1
|
Liu H, Xing F, Yu P, Shakya S, Peng K, Liu M, Xiang Z, Ritz U. Integrated design and application of stimuli-responsive metal-organic frameworks in biomedicine: current status and future perspectives. J Mater Chem B 2024; 12:8235-8266. [PMID: 39058314 DOI: 10.1039/d4tb00768a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
In recent years, metal-organic frameworks (MOFs) have garnered widespread attention due to their distinctive attributes, such as high surface area, tunable properties, biodegradability, extremely low density, high loading capacity, diverse chemical functionalities, thermal stability, well-defined pore sizes, and molecular dimensions. Increasingly, biomedical researchers have turned their focus towards their multifaceted development. Among these, stimuli-responsive MOFs, with their unique advantages, have captured greater interest from researchers. This review will delve into the merits and drawbacks of both endogenous and exogenous stimuli-responsive MOFs, along with their application directions. Furthermore, it will outline the characteristics of different synthesis routes of MOFs, exploring various design schemes and modification strategies and their impacts on the properties of MOF products, as well as how to control them. Additionally, we will survey different types of stimuli-responsive MOFs, discussing the significance of various MOF products reported in biomedical applications. We will categorically summarize different strategies such as anticancer therapy, antibacterial treatment, tissue repair, and biomedical imaging, as well as insights into the development of novel MOFs nanomaterials in the future. Finally, this review will conclude by summarizing the challenges in the development of stimuli-responsive MOFs in the field of biomedicine and providing prospects for future research endeavors.
Collapse
Affiliation(s)
- Hao Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Fei Xing
- Department of Pediatric Surgery, West China Hospital, Sichuan University, 610041 Chengdu, China
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Sujan Shakya
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Kun Peng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, 330006 Nanchang, Jiang Xi, China
| | - Ming Liu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, 610041 Chengdu, China.
- Department of Orthopedics, Sanya People's Hospital, 572000 Sanya, Hainan, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
2
|
Ahmed A, Kelly A, Leonard D, Saleem W, Bezrukov A, Efthymiou CG, Zaworotko MJ, Tiana D, Boyd A, Papatriantafyllopoulou C. Synthesis and characterisation of antimicrobial metal-organic frameworks as multi-drug carriers. Dalton Trans 2024; 53:11867-11875. [PMID: 38952206 DOI: 10.1039/d4dt01100g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Antibiotic resistance is a significant global concern, necessitating the development of either new antibiotics or advanced delivery methods. With this in mind, we report on the synthesis and characterisation of a new family of Metal-Organic Frameworks (MOFs), OnG6 MOFs, designed to act as multi-drug carriers for bacterial infection treatment. OnG6 is based on the pro-drug 4,4'-azodisalicylic acid (AZDH4), which in vivo produces two equivalents of para-aminosalicylic acid (ASA), a crucial drug for M. tuberculosis treatment. X-ray and computational studies revealed that OnG6 MOFs are mesoporous MOFs with etb topology and an [M2(AZD)] formula (M = Zn, OnG6-Zn; Mg, OnG6-Mg; Cu, OnG6-Cu; and Co, OnG6-Co), featuring 1-dimensional channel type pores of 25 Å diameter. OnG6 MOFs are the first reported MOFs bearing the ligand AZDH4, joining the family of mesoporous MOFs arranged in a honeycomb pattern. They absorb isoniazid (INH) and ciprofloxacin (CIPRO) with the former being a specific antibiotic for M. tuberculosis, and the latter being a broader-spectrum antibiotic. The stability of the MOFs and their capacity for antibiotic uptake depend on the nature of the metal ion, with OnG6-Mg demonstrating the highest drug absorption. The antimicrobial activity of these species was assessed against S. aureus and E. coli, revealing that the carriers containing CIPRO displayed optimal efficacy.
Collapse
Affiliation(s)
- Ahmed Ahmed
- SSPC The Science Foundation Ireland Research Centre for, Pharmaceuticals, Ireland
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland.
| | - Aileen Kelly
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland.
| | - Dayle Leonard
- School of Natural Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland
| | - Waleed Saleem
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland.
| | - Andrey Bezrukov
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | | | - Michael J Zaworotko
- SSPC The Science Foundation Ireland Research Centre for, Pharmaceuticals, Ireland
- Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, V94T9PX, Republic of Ireland
| | - Davide Tiana
- SSPC The Science Foundation Ireland Research Centre for, Pharmaceuticals, Ireland
- School of Chemistry, University College Cork, College Road, Cork, Ireland
| | - Aoife Boyd
- School of Natural Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland
| | - Constantina Papatriantafyllopoulou
- SSPC The Science Foundation Ireland Research Centre for, Pharmaceuticals, Ireland
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, H91 TK 33 Galway, Ireland.
| |
Collapse
|
3
|
Lei L, Pan W, Shou X, Shao Y, Ye S, Zhang J, Kolliputi N, Shi L. Nanomaterials-assisted gene editing and synthetic biology for optimizing the treatment of pulmonary diseases. J Nanobiotechnology 2024; 22:343. [PMID: 38890749 PMCID: PMC11186260 DOI: 10.1186/s12951-024-02627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
The use of nanomaterials in gene editing and synthetic biology has emerged as a pivotal strategy in the pursuit of refined treatment methodologies for pulmonary disorders. This review discusses the utilization of nanomaterial-assisted gene editing tools and synthetic biology techniques to promote the development of more precise and efficient treatments for pulmonary diseases. First, we briefly outline the characterization of the respiratory system and succinctly describe the principal applications of diverse nanomaterials in lung ailment treatment. Second, we elaborate on gene-editing tools, their configurations, and assorted delivery methods, while delving into the present state of nanomaterial-facilitated gene-editing interventions for a spectrum of pulmonary diseases. Subsequently, we briefly expound on synthetic biology and its deployment in biomedicine, focusing on research advances in the diagnosis and treatment of pulmonary conditions against the backdrop of the coronavirus disease 2019 pandemic. Finally, we summarize the extant lacunae in current research and delineate prospects for advancement in this domain. This holistic approach augments the development of pioneering solutions in lung disease treatment, thereby endowing patients with more efficacious and personalized therapeutic alternatives.
Collapse
Affiliation(s)
- Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Wenjie Pan
- Department of Pharmacy, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, China
| | - Xin Shou
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Yunyuan Shao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Shuxuan Ye
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210046, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Liyun Shi
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
4
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Ranjbar H, Farajollahi A, Rostami M. Targeted drug delivery in pulmonary therapy based on adhesion and transmission of nanocarriers designed with a metal-organic framework. Biomech Model Mechanobiol 2023; 22:2153-2170. [PMID: 37624467 DOI: 10.1007/s10237-023-01756-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023]
Abstract
With the recent increase in lung diseases, especially with the onset of the coronavirus pandemic, the design of a highly efficient and optimal targeted drug delivery system for the lungs is crucial in inhaler-based delivery systems. This study aimed to design a magnetic field-assisted targeted drug delivery system to the lungs using three types of metal-organic frameworks (MOFs) and nanoliposomes. The optimization of the system was based on three main parameters: the surface density of the nanocarriers' (NCs) adherence to each of the lung branches, the amount of drug transferred to each branch, and the toxicity based on the rate of nanocarrier delivery to the branches. The study investigated the effect of increasing the diameter of the drug carriers and the amount of drug loaded onto the NCs in improving drug delivery to targeted areas of the lung. Results showed that the presence of a magnetic field significantly increased the adhesion of NCs to the targeted branches. The application of a magnetic field and the type of drug carrier had a significant effect on drug delivery downstream of the lung and reduced drug toxicity. The study found that Fe3O4@UiO-66 (iron-oxide nanoparticle attached to the surface of UiO-66, a type of MOF) and Fe3O4@PAA/AuNCs/ZIF-8 carriers, (iron-oxide nanoparticle attached to a hybrid structure composed of three different materials: poly (acrylic acid) (PAA), gold nanoclusters (AuNCs), and zeolitic imidazolate framework-8 (ZIF-8)), had the greatest drug delivery rate in diameters above 200 nm and less than 200 nm, respectively.
Collapse
Affiliation(s)
- Hamed Ranjbar
- School of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | | | - Mohsen Rostami
- Department of Engineering, University of Imam Ali, Tehran, Iran
| |
Collapse
|
6
|
Zhang Q, Yan S, Yan X, Lv Y. Recent advances in metal-organic frameworks: Synthesis, application and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165944. [PMID: 37543345 DOI: 10.1016/j.scitotenv.2023.165944] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
Metal-organic frameworks (MOFs) are a new class of crystalline porous hybrid materials with high porosity, large specific surface area and adjustable channel structure and biocompatibility, which are being investigated with increasing interest for energy storage and conversion, gas adsorption/separation, catalysis, sensing and biomedicine. However, the practical applications of MOFs make them release into the environment inevitable, posing a threat to humans and organisms. In this article, we cover advances in the currently available MOFs synthesis methods and the emerging applications of MOFs, especially in the biomedical field (therapeutic agents and bioimaging). Additionally, after evaluating the current status of main exposure routes and affecting factors in the field of MOFs-toxicity, the molecular mechanism is also clarified and identified. Knowledge gaps are identified from such a summarization and frontier development are explored for MOFs. Afterwards, we also present the limitations, challenges, and future perspectives in the study of the entire life cycle of MOFs. This review emphasizes the need for a more targeted discussion of the latest, widely used and effective versatile material class in order to exploit the full potential of high-performance and non-toxicity MOFs in the future.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shuguang Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xueting Yan
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yi Lv
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China; Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
7
|
Kadota K, Tse JY, Fujita S, Suzuki N, Uchiyama H, Tozuka Y, Tanaka S. Drug-Facilitated Crystallization of Spray-Dried CD-MOFs with Tunable Morphology, Porosity, And Dissolution Profile. ACS APPLIED BIO MATERIALS 2023; 6:3451-3462. [PMID: 37184656 DOI: 10.1021/acsabm.3c00162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Metal-organic frameworks (MOFs) with versatile functionalities have applications in environmental science, sensor separation, catalysis, and drug delivery. In particular, MOFs used in drug delivery should be biodegradable and easy to control. In this study, spray-dried cyclodextrin-based MOFs (CD-MOFs) with tunable crystallinity, porosity, and dissolution properties were fabricated. The spray-drying precursor properties, such as ethanol volume ratio, incubation time, and precursor concentration, were optimized for controlled crystallization. On the basis of the morphology, X-ray diffraction peak intensity, and specific surface areas of the spray-dried CD-MOF products, they were categorized as amorphous, partially crystalline, and highly crystalline. An active pharmaceutical ingredient ketoconazole (KCZ) was introduced into the precursor to prepare KCZ-containing CD-MOFs. The surface areas of these products were greater by 3-fold (292 m2/g) than that of the plain CD-MOF (94.1 m2/g) prepared using the same parameters. The presence of KCZ in the hydrophobic cavity between the two γ-CD molecules was correlated to the CD-MOF crystal growth. Additionally, CD-MOF particles exhibited different dissolution behaviors on the basis of the position of KCZ in the MOF. These spray-dried CD-MOFs with tunable morphology, specific surface area, and dissolution could have potential applications in various fields.
Collapse
Affiliation(s)
- Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Jun Yee Tse
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shuhei Fujita
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
| | - Nao Suzuki
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Shunsuke Tanaka
- Department of Chemical, Energy, and Environmental Engineering, Faculty of Environmental and Urban Engineering, Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680, Japan
- Collaborate Research Center of Engineering, Medicine and Pharmacology (CEMP), Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate-cho, Suita-shi, Osaka 564-8680, Japan
| |
Collapse
|
8
|
El Naggar HM, Anwar MM, Khayyal AE, Abdelhameed RM, Barakat AM, Sadek SAS, Elashkar AM. Application of honeybee venom loaded nanoparticles for the treatment of chronic toxoplasmosis: parasitological, histopathological, and immunohistochemical studies. J Parasit Dis 2023; 47:591-607. [PMID: 37520202 PMCID: PMC10382463 DOI: 10.1007/s12639-023-01602-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 05/27/2023] [Indexed: 08/01/2023] Open
Abstract
Toxoplasma gondii is an opportunistic intracellular protozoon which may cause severe disease in the immunocompromised patients. Unfortunately, the majority of treatments on the market work against tachyzoites in the acute infection but can't affect tissue cysts in the chronic phase. So, this study aimed to evaluate the effect of bee venom (BV) loaded metal organic frameworks (MOFs) nanoparticles (NPs) for the treatment of chronic murine toxoplasmosis. Ninety laboratory Swiss Albino mice were divided into 9 groups (10 mice each); GI (negative control), GII (infected control), GIII-GXI (infected with Me49 strain of Toxoplasma and treated); GIII (MOFs-NPs), GIV and GV (BV alone and loaded on MOFs-NPs), GVI and GVII (spiramycin alone and loaded on MOFs-NPs), GVIII and GIX (ciprofloxacin alone and loaded on MOFs-NPs). Parasitological examination of brain cyst count, histopathological study of brain, retina, liver, and kidney tissue sections and immunohistochemical (IHC) evaluation of liver was performed. Counting of Toxoplasma brain cysts showed high statistically significant difference between the infected treated groups and GII. GV showed the least count of brain cysts; mean ± SD (281 ± 29.5). Histopathological examination revealed a marked ameliorative effect of BV administration when used alone or loaded MOFs-NPs. It significantly reduced tissue inflammation, degeneration, and fibrosis. IHC examination of liver sections revealed high density CD8+ infiltration in GII, low density CD8+ infiltration in GIII, GVI, GVII, GVIII, and GIX while GIV and GV showed intermediate density CD8+ infiltration. BV is a promising Apitherapy against chronic toxoplasmosis. This effect is markedly enhanced by MOFs-NPs. Graphical abstract
Collapse
Affiliation(s)
- Heba M. El Naggar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mona M Anwar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amira E. Khayyal
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reda M Abdelhameed
- Department of Applied Organic Chemistry, Chemical Industries Research Division, National Research Centre, Giza, Egypt
| | - Ashraf M. Barakat
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Sabry A. S. Sadek
- Department of Zoonotic Diseases, National Research Centre, Giza, Egypt
| | - Ayman M. Elashkar
- Department of Medical Parasitology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, KSA Saudi Arabia
| |
Collapse
|
9
|
Menon D, Chakraborty S. How safe are nanoscale metal-organic frameworks? FRONTIERS IN TOXICOLOGY 2023; 5:1233854. [PMID: 37424745 PMCID: PMC10326718 DOI: 10.3389/ftox.2023.1233854] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/11/2023] Open
Abstract
Owing to the size scales that can be accessed, the nanoscale has opened doors to new physical and chemical properties, not seen in the bulk. These properties are leveraged by nanomaterials (NMs) across a plethora of applications. More recently, nanoscale metal-organic frameworks (nMOFs) have witnessed explosive growth due to the modularity of their chemical constituents, the ability to modify their composition and structure, and exceptional properties such as permanent porosity and high surface areas. These properties have prompted the investigation of these materials for applications in biological and environmental contexts. However, one aspect that is often ignored in these discussions is their safety at a nanoscale. In this mini review, we aim to initiate a discussion on the safety and toxicity of nMOFs, drawing parallels with the existing guidelines and literature on the safety of inorganic NMs. We first describe why nMOFs are of considerable interest to the scientific community followed by a discussion on routes through which they can be exposed to the environment and living organisms, particularly shedding light on their transformation mechanisms. The review also discusses the factors affecting toxicity of nMOFs, such as their size, shape, morphology, and composition. We briefly highlight potential mechanisms of toxicity and conclude with describing the need to transition towards data-intensive computational approaches such as machine learning to establish nMOFs as credible materials for their envisioned applications.
Collapse
Affiliation(s)
- Dhruv Menon
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Swaroop Chakraborty
- School of Geography, Earth and Environmental Sciences, The University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
10
|
Moharramnejad M, Malekshah RE, Ehsani A, Gharanli S, Shahi M, Alvan SA, Salariyeh Z, Azadani MN, Haribabu J, Basmenj ZS, Khaleghian A, Saremi H, Hassani Z, Momeni E. A review of recent developments of metal-organic frameworks as combined biomedical platforms over the past decade. Adv Colloid Interface Sci 2023; 316:102908. [PMID: 37148581 DOI: 10.1016/j.cis.2023.102908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
Metal-organic frameworks (MOFs), also called porous coordination polymers, represent a class of crystalline porous materials made up of organic ligands and metal ions/metal clusters. Herein, an overview of the preparation of different metal-organic frameworks and the recent advances in MOF-based stimuli-responsive drug delivery systems (DDSs) with the drug release mechanisms including pH-, temperature-, ion-, magnetic-, pressure-, adenosine-triphosphate (ATP)-, H2S-, redox-, responsive, and photoresponsive MOF were rarely introduced. The combination therapy containing of two or more treatments can be enhanced treatment effectiveness through overcoming limitations of monotherapy. Photothermal therapy (PTT) combined with chemotherapy (CT), chemotherapy in combination with PTT or other combinations were explained to overcome drug resistance and side effects in normal cells as well as enhancing the therapeutic response. Integrated platforms containing of photothermal/drug-delivering functions with magnetic resonance imaging (MRI) properties exhibited great advantages in cancer therapy.
Collapse
Affiliation(s)
- Mojtaba Moharramnejad
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran; Young Researcher and Elite Group, University of Qom, Qom, Iran
| | - Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran; Department of Chemistry, Semnan University, Semnan, Iran.
| | - Ali Ehsani
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.
| | - Sajjad Gharanli
- Department of Chemical Engineering, Faculty of Engineering, Qom University, Qom, Iran
| | - Mehrnaz Shahi
- Department of Chemistry, Semnan University, Semnan, Iran
| | - Saeed Alvani Alvan
- Bachelor of Chemical Engineering, Azad Varamin University, Peshwa branch, Iran
| | | | | | - Jebiti Haribabu
- Facultad de Medicina, Universidad de Atacama, Los Carreras 1579, 1532502 Copiapo, Chile
| | | | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Saremi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Iran
| | - Zahra Hassani
- Department of New Materials, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman 7631818356, Iran
| | - Elham Momeni
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
11
|
Recent Advances in Nanomaterials for Asthma Treatment. Int J Mol Sci 2022; 23:ijms232214427. [PMID: 36430906 PMCID: PMC9696023 DOI: 10.3390/ijms232214427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Asthma is a chronic airway inflammatory disease with complex mechanisms, and these patients often encounter difficulties in their treatment course due to the heterogeneity of the disease. Currently, clinical treatments for asthma are mainly based on glucocorticoid-based combination drug therapy; however, glucocorticoid resistance and multiple side effects, as well as the occurrence of poor drug delivery, require the development of more promising treatments. Nanotechnology is an emerging technology that has been extensively researched in the medical field. Several studies have shown that drug delivery systems could significantly improve the targeting, reduce toxicity and improve the bioavailability of drugs. The use of multiple nanoparticle delivery strategies could improve the therapeutic efficacy of drugs compared to traditional delivery methods. Herein, the authors presented the mechanisms of asthma development and current therapeutic methods. Furthermore, the design and synthesis of different types of nanomaterials and micromaterials for asthma therapy are reviewed, including polymetric nanomaterials, solid lipid nanomaterials, cell membranes-based nanomaterials, and metal nanomaterials. Finally, the challenges and future perspectives of these nanomaterials are discussed to provide guidance for further research directions and hopefully promote the clinical application of nanotherapeutics in asthma treatment.
Collapse
|