1
|
Hang C, Guo Z, Li K, Yao J, Shi H, Ge R, Liang J, Quan F, Zhang K, Tian X, Xia Y. Anisotropic hydrogel sensors with muscle-like structures based on high-absorbent alginate fibers. Carbohydr Polym 2025; 349:123015. [PMID: 39638507 DOI: 10.1016/j.carbpol.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024]
Abstract
Hydrogel sensors have attracted much attention as they play a critical role in health monitoring, multifunctional electronic skin, and human-machine interfaces. However, the isotropic structure makes existing hydrogel sensors exhibit isotropic sensing performance. Therefore, it is a challenge to fabricate hydrogels with human tissue-like structures to achieve anisotropic sensing performance. Herein, we proposed a novel method to prepare anisotropic hydrogel sensors using high-absorbent alginate fibers. The anisotropic hydrogel, HAFG@CNTs, was prepared by adsorbing carbon nanotubes on high-absorbent alginate fibers and immobilized using polyacrylamide bonds. The hydrogel had anisotropic mechanical properties and anisotropic ionic conductivity. The modulus and toughness in the parallel fiber direction were 2.31 and 3.75 times higher than those in the perpendicular fiber direction, respectively, and the sensitivity of the parallel fiber direction was higher than that of the vertical direction when strain occurred. In addition, machine learning algorithms were used to predict and classify different action signals obtained from HAFG@CNTs with an accuracy of up to 98.18 %. These advantages offer great potential for applying HAFG@CNTs to wearable devices and medical monitoring.
Collapse
Affiliation(s)
- Chen Hang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Zihan Guo
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Kai Li
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Jiuyong Yao
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Hailing Shi
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Ruihao Ge
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Junxuan Liang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Fengyu Quan
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Kewei Zhang
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| | - Xing Tian
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China.
| | - Yanzhi Xia
- State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Institute of Marine Bio-based Materials, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
2
|
Si M, Tang Y, Xu C, Li CY, Xia K, Xu W, Lin J, Jiang Z, Yang J, Zheng SY. Developing tough, fatigue-resistant and conductive hydrogels via in situ growth of metal dendrites. MATERIALS HORIZONS 2025. [PMID: 39866078 DOI: 10.1039/d4mh01778a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Developing hydrogels with high conductivity and toughness via a facile strategy is important yet challenging. Herein, we proposed a new strategy to develop conductive hydrogels by growing metal dendrites. Water-soluble Sn2+ ions were soaked into the gel and then converted to Sn dendrites via an electrochemical reaction; the excessive Sn2+ ions were finally removed by water dialysis, accompanied by dramatic shrinkage of the gel. Based on in situ transformation from metal ions to dendrites, the method integrated the advantages of ionic conductive fillers, such as LiCl (uniform dispersion), and electrical fillers, such as metal particles (high conductivity). Additionally, the morphology of metal dendrites combined advantages of 1D nanowires (large aspect ratio of the branches) and 2D nanosheets (large specific surface area of the skeleton). The strategy was found to be effective across diverse gel systems (non-ionic, anionic, cationic and zwitterionic). The dense, highly conductive and branched Sn dendrites not only formed a conductive pathway but also interacted with the polymer network to transfer stress and dissipate energy. The resultant gel exhibited a high conductivity of 12.5 S m-1, fracture energy of 1334.0 J m-2, and fatigue threshold of 720 J m-2. Additionally, the gel exhibited excellent sensitivity when used as a wearable strain sensor and bioelectrode. We believe this strategy offers new insights into the development of conductive hydrogels.
Collapse
Affiliation(s)
- Mengjie Si
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yueman Tang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chen Xu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chen Yu Li
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou 311100, P. R. China.
| | - Kaishun Xia
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Wei Xu
- ZJU-Hangzhou Global Scientific Center, Zhejiang University, Hangzhou 311200, P. R. China
| | - Ji Lin
- School of Mechanical Engineering & Mechanics, Ningbo University, Ningbo 315211, P. R. China
| | - Zhen Jiang
- School of Mechanical Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Si Yu Zheng
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
3
|
Jia J, Lu S, Sun S, Jin Y, Qin L, Zhao C. Salt-welding strategy for the design of repairable impact-resistant and wear-resistant hydrogels. SCIENCE ADVANCES 2025; 11:eadr9834. [PMID: 39854461 PMCID: PMC11759658 DOI: 10.1126/sciadv.adr9834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration. Developing a stable repair strategy that combines rapid healing and high mechanical strength is challenging. Here, we introduce "salt-welding" for high-strength hydrogels with rapid room temperature self-healing. This is achieved through dynamic borate ester bonds in a salt-responsive poly(methacrylamide) hydrogel. The process involves "salt-fusion" to convert fractures into a viscous liquid for swift healing, followed by "salt-concretion" to toughen the hydrogel. The hydrogels achieve a posthealing strength of 23 megapascals in 95 minutes at room temperature, with near 100% healing efficiency. Leveraging their tunable mechanical strength and rapid healing rate, the hydrogel can be tailored for applications as a reparable wear-resistant material and damping device.
Collapse
Affiliation(s)
- Jiangpeng Jia
- School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Shan Lu
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Shurui Sun
- School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Yijie Jin
- School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| | - Liguo Qin
- Key Laboratory of Education Ministry for Modern Design and Rotor-Bearing System, Institute of Design Science and Basic Components, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chuanzhuang Zhao
- School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Yang J, Yan Y, Huang L, Ma M, Li M, Peng F, Huan W, Bian J. Conductive Eutectogels Fabricated by Dialdehyde Xylan/Liquid Metal-Initiated Rapid Polymerization for Multi-Response Sensors and Self-Powered Applications. ACS NANO 2025; 19:2171-2184. [PMID: 39791699 DOI: 10.1021/acsnano.4c11127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Conductive eutectogels have emerged as candidates for constructing functional flexible electronics as they are free from the constraints posed by inherent defects associated with solvents and feeble network structures. Nevertheless, developing a facile, environmentally friendly, and rapid polymerization strategy for the construction of conductive eutectogels with integrated multifunctionality is still immensely challenging. Herein, a conductive eutectogel is fabricated through a one-step dialdehyde xylan (DAX)/liquid metal (LM)-initiated polymerization of a deep eutectic solvent. DAX acts as a stabilizer for the preparation of LM nanodroplets and plays a crucial role in facilitating ultrafast gelation (less than 2 min) by virtue of its reducing dialdehyde groups. Notably, this fabrication strategy obviates the use of toxic chemical initiators and cross-linkers. The resultant eutectogels exhibit extremely high stretchability (2860%), desirable self-healing ability, high conductivity (0.72 S m-1), biocompatibility, excellent environmental stability, and exceptional responsiveness to tensile strain (GF = 4.08) and temperature (TCR = 5.35% K-1). Benefiting from these integrated features, the conductive eutectogels serve as multifunctional flexible sensors for human motion recognition and temperature monitoring. Furthermore, the eutectogel serves as a pliable electrode in the assembly of a triboelectric nanogenerator (TENG), designed to harvest mechanical energy, convert it into stable electrical outputs, and enable self-powered sensing. This study offers an approach to fabricating multifunctional integrated conductive eutectogels, making it a step closer to the development of intelligent flexible electronics.
Collapse
Affiliation(s)
- Jiyou Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Yin Yan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Lingzhi Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mingguo Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Weiwei Huan
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
- Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Yuan W, He Y, Liang Q, Lv H, Wang Z, Wu H, Wu J, Zhao L, Wang Y. Ultra-stretchable, self-recoverable, notch-insensitive, self-healable and adhesive hydrogel enabled by synergetic hydrogen and dipole-dipole crosslinking. MATERIALS HORIZONS 2025. [PMID: 39749763 DOI: 10.1039/d4mh01462f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hydrogels are promising materials for wearable electronics, artificial skins and biomedical engineering, but their limited stretchability, self-recovery and crack resistance restrict their performance in demanding applications. Despite efforts to enhance these properties using micelle cross-links, nanofillers and dynamic interactions, it remains a challenge to fabricate hydrogels that combine high stretchability, self-healing and strong adhesion. Herein, we report a novel hydrogel synthesized via the copolymerization of acrylamide (AM), maleic acid (MA) and acrylonitrile (AN), designed to address these limitations. The resulting hydrogel forms a dual physical crosslinking network enabled by dynamic hydrogen bonds and dipole-dipole interactions. This hierarchical structure allows polymer chains to undergo progressive deformation, leading to ultrahigh stretchability exceeding 9000% and excellent fatigue resistance under cyclic strains of up to 3000%. Furthermore, the hydrogel exhibits outstanding notch-insensitivity (fracture energy: >10 kJ m-2), notable adhesive properties and superior self-healing capabilities. The incorporation of LiCl imparts conductivity to the hydrogel, making it suitable for wearable strain sensors that can accurately monitor human motion. These results demonstrate the successful development of an ultra-stretchable, self-recoverable, notch-insensitive, self-healable and adhesive hydrogel with significant potential for advanced applications in wearable electronics and healthcare monitoring devices. This work represents a significant step forward in the design of multifunctional hydrogels, offering new pathways for the development of next-generation soft materials with enhanced mechanical and functional properties.
Collapse
Affiliation(s)
- Wanting Yuan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Yi He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Qianqian Liang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Hongyi Lv
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Ziqi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Haitao Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Jinrong Wu
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
6
|
Zhao T, Tan Y, Li Y, Wang X. Ionic fuel-powered hydrogel actuators for soft robotics. J Colloid Interface Sci 2025; 677:739-749. [PMID: 39121658 DOI: 10.1016/j.jcis.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
HYPOTHESIS Hydrogel actuators powered by chemical fuels are pivotal in autonomous soft robotics. Nevertheless, chemical waste accumulation caused by chemical fuels hampers the development of programmable and reusable hydrogel actuating systems. We propose the concept of ionic fuel-powered soft robotics which are constructed by programmable salt-responsive actuators and use waste-free ionic fuels. EXPERIMENTS Herein, soft hydrogel actuators were developed by orchestrating the Janus bilayer hydrogels' capacity for swelling and shrinking. Decomposable and easily removable ionic fuels were applied to power the actuators. Swelling tests were used to evaluate the deformability of the hydrogels. Tensile tests were performed to investigate the modulus of the hydrogels. The bonded interface composed of the interpenetrating polymer chains from both hydrogel layers bilayer was evidenced by the optical microscopy and scanning electron microscopy. The ionic conductivities of solutions were determined by a conductivity meter. Furthermore, a range of biomimetic soft robots with various shapes and asymmetrical structures have been designed and fabricated to execute complex functions. FINDINGS The programmable actuators powered by ionic fuel exhibit adjustable bending orientations, amplitudes, and durations, along with consistent cyclic actuations enabled by replenishment of the fuel without noticeable loss in performance. Many life-like programmable soft robotic systems were designed, indicating spatiotemporally controllable functions.
Collapse
Affiliation(s)
- Ting Zhao
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yu Tan
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China.
| | - Xu Wang
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, PR China.
| |
Collapse
|
7
|
He M, Lv X, Li Z, Li H, Qian W, Zhu S, Zhou Y, Wang Y, Bu X. Research on Efficient Electromagnetic Shielding Performance and Modulation Mechanism of Aero/Organo/Hydrogels with Gravity-Induced Asymmetric Gradient Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403210. [PMID: 39410726 DOI: 10.1002/smll.202403210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/07/2024] [Indexed: 12/20/2024]
Abstract
To eliminate electromagnetic pollution, it is a challenging task to develop highly efficient electromagnetic shielding materials that integrate microwave absorption (MA) performance with high shielding capability and achieve tunability in shielding performance. Asymmetrically structured aero/organo/hydrogels with a progressively changing concentration gradient of liquid metal nanoparticles (LMNPs), induced by gravity, are prepared by integrating the conductive fillers Ti3C2Tx MXene and LMNPs into a dual-network structure composed of polyvinyl alcohol and cellulose nanofibers. Benefiting from the unique structure, which facilitates the absorption-reflection-reabsorption process of electromagnetic waves along with conductive fillers and the porous structure, three types of gels demonstrate efficient shielding performance. HPCML achieves a total shielding effectiveness (SET) of up to 86.9 dB and a reflection shielding effectiveness (SER) of as low as 2.85 dB. Especially, APCML, with an ultra-low reflection coefficient (R) of 6.4%, achieves compatibility between shielding performance and MA properties. The relationship between dispersing media (air, water, and glycerol/water) and the shielding performance of aero/organo/hydrogels is explored, thereby achieving modulation of the shielding performance of the gel system. The work has paved a clear path for integrating absorption and shielding capabilities into a composite material, thereby providing a prototype of a highly efficient shielding material with MA performance.
Collapse
Affiliation(s)
- Man He
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xuelian Lv
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhonghui Li
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Haoyuan Li
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wen Qian
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shengyin Zhu
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuming Zhou
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yongjuan Wang
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaohai Bu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| |
Collapse
|
8
|
Chen Y, Feng T, Li C, Qin F. Comprehensive and Robust Anti-Jamming Dual-Electrode Pair Sensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406739. [PMID: 39501969 DOI: 10.1002/smll.202406739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/17/2024] [Indexed: 12/20/2024]
Abstract
Capacitive flexible sensors often encounter instability caused by temperature fluctuations, electromagnetic interference, stray capacitance effects, and signal noise induced by ubiquitous vibrations. The challenge lies in achieving comprehensive anti-jamming abilities while preserving a simplistic structure and manufacturing process. To tackle this dilemma, a straightforward and effective design is utilized to achieve comprehensive and robust anti-jamming properties in capacitive sensors. Electrospinning thermoplastic polyurethane (TPU) fiber mats soak with ionic liquid (IL) to create a co-continuous structure (TPU@IL) with high ionic conductivity and dielectric constant, which acts as the sensing units. The sensing mechanism of the TPU@IL with multiple electrode pairs encapsulated by polyethylene terephthalate (PET) is systematically elucidated. The optimal dual-electrode pair design for capacitive and resistive sensors, which have different sensitivities to temperature and stress, simultaneous realizes temperature-stress dual-mode sensing. Remarkably, the sensitivity curve of the TPU@IL/PET capacitive sensor exhibits an intriguing rarely reported S-shape with an adjustable step stress point. No liquid leakage even during extensive stress-strain cycling (>4000 cycles). Despite a slight compromise in sensitivity and response time, the TPU@IL/PET sensor demonstrates exceptional electromechanical stability, reliability, and powerful anti-jamming abilities against various interferences. A simple yet innovative sensor design enhances the performance and applicability of capacitive sensors in challenging environments.
Collapse
Affiliation(s)
- Yanlin Chen
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Tangfeng Feng
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Changfeng Li
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Faxiang Qin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| |
Collapse
|
9
|
Zhu G, Javanmardia N, Qian L, Jin F, Li T, Zhang S, He Y, Wang Y, Xu X, Wang T, Feng ZQ. Advances of conductive hydrogel designed for flexible electronics: A review. Int J Biol Macromol 2024; 281:136115. [PMID: 39349076 DOI: 10.1016/j.ijbiomac.2024.136115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
In recent years, there has been considerable attention devoted to flexible electronic devices within the realm of biomedical engineering. These devices demonstrate the capability to accurately capture human physiological signals, thereby facilitating efficient human-computer interaction, and providing a novel approach of flexible electronics for monitoring and treating related diseases. A notable contribution to this domain is the emergence of conductive hydrogels as a novel flexible electronic material. Renowned for their exceptional flexibility, adjustable electrical conductivity, and facile processing, conductive hydrogels have emerged as the preferred material for designing and fabricating innovative flexible electronic devices. This paper provides a comprehensive review of the recent advancements in flexible electronic devices rooted in conductive hydrogels. It offers an in-depth exploration of existing synthesis strategies for conductive hydrogels and subsequently examines the latest progress in their applications, including flexible neural electrodes, sensors, energy storage devices and soft robots. The analysis extends to the identification of technological challenges and developmental opportunities in both the synthesis of new conductive hydrogels and their application in the dynamic field of flexible electronics.
Collapse
Affiliation(s)
- Guanzhou Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Negar Javanmardia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Siwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xuran Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
10
|
Hu F, Dong B, Yu D, Zhao R, Chen W, Song Z, Lu P, Zhang F, Wang Z, Liu X, Wang H, Liu W, Li H. Highly stretchable, self-healing, antibacterial, conductive, and amylopectin-enhanced hydrogels with gallium droplets loading as strain sensors. Carbohydr Polym 2024; 342:122357. [PMID: 39048189 DOI: 10.1016/j.carbpol.2024.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/26/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024]
Abstract
In this study, we address the challenge of developing highly conductive hydrogels with enhanced stretchability for use in wearable sensors, which are critical for the precise detection of human motion and subtle physiological strains. Our novel approach utilizes amylopectin, a biopolymer, for the uniform integration of liquid metal gallium into the hydrogel matrix. This integration results in a conductive hydrogel characterized by remarkable elasticity (up to 7100 % extensibility) and superior electrical conductance (Gauge Factor = 31.4), coupled with a minimal detection limit of less than 0.1 % and exceptional durability over 5000 cycles. The hydrogel demonstrates significant antibacterial activity, inhibiting microbial growth in moist environments, thus enhancing its applicability in medical settings. Employing a synthesis process that involves ambient condition polymerization of acrylic acid, facilitated by a hydrophobic associative framework, this hydrogel stands out for its rapid gelation and robust mechanical properties. The potential applications of this hydrogel extend beyond wearable sensors, promising advancements in human-computer interaction through technologies like wireless actuation of robotic systems. This study not only introduces a viable material for current wearable technologies but also sets a foundation for future innovations in bio-compatible sensors and interactive devices.
Collapse
Affiliation(s)
- Feihong Hu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Baoting Dong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Dehai Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China; Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China.
| | - Rui Zhao
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wei Chen
- College of Engineering, Qufu Normal University, Rizhao 276826, China
| | - Zhaoping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Lu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Fengshan Zhang
- Shandong Huatai Paper Co., Ltd. & Shandong Yellow Triangle Biotechnology Industry Research Institute Co. Ltd., Dongying, Shandong Province 257335, China
| | - Zhaojiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Xiaona Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Huili Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Wenxia Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan, Shandong Province 250353, China
| | - Huihui Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Ji'nan, Shandong Province 250012, China.
| |
Collapse
|
11
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
12
|
Wang X, Li Y, Yu X. Hydrotalcite-Enhanced Tough and Strong Hydrogel Endowed by Coordination and Electrostatic Interactions for Both Strain and Pressure Sensors. Inorg Chem 2024. [PMID: 39257279 DOI: 10.1021/acs.inorgchem.4c02696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Polymer hydrogels have a wide range of applications in the field of flexible wearable devices from the perspective of easy commercialization and environmental compatibility. However, traditional hydrogels often fail to achieve adequate mechanical strength and performance such as toughness, resilience, and ionic conductivity. Herein, a significant enhancement of tensile strength in 2 orders of magnitude (from 36 kPa to 1.5 MPa) is obtained by the introduction of hydrotalcite into polymer network via multiple, multilevel, and strong interactions of strengthened interface interactions, and the enhancement effect is superior to most of known records. Meanwhile, the enhanced conductivity may be rationally attributed to effective channels of hydrotalcite for ion transport. As a result, high toughness (9.5 MJ/m3), stretchability (1520%), excellent resilience (100% rebound of 400% strain), high conductivity (2.6 mS/cm), and low-temperature resistance are successfully achieved. The work shows an efficient approach to design desired ultratough and multifunctional hydrogels.
Collapse
Affiliation(s)
- Xiaoya Wang
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China
| | - Yajuan Li
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China
| | - Xudong Yu
- Hebei Provincial Key Laboratory of Photoelectric Control on Surface and Interface, and College of Science, Hebei University of Science and Technology, Yuxiang Road 26, Shijiazhuang 050080, PR China
| |
Collapse
|
13
|
Yan W, Liu A, Luo Y, Chen Z, Wu G, Chen J, Huang Q, Yang Y, Ye M, Guo W. A Highly Sensitive and Stretchable Core-Shell Fiber Sensor for Gesture Recognition and Surface Pressure Distribution Monitoring. Macromol Rapid Commun 2024; 45:e2400109. [PMID: 38594026 DOI: 10.1002/marc.202400109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/04/2024] [Indexed: 04/11/2024]
Abstract
This work reports a highly-strain flexible fiber sensor with a core-shell structure utilizes a unique swelling diffusion technique to infiltrate carbon nanotubes (CNTs) into the surface layer of Ecoflex fibers. Compared with traditional blended Ecoflex/CNTs fibers, this manufacturing process ensures that the sensor maintains the mechanical properties (923% strain) of the Ecoflex fiber while also improving sensitivity (gauge factor is up to 3716). By adjusting the penetration time during fabrication, the sensor can be customized for different uses. As an application demonstration, the fiber sensor is integrated into the glove to develop a wearable gesture language recognition system with high sensitivity and precision. Additionally, the authors successfully monitor the pressure distribution on the curved surface of a soccer ball by winding the fiber sensor along the ball's surface.
Collapse
Affiliation(s)
- Weizhe Yan
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| | - Andeng Liu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| | - Yingjin Luo
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| | - Zhuomin Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Guoxu Wu
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Jianfeng Chen
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Meidan Ye
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
| | - Wenxi Guo
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Department of Physics, Xiamen University, Xiamen, 361005, P. R. China
- Jiujiang Research Institute, Xiamen University, Jiujiang, 332000, P. R. China
| |
Collapse
|
14
|
Chen Y, Estevez D, Zhu Z, Wang Y, Mai YW, Qin F. Multifunctional Conductive Hydrogel Composites with Nickel Nanowires and Liquid Metal Conductive Highways. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29267-29281. [PMID: 38780052 DOI: 10.1021/acsami.4c05344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The dramatic growth of smart wearable electronics has generated a demand for conductive hydrogels due to their tunability, stimulus responsiveness, and multimodal sensing capabilities. However, the substantial trade-off between mechanical and electrical properties hinders their multifunctionality. Here, we report a double-network hydrogel composite that features a conductive "highway" constructed using magnetic-field-aligned nickel nanowires and liquid metal. The liquid metal fills the gaps between the aligned nickel nanowires. Such interconnected structures can form efficient conductive paths at low filler content, resulting in high conductivity (1.11 × 104 S/m) and mechanical compliance (Young's modulus, 89 kPa; toughness, 721 kJ/m3). When used as a wearable sensor, the hydrogel displays a high sensitivity and fast response for wireless motion detection and human-machine interaction. Furthermore, by exploiting its outstanding conductivity and electrical heating capacity, the hydrogel integrates electromagnetic shielding and thermal management functionalities. Owing to these all-around properties, our design offers a broader platform for expanding hydrogel applications.
Collapse
Affiliation(s)
- Yanlin Chen
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Diana Estevez
- Ningbo Innovation Center, Zhejiang University, 1 South Qianhu Road, Ningbo 315100, P. R. China
| | - Zihao Zhu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yunfei Wang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yiu-Wing Mai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Faxiang Qin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| |
Collapse
|
15
|
Wang X, Zheng S, Xiong J, Liu Z, Li Q, Li W, Yan F. Stretch-Induced Conductivity Enhancement in Highly Conductive and Tough Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313845. [PMID: 38452373 DOI: 10.1002/adma.202313845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The resistance of gels and elastomers increases significantly with tensile strain, which reduces conductive stability and restricts their use in stable and reliable electronics. Here, highly conductive tough hydrogels composed of silver nanowires (AgNWs), liquid metal (LM), and poly(vinyl alcohol) (PVA) are fabricated. The stretch-induced orientations of AgNWs, deformable LM, and PVA nanocrystalline create conductive pathways, enhancing the mechanical properties of the hydrogels, including increased ultimate fracture stress (13-33 MPa), strain (3000-5300%), and toughness (390.9-765.1 MJ m-3). Notably, the electrical conductivity of the hydrogels is significantly improved from 4.05 × 10-3 to 24 S m-1 when stretched to 4200% strain, representing a 6000-fold enhancement. The incorporation of PVA nanocrystalline, deformable LM, and AgNWs effectively mitigates stress concentration at the crack tip, thereby conferring crack propagation insensitivity and fatigue resistance to the hydrogels. Moreover, the hydrogels are designed with a reversible crosslinking network, allowing for water-induced recycling.
Collapse
Affiliation(s)
- Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Sijie Zheng
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Ziyang Liu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 200051, China
| |
Collapse
|
16
|
Xiong J, Duan M, Zou X, Gao S, Guo J, Wang X, Li Q, Li W, Wang X, Yan F. Biocompatible Tough Ionogels with Reversible Supramolecular Adhesion. J Am Chem Soc 2024; 146:13903-13913. [PMID: 38721817 DOI: 10.1021/jacs.4c01758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Cohesive and interfacial adhesion energies are difficult to balance to obtain reversible adhesives with both high mechanical strength and high adhesion strength, although various methods have been extensively investigated. Here, a biocompatible citric acid/L-(-)-carnitine (CAC)-based ionic liquid was developed as a solvent to prepare tough and high adhesion strength ionogels for reversible engineered and biological adhesives. The prepared ionogels exhibited good mechanical properties, including tensile strength (14.4 MPa), Young's modulus (48.1 MPa), toughness (115.2 MJ m-3), and high adhesion strength on the glass substrate (24.4 MPa). Furthermore, the ionogels can form mechanically matched tough adhesion at the interface of wet biological tissues (interfacial toughness about 191 J m-2) and can be detached by saline solution on demand, thus extending potential applications in various clinical scenarios such as wound adhesion and nondestructive transfer of organs.
Collapse
Affiliation(s)
- Jiaofeng Xiong
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Minzhi Duan
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiuyang Zou
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qingning Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Weizheng Li
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaoliang Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
17
|
Li Y, Cheng Q, Deng Z, Zhang T, Luo M, Huang X, Wang Y, Wang W, Zhao X. Recent Progress of Anti-Freezing, Anti-Drying, and Anti-Swelling Conductive Hydrogels and Their Applications. Polymers (Basel) 2024; 16:971. [PMID: 38611229 PMCID: PMC11013939 DOI: 10.3390/polym16070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Hydrogels are soft-wet materials with a hydrophilic three-dimensional network structure offering controllable stretchability, conductivity, and biocompatibility. However, traditional conductive hydrogels only operate in mild environments and exhibit poor environmental tolerance due to their high water content and hydrophilic network, which result in undesirable swelling, susceptibility to freezing at sub-zero temperatures, and structural dehydration through evaporation. The application range of conductive hydrogels is significantly restricted by these limitations. Therefore, developing environmentally tolerant conductive hydrogels (ETCHs) is crucial to increasing the application scope of these materials. In this review, we summarize recent strategies for designing multifunctional conductive hydrogels that possess anti-freezing, anti-drying, and anti-swelling properties. Furthermore, we briefly introduce some of the applications of ETCHs, including wearable sensors, bioelectrodes, soft robots, and wound dressings. The current development status of different types of ETCHs and their limitations are analyzed to further discuss future research directions and development prospects.
Collapse
Affiliation(s)
- Ying Li
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Qiwei Cheng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Tao Zhang
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Man Luo
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Xiaoxiao Huang
- College of Materials Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China
| | - Yuheng Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Wen Wang
- Department of Radiology, Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Air Force Medical University, Xi’an 710038, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
18
|
Lei T, Pan J, Wang N, Xia Z, Zhang Q, Fan J, Tao L, Shou W, Gao Y. Cold-resistant, highly stretchable ionic conductive hydrogels for intelligent motion recognition in winter sports. MATERIALS HORIZONS 2024; 11:1234-1250. [PMID: 38131412 DOI: 10.1039/d3mh02013d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Conductive hydrogels have attracted much attention for their wide application in the field of flexible wearable sensors due to their outstanding flexibility, conductivity and sensing properties. However, the weak mechanical properties, lack of frost resistance and susceptibility to microbial contamination of traditional conductive hydrogels greatly limit their practical application. In this work, multifunctional polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC)/poly(acrylamide-co-1-vinyl-3-butylimidazolium bromide) (P(AAm-co-VBIMBr)) (PCPAV) ionic conductive hydrogels with high strength and good conductive, transparent, anti-freezing and antibacterial properties were constructed by introducing a network of chemically crosslinked AAm and VBIMBr copolymers into the base material of PVA and CMC by in situ free radical polymerization. Owing to the multiple interactions between the polymers, including covalent crosslinking, multiple hydrogen bonding interactions, and electrostatic interactions, the obtained ionic conductive hydrogels exhibit a high tensile strength (360.6 kPa), a large elongation at break (810.6%), good toughness, and fatigue resistance properties. The introduction of VBIMBr endows the PCPAV hydrogels with excellent transparency (∼92%), a high ionic conductivity (15.2 mS cm-1), antimicrobial activity and good flexibility and conductivity at sub-zero temperatures. Notably, the PCPAV hydrogels exhibit a wide strain range (0-800%), high strain sensitivity (GF = 3.75), fast response, long-term stability, and fantastic durability, which enable them to detect both large joint movements and minute muscle movements. Based on these advantages, it is believed that the PCPAV-based hydrogel sensors would have potential applications in health monitoring, human motion detection, soft robotics, ionic skins, human-machine interfaces, and other flexible electronic devices.
Collapse
Affiliation(s)
- Tongda Lei
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Jiajun Pan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Ning Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Zhaopeng Xia
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Qingsong Zhang
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Jie Fan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Wan Shou
- Department of Mechanical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yu Gao
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
19
|
Yin H, Liu F, Abdiryim T, Chen J, Liu X. Sodium carboxymethyl cellulose and MXene reinforced multifunctional conductive hydrogels for multimodal sensors and flexible supercapacitors. Carbohydr Polym 2024; 327:121677. [PMID: 38171688 DOI: 10.1016/j.carbpol.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024]
Abstract
With the growing demand for eco-friendly materials in wearable smart electronic devices, renewable, biocompatible, and low-cost hydrogels based on natural polymers have attracted much attention. Cellulose, as one of the renewable and degradable natural polymers, shows great potential in wearable smart electronic devices. Multifunctional conductive cellulose-based hydrogels are designed for flexible electronic devices by adding sodium carboxymethyl cellulose and MXene into polyacrylic acid networks. The multifunctional hydrogels possess excellent mechanical property (stress: 310 kPa; strain: 1127 %), toughness (206.67 KJ m-3), conductivity (1.09 ± 0.12 S m-1) and adhesion (82.19 ± 3.65 kPa). The multifunctional conductive hydrogels serve as strain sensors (Gauge Factor (GF) = 5.79, 0-700 % strain; GF = 14.0, 700-900 % strain; GF = 40.36, 900-1000 % strain; response time: 300 ms; recovery time: 200 ms) and temperature sensors (Temperature coefficient of resistance (TCR) = 2.5755 °C-1 at 35 °C- 60 °C). The sensor detects human activities with clear and steady signals. A distributed array of flexible sensors is created to measure the magnitude and distribution of pressure and a hydrogel-based flexible touch keyboard is also fabricated to recognize writing trajectories, pressures and speeds. Furthermore, a flexible hydrogel-based supercapacitor powers the LED and exhibits good cyclic stability over 15,000 charge-discharge cycles.
Collapse
Affiliation(s)
- Hongyan Yin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jiaying Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| |
Collapse
|
20
|
Tian C, Khan SA, Zhang Z, Cui X, Zhang H. Thermoelectric Hydrogel Electronic Skin for Passive Multimodal Physiological Perception. ACS Sens 2024; 9:840-848. [PMID: 38270147 DOI: 10.1021/acssensors.3c02172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Electronic skins (e-skins) are being extensively researched for their ability to recognize physiological data and deliver feedback via electrical signals. However, their wide range of applications is frequently restricted by the indispensableness of external power supplies and single sensory function. Here, we report a passive multimodal e-skin for real-time human health assessment based on a thermoelectric hydrogel. The hydrogel network consists of poly(vinyl alcohol)/low acyl gellan gum with [Fe(CN)6]4-/3- as the redox couple. The introduction of glycerol and Li+ furnishes the gel-based e-skin with antidrying and antifreezing properties, a thermopower of 2.04 mV K-1, fast self-healing in less than 10 min, and high conductivity of 2.56 S m-1. As a prospective application, the e-skin can actively perceive multimodal physiological signals without the need for decoupling, including body temperature, pulse rate, and sweat content, in real time by synergistically coupling sensing and transduction. This work offers a scientific basis and designs an approach to develop passive multimodal e-skins and promotes the application of wearable electronics in advanced intelligent medicine.
Collapse
Affiliation(s)
- Chaohui Tian
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Saeed Ahmed Khan
- Department of Electrical Engineering, Sukkur IBA University, Sukkur 65200, Pakistan
| | - Zhiyi Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaojing Cui
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, China
| | - Hulin Zhang
- College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
21
|
Zhong Y, Lin Q, Yu H, Shao L, Cui X, Pang Q, Zhu Y, Hou R. Construction methods and biomedical applications of PVA-based hydrogels. Front Chem 2024; 12:1376799. [PMID: 38435666 PMCID: PMC10905748 DOI: 10.3389/fchem.2024.1376799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024] Open
Abstract
Polyvinyl alcohol (PVA) hydrogel is favored by researchers due to its good biocompatibility, high mechanical strength, low friction coefficient, and suitable water content. The widely distributed hydroxyl side chains on the PVA molecule allow the hydrogels to be branched with various functional groups. By improving the synthesis method and changing the hydrogel structure, PVA-based hydrogels can obtain excellent cytocompatibility, flexibility, electrical conductivity, viscoelasticity, and antimicrobial properties, representing a good candidate for articular cartilage restoration, electronic skin, wound dressing, and other fields. This review introduces various preparation methods of PVA-based hydrogels and their wide applications in the biomedical field.
Collapse
Affiliation(s)
- Yi Zhong
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Qi Lin
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Han Yu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Lei Shao
- Research Institute for Medical and Biological Engineering, Ningbo University, Ningbo, China
| | - Xiang Cui
- Department of Otorhinolaryngology, Lihuili Hospital of Ningbo University, Ningbo, China
| | - Qian Pang
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Yabin Zhu
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| | - Ruixia Hou
- Zhejiang Key Laboratory of Pathophysiology, Department of Cell Biology and Regenerative Medicine, Health Science Center, Ningbo University, Ningbo, China
| |
Collapse
|
22
|
Kushwaha R, Dey S, Gupta K, Mandal BB, Das D. Secondary Chemical Cross-Linking to Improve Mechanical Properties in a Multifaceted Biocompatible Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5183-5195. [PMID: 38235678 DOI: 10.1021/acsami.3c18247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A new conductive and transparent organohydrogel is developed with high stretchability, excellent mechanical, self-healing, antifreezing, and adhesive properties. A simple one-pot polymerization method is used to create polyacrylamide cross-linked through N,N'-methylenebis(acrylamide) (MBAA) and divinylbenzene (DVB). The dual chemical cross-linked gel network is complemented by several physical cross-links via hydrogen bonding and π-π interaction. Multiple chemical and physical cross-links are used to construct the gel network that allows toughness (171 kPa), low modulus (≈45 kPa), excellent stretchability (>1100%), and self-healing ability. The use of appropriate proportions of the water/glycerol binary solvent system ensures efficient environment tolerance (-20 to 40 °C). Phytic acid is used as a conductive filler that provides excellent conductivity and contributes to the physical cross-linking. Dopamine is incorporated in the gel matrix, which endows excellent adhesive property of the gel. The organohydrogel-based strain sensors are developed with state-independent properties, highly linear dependence, and excellent antifatigue performance (>100 cycles). Moreover, during the practical wearable sensing tests, human motions can be detected, including speaking, smiling, and joint movement. Additionally, the sensor is biocompatible, indicating the potential applications for the next generation of epidermal sensors.
Collapse
Affiliation(s)
- Ritvika Kushwaha
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| | - Souradeep Dey
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Kanika Gupta
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| | - Biman B Mandal
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Biomaterials and Tissue Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Debapratim Das
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| |
Collapse
|
23
|
Zhao Y, Ran B, Lee D, Liao J. Photo-Controllable Smart Hydrogels for Biomedical Application: A Review. SMALL METHODS 2024; 8:e2301095. [PMID: 37884456 DOI: 10.1002/smtd.202301095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Nowadays, smart hydrogels are being widely studied by researchers because of their advantages such as simple preparation, stable performance, response to external stimuli, and easy control of response behavior. Photo-controllable smart hydrogels (PCHs) are a class of responsive hydrogels whose physical and chemical properties can be changed when stimulated by light at specific wavelengths. Since the light source is safe, clean, simple to operate, and easy to control, PCHs have broad application prospects in the biomedical field. Therefore, this review timely summarizes the latest progress in the PCHs field, with an emphasis on the design principles of typical PCHs and their multiple biomedical applications in tissue regeneration, tumor therapy, antibacterial therapy, diseases diagnosis and monitoring, etc. Meanwhile, the challenges and perspectives of widespread practical implementation of PCHs are presented in biomedical applications. This study hopes that PCHs will flourish in the biomedical field and this review will provide useful information for interested researchers.
Collapse
Affiliation(s)
- Yiwen Zhao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Bei Ran
- Institute of Regulatory Science for Medical Devices, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Dashiell Lee
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
24
|
Zheng Y, Wang J, Cui T, Zhu J, Gui Z. Advancing high-performance tailored dual-crosslinking network organo-hydrogel flexible device for wireless wearable sensing. J Colloid Interface Sci 2024; 653:56-66. [PMID: 37708732 DOI: 10.1016/j.jcis.2023.09.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/03/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
Conductive hydrogels are essential for enabling long-term and reliable signal sensing in wearable electronics due to their tunable flexibility, stimulus responsiveness, and multimodal sensing integration. However, developing durable and dependable integrated hydrogel-based flexible devices has been challenging due to mismatched mechanical properties, limited water retention capability, and reduced flexibility. This work addresses these challenges by employing a tailored physical-chemical dual-crosslinking strategy to fabricate dynamically reversible organo-hydrogels with high performance. The resultant organo-hydrogels exhibit exceptional characteristics, including high stretchability (up to ∼495% strain), remarkable toughness (with tensile and compressive strengths of ∼1350 kPa and ∼9370 kPa, respectively), and outstanding transparency (∼90.3%). Moreover, they demonstrate excellent long-term water retention ability (>2424 h, >97%). Notably, the organo-hydrogel based sensor exhibits heightened sensitivity for monitoring physiological signals and motions. Furthermore, our integrated wireless wearable sensing system efficiently captures and transmits various human physiological signals and motion information in real-time. This research advances the development of customized devices utilizing functional organo-hydrogel materials, making contributions to fulfilling the increasing demand for high-performance wireless wearable sensing.
Collapse
Affiliation(s)
- Yapeng Zheng
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Jingwen Wang
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Tianyang Cui
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China.
| | - Zhou Gui
- State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
25
|
Chen J, Tian G, Liang C, Yang D, Zhao Q, Liu Y, Qi D. Liquid metal-hydrogel composites for flexible electronics. Chem Commun (Camb) 2023; 59:14353-14369. [PMID: 37916888 DOI: 10.1039/d3cc04198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
As an emerging functional material, liquid metal-hydrogel composites exhibit excellent biosafety, high electrical conductivity, tunable mechanical properties and good adhesion, thus providing a unique platform for a wide range of flexible electronics applications such as wearable devices, medical devices, actuators, and energy conversion devices. Through different composite methods, liquid metals can be integrated into hydrogel matrices to form multifunctional composite material systems, which further expands the application range of hydrogels. In this paper, we provide a brief overview of the two materials: hydrogels and liquid metals, and discuss the synthesis method of liquid metal-hydrogel composites, focusing on the improvement of the performance of hydrogel materials by liquid metals. In addition, we summarize the research progress of liquid metal-hydrogel composites in the field of flexible electronics, pointing out the current challenges and future prospects of this material.
Collapse
Affiliation(s)
- Jianhui Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Gongwei Tian
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Cuiyuan Liang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dan Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Qinyi Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Yan Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| | - Dianpeng Qi
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, P. R. China.
- Key Laboratory of Science and Engineering for the Multi-modal Prevention and Control of Major Chronic Diseases, Ministry of Industry and Information Technology, Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450046, P. R. China
| |
Collapse
|