1
|
Di Lisio V, Rocchi LA, Cangialosi D. Twofold Facet of Kinetics of Glass Aging. PHYSICAL REVIEW LETTERS 2024; 133:048201. [PMID: 39121415 DOI: 10.1103/physrevlett.133.048201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/24/2024] [Indexed: 08/11/2024]
Abstract
We employ fast scanning calorimetry to monitor the isothermal aging kinetics in glassy polymers, complemented with measurements on other glasses. Apart from following the time evolution of the glass enthalpic state, we monitor the aging kinetics of the devitrification width on heating, ΔT_{dev}. We find that significantly below the glass transition temperature, T_{g}, the glass enthalpy attains equilibrium earlier than ΔT_{dev}, which evolves at long aging times toward enhanced heterogeneity. Hence, our results indicate that the description of time dependent evolution in glassy materials requires information beyond the mere description of its enthalpic state.
Collapse
|
2
|
Helmy AM, Lu A, Duggal I, Rodrigues KP, Maniruzzaman M. Electromagnetic drop-on-demand (DoD) technology as an innovative platform for amorphous solid dispersion production. Int J Pharm 2024; 658:124185. [PMID: 38703932 DOI: 10.1016/j.ijpharm.2024.124185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Production of amorphous solid dispersions (ASDs) is an effective strategy to promote the solubility and bioavailability of poorly water soluble medicinal substances. In general, ASD is manufactured using a variety of classic and modern techniques, most of which rely on either melting or solvent evaporation. This proof-of-concept study is the first ever to introduce electromagnetic drop-on-demand (DoD) technique as an alternative solvent evaporation-based method for producing ASDs. Herein 3D printing of ASDs for three drug-polymer combinations (efavirenz-Eudragit L100-55, lumefantrine-hydroxypropyl methylcellulose acetate succinate, and favipiravir-polyacrylic acid) was investigated to ascertain the reliability of this technique. Polarized light microscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), and Fourier Transform Infrared (FTIR) spectroscopy results supported the formation of ASDs for the three drugs by means of DoD 3D printing, which significantly increases the equilibrium solubility of efavirenz from 0.03 ± 0.04 µg/ml to 21.18 ± 4.20 µg/ml, and the equilibrium solubility of lumefantrine from 1.26 ± 1.60 µg/ml to 20.21 ± 6.91 µg/ml. Overall, the reported findings show how this new electromagnetic DoD technology can have a potential to become a cutting-edge 3D printing solvent-evaporation technique for on-demand and continuous manufacturing of ASDs for a variety of drugs.
Collapse
Affiliation(s)
- Abdelrahman M Helmy
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Deraya University, Minya, Egypt
| | - Anqi Lu
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ishaan Duggal
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kristina P Rodrigues
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Pharmaceutical Engineering and 3D Printing (PharmE3D) Lab, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677-1848, USA.
| |
Collapse
|
3
|
Luo J, Wang X, Tong B, Li Z, Rocchi LA, Di Lisio V, Cangialosi D, Zuo B. Length Scale of Molecular Motions Governing Glass Equilibration in Hyperquenched and Slow-Cooled Polystyrene. J Phys Chem Lett 2024; 15:357-363. [PMID: 38175163 DOI: 10.1021/acs.jpclett.3c03263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Polymer glasses attain thermodynamic equilibrium owing to structural relaxation at various length scales. Herein, calorimetry experiments were conducted to trace the macroscopic relaxation of slow-cooled (SC) and hyperquenched (HQ) polystyrene (PS) glasses and based on detailed comparisons with molecular dynamics probed by dye reorientation, we discussed the possible molecular process governing the equilibration of PS glasses near the glass transition temperatures (Tg). Both SC and HQ glasses equilibrate owing to the cooperative segment motion above a characteristic temperature (Tc) slightly lower than the Tg. In contrast, below the Tc, the localized backbone motion with an apparent activation energy of 290 ± 20 kJ/mol, involving approximately six repeating units, assists equilibrium recovery of PS glasses on the experimentally accessible time scales. The results possibly indicate the presence of an alternative mechanism other than the α-cooperative process controlling physical aging of materials in their deep glassy states.
Collapse
Affiliation(s)
- Jintian Luo
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ben Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhiqiang Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Lorenzo Augusto Rocchi
- Department of Chemistry, University of Rome "La Sapienza", P.le A. Moro 5, 00185 Rome, Italy
| | - Valerio Di Lisio
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian, Spain
| | - Daniele Cangialosi
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 San Sebastian, Spain
- Centro de Física de Materiales, Paseo Manuel de Lardizabal 5, 20018 San Sebastian, Spain
| | - Biao Zuo
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
4
|
Di Lisio V, Gallino I, Riegler SS, Frey M, Neuber N, Kumar G, Schroers J, Busch R, Cangialosi D. Size-dependent vitrification in metallic glasses. Nat Commun 2023; 14:4698. [PMID: 37542023 PMCID: PMC10403508 DOI: 10.1038/s41467-023-40417-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Reducing the sample size can profoundly impact properties of bulk metallic glasses. Here, we systematically reduce the length scale of Au and Pt-based metallic glasses and study their vitrification behavior and atomic mobility. For this purpose, we exploit fast scanning calorimetry (FSC) allowing to study glassy dynamics in an exceptionally wide range of cooling rates and frequencies. We show that the main α relaxation process remains size independent and bulk-like. In contrast, we observe pronounced size dependent vitrification kinetics in micrometer-sized glasses, which is more evident for the smallest samples and at low cooling rates, resulting in more than 40 K decrease in fictive temperature, Tf, with respect to the bulk. We discuss the deep implications on how this outcome can be used to convey glasses to low energy states.
Collapse
Affiliation(s)
- Valerio Di Lisio
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastián, Spain
| | - Isabella Gallino
- Saarland University, Chair of Metallic Materials, Campus C6.3, 66123, Saarbrücken, Germany.
| | | | - Maximilian Frey
- Saarland University, Chair of Metallic Materials, Campus C6.3, 66123, Saarbrücken, Germany
| | - Nico Neuber
- Saarland University, Chair of Metallic Materials, Campus C6.3, 66123, Saarbrücken, Germany
| | - Golden Kumar
- Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, USA
| | - Jan Schroers
- Yale University, Mechanical Engineering and Materials Science, New Haven, CT, USA
| | - Ralf Busch
- Saarland University, Chair of Metallic Materials, Campus C6.3, 66123, Saarbrücken, Germany
| | - Daniele Cangialosi
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018, San Sebastián, Spain.
- Centro de Física de Materiales (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018, San Sebastián, Spain.
| |
Collapse
|