024; 11:1491385. [PMID: 39660177 PMCID: PMC11629400 DOI: 10.3389/fvets.2024.1491385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/22/2024] [Indexed: 12/12/2024] Open
Abstract
Introduction The skin is often exposed to harmful stimuli that might compromise its integrity and functionality. After an injury, the skin has a limited capability to restore its complex structure, and in the case of severe skin damage, surgical operations and rapid application of wound dressings are often required to promote optimal wound healing. Nowadays, collagen-based biomaterials are widely used in combination with bioactive molecules able to prevent excessive inflammation and possible infections. In line with a circular economy and blue biotechnology approach, it was recently demonstrated that both collagen and bioactive molecules (i.e., antioxidant compounds) can be sustainably obtained from sea food by-products and effectively used for biomaterial development. Herein, we describe and compare the application of two marine collagen-based wound dressings (CBWDs), produced with materials obtained from sea urchin food waste, for the treatment of skin lesions in a wound healing organ culture (WHOC) model. Methods The ex vivo WHOC model was set up starting from rat skin explants and the induced lesions were assigned into three different groups: control (CTRL) group, not treated, marine collagen wound dressing (MCWD) group, and antioxidants-enriched marine collagen wound dressing (A-MCWD) group. After 5 and 10 days, specimens were examined for organ maintenance and assessed for the healing process. Results Immunohistochemical results showed that both CBWDs were similarly successful in prolonging skin repair, preserving the epidermal barrier up to 5 days under static culture conditions. Histological and gene expression analysis highlighted that the A-MCWD might support and accelerate skin wound healing by exerting antioxidant activity and counteracting inflammation. Discussion Overall, these findings underline the potential of sea urchin food waste as a novel resource for the development of functional medical devices for the treatment of skin wounds.
Collapse
Affiliation(s)
- Giulia Zivelonghi
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Luca Melotti
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Anna Carolo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Andrea Venerando
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Margherita Roncoroni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Giordana Martinelli
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Lisa Maccatrozzo
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| | - Stefania Marzorati
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Michela Sugni
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Marco Patruno
- Department of Comparative Biomedicine and Food Science, University of Padua, Padua, Italy
| |
Collapse
|
15
|
Ghosh R, Singh P, Pandit AH, Tariq U, Bhunia BK, Kumar A. Emerging Technological Advancement for Chronic Wound Treatment and Their Role in Accelerating Wound Healing. ACS APPLIED BIO MATERIALS 2024; 7:7101-7132. [PMID: 39466167 DOI: 10.1021/acsabm.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic wounds are a major healthcare burden and may severely affect the social, mental, and economic status of the patients. Any impairment in wound healing stages due to underlying factors leads to a prolonged healing time and subsequently to chronic wounds. Traditional approaches for the treatment of chronic wounds include dressing free local therapy, dressing therapy, and tissue engineering based scaffold therapies. However, traditional therapies need improvisation and have been advanced through breakthrough technologies. The present review spans traditional therapies and further gives an extensive account of advancements in the treatment of chronic wounds. Cutting edge technologies, such as 3D printing, which includes inkjet printing, fused deposition modeling, digital light processing, extrusion-based printing, microneedle array-based therapies, gene therapy, which includes microRNAs (miRNAs) therapy, and smart wound dressings for real time monitoring of wound conditions through assessment of pH, temperature, oxygen, moisture, metabolites, and their use for planning of better treatment strategies have been discussed in detail. The review further gives the future direction of treatments that will aid in lowering the healthcare burden caused due to chronic wounds.
Collapse
Affiliation(s)
- Rupita Ghosh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Prerna Singh
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashiq Hussain Pandit
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ubaid Tariq
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Bibhas Kumar Bhunia
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| | - Ashok Kumar
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
- Centre of Excellence for Materials in Medicine, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP India
| |
Collapse
|
16
|
Shubina VS, Kobyakova MI, Penkov NV, Mitenko GV, Udaltsov SN, Shatalin YV. Two Novel Membranes Based on Collagen and Polyphenols for Enhanced Wound Healing. Int J Mol Sci 2024; 25:12353. [PMID: 39596422 PMCID: PMC11594507 DOI: 10.3390/ijms252212353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/28/2024] Open
Abstract
Two novel membranes based on collagen and two polyphenols, taxifolin pentaglutarate (TfG5) and a conjugate of taxifolin with glyoxylic acid (DfTf), were prepared. Fourier transform infrared spectroscopy examination confirmed the preservation of the triple helical structure of collagen. A scanning electron microscopy study showed that both materials had a porous structure. The incorporation of DfTf into the freeze-dried collagen matrix increased the aggregation of collagen fibers to a higher extent than the incorporation of TfG5, resulting in a more compact structure of the material containing DfTf. It was found that NIH/3T3 mouse fibroblasts were attached to, and relatively evenly spread out on, the surface of both newly obtained membranes. In addition, it was shown that the membranes enhanced skin wound healing in rats with a chemical burn induced by acetic acid. The treatment with the materials led to a faster reepithelization and granulation tissue formation compared with the use of other agents (collagen without polyphenols and buffer saline). It was also found that, in the wound tissue, the level of thiobarbituric acid reactive substances (TBARS) was significantly higher and the level of low-molecular-weight SH-containing compounds (RSH) was significantly lower than those in healthy skin, indicating a rise in oxidative stress at the site of injury. The treatment with collagen membranes containing polyphenols significantly decreased the TBARS level and increased the RSH level, suggesting the antioxidant/anti-inflammatory effect of the materials. The membrane containing TfG5 was more effective than other ones (the collagen membrane containing DfTf and collagen without polyphenols). On the whole, the data obtained indicate that collagen materials containing DfTf and TfG5 have potential as powerful therapeutic agents for the treatment of burn wounds.
Collapse
Affiliation(s)
- Victoria S. Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Margarita I. Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| | - Nikita V. Penkov
- Institute of Cell Biophysics, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 3, 142290 Pushchino, Russia;
| | - Gennady V. Mitenko
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 2, 142290 Pushchino, Russia; (G.V.M.); (S.N.U.)
| | - Sergey N. Udaltsov
- Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Institutskaya 2, 142290 Pushchino, Russia; (G.V.M.); (S.N.U.)
| | - Yuri V. Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia;
| |
Collapse
|
17
|
Cetin FN, Mignon A, Van Vlierberghe S, Kolouchova K. Polymer- and Lipid-Based Nanostructures Serving Wound Healing Applications: A Review. Adv Healthc Mater 2024:e2402699. [PMID: 39543796 DOI: 10.1002/adhm.202402699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/18/2024] [Indexed: 11/17/2024]
Abstract
Management of hard-to-heal wounds often requires specialized care that surpasses the capabilities of conventional treatments. Even the most advanced commercial products lack the functionality to meet the needs of hard-to-heal wounds, especially those complicated by active infection, extreme bleeding, and chronic inflammation. The review explores how supramolecular nanovesicles and nanoparticles-such as dendrimers, micelles, polymersomes, and lipid-based nanocarriers-can be key to introducing advanced wound healing and monitoring properties to address the complex needs of hard-to-heal wounds. Their potential to enable advanced functions essential for next-generation wound healing products-such as hemostatic functions, transdermal penetration, macrophage polarization, targeted delivery, and controlled release of active pharmaceutical ingredients (antibiotics, gaseous products, anti-inflammatory drugs, growth factors)-is discussed via an extensive overview of the recent reports. These studies highlight that the integration of supramolecular systems in wound care is crucial for advancing toward a new generation of wound healing products and addressing significant gaps in current wound management practices. Current strategies and potential improvements regarding personalized therapies, transdermal delivery, and the promising critically evaluated but underexplored polymer-based nanovesicles, including polymersomes and proteinosomes, for wound healing.
Collapse
Affiliation(s)
- Fatma N Cetin
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Arn Mignon
- Department of Engineering Technology, KU Leuven, Andreas Vesaliusstraat 13, Leuven, 3000, Belgium
| | - Sandra Van Vlierberghe
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| | - Kristyna Kolouchova
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, Gent, 9000, Belgium
| |
Collapse
|
18
|
Sun L, Jin S, Feng Y, Liu Y. Antibacterial nonwoven materials in medicine and healthcare. J Biomater Appl 2024:8853282241297872. [PMID: 39505384 DOI: 10.1177/08853282241297872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Bacterial infection has always been a severe challenge for mankind. The use of antibacterial nonwoven materials provides a lot of convenience in daily life and clinical practice grammar revision, it has become an important solution to avoid bacterial infection in clinical and daily life. This review systematically examines the spin bonding, melt blown, hydroneedling and electrospinning methods of nonwoven fabrication materials, and summarizes the antibacterial nonwoven materials fabrication methods. Finally, the review discusses the applications of antibacterial nonwoven materials for medical protection, external medical and healthcare, external circulation medical care implantable medical and healthcare and intelligent protection and detection. This comprehensive overview aims to provide valuable insights for the advancement of antibacterial nonwoven materials in the domain of medicine and health care. In the future, antibacterial nonwoven materials are expected to evolve towards biodegradability, composite materials, functionalization, minimally invasive techniques, diversification, and intelligence, thereby holding immense potential in healthcare.
Collapse
Affiliation(s)
- Lijuan Sun
- College of Aeronautical Science and Engineering, Yantai Nanshan University, Yantai, PR China
| | - Shixin Jin
- Dental Materials Science, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong, PR China
| | - Yan Feng
- School of Textile Science and Engineering, Tiangong University, Tianjin, PR China
| | - Yanling Liu
- Textile New Materials Research Institute, Shandong Nanshan Fashion Sci-Tech Co., Ltd., Yantai, PR China
| |
Collapse
|
19
|
P A, M RJ, Joy JM, Visnuvinayagam S, Remya S, Mathew S. Development of κ-carrageenan-based transparent and absorbent biodegradable films for wound dressing applications. Int J Biol Macromol 2024; 282:137084. [PMID: 39500428 DOI: 10.1016/j.ijbiomac.2024.137084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Wound healing remains a critical challenge in healthcare, requiring advanced wound dressings with superior properties like transparency, absorbency, and biocompatibility. However, gaps exist in the use of marine-derived biopolymers for sustainable dressings. This study addresses this gap by combining κ-carrageenan (KC) with polyvinyl pyrrolidone (PVP) to develop transparent and absorbent biodegradable films through solvent casting and lyophilization techniques. Lyophilized films exhibited superior absorbency (9.17 g/cm2) and moisture management, with a water vapour transmission rate of 3990.67 g/m2/24 h, while solvent-cast films showed 78 % transmittance, enabling wound visualization. Mechanical testing revealed high tensile strength (31.5 MPa) and folding endurance (410 folds), ensuring durability. In vitro bactericidal assays confirmed efficacy against MRSA and E. coli, and in vivo tests on Wistar rats showed complete wound healing within 16 days with 91.1 % closure, outperforming untreated controls (76.7 %). This is the first study to explore lyophilized KC-PVP films for wound dressing applications, demonstrating potential for drug release, absorbency, and biodegradability. The innovative combination of biopolymers and fabrication techniques offers a sustainable, high-performance solution for wound care.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Zoology, St. Teresa's College (Autonomous), Ernakulam 682011, Kerala, India
| | - S Visnuvinayagam
- Microbiology, Fermentation and Biotechnology Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - S Remya
- Fish Processing Technology, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
20
|
Woo K, Santamaria N, Beeckman D, Alves P, Cullen B, Gefen A, Lázaro-Martínez JL, Lev-Tov H, Najafi B, Sharpe A, Swanson T. Using patient-reported experiences to inform the use of foam dressings for hard-to-heal wounds: perspectives from a wound care expert panel. J Wound Care 2024; 33:814-822. [PMID: 39480734 DOI: 10.12968/jowc.2024.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Caring for patients with hard-to-heal (chronic) wounds requires a multifaceted approach that addresses their diverse needs, which can contribute to the complexity of care. Wound care providers must have a comprehensive understanding of the patient's comorbid conditions and psychosocial issues to provide personalised and effective treatment. Key quality indicators for effective wound care involves not only selecting appropriate local wound care products, such as foam dressings, but also addressing individual patient experiences of wound-related pain, odour, itch, excessive wound drainage, and self-care needs. The purpose of this review is to inculcate the wound care practice community, research scientists and healthcare industry with a sense of accountability in order to work collaboratively in addressing these unmet care needs.
Collapse
Affiliation(s)
- Kevin Woo
- 92 Barrie Street School of Nursing, Queen's University, Kingston, Ontario, Canada
- Toronto Grace Health Center, Toronto, Canada
| | - Nick Santamaria
- School of Health Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Dimitri Beeckman
- Skin Integrity Research Group (SKINT), University Centre for Nursing and Midwifery, Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
- Campus UZGent, Gent, Belgium
| | - Paulo Alves
- Wounds Research Lab - Centre for Interdisciplinary Research in Health, Catholic University of Portugal, Porto, Portugal
| | | | - Amit Gefen
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - José Luis Lázaro-Martínez
- Director of the Diabetic Foot Research Group, Complutense University and Health Research Institute at San Carlos Teaching Hospital, Madrid, Spain
| | - Hadar Lev-Tov
- University of Miami Hospital Miller School of Medicine, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miami, Florida, US
| | - Bijan Najafi
- Interdisciplinary Consortium on Advanced Motion Performance (iCAMP), Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston TX, US
| | - Andrew Sharpe
- Podiatry Department, Salford Royal NHS Foundation Trust, Salford Care Organisation, Salford, UK
| | | |
Collapse
|
21
|
Ngo PKT, Nguyen DN, Nguyen HP, Tran THH, Nguyen QND, Luu CH, Phan TH, Le PK, Phan VHG, Ta HT, Thambi T. Silk fibroin/chitosan/montmorillonite sponge dressing: Enhancing hemostasis, antimicrobial activity, and angiogenesis for advanced wound healing applications. Int J Biol Macromol 2024; 279:135329. [PMID: 39236943 DOI: 10.1016/j.ijbiomac.2024.135329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
Open wounds present a significant challenge in healthcare, requiring careful management to prevent infection and promote wound healing. Advanced wound dressings are critical need to enhance their hemostatic capabilities, antimicrobial properties, and ability to support angiogenesis and sustained moisture for optimal healing. This study introduces a flexible hemostatic dressing designed for open wounds, integrating chitosan (CS) for hemostasis and biocompatibility, silk fibroin (SF) for mechanical strength, and montmorillonite (MMT) for enhanced drug transport. The CSSF@MMT dressings showed promising mechanical strength and swift hemostasis. The CIP-loaded CSSF@MMT demonstrated sustained release for up to one week, exhibiting antibacterial properties against both Gram-positive and Gram-negative bacteria. In vitro cell migration assay demonstrated that erythropoietin-loaded CSSF@MMT dressings promoted the proliferation and migration of endothelial cells. Similarly, the chick embryo chorioallantoic membrane study indicated the same dressings exhibited a significant increase in vascular regeneration. This research suggests that the CSSF@MMT sponge dressing, incorporated with CIP and erythropoietin, holds promise in effectively halting bleeding, creating a protective environment, diminishing inflammation, and fostering wound tissue regeneration. This potential makes it a significant advancement in open wound care, potentially lowering the need for limb amputation and decreasing wound care burden worldwide.
Collapse
Affiliation(s)
- Phuong-Khanh Thi Ngo
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
| | - Dieu Ngoc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hong-Phuc Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Thanh-Han Hoang Tran
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Quynh-Nhu Doan Nguyen
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Cuong Hung Luu
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia
| | - Thuy-Hien Phan
- Department of Endocrinology, People's Hospital 115, Ho Chi Minh City, Vietnam
| | - Phung K Le
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), VNU-HCM, Ho Chi Minh City, Vietnam
| | - V H Giang Phan
- Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan, QLD 4111, Australia; Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD 4111, Australia.
| | - Thavasyappan Thambi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi do 17104, Republic of Korea.
| |
Collapse
|
22
|
Valadi M, Doostan M, Khoshnevisan K, Doostan M, Maleki H. Enhanced healing of burn wounds by multifunctional alginate-chitosan hydrogel enclosing silymarin and zinc oxide nanoparticles. Burns 2024; 50:2029-2044. [PMID: 39181767 DOI: 10.1016/j.burns.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/21/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024]
Abstract
Multifunctional wound dressings have been applied for burn injuries to avoid complications and promote tissue regeneration. In the present study, we fabricated a natural alginate-chitosan hydrogel comprising silymarin and green-synthesized zinc oxide nanoparticles (ZnO NPs). Then, the physicochemical attributes of ZnO NPs and loaded hydrogels were analyzed. Afterward, wound healing efficacy was evaluated in a rat model of full-thickness dermal burn wounds. The findings indicated that ZnO NPs were synthesized via reduction with phytochemicals from Elettaria cardamomum seeds extract. The microscopic images exhibited fairly spherical ZnO NPs (35-45 nm), and elemental analysis verified the relevant composition. The hydrogel, containing silymarin and biosynthesized ZnO NPs, displayed a uniform appearance, smooth surfaces, and a porous structure. Moreover, infrared spectroscopy identified functional groups, confirming the successful loading without adverse interactions. The obtained hydrogel exhibited great water absorption, high porosity, sustainable degradation for several days, and enhanced antioxidant capability of the combined loaded component. In vivo studies revealed faster and superior wound healing, achieving nearly complete closure by day 21. Histopathology confirmed improved cell growth, tissue regeneration, collagen deposition, and neovascularization. It is believed that this multifunctional hydrogel-based wound dressing can be applied for effective burn wound treatment.
Collapse
Affiliation(s)
- Moein Valadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kamyar Khoshnevisan
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Research and Development Team, Evolution Wound Dressing (EWD) Startup Co., Tehran, Iran
| | - Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Maleki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
23
|
Sun L, Wang X, Deng T, Luo L, Lin L, Yang L, Tian Y, Tian Y, Wu M. Bionic sulfated glycosaminoglycan-based hydrogel inspired by snail mucus promotes diabetic chronic wound healing via regulating macrophage polarization. Int J Biol Macromol 2024; 281:135708. [PMID: 39349331 DOI: 10.1016/j.ijbiomac.2024.135708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024]
Abstract
The treatment of diabetic foot ulcers remains a significant challenge, as their morbidity is increasing while current therapies are expensive and often ineffective. The dried mucus from the snail Achatina fulica promotes diabetic wound healing. Herein, to develop a more controllable and stable wound dressing for diabetic wound treatment, the AFG/StarPEG hydrogel mimicking snail mucus was prepared by covalently coupling of sulfated glycosaminoglycan from A. fulica (AFG) with star-shaped polyethylene glycol (StarPEG) amine. The AFG/StarPEG hydrogel reduced excessive inflammation in wound tissues by decreasing pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) and increasing anti-inflammatory cytokines (IL-4 and IL-10). Moreover, it promoted the polarization of macrophages to M2 anti-inflammatory type in diabetic wound. By improving transition of diabetic chronic wound from inflammatory phase to proliferative phase, it promoted angiogenesis, collagen deposition and re-epithelialization, and thus tissue regeneration for wound healing. This work provides a convenient and effective dressing for treating chronic diabetic wound.
Collapse
Affiliation(s)
- Luyun Sun
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingzi Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tuo Deng
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lan Luo
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lisha Lin
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lian Yang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Yong Tian
- Shanghai Zhenchen Cosmetics Co., Ltd, Shanghai 201415, China; Shanghai Zhizhenzhichen Technology Co., Ltd, Shanghai 201109, China
| | - Yuncai Tian
- Shanghai Zhenchen Cosmetics Co., Ltd, Shanghai 201415, China; Shanghai Zhizhenzhichen Technology Co., Ltd, Shanghai 201109, China
| | - Mingyi Wu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
25
|
Han C, Zhang M, Xu S, Wang C, Li B, Zhao W. Strontium ranelate-loaded human hair keratin-hyaluronic acid hydrogel accelerates wound repair with anti-inflammatory and antioxidant properties. Int J Biol Macromol 2024; 281:136536. [PMID: 39396587 DOI: 10.1016/j.ijbiomac.2024.136536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Inflammation and reactive oxygen species (ROS) production often accompany the repair of severe skin wounds, and the management of wounds has always been a clinical challenge, so the design of a hydrogel wound dressing with antioxidant and anti-inflammatory properties is of significant importance. This work incorporated strontium ranelate (SrR) into the keratin/hyaluronic acid (K/HA) hydrogel, which could scavenge ROS and reduce inflammation. The optimized hydrogel exhibits large pore size (217.2 μm), high porosity (57 %), high swelling rate (1759.52 %), and an elastic modulus (3.41 kPa). In the in vitro study, incorporating SrR into hydrogel effectively inhibited oxidative damage in mouse fibroblasts (L929) and improved anti-inflammatory effect in RAW264.7 cells stimulated by lipopolysaccharide. The in vivo study showed that, compared with the control group, the expression of ROS, IL-6 and TNF - α in the K/HA/0.5 mM SrR group were significantly reduced to 31.6 %, 39.7 % and 61.1 %, respectively. The in vivo evaluation in a full-thickness wound defect model demonstrated that K/HA/0.5 mM SrR hydrogel promotes wound healing by attenuating ROS levels, reducing inflammation, and promoting microangiogenesis. In summary, the excellent ROS scavenging and anti-inflammatory properties of SrR make the K/HA/SrR hydrogel a promising and effective strategy for wound healing.
Collapse
Affiliation(s)
- Cuicui Han
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Miaomiao Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - ShiXin Xu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Chengwei Wang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Bo Li
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wen Zhao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
26
|
Al-Musawi MH, Al-Sudani BT, Fadhil SAN, Al-Bahrani MH, Ghorbani M, Maleki F, Mortazavi Moghadam F. Tannic acid-reinforced soy protein/oxidized tragacanth gum-based multifunctional hemostatic film for regulation of wound healing. Int J Biol Macromol 2024; 280:135750. [PMID: 39299419 DOI: 10.1016/j.ijbiomac.2024.135750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
With recent advances in the field of tissue engineering, composite films with biocompatibility, antimicrobial properties, and wound healing properties have gained potential applications in the field of wound dressings. In this research work, composite films of soy protein (S)/oxidized tragacanth gum (G) were successfully made using the solution casting process. The metal-organic framework containing curcumin (MOF) with concentrations of 5 and 10 wt% and tannic acid (TA) with concentrations of 6 and 12 wt% were entered into the polymer film. Surface morphology with scanning electron microscope (FE-SEM), thermal stability, mechanical properties, chemical structure, antioxidant, water absorption, cell viability, antibacterial activity, and biodegradability of the prepared films were investigated in laboratory conditions. In addition, the toxicity of the films in the cell environment was investigated, and the results showed that cell growth and proliferation improved in the presence of the prepared films, especially films SG/MOF10/TA6 and SG/MOF10/TA12 due to the presence of TA and MOF containing curcumin. Also, the antibacterial activity of the films showed that the presence of tannic acid and curcumin in the structure of the films increases their ability against pathogens. According to the obtained results, the newly produced nanocomposite film (SG/MOF10/TA12) has a high potential to be used for wound dressing due to its favorable characteristics and was considered the optimal film.
Collapse
Affiliation(s)
- Mastafa H Al-Musawi
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Basma Talib Al-Sudani
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Safa Abdul Naser Fadhil
- Department of Clinical Laboratory Sciences, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq
| | - Maha Hameed Al-Bahrani
- Department of Molecular and Medical Biotechnology, College of Biotechnology, Al-Nahrain University, Baghdad, Iraq
| | - Marjan Ghorbani
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Iran Polymer and Petrochemical Institute, PO Box: 14965/115, Tehran, Iran.
| | - Fatemeh Maleki
- Department of Chemistry, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz, Iran.
| | - Fatemeh Mortazavi Moghadam
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, Brigham and Women's Hospital, Cambridge, MA 02139, USA
| |
Collapse
|
27
|
Miya MB, Ashutosh, Maulishree, Chandra Gupta P, Pathak V, Mishra R, Chaturvedi P, Kalani A. Therapeutic effects of OXY- Exo Aloe in diabetic wound injury. Biochem Biophys Res Commun 2024; 731:150398. [PMID: 39032360 DOI: 10.1016/j.bbrc.2024.150398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/02/2024] [Accepted: 07/11/2024] [Indexed: 07/23/2024]
Abstract
Delayed wound healing are common complications for diabetic patients. In light of chronic hypoxia's delay in wound healing, it is hypothesized that providing a better oxygen environment at the wound site will promote diabetic wound healing. OXY-ExoAloe is an innovative and effective therapy prepared from exosome-like vesicles of aloe vera gel, ginger juice and neem fruit sap. A combination of three herbal, oxygen-delivering and medicinally valued plants was standardized to determine if the combination had the desired effect. Interestingly, when we used OXY-ExoAloe at a particular ratio on a diabetic wound, the herbal therapy speeded up wound healing by reducing swelling, and the severity of the wound. Further, our data suggests that OXY-ExoAloe promoted wound healing by increasing wound oxygenation, reducing inflammation, cytokine production, and matrix remodeling. It is also safe and effective, with no reported side effects.
Collapse
Affiliation(s)
- Mumtaj Bano Miya
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Ashutosh
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Maulishree
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Prakash Chandra Gupta
- Toxicology Lab, School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Vandana Pathak
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Rajeev Mishra
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India
| | - Pankaj Chaturvedi
- Department of Physiology, University of Louisville, Louisville, 40202, KY, USA
| | - Anuradha Kalani
- Disease Biology Lab and Molecular Oncology Lab, Department of Life Science and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, 208024, India; Department of Physiology, University of Louisville, Louisville, 40202, KY, USA.
| |
Collapse
|
28
|
Vargas Guerrero MG, Vonken L, Peters E, Lucchesi J, Arts JJC. Material Technologies for Improved Diabetic Foot Ulcer (DFU) Treatment: A Questionnaire Study of Healthcare Professionals' Needs. Biomedicines 2024; 12:2483. [PMID: 39595050 PMCID: PMC11592356 DOI: 10.3390/biomedicines12112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Diabetic foot ulcers (DFUs) are a common and severe complication of diabetic patients, with significant global prevalence and associated health burdens, including high recurrence rates, lower-limb amputations, and substantial associated economic costs. This study aimed to understand the user needs of healthcare professionals treating diabetic foot ulcers for newly developed material technologies. Methods: An open-ended questionnaire was used to identify user needs, identify the limitations of current treatments, and determine the specific requirements for ideal treatment. This information was used to develop a list of key considerations for creating innovative material technologies to improve diabetic wound treatment results. Results: Most respondents indicated that they followed published treatment guidelines for DFUs but noted that treatment often required a case-specific approach. Antibiotics and surgical debridement were commonly used for infection control. The participants showed a strong preference for wound dressings with lasting antibacterial properties. Respondents identified ideal properties for new products, including ease of use, enhanced antibacterial properties, affordability, and targeted biological activity. The respondents also highlighted the importance of a holistic approach to DFU management, integrating product development with comprehensive care strategies and patient education. Conclusions: This study highlights the complexity of DFU care, emphasizing that no single product can address all treatment needs. Future materials could focus on combination therapies and specific use cases. Additionally, understanding global variations in treatment practices and educating users on the proper application of newly developed material technologies is crucial for improving the management of DFUs and patient outcomes.
Collapse
Affiliation(s)
- Marian Gabriela Vargas Guerrero
- Department of Orthopaedic Surgery, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (M.G.V.G.)
- Laboratory for Experimental Orthopaedics, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lieve Vonken
- Department of Health Promotion, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 HA Maastricht, The Netherlands
| | - Erwin Peters
- Department of Orthopaedic Surgery, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (M.G.V.G.)
| | | | - Jacobus J. C. Arts
- Department of Orthopaedic Surgery, Maastricht University Medical Centre (MUMC+), 6229 HX Maastricht, The Netherlands; (M.G.V.G.)
- Laboratory for Experimental Orthopaedics, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Orthopaedic Biomechanics, Faculty of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
29
|
Reyes-Guzmán VL, Villarreal-Gómez LJ, Vázquez-Mora R, Méndez-Ramírez YI, Paz-González JA, Zizumbo-López A, Borbón H, Lizarraga-Medina EG, Cornejo-Bravo JM, Pérez-González GL, Ontiveros-Zepeda AS, Pérez-Sánchez A, Chavira-Martínez E, Huirache-Acuña R, Estévez-Martínez Y. Integrating an antimicrobial nanocomposite to bioactive electrospun fibers for improved wound dressing materials. Sci Rep 2024; 14:25118. [PMID: 39443526 PMCID: PMC11499993 DOI: 10.1038/s41598-024-75814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigates the fabrication and characterization of electrospun poly (ε-caprolactone)/poly (vinyl pyrrolidone) (PCL/PVP) fibers integrated with a nanocomposite of chitosan, silver nanocrystals, and graphene oxide (ChAgG), aimed at developing advanced wound dressing materials. The ChAgG nanocomposite, recognized for its antimicrobial and biocompatible properties, was incorporated into PCL/PVP fibers through electrospinning techniques. We assessed the resultant fibers' morphological, physicochemical, and mechanical properties, which exhibited significant enhancements in mechanical strength and demonstrated effective antimicrobial activity against common bacterial pathogens. The findings suggest that the PCL/PVP-ChAgG fibers maintain biocompatibility and facilitate controlled therapeutic delivery, positioning them as a promising solution for managing chronic and burn-related wounds. This study underscores the potential of these advanced materials to improve healing outcomes cost-effectively, particularly in settings plagued by high incidences of burn injuries. Further clinical investigations are recommended to explore these innovative fibers' full potential and real-world applicability.
Collapse
Affiliation(s)
- Victoria Leonor Reyes-Guzmán
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México.
- Facultad de Ciencias Química e Ingeniería, Universidad Autónoma de Baja California, Universidad #14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, 22424, Baja California, México.
| | - Rubi Vázquez-Mora
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México
| | - Yesica Itzel Méndez-Ramírez
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México
| | - Juan Antonio Paz-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Arturo Zizumbo-López
- Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av. ITR Tijuana S/N, Colonia Mesa de Otay, Tijuana, C.P. 22500, Baja California, México
| | - Hugo Borbón
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carr. Tijuana-Ensenada km107, C.I.C.E.S.E, Ensenada, 22860, Baja California, México
| | - Eder Germán Lizarraga-Medina
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Química e Ingeniería, Universidad Autónoma de Baja California, Universidad #14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, 22424, Baja California, México
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Arturo Sinue Ontiveros-Zepeda
- Facultad de Ciencias de la Ingeniería, Administrativas y Sociales, Universidad Autónoma de Baja California, Blvrd Universidad 1, San Fernando, Tecate, 21460, Baja California, México
| | - Armando Pérez-Sánchez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Elizabeth Chavira-Martínez
- Instituto de Investigaciones en Materiales, Circuito Exterior S/N Circuito de la Investigación Científica, C.U, Ciudad de México, 04510, México.
| | - Rafael Huirache-Acuña
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, 58060, Morelia, Mexico
| | - Yoxkin Estévez-Martínez
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México.
| |
Collapse
|
30
|
Ahani E, Montazer M, Mianehro A, Samadi N, Toliyat T, Rad MM. Encapsulation of the PHMB with nanoliposome and attachment to wound dressing for long-term antibacterial activity and biocompatibility. World J Microbiol Biotechnol 2024; 40:361. [PMID: 39441496 DOI: 10.1007/s11274-024-04170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Concentration control of some drug are used commonly however their uncontrolled concentration renders severe side effects. Therefore, it is substantial to come up with innovation release control methods. There is a strong affinity between the phospholipid of nanoliposomes and wool cells which facilitate the diffusion of liposomes into the wool structure. On the other hand, polyhexamethylene biguanide (PHMB) has gained popularity as an antibacterial agent; however, the compound's cytotoxicity has limited its usefulness. By compounding these facts, this work introduces a novel method for sustained drug release via internalization. In this method, PHMB was detained into nanoliposomes infiltrated the wool to generate an extremely regulated release, which was established using various techniques. SEM pictures demonstrated effective absorption of nanoliposome-encapsulated PHMB within the wool fabric. The developed wound dressing showed a sustained drug release, and consequently, perfect biocompatibility and enduring antibacterial activity.
Collapse
Affiliation(s)
- Elnaz Ahani
- Azad University, Science and Research Unit, Tehran, Iran
| | - Majid Montazer
- Functional Fibrous Structures & Environmental Enhancement (FFSEE), Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran.
- Textile Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413, Iran.
| | - Ali Mianehro
- Textile Department, Amirkabir University of Technology, 424 Hafez Ave, Tehran, 15875-4413, Iran
| | - Nasrin Samadi
- Department of Drug and Food Control, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Toliyat
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Mahmoudi Rad
- Phytochemistry Research Center, Shahid Beheshti Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Wang J, Kang Y, Liu X, Shao B, Peng P, Liu W, Gao C. Semi-Interpenetrating Hydrogel with Long-Term Intrinsic Antibacterial Properties Promotes Healing of Infected Wounds In Vivo. ACS APPLIED BIO MATERIALS 2024; 7:7051-7061. [PMID: 39388623 DOI: 10.1021/acsabm.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial infections significantly deteriorate the process of wound healing. The wound dressings loaded with antimicrobials are widely used to reduce bacterial infections. However, release-based sterilization may increase the risk of drug resistance of bacteria and complicate translation. Thus, the development of long-term intrinsic antibacterial wound dressings is highly desirable. In this study, an intrinsic antibacterial hydrogel (PVA/PPG-HBPL) consisting of poly(vinyl alcohol) (PVA), poly(polyethylene glycol methyl ether methacrylate-co-glycidyl methacrylate) (PPG), and hyperbranched poly-l-lysine (HBPL) was designed and fabricated. The mechanical properties of the PVA/PPG-HBPL hydrogel were enhanced by hydrogen bonding and semi-interpenetrating networks. It also possessed a favorable ability to absorb the wound exudates. The release of antibacterial HBPL was significantly decreased by the methods of cyclic freeze-thawing and covalent cross-linking during hydrogel fabrication, enabling the PVA/PPG-HBPL hydrogel with intrinsic and long-term antibacterial performance. The PVA/PPG-HBPL hydrogel dressing killed 99.9% of methicillin-resistant Staphylococcus aureus (MRSA) cultured on its surface without observable cytotoxicity in vitro. It observably shortened the healing process by 2 orders of magnitude of MRSA colonies compared with the control in the MRSA-infected full-thickness skin wound of rats in vivo even after being soaked in phosphate-buffered saline (PBS) for 21 days (PBS was changed every 3 days). The antibacterial hydrogels could kill wound bacteria in a timely manner, significantly reduce inflammatory cell infiltration, and promote neovascularization and collagen deposition.
Collapse
Affiliation(s)
- Jie Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Yongyuan Kang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Xiaoqing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Bohui Shao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Pai Peng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
| | - Wenxing Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312099, China
| |
Collapse
|
32
|
Hodaei H, Esmaeili Z, Erfani Y, Esnaashari SS, Geravand M, Adabi M. Preparation of biocompatible Zein/Gelatin/Chitosan/PVA based nanofibers loaded with vitamin E-TPGS via dual-opposite electrospinning method. Sci Rep 2024; 14:23796. [PMID: 39394234 PMCID: PMC11470087 DOI: 10.1038/s41598-024-74865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
Wound management is a critical aspect of healthcare, necessitating effective and innovative wound dressing materials. Many existing wound dressings lack effectiveness and exhibit limitations, including poor antimicrobial activity, toxicity, inadequate moisture regulation, and weak mechanical performance. The aim of this study is to develop a natural-based nanofibrous structure that possesses desirable characteristics for use as a wound dressing. The chemical analysis confirmed the successful creation of Zein (Ze) (25% w/v) /gelatin (Gel) (10% w/v) /chitosan (CS) (2% w/v) /Polyvinyl alcohol (PVA) (10% w/v) nanofibrous scaffolds loaded with vitamin E tocopheryl polyethylene glycol succinate (Vit E). The swelling percentages of nanofiber (NF), NF + Vit E, cross-linked nanofiber (CNF), and CNF + Vit E were 49%, 110%, 410%, and 676%, respectively; and the degradation rates of NF, NF + Vit E, CNF, and CNF + Vit E were 29.57 ± 5.06%, 33.78 ± 7.8%, 14.03 ± 7.52%, 43 ± 6.27%, respectively. The antibacterial properties demonstrated that CNF impregnated with antibiotics reduced Escherichia coli (E. coli) counts by approximately 27-28% and Staphylococcus aureus (S. aureus) counts by about 34-35% compared to negative control. In conclusion, cross-linked Ze/Gel/CS/PVA nanofibrous scaffolds loaded with Vit E have potential as suitable wound dressing materials because environmentally friendly materials contribute to sustainable wound care and controlled degradation ensures wound dressings breakdown harmlessly.
Collapse
Affiliation(s)
- Homa Hodaei
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yousef Erfani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyedeh Sara Esnaashari
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mahvash Geravand
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
33
|
Sharifi M, Bahrami SH. Review on application of herbal extracts in biomacromolecules-based nanofibers as wound dressings and skin tissue engineering. Int J Biol Macromol 2024; 277:133666. [PMID: 38971295 DOI: 10.1016/j.ijbiomac.2024.133666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
34
|
Witkowska K, Paczkowska-Walendowska M, Garbiec E, Cielecka-Piontek J. Topical Application of Centella asiatica in Wound Healing: Recent Insights into Mechanisms and Clinical Efficacy. Pharmaceutics 2024; 16:1252. [PMID: 39458583 PMCID: PMC11510310 DOI: 10.3390/pharmaceutics16101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Centella asiatica, widely known as Gotu kola, is a traditional herb celebrated for its benefits in skin health and wound healing. Recent research has provided new insights into its efficacy, particularly through topical applications. This review highlights the plant's mechanisms, focusing on its active compounds such as asiaticoside, madecassoside, asiatic acid, and madecassic acid, which enhance collagen synthesis, modulate inflammation, and offer antioxidant protection. Clinical trials have been collected and summarized that innovative delivery systems, such as hydrogels, nanostructures or microneedles, can accelerate wound healing, reduce wound size, and improve recovery times in various wound types, including diabetic ulcers and burns. Future research will likely refine these technologies and explore new applications, reinforcing the role of C. asiatica in contemporary wound care. Advances in formulation and delivery will continue to enhance the plant's therapeutic potential, offering promising solutions for effective wound management.
Collapse
Affiliation(s)
| | - Magdalena Paczkowska-Walendowska
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (K.W.); (E.G.); (J.C.-P.)
| | | | | |
Collapse
|
35
|
Rajabifar N, Rostami A, Afshar S, Mosallanezhad P, Zarrintaj P, Shahrousvand M, Nazockdast H. Wound Dressing with Electrospun Core-Shell Nanofibers: From Material Selection to Synthesis. Polymers (Basel) 2024; 16:2526. [PMID: 39274158 PMCID: PMC11398146 DOI: 10.3390/polym16172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/18/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Skin, the largest organ of the human body, accounts for protecting against external injuries and pathogens. Despite possessing inherent self-regeneration capabilities, the repair of skin lesions is a complex and time-consuming process yet vital to preserving its critical physiological functions. The dominant treatment involves the application of a dressing to protect the wound, mitigate the risk of infection, and decrease the likelihood of secondary injuries. Pursuing solutions for accelerating wound healing has resulted in groundbreaking advancements in materials science, from hydrogels and hydrocolloids to foams and micro-/nanofibers. Noting the convenience and flexibility in design, nanofibers merit a high surface-area-to-volume ratio, controlled release of therapeutics, mimicking of the extracellular matrix, and excellent mechanical properties. Core-shell nanofibers bring even further prospects to the realm of wound dressings upon separate compartments with independent functionality, adapted release profiles of bioactive agents, and better moisture management. In this review, we highlight core-shell nanofibers for wound dressing applications featuring a survey on common materials and synthesis methods. Our discussion embodies the wound healing process, optimal wound dressing characteristics, the current organic and inorganic material repertoire for multifunctional core-shell nanofibers, and common techniques to fabricate proper coaxial structures. We also provide an overview of antibacterial nanomaterials with an emphasis on their crystalline structures, properties, and functions. We conclude with an outlook for the potential offered by core-shell nanofibers toward a more advanced design for effective wound healing.
Collapse
Affiliation(s)
- Nariman Rajabifar
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Amir Rostami
- Department of Chemical Engineering, Persian Gulf University, Bushehr P.O. Box 75169-13817, Iran
| | - Shahnoosh Afshar
- Department of Polymer Engineering, Islamic Azad University-Mahshahr Campus, Mahshahr P.O. Box 63511-41111, Iran
| | - Pezhman Mosallanezhad
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| | - Payam Zarrintaj
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA
| | - Mohsen Shahrousvand
- Caspian Faculty of Engineering, College of Engineering, University of Tehran, Rasht P.O. Box 43841-119, Iran
| | - Hossein Nazockdast
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran P.O. Box 15875-4413, Iran
| |
Collapse
|
36
|
El-Naggar ME, Wael K, Hemdan BA, Abdelgawad AM, Elsabee MZ, El-Zayat EM, Hady MA, Hashem MM. Chitosan microflower-embedded gelatin sponges for advanced wound management and hemostatic applications. Int J Biol Macromol 2024; 276:133749. [PMID: 38986976 DOI: 10.1016/j.ijbiomac.2024.133749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
The study explored the antimicrobial, antibiofilm, and hemostatic properties of chitosan microflowers (CMF) in sponge form. The main objective was to enhance the preparation of CMF by employing varying quantities of calcium chloride (CaCl2) and tripolyphosphate (TPP). CMF was then combined with gelatin (GE) in different proportions to produce three sponge samples: CMF0@GE, CMF1@GE, and CMF2@GE. The CMF had a morphology like that of a flower and produced surfaces with a porous sponge-like structure. The antibacterial activity, as determined by the zone of inhibition (ZOI), increased with greater doses of CMF. Among the tested samples, CMF2@GE had the greatest activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, and Enterococcus faecium. CMF2@GE successfully suppressed biofilm formation, decreased clotting time to an average of 212.67 s, and exhibited excellent biocompatibility by preserving over 90 % viability of human skin fibroblast cells at dosages below 100 μg/mL. The results indicated that gelatin sponges filled with CMF have considerable promise as flexible medical instruments for wound healing and infection control.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - K Wael
- Biotechnology Department, Faculty of Science, Cairo University, Egypt
| | - Bahaa A Hemdan
- Water Pollution Research Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt.
| | - Abdelrahman M Abdelgawad
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt; Textile Engineering Chemistry and Science Department, Wilson College of Textiles, North Carolina State University, Raleigh, NC, USA
| | - M Z Elsabee
- Department of Chemistry, Faculty of Science, Cairo University, Egypt
| | - Emad M El-Zayat
- Molecular Physiology and Biotechnology, Zoology Department, Faculty of Sciences, Cairo University, Egypt
| | - Mayssa Abdel Hady
- Pharmaceutical Technology Department, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| | - M M Hashem
- Textile Research and Technology Institute, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
37
|
P A, P A, M RJ, Joy JM, Mathew S. Developmental prospects of carrageenan-based wound dressing films: Unveiling techno-functional properties and freeze-drying technology for the development of absorbent films - A review. Int J Biol Macromol 2024; 276:133668. [PMID: 38992537 DOI: 10.1016/j.ijbiomac.2024.133668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/13/2024]
Abstract
This review explores the intricate wound healing process, emphasizing the critical role of dressing material selection, particularly for chronic wounds with high exudate levels. The aim is to tailor biodegradable dressings for comprehensive healing, focusing on maximizing moisture retention, a vital element for adequate recovery. Researchers are designing advanced wound dressings that enhance techno-functional and bioactive properties, minimizing healing time and ensuring cost-effective care. The study delves into wound dressing materials, highlighting carrageenan biocomposites superior attributes and potential in advancing wound care. Carrageenan's versatility in various biomedical applications demonstrates its potential for tissue repair, bone regeneration, and drug delivery. Ongoing research explores synergistic effects by combining carrageenan with other novel materials, aiming for complete biocompatibility. As innovative solutions emerge, carrageenan-based wound-healing medical devices are poised for global accessibility, addressing challenges associated with the complex wound-healing process. The exceptional physico-mechanical properties of carrageenan make it well-suited for highly exudating wounds, offering a promising avenue to revolutionize wound care through freeze-drying techniques. This thorough approach to evaluating the wound healing effectiveness of carrageenan-based films, particularly emphasizing the development potential of lyophilized films, has the potential to significantly improve the quality of life for patients receiving wound healing treatments.
Collapse
Affiliation(s)
- Amruth P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; Department of Life Sciences, Christ University, Hosur Main Road, Bhavani Nagar, Bangalore 560029, Karnataka, India
| | - Akshay P
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Rosemol Jacob M
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India
| | - Jean Mary Joy
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India; Faculty of Marine Sciences, Cochin University of Science and Technology, Cochin 682022, Kerala, India; St.Teresa's College (Autonomous), Ernakulam, Kerala-682011
| | - Suseela Mathew
- Biochemistry and Nutrition Division, ICAR-Central Institute of Fisheries Technology, Cochin 682029, Kerala, India.
| |
Collapse
|
38
|
da Silva TF, Leite TA, de Souza FFP, da Silva Barroso W, de Souza Guedes L, da Silva ALC, de Souza BWS, Vieira RS, Andrade FK. Loading of bacterial cellulose dressing with frutalin, a lectin from Artocarpus incisa L. Int J Biol Macromol 2024; 276:133774. [PMID: 39004244 DOI: 10.1016/j.ijbiomac.2024.133774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Bacterial cellulose (BC), produced by bacterial fermentation, is a high-purity material. BC can be oxidized (BCOXI), providing aldehyde groups for covalent bonds with drugs. Frutalin (FTL) is a lectin capable of modulating cell proliferation and remodeling, which accelerates wound healing. This study aimed to develop an FTL-incorporated dressing based on BC, and to evaluate its physicochemical properties and biological activity in vitro. An experimental design was employed to maximize FTL loading yield onto the BC and BCOXI, where independent variables were FTL concentration, temperature and immobilization time. BCOXI-FTL 1 (44.96 % ± 1.34) had the highest incorporation yield (IY) at the experimental conditions: 6 h, 5 °C, 20 μg mL-1. The second highest yield was BCOXI-FTL 6 (23.28 % ± 1.43) using 24 h, 5 °C, 100 μg mL-1. Similarly, the same reaction parameters provided higher immobilization yields for native bacterial cellulose: BC-FTL 6 (16.91 % ± 1.05) and BC-FTL 1 (21.71 % ± 1.57). Purified FTL displayed no cytotoxicity to fibroblast cells (<50 μg mL-1 concentration) during 24 h. Furthermore, BCOXI-FTL and BC-FTL were non-cytotoxic during 24 h and stimulated fibroblast migration. BCOXI-FTL demonstrated neutrophil activation in vitro similar to FTL. These promising results indicate that the bacterial cellulose matrices containing FTL at low concentrations, could be used as an innovative biomaterial for developing wound dressings.
Collapse
Affiliation(s)
- Thamyres Freire da Silva
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Talita Abrante Leite
- Molecular and Structural Biotechnology Group, Department of Biochemistry and Biology, Federal University of Ceará, 60020-181 Fortaleza, Ceará, Brazil
| | - Francisco Fábio Pereira de Souza
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Wallady da Silva Barroso
- Molecular and Structural Biotechnology Group, Department of Biochemistry and Biology, Federal University of Ceará, 60020-181 Fortaleza, Ceará, Brazil
| | - Luciana de Souza Guedes
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - André Luís Coelho da Silva
- Molecular and Structural Biotechnology Group, Department of Biochemistry and Biology, Federal University of Ceará, 60020-181 Fortaleza, Ceará, Brazil.
| | | | - Rodrigo Silveira Vieira
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil
| | - Fábia Karine Andrade
- Adsorption Separation Group, Department of Chemical Engineering, Federal University of Ceará, Fortaleza, Ceará 60455-760, Brazil.
| |
Collapse
|
39
|
Khalid M, Jameel F, Jabri T, Jabbar A, Salim A, Khan I, Shah MR. α-Terpineol loaded, electron beam crosslinked polyvinyl alcohol/tapioca starch hydrogel sheets; fabrication, characterization and evaluation of wound healing potential on a full thickness acid burn wound. RSC Adv 2024; 14:28058-28076. [PMID: 39228757 PMCID: PMC11369888 DOI: 10.1039/d4ra04572f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The multifaceted challenges in treating full-thickness acid burn wounds including impaired tissue regeneration, increased risk of infection, and the pursuit of functional and aesthetically pleasing outcomes, highlights the need for innovative therapeutic approaches for their treatment. The exceptional biochemical and mechanical properties of hydrogels, particularly their extracellular matrix-like nature and their potential to incorporate functional ingredients positions them as promising materials for wound dressings, offering a potential solution to the complexities of full-thickness burn wound management. The current study has integrated functional ingredients (starch and α-terpineol), known for their angiogenic, fibroblast-adhesive, and anti-inflammatory properties into an α-terpineol loaded, electron beam crosslinked polyvinyl alcohol/tapioca pearl starch hydrogel. The hydrogel was then explored for its efficacy in treating full-thickness acid burns. The hydrogel sheets, fabricated using a 25 kGy electron beam, were characterized for structural and functional properties. Surface morphology, gel fraction, swelling ratio, moisture retention capacity and thermal stability were also evaluated. PVA/tapioca starch hydrogel demonstrated optimal macroporosity, mechanical strength, thermal stability, water retention, and moisturizing ability, making it ideal for the intended application. In vitro skin compatibility analysis of α-terpineol-loaded hydrogel confirmed its biocompatibility, demonstrating 90% fibroblast viability. In vivo sensitivity testing on normal rat skin showed no inflammatory response. Analysis of the full-thickness rat chemical burn wounds treated with the hydrogels demonstrated that α-terpineol (AT) loaded e-beam crosslinked PVA/tapioca starch hydrogels increased the rate of wound closure, promoted re-epithelialization, facilitated collagen deposition, stimulated angiogenesis, and promoted keratin deposition, ultimately leading to healing of both thick dermal and epidermal tissues, as well as partial restoration of skin appendages over a duration of 30 days as confirmed by the histological and immunohistochemistry staining. Collectively, this study indicates that α-terpineol (AT) loaded e-beam crosslinked PVA/tapioca starch hydrogel holds promise as a cost-effective and efficient wound dressing for expediting full thickness acid burn wound healing, thus expanding the practical applications of the natural polymer based sheet hydrogel dressings.
Collapse
Affiliation(s)
- Maria Khalid
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Fatima Jameel
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Tooba Jabri
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Abdul Jabbar
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Asmat Salim
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| | - Irfan Khan
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
- Center for Regenerative Medicine and Stem Cell Research, The Aga Khan University Stadium Road, P. O. Box 3500 Karachi 74800 Pakistan
| | - Muhammad Raza Shah
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi 75270 Pakistan
| |
Collapse
|
40
|
Lagoa T, Queiroga MC, Martins L. An Overview of Wound Dressing Materials. Pharmaceuticals (Basel) 2024; 17:1110. [PMID: 39338274 PMCID: PMC11434694 DOI: 10.3390/ph17091110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Wounds are an increasing global concern, mainly due to a sedentary lifestyle, frequently associated with the occidental way of life. The current prevalence of obesity in Western societies, leading to an increase in type II diabetes, and an elderly population, is also a key factor associated with the problem of wound healing. Therefore, it stands essential to find wound dressing systems that allow for reestablishing the skin integrity in the shortest possible time and with the lowest cost, avoiding further damage and promoting patients' well-being. Wounds can be classified into acute or chronic, depending essentially on the duration of the healing process, which is associated withextent and depth of the wound, localization, the level of infection, and the patient's health status. For each kind of wound and respective healing stage, there is a more suitable dressing. The aim of this review was to focus on the possible wound dressing management, aiming for a more adequate healing approach for each kind of wound.
Collapse
Affiliation(s)
- Tânia Lagoa
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| | - Maria Cristina Queiroga
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
- Department of Veterinary Medicine, School of Science and Technology, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| | - Luís Martins
- MED—Mediterranean Institute for Agriculture, Environment and Development, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal; (T.L.); (L.M.)
- CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
- Department of Veterinary Medicine, School of Science and Technology, University of Évora, Mitra Campus, P.O. Box 94, 7006-554 Évora, Portugal
| |
Collapse
|
41
|
Yadav R, Kumar R, Kathpalia M, Ahmed B, Dua K, Gulati M, Singh S, Singh PJ, Kumar S, Shah RM, Deol PK, Kaur IP. Innovative approaches to wound healing: insights into interactive dressings and future directions. J Mater Chem B 2024; 12:7977-8006. [PMID: 38946466 DOI: 10.1039/d3tb02912c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The objective of this review is to provide an up-to-date and all-encompassing account of the recent advancements in the domain of interactive wound dressings. Considering the gap between the achieved and desired clinical outcomes with currently available or under-study wound healing therapies, newer more specific options based on the wound type and healing phase are reviewed. Starting from the comprehensive description of the wound healing process, a detailed classification of wound dressings is presented. Subsequently, we present an elaborate and significant discussion describing interactive (unconventional) wound dressings. Latter includes biopolymer-based, bioactive-containing and biosensor-based smart dressings, which are discussed in separate sections together with their applications and limitations. Moreover, recent (2-5 years) clinical trials, patents on unconventional dressings, marketed products, and other information on advanced wound care designs and techniques are discussed. Subsequently, the future research direction is highlighted, describing peptides, proteins, and human amniotic membranes as potential wound dressings. Finally, we conclude that this field needs further development and offers scope for integrating information on the healing process with newer technologies.
Collapse
Affiliation(s)
- Radhika Yadav
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Rohtash Kumar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Muskan Kathpalia
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Bakr Ahmed
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Monica Gulati
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Sachin Singh
- Discipline of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Pushvinder Jit Singh
- Tynor Orthotics Private Limited, Janta Industrial Estate, Mohali 160082, Punjab, India
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Rohan M Shah
- Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora West, VIC 3083, Australia
| | - Parneet Kaur Deol
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India.
| | - Indu Pal Kaur
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
42
|
Gou Y, Hu L, Liao X, He J, Liu F. Advances of antimicrobial dressings loaded with antimicrobial agents in infected wounds. Front Bioeng Biotechnol 2024; 12:1431949. [PMID: 39157443 PMCID: PMC11327147 DOI: 10.3389/fbioe.2024.1431949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Wound healing is a complex process that is critical for maintaining the barrier function of the skin. However, when a large quantity of microorganisms invade damaged skin for an extended period, they can cause local and systemic inflammatory responses. If left untreated, this condition may lead to chronic infected wounds. Infected wounds significantly escalate wound management costs worldwide and impose a substantial burden on patients and healthcare systems. Recent clinical trial results suggest that the utilization of effective antimicrobial wound dressing could represent the simplest and most cost-effective strategy for treating infected wounds, but there has hitherto been no comprehensive evaluation reported on the efficacy of antimicrobial wound dressings in promoting wound healing. Therefore, this review aims to systematically summarize the various types of antimicrobial wound dressings and the current research on antimicrobial agents, thereby providing new insights for the innovative treatment of infected wounds.
Collapse
Affiliation(s)
- Yifan Gou
- Department of Stomatology, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Liwei Hu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuejuan Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing He
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fan Liu
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
43
|
Kumar R, Singh B. Functional network copolymeric hydrogels derived from moringa gum: Physiochemical, drug delivery and biomedical properties. Int J Biol Macromol 2024; 275:133352. [PMID: 38945716 DOI: 10.1016/j.ijbiomac.2024.133352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/15/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
The article explores the synthesis of network hydrogels derived from moringa gum (MG) through a grafting reaction with poly (vinylsulfonic acid) and carbopol. These hydrogels are designed for use in drug delivery (DD) and wound hydrogels dressing (HYDR) applications. The copolymers were characterized by FESEM, EDX, AFM, FTIR, 13C NMR, XRD and DSC. Tetracycline release from hydrogel occurred gradually with a non-Fickian diffusion and was best described by the Hixson-Crowell kinetic model in artificial wound fluid. The HYDR demonstrated compatibility with blood, exhibited antioxidant properties and possessed tensile strength, in addition to their mucoadhesive characteristics. The copolymer dressings absorbed approximately 7 g of simulated fluid. The copolymers exhibited significant antioxidant activity, measuring at 84 % free radicals scavenging, during DPPH assay. These dressings demonstrated permeability to H2O and O2,. The hydrogel alone did not reveal antibacterial activities; however, when combined with antibiotic drug tetracycline, the dressings revealed notable antibacterial activities against Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli. The observed biomedical properties suggested that these hydrogels could serve as promising materials for drug delivery HYDR applications.
Collapse
Affiliation(s)
- Rajesh Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh-171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla, Himachal Pradesh-171005, India.
| |
Collapse
|
44
|
Korica M, Mihajlovski K, Mohan T, Kostić M. Films based on TEMPO-oxidized chitosan nanoparticles: Obtaining and potential application as wound dressings. Carbohydr Res 2024; 542:109203. [PMID: 38964016 DOI: 10.1016/j.carres.2024.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
A series of novel films based on TEMPO-oxidized chitosan nanoparticles were prepared by casting method. Fourier transform infrared spectroscopy (FTIR) was employed to ascertain the chemical structure of TEMPO-oxidized chitosan. The surface morphology of the TEMPO-oxidized chitosan nanoparticles was analyzed by atomic force microscopy (AFM). The physicochemical (area density, thickness, iodine sorption, roughness), functional (moisture sorption, liquid absorption capacity, weight loss upon contact with the liquid, and water vapor transmission rate), antibacterial, and antioxidant properties of films based on TEMPO-oxidized chitosan nanoparticles were also investigated. The physicochemical properties of the films varied widely: area density ranged from 77.83 ± 0.06 to184.46 ± 0.05 mg/cm2, thickness varied between 80.5 ± 1.6 and 200.5 ± 1.6 μm, iodine sorption spanned from 333.7 ± 2.1 to166.4 ± 2.2 mg I2/g, and roughness ranged from 4.1 ± 0.2 to 5.6 ± 0.3 nm. Similarly, the functional properties also varied significantly: moisture sorption ranged from 4.76 ± 0.03 to 9.62 ± 0.11 %, liquid absorption capacity was between 129.04 ± 0.24 and 159.33 ± 0.73 % after 24 h, weight loss upon contact with the liquid varied between 31.06 ± 0.35 and 45.88 ± 0.58 % after 24 h and water vapor transmission rate ranged from 1220.10 ± 2.91to1407.77 ± 5.22 g/m2 day. Despite the wide variations in physicochemical and functional properties, all films showed maximum bacterial reduction of Staphylococcus aureus and Escherichia coli, although they exhibited low antioxidant activity. The results suggest that the films could be effectively utilized as antibacterial wound dressings.
Collapse
Affiliation(s)
- Matea Korica
- Innovation Center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia.
| | - Katarina Mihajlovski
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia.
| | - Tamilselvan Mohan
- Institute for Chemistry and Technology of Biobased System (IBioSys), Graz University of Technology, Stremayrgasse 9, 8010, Graz, Austria; Laboratory for Characterisation and Processing of Polymers, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica17, 2000, Maribor, Slovenia.
| | - Mirjana Kostić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia.
| |
Collapse
|
45
|
Verčimáková K, Karbowniczek J, Sedlář M, Stachewicz U, Vojtová L. The role of glycerol in manufacturing freeze-dried chitosan and cellulose foams for mechanically stable scaffolds in skin tissue engineering. Int J Biol Macromol 2024; 275:133602. [PMID: 38964681 DOI: 10.1016/j.ijbiomac.2024.133602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Various strategies have extensively explored enhancing the physical and biological properties of chitosan and cellulose scaffolds for skin tissue engineering. This study presents a straightforward method involving the addition of glycerol into highly porous structures of two polysaccharide complexes: chitosan/carboxymethyl cellulose (Chit/CMC) and chitosan/oxidized cellulose (Chit/OC); during a one-step freeze-drying process. Adding glycerol, especially to Chit/CMC, significantly increased stability, prevented degradation, and improved mechanical strength by nearly 50%. Importantly, after 21 days of incubation in enzymatic medium Chit/CMC scaffold has almost completely decomposed, while foams reinforced with glycerol exhibited only 40% mass loss. It is possible due to differences in multivalent cations and polymer chain contraction, resulting in varied hydrogen bonding and, consequently, distinct physicochemical outcomes. Additionally, the scaffolds with glycerol improved the cellular activities resulting in over 40% higher proliferation of fibroblast after 21 days of incubation. It was achieved by imparting water resistance to the highly absorbent material and aiding in achieving a balance between hydrophilic and hydrophobic properties. This study clearly indicates the possible elimination of additional crosslinkers and multiple fabrication steps that can reduce the cost of scaffold production for skin tissue engineering applications while tailoring mechanical strength and degradation.
Collapse
Affiliation(s)
- Katarína Verčimáková
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| | - Joanna Karbowniczek
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Kraków, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.
| | - Marian Sedlář
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| | - Urszula Stachewicz
- Faculty of Metals Engineering and Industrial Computer Science, AGH University of Kraków, al. Adama Mickiewicza 30, 30-059 Kraków, Poland.
| | - Lucy Vojtová
- Ceitec - Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 612 00 Brno, Czech Republic.
| |
Collapse
|
46
|
Yan L, Wang Y, Feng J, Ni Y, Zhang T, Cao Y, Zhou M, Zhao C. Mechanism and application of fibrous proteins in diabetic wound healing: a literature review. Front Endocrinol (Lausanne) 2024; 15:1430543. [PMID: 39129915 PMCID: PMC11309995 DOI: 10.3389/fendo.2024.1430543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/12/2024] [Indexed: 08/13/2024] Open
Abstract
Diabetic wounds are more complex than normal chronic wounds because of factors such as hypoxia, reduced local angiogenesis, and prolonged inflammation phase. Fibrous proteins, including collagen, fibrin, laminin, fibronectin, elastin etc., possess excellent inherent properties that make them highly advantageous in the area of wound healing. Accumulating evidence suggests that they contribute to the healing process of diabetic wounds by facilitating the repair and remodel of extracellular matrix, stimulating the development of vascular and granulation tissue, and so on. However, there is currently a lack of a comprehensive review of the application of these proteins in diabetes wounds. An overview of fibrous protein characteristics and the alterations linked to diabetic wounds is given in this article's initial section. Next is a summary of the advanced applications of fibrous proteins in the last five years, including acellular dermal matrix, hydrogel, foam, scaffold, and electrospun nanofibrous membrane. These dressings have the ability to actively promote healing in addition to just covering wounds compared to traditional wound dressings like gauze or bandage. Research on fibrous proteins and their role in diabetic wound healing may result in novel therapeutic modalities that lower the incidence of diabetic wounds and thereby enhance the health of diabetic patients.
Collapse
Affiliation(s)
- Lilin Yan
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
47
|
Bahreini M, Moghaddam MM, Ghorbani M, Nourani MR, Mirnejad R. Antimicrobial peptide-fibrin glue mixture for treatment of methicillin-resistant Staphylococcus aureus-infected wounds. Ther Deliv 2024; 15:577-591. [PMID: 39011599 PMCID: PMC11412140 DOI: 10.1080/20415990.2024.2369497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/13/2024] [Indexed: 07/17/2024] Open
Abstract
Aim: This study was conducted to investigate the effect of fibrin glue-CM11 antibacterial peptide mixture (FG-P) on the healing of infected wounds in vivo.Materials & methods: We formulated a mixture of FG-P and evaluated its antimicrobial activity in vitro against multidrug-resistant (MDR) bacteria involved in wound infection as well as its healing effect on wound infected by methicillin-resistant S. aureus (MRSA) in vivo.Results: The peptide had an MIC of 8 μg/ml against all bacteria isolates. Growth inhibition zones were evident for FG-P compared with FG. The in vivo study showed that the FG-P could be significantly effective in healing the MRSA-infected wound.Conclusion: The use of FG-P mixture is a very suitable option for treating infected wounds.
Collapse
Affiliation(s)
- Mehran Bahreini
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehrdad Moosazadeh Moghaddam
- Tissue Engineering & Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Masoud Ghorbani
- Tissue Engineering & Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Nourani
- Tissue Engineering & Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Mirnejad
- Molecular Biology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
48
|
Li Y, Wang Y, Ding Y, Fan X, Ye L, Pan Q, Zhang B, Li P, Luo K, Hu B, He B, Pu Y. A Double Network Composite Hydrogel with Self-Regulating Cu 2+/Luteolin Release and Mechanical Modulation for Enhanced Wound Healing. ACS NANO 2024; 18:17251-17266. [PMID: 38907727 DOI: 10.1021/acsnano.4c04816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Designing adaptive and smart hydrogel wound dressings to meet specific needs across different stages of wound healing is crucial. Here, we present a composite hydrogel, GSC/PBE@Lut, that offers self-regulating release of cupric ions and luteolin and modulates mechanical properties to promote chronic wound healing. The double network hydrogel, GSC, is fabricated through photo-cross-linking of gelatin methacrylate, followed by Cu2+-alginate coordination cross-linking. On one hand, GSC allows for rapid Cu2+ release to eliminate bacteria in the acidic pH environment during inflammation and reduces the hydrogel's mechanical strength to minimize tissue trauma during early dressing changes. On the other hand, GSC enables slow Cu2+ release during the proliferation stage, promoting angiogenesis and biocompatibility. Furthermore, the inclusion of pH- and reactive oxygen species (ROS)-responsive luteolin nanoparticles (PBE@Lut) in the hydrogel matrix allows for controlled release of luteolin, offering antioxidant and anti-inflammatory effects and promoting anti-inflammatory macrophage polarization. In a murine model of Staphylococcus aureus infected wounds, GSC/PBE@Lut demonstrates exceptional therapeutic benefits in antibacterial, anti-inflammatory, angiogenic, and tissue regeneration. Overall, our results suggest that smart hydrogels with controlled bioactive agent release and mechanical modulation present a promising solution for treating chronic wounds.
Collapse
Affiliation(s)
- Yue Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Liansong Ye
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bowen Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, Department of Comfort Care Dental Center, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bing Hu
- Department of Gastroenterology and Hepatology, Digestive Endoscopy Medical Engineering Research Laboratory, West China Hospital, Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
49
|
Sleiman L, Lazăr (Popa) AD, Albu-Kaya M, Marin MM, Kaya DA, Vasile OR, Dinescu S. Development and Investigation of an Innovative 3D Biohybrid Based on Collagen and Silk Sericin Enriched with Flavonoids for Potential Wound Healing Applications. Polymers (Basel) 2024; 16:1627. [PMID: 38931977 PMCID: PMC11207284 DOI: 10.3390/polym16121627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Skin tissue injuries necessitate particular care due to associated complex healing mechanisms. Current investigations in the domain of tissue engineering and regenerative medicine are focused on obtaining novel scaffolds adapted as potential delivery systems to restore lost tissue functions and properties. In this study, we describe the fabrication and evaluation of a novel 3D scaffold structure based on collagen and silk sericin (CollSS) enriched with microcapsules containing natural compounds, curcumin (C), and/or quercetin (Q). These 3D composites were characterized by FT-IR spectroscopy, water uptake, in vitro collagenase degradation, and SEM microscopy. Furthermore, they were biologically evaluated in terms of biocompatibility, cell adhesion, anti-inflammatory, and antioxidant properties. All tested materials indicated an overall suitable biocompatibility, with the best results obtained for the one containing both flavonoids. This study suggests the cumulative beneficial effect of C and Q, encapsulated in the same composite, as a potential non-invasive therapeutic strategy for skin tissue regeneration in patients suffering from chronic wounds.
Collapse
Affiliation(s)
- Lea Sleiman
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
| | - Andreea-Daniela Lazăr (Popa)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
| | - Mădălina Albu-Kaya
- The National Research and Development Institute for Textiles and Leather (INCDTP)-Division Leather and Footwear Research Institute, 93 Ion Minulescu Str., 031215 Bucharest, Romania;
| | - Minodora Maria Marin
- Advanced Polymer Materials Group, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania;
| | - Durmuș Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, Antakya-Hatay 31034, Turkey;
| | - Otilia-Ruxandra Vasile
- Science and Engineering of Oxide Materials and Nanomaterials Department, Faculty of Chemical Engineering and Biotechnologies, Politehnica University of Bucharest, 1-7 Polizu Street, 01106 Bucharest, Romania;
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (L.S.); (A.-D.L.)
- Research Institute of the University of Bucharest (ICUB), 050663 Bucharest, Romania
| |
Collapse
|
50
|
Tincu (Iurciuc) CE, Daraba OM, Jérôme C, Popa M, Ochiuz L. Albumin-Based Hydrogel Films Covalently Cross-Linked with Oxidized Gellan with Encapsulated Curcumin for Biomedical Applications. Polymers (Basel) 2024; 16:1631. [PMID: 38931981 PMCID: PMC11207739 DOI: 10.3390/polym16121631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Bovine serum albumin (BSA) hydrogels are non-immunogenic, low-cost, biocompatible, and biodegradable. In order to avoid toxic cross-linking agents, gellan was oxidized with NaIO4 to obtain new functional groups like dialdehydes for protein-based hydrogel cross-linking. The formed dialdehyde groups were highlighted with FT-IR and NMR spectroscopy. This paper aims to investigate hydrogel films for biomedical applications obtained by cross-linking BSA with oxidized gellan (OxG) containing immobilized β-cyclodextrin-curcumin inclusion complex (β-CD-Curc) The β-CD-Curc improved the bioavailability and solubility of Curc and was prepared at a molar ratio of 2:1. The film's structure and morphology were evaluated using FT-IR spectroscopy and SEM. The swelling degree (Q%) values of hydrogel films depend on hydrophilicity and pH, with higher values at pH = 7.4. Additionally, the conversion index of -NH2 groups into Schiff bases increases with an increase in OxG amount. The polymeric matrix provides protection for Curc, is non-cytotoxic, and enhances antioxidant activity. At pH = 5.5, the skin permeability and release efficiency of encapsulated curcumin were higher than at pH = 7.4 because of the interaction of free aldehyde and carboxylic groups from hydrogels with amine groups from proteins present in the skin membrane, resulting in a better film adhesion and more efficient curcumin release.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Oana Maria Daraba
- Faculty of Dental Medicine, “Apollonia” University, 11 Pacurari Street, 700355 Iasi, Romania;
| | - Christine Jérôme
- Center for Education and Research on Macromolecules, Complex and Entangled Systems from Atoms to Materials, University of Liège, 4000 Liège, Belgium;
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73 Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iasi, Romania;
- Faculty of Dental Medicine, “Apollonia” University, 11 Pacurari Street, 700355 Iasi, Romania;
- Academy of Romanian Scientists, 3 Ilfov Street, Sector 5, 050044 Bucureşti, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| |
Collapse
|