1
|
Barman M, Tenhaken R, Dötterl S. Negative and sex-specific effects of drought on flower production, resources and pollinator visitation, but not on floral scent in monoecious Cucurbita pepo. THE NEW PHYTOLOGIST 2024; 244:1013-1023. [PMID: 39117354 DOI: 10.1111/nph.20016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/10/2024] [Indexed: 08/10/2024]
Abstract
The globally changing climatic condition is increasing the incidences of drought in several parts of the world. This is predicted and already shown to not only impact plant growth and flower development, but also plant-pollinator interactions and the pollination success of entomophilous plants. However, there is a large gap in our understanding of how drought affects the different flowers and pollen transfer among flowers in sexually polymorphic species. Here, we evaluated in monoecious Styrian oil pumpkin, and separately for female and male flowers, the responses of drought stress on flower production, petal size, nectar, floral scent and visitation by bumblebee pollinators. Drought stress adversely affected all floral traits studied, except floral scent. Although both flower sexes were adversely affected by drought stress, the effects were more severe on female flowers, with most of the female flowers even aborted before opening. The drought had negative effects on floral visitation by the pollinators, which generally preferred female flowers. Overall, our study highlights that the two flower sexes of a monoecious plant species are differently affected by drought stress and calls for further investigations to better understand the cues used by the pollinators to discriminate against male flowers and against flowers of drought-stressed plants.
Collapse
Affiliation(s)
- Monica Barman
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, Großbeeren, 14979, Germany
| | - Raimund Tenhaken
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| | - Stefan Dötterl
- Department of Environment and Biodiversity, Paris Lodron University of Salzburg, Hellbrunnerstrasse 34, Salzburg, 5020, Austria
| |
Collapse
|
2
|
Guo X, Yang Q, Cheng L, Hu G, Liu Z, Lan Y, Cheng Y. Metabolome and Transcriptome Combined Reveal the Main Floral Volatile Compounds and Key Regulatory Genes of Castanea mollissima. PLANTS (BASEL, SWITZERLAND) 2024; 13:2865. [PMID: 39458813 PMCID: PMC11511371 DOI: 10.3390/plants13202865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Chestnut (Castanea mollissima) is an economically important forest tree species, and its flowers possess functions such as repelling mosquitoes, killing bacteria, and clearing heat. However, the regulatory mechanisms of floral volatile organic compounds (VOCs) in chestnut are still unclear. This study analyzed the contents of major volatile compounds and related gene expression levels in chestnut flowers during the initial flowering stage (IFS) and full-flowering stage (FFS) using metabolomics and transcription techniques. In total, 926 volatile compounds were detected, mainly terpenes, heterocyclic compounds, and esters. Acetylenone, styrene, and β-pinene had contents that exceeded 5% in FFS chestnut flowers. In total, 325 differential metabolites between the IFS and FFS were significantly (p < 0.05) enriched in the biosynthetic pathways of sesquiterpenes and triterpenes, as well as the ethylbenzene metabolic pathway. In total, 31 differentially expressed genes (DEGs) were related to terpenoid biosynthesis. There were only two DEGs related to the ethylbenzene metabolic pathway. In summary, we identified the volatile components of chestnut flowers and analyzed the changes in the contents of major volatile compounds in the flowers and the expression patterns of the related genes. The research results are helpful for understanding the regulation of VOCs in chestnut flowers.
Collapse
Affiliation(s)
- Xiaomeng Guo
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China;
- College of Forestry, Shenyang Agriculture University, Shenyang 110866, China;
| | - Qianyu Yang
- College of Forestry, Shenyang Agriculture University, Shenyang 110866, China;
| | - Lili Cheng
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Guanglong Hu
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Zhao Liu
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing 100093, China;
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanping Lan
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| | - Yunhe Cheng
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100093, China; (X.G.); (L.C.); (G.H.)
- Engineering & Technology Research Center for Chestnut of National Forestry and Grassland Administration, Beijing 100093, China
| |
Collapse
|
3
|
Thosteman HE, Eisen K, Petrén H, Boutsi S, Pace L, Halley JM, De Moraes CM, Mescher MC, Buckley J, Friberg M. Integration of attractive and defensive phytochemicals is unlikely to constrain chemical diversification in a perennial herb. THE NEW PHYTOLOGIST 2024; 244:249-264. [PMID: 39081013 DOI: 10.1111/nph.20006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/08/2024] [Indexed: 09/17/2024]
Abstract
Diversification of plant chemical phenotypes is typically associated with spatially and temporally variable plant-insect interactions. Floral scent is often assumed to be the target of pollinator-mediated selection, whereas foliar compounds are considered targets of antagonist-mediated selection. However, floral and vegetative phytochemicals can be biosynthetically linked and may thus evolve as integrated phenotypes. Utilizing a common garden of 28 populations of the perennial herb Arabis alpina (Brassicaceae), we investigated integration within and among floral scent compounds and foliar defense compounds (both volatile compounds and tissue-bound glucosinolates). Within floral scent volatiles, foliar volatile compounds, and glucosinolates, phytochemicals were often positively correlated, and correlations were stronger within these groups than between them. Thus, we found no evidence of integration between compound groups indicating that these are free to evolve independently. Relative to self-compatible populations, self-incompatible populations experienced stronger correlations between floral scent compounds, and a trend toward lower integration between floral scent and foliar volatiles. Our study serves as a rare test of integration of multiple, physiologically related plant traits that each are potential targets of insect-mediated selection. Our results suggest that independent evolutionary forces are likely to diversify different axes of plant chemistry without major constraints.
Collapse
Affiliation(s)
| | - Katherine Eisen
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Biology, Loyola Marymount University, Los Angeles, CA, 90045, USA
| | - Hampus Petrén
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| | - Sotiria Boutsi
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
- Department of Agriculture and Environment, Harper Adams University, Newport, TF10 8NB, UK
| | - Loretta Pace
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, 67100, Italy
| | - John M Halley
- Department of Biological Applications and Technology, University of Ioannina, Thessaloniki, 45110, Greece
| | - Consuelo M De Moraes
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
| | - Mark C Mescher
- Plant Ecology Group, Institute of Integrative Biology, ETH Zürich, Zürich, 8092, Switzerland
| | - James Buckley
- Biocommunication Group, Institute of Agricultural Sciences, ETH Zürich, Zürich, 8092, Switzerland
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Magne Friberg
- Department of Biology, Lund University, Sölvegatan 37, Lund, 22362, Sweden
| |
Collapse
|
4
|
Powers JM, Briggs HM, Campbell DR. Natural selection on floral volatiles and other traits can change with snowmelt timing and summer precipitation. THE NEW PHYTOLOGIST 2024. [PMID: 39329349 DOI: 10.1111/nph.20157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Climate change is disrupting floral traits that mediate mutualistic and antagonistic species interactions. Plastic responses of these traits to multiple shifting conditions may be adaptive, depending on natural selection in new environments. We manipulated snowmelt date over three seasons (3-11 d earlier) in factorial combination with growing-season precipitation (normal, halved, or doubled) to measure plastic responses of volatile emissions and other floral traits in Ipomopsis aggregata. We quantified how precipitation and early snowmelt affected selection on traits by seed predators and pollinators. Within years, floral emissions did not respond to precipitation treatments but shifted with snowmelt treatment depending on the year. Across 3 yr, emissions correlated with both precipitation and snowmelt date. These effects were driven by changes in soil moisture. Selection on several traits changed with earlier snowmelt or reduced precipitation, in some cases driven by predispersal seed predation. Floral trait plasticity was not generally adaptive. Floral volatile emissions shifted in the face of two effects of climate change, and the new environments modulated selection imposed by interacting species. The complexity of the responses underscores the need for more studies of how climate change will affect floral volatiles and other floral traits.
Collapse
Affiliation(s)
- John M Powers
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| | - Heather M Briggs
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
- College of Science, University of Utah, Salt Lake City, UT, 84102, USA
| | - Diane R Campbell
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, 92697, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO, 81224, USA
| |
Collapse
|
5
|
Slavković F, Boualem A, Dogimont C, Bendahmane A. Phenotyping floral attractiveness to pollinators using volatilomics, 3D imaging, and insect monitoring. MOLECULAR PLANT 2024; 17:1164-1166. [PMID: 38907524 DOI: 10.1016/j.molp.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Affiliation(s)
- Filip Slavković
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Bâtiment 630, 91192 Gif sur Yvette, France
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Bâtiment 630, 91192 Gif sur Yvette, France
| | - Catherine Dogimont
- INRAE, UR 1052, Unité de Génétique et d'Amélioration des Fruits et Légumes, BP 94, 84143 Montfavet, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Bâtiment 630, 91192 Gif sur Yvette, France.
| |
Collapse
|
6
|
Rupp T, Oelschlägel B, Berjano R, Mahfoud H, Buono D, Wenke T, Rabitsch K, Bächli G, Stanojlovic V, Cabrele C, Xiong W, Knaden M, Dahl A, Neinhuis C, Wanke S, Dötterl S. Chemical imitation of yeast fermentation by the drosophilid-pollinated deceptive trap-flower Aristolochia baetica (Aristolochiaceae). PHYTOCHEMISTRY 2024; 224:114142. [PMID: 38762152 DOI: 10.1016/j.phytochem.2024.114142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Deceptive flowers, unlike in mutualistic pollination systems, mislead their pollinators by advertising rewards which ultimately are not provided. Although our understanding of deceptive pollination systems increased in recent years, the attractive signals and deceptive strategies in the majority of species remain unknown. This is also true for the genus Aristolochia, famous for its deceptive and fly-pollinated trap flowers. Representatives of this genus were generally assumed to be oviposition-site mimics, imitating vertebrate carrion or mushrooms. However, recent studies found a broader spectrum of strategies, including kleptomyiophily and imitation of invertebrate carrion. A different deceptive strategy is presented here for the western Mediterranean Aristolochia baetica L. We found that this species is mostly pollinated by drosophilid flies (Drosophilidae, mostly Drosophila spp.), which typically feed on fermenting fruit infested by yeasts. The flowers of A. baetica emitted mostly typical yeast volatiles, predominantly the aliphatic compounds acetoin and 2,3-butandiol, and derived acetates, as well as the aromatic compound 2-phenylethanol. Analyses of the absolute configurations of the chiral volatiles revealed weakly (acetoin, 2,3-butanediol) to strongly (mono- and diacetates) biased stereoisomer-ratios. Electrophysiological (GC-EAD) experiments and lab bioassays demonstrated that most of the floral volatiles, although not all stereoisomers of chiral compounds, were physiologically active and attractive in drosophilid pollinators; a synthetic mixture thereof successfully attracted them in field and lab bioassays. We conclude that A. baetica chemically mimics yeast fermentation to deceive its pollinators. This deceptive strategy (scent chemistry, pollinators, trapping function) is also known from more distantly related plants, such as Arum palaestinum Boiss. (Araceae) and Ceropegia spp. (Apocynaceae), suggesting convergent evolution. In contrast to other studies working on floral scents in plants imitating breeding sites, the present study considered the absolute configuration of chiral compounds.
Collapse
Affiliation(s)
- Thomas Rupp
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Birgit Oelschlägel
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Regina Berjano
- Department of Vegetal Biology and Ecology, University of Sevilla, Avenida Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Hafez Mahfoud
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Daniele Buono
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Torsten Wenke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Katharina Rabitsch
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Gerhard Bächli
- Institut für Evolutionsbiologie und Umweltforschung, Universität Zürich-Irchel, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Vesna Stanojlovic
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Chiara Cabrele
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Wujian Xiong
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria; Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianxingxi Road 166, 621000, Mianyang, China
| | - Markus Knaden
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology, Hans Knoell Strasse 8, 07745, Jena, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Christoph Neinhuis
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany
| | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Zellescher Weg 20b, 01062, Dresden, Germany; Departamento de Botánica, Instituto de Biología, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-367, 04510, Coyoacan, Distrito Federal, Mexico; Institut für Ökologie, Evolution und Diversiät, Goethe-Universität, Max-von-Laue-Straße 13, 60438, Frankfurt am Main, Germany; Abteilung Botanik und molekulare Evolutionsforschung, Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - Stefan Dötterl
- Department of Environment & Biodiversity, Paris-Lodron University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
7
|
Nooten SS, Korten H, Schmitt T, Kárpáti Z. The heat is on: reduced detection of floral scents after heatwaves in bumblebees. Proc Biol Sci 2024; 291:20240352. [PMID: 39191280 DOI: 10.1098/rspb.2024.0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/29/2024] [Accepted: 07/04/2024] [Indexed: 08/29/2024] Open
Abstract
Global climate change disrupts key ecological processes and biotic interactions. The recent increase in heatwave frequency and severity prompts the evaluation of physiological processes that ensure the maintenance of vital ecosystem services such as pollination. We used experimental heatwaves to determine how high temperatures affect the bumblebees' ability to detect floral scents. Heatwaves induced strong reductions in antennal responses to floral scents in both tested bumblebee species (Bombus terrestris and Bombus pascuorum). These reductions were generally stronger in workers than in males. Bumblebees showed no consistent pattern of recovery 24 h after heat events. Our results suggest that the projected increased frequency and severity of heatwaves may jeopardize bumblebee-mediated pollination services by disrupting the chemical communication between plants and pollinators. The reduced chemosensitivity can decrease the bumblebees' abilities to locate food sources and lead to declines in colonies and populations.
Collapse
Affiliation(s)
- Sabine S Nooten
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Hanno Korten
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Thomas Schmitt
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
| | - Zsolt Kárpáti
- Animal Ecology and Tropical Biology, University of Würzburg , Würzburg, Germany
- Department of Chemical Ecology, Plant Protection Institute, Centre of Agricultural Research, HUN-REN , Budapest, Hungary
| |
Collapse
|
8
|
Goodrich KR, Gibernau M. Floral scent of eastern skunk cabbage (Symplocarpus foetidus: Araceae). PHYTOCHEMISTRY 2024; 223:114111. [PMID: 38688443 DOI: 10.1016/j.phytochem.2024.114111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Symplocarpus foetidus (L.) Salisb. (eastern skunk cabbage) occurs across a broad geographic range of northeastern North America, blooming in winter between December and March. The inflorescences are well-known for their thermogenic and thermoregulatory metabolic capabilities. The perceptual qualities of their fetid floral aroma have been described widely in the literature, but to date the floral volatile composition remained largely unknown. Here we present a detailed study of the floral scent produced by S. foetidus collected from intact female- and male-stage inflorescences and from dissected floral parts. Our results show a large range of biosynthetically diverse volatiles including nitrogen- and sulfur-containing compounds, monoterpenes, benzenoids, and aliphatic esters and alcohols. We document high inter-individual variation with some organ-specific volatile trends but no clear strong variation based on sexual stage. Multivariate data analysis revealed two distinct chemotypes from our study populations that are not defined by sexual stage or population origin. The chemotype differences may explain the bimodal perceptual descriptions in earlier work which vary between highly unpleasant/fetid and pleasant/apple-like. We discuss the results in ecological contexts including potential for floral mimicry, taking into account existing pollination studies for the species. We also discuss the results in evolutionary contexts, comparing our scent data to published scent data from the close sister species Symplocarpus renifolius. Future work should more closely examine the chemotype occurrence and frequency within these and other populations, and the impact these chemotypes may have on pollinator attraction and reproductive success.
Collapse
Affiliation(s)
- Katherine R Goodrich
- Widener University, Department of Biological Sciences, 1 University Place, Chester, PA, 19013, USA.
| | - Marc Gibernau
- CNRS - University of Corsica - Laboratory Sciences for the Environment (UMR 6134 SPE), Natural Resources Project - Vignola - Route des Sanguinaires, 20000, Ajaccio, France
| |
Collapse
|
9
|
Heuel KC, Haßlberger TA, Ayasse M, Burger H. Floral Trait Preferences of Three Common wild Bee Species. INSECTS 2024; 15:427. [PMID: 38921142 PMCID: PMC11203783 DOI: 10.3390/insects15060427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
The interaction between bees and flowering plants is mediated by floral cues that enable bees to find foraging plants. We tested floral cue preferences among three common wild bee species: Lasioglossum villosulum, Osmia bicornis, and Bombus terrestris. Preferences are well studied in eusocial bees but almost unknown in solitary or non-eusocial generalist bee species. Using standardized artificial flowers altered in single cues, we tested preferences for color hue, achromatic contrast, scent complexity, corolla size, and flower depth. We found common attractive cues among all tested bees. Intensively colored flowers and large floral displays were highly attractive. No preferences were observed in scent complexity experiments, and the number of volatiles did not influence the behavior of bees. Differing preferences were found for color hue. The specific behaviors were probably influenced by foraging experience and depended on the flower choice preferences of the tested bee species. In experiments testing different flower depths of reward presentation, the bees chose flat flowers that afforded low energy costs. The results reveal that generalist wild bee species other than well-studied honeybees and bumblebees show strong preferences for distinct floral cues to find potential host plants. The diverse preferences of wild bees ensure the pollination of various flowering plants.
Collapse
Affiliation(s)
- Kim C. Heuel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, 89077 Ulm, Germany (M.A.); (H.B.)
| | | | | | | |
Collapse
|
10
|
Casimiro-Soriguer I, Aguilar-Benitez D, Gutierrez N, Torres AM. Transcriptome Analysis of Stigmas of Vicia faba L. Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:1443. [PMID: 38891252 PMCID: PMC11175038 DOI: 10.3390/plants13111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Pollination in angiosperms depends on complex communication between pollen grains and stigmas, classified as wet or dry, depending on the presence or absence of secretions at the stigma surface, respectively. In species with wet stigma, the cuticle is disrupted and the presence of exudates is indicative of their receptivity. Most stigma studies are focused on a few species and families, many of them with self-incompatibility systems. However, there is scarce knowledge about the stigma composition in Fabaceae, the third angiosperm family, whose stigmas have been classified as semidry. Here we report the first transcriptome profiling and DEGs of Vicia faba L. styles and stigmas from autofertile (flowers able to self-fertilize in the absence of manipulation, whose exudate is released spontaneously) and autosterile (flowers that need to be manipulated to break the cuticle and release the exudates to be receptive) inbred lines. From the 76,269 contigs obtained from the de novo assembly, only 45.1% of the sequences were annotated with at least one GO term. A total of 115,920, 75,489, and 70,801 annotations were assigned to Biological Process (BP), Cellular Component (CC), and Molecular Function (MF) categories, respectively, and 5918 differentially expressed genes (DEGs) were identified between the autofertile and the autosterile lines. Among the most enriched metabolic pathways in the DEGs subset were those related with amino acid biosynthesis, terpenoid metabolism, or signal transduction. Some DEGs have been related with previous QTLs identified for autofertility traits, and their putative functions are discussed. The results derived from this work provide an important transcriptomic reference for style-stigma processes to aid our understanding of the molecular mechanisms involved in faba bean fertilization.
Collapse
Affiliation(s)
- Inés Casimiro-Soriguer
- Área de Mejora Vegetal y Biotecnología, IFAPA Centro Alameda del Obispo, Apdo. 3092, 14080 Cordoba, Spain; (D.A.-B.); (N.G.); (A.M.T.)
| | | | | | | |
Collapse
|
11
|
Hoepflinger MC, Barman M, Dötterl S, Tenhaken R. A novel O-methyltransferase Cp4MP-OMT catalyses the final step in the biosynthesis of the volatile 1,4-dimethoxybenzene in pumpkin (Cucurbita pepo) flowers. BMC PLANT BIOLOGY 2024; 24:294. [PMID: 38632532 PMCID: PMC11022444 DOI: 10.1186/s12870-024-04955-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Floral scents play a crucial role in attracting insect pollinators. Among the compounds attractive to pollinators is 1,4-dimethoxybenzene (1,4-DMB). It is a significant contributor to the scent profile of plants from various genera, including economically important Cucurbita species. Despite its importance, the biosynthetic pathway for the formation of 1,4-DMB was not elucidated so far. RESULTS In this study we showed the catalysis of 1,4-DMB in the presence of 4-methoxyphenol (4-MP) by protein extract from Styrian oil pumpkin (Cucurbita pepo) flowers. Based on this finding, we identified a novel O-methyltransferase gene, Cp4MP-OMT, whose expression is highly upregulated in the volatile-producing tissue of pumpkin flowers when compared to vegetative tissues. OMT activity was verified by purified recombinant Cp4MP-OMT, illustrating its ability to catalyse the methylation of 4-MP to 1,4-DMB in the presence of cofactor SAM (S-(5'-adenosyl)-L-methionine). CONCLUSIONS Cp4MP-OMT is a novel O-methyltransferase from C. pepo, responsible for the final step in the biosynthesis of the floral scent compound 1,4-DMB. Considering the significance of 1,4-DMB in attracting insects for pollination and in the further course fruit formation, enhanced understanding of its biosynthetic pathways holds great promise for both ecological insights and advancements in plant breeding initiatives.
Collapse
Affiliation(s)
- Marion Christine Hoepflinger
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstraße 34, Salzburg, 5020, Austria
| | - Monica Barman
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstraße 34, Salzburg, 5020, Austria
- Leibniz Institute of Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Stefan Dötterl
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstraße 34, Salzburg, 5020, Austria
| | - Raimund Tenhaken
- Department of Environment & Biodiversity, Paris Lodron University Salzburg, Hellbrunnerstraße 34, Salzburg, 5020, Austria.
| |
Collapse
|
12
|
Peng Q, Tao W, Yu F, Xiong Q, Nong C, Zhang W, Fan J. Physiological and Biochemical Analysis Revealing the Key Factors Influencing 2-Phenylethanol and Benzyl Alcohol Production in Crabapple Flowers. PLANTS (BASEL, SWITZERLAND) 2024; 13:631. [PMID: 38475477 DOI: 10.3390/plants13050631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Floral scent (FS) plays a crucial role in the ecological functions and industrial applications of plants. However, the physiological and metabolic mechanisms underlying FS formation remain inadequately explored. Our investigation focused on elucidating the differential formation mechanisms of 2-phenylethanol (2-PE) and benzyl alcohol (BA) by examining seven related enzyme concentrations and the content of soluble sugar, soluble proteins, carbon (C) and nitrogen (N), as well as the C/N ratio. The findings revealed that the peak content of 2-PE in M. 'Praire Rose' and BA in M. 'Lollipop' occurred during the end flowering stage (S4) and flowering stage (S3) periods, respectively. The enzyme concentration change trends of phenylpyruvate decarboxylase (PDL), phenylacetaldehyde reductase (PAR), soluble protein, C, N, and C/N ratio changes during the S3-S4 period in M. 'Praire Rose' and M. 'Lollipop' were entirely opposite. Correlation and PCA analysis demonstrated that the content of CYP79D73 (a P450) and N, and the C/N ratio were key factors in 2-PE production in M. 'Praire Rose'. The production of BA in M. 'Lollipop' was more influenced by the content of phenylacetaldehyde synthase (PAAS), CYP79D73, and soluble sugar. As CYP79D73 exits oppositely in correlation to 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop'), it is hypothesized that CYP79D73 was postulated as the primary factor contributing to the observed differences of 2-PE (M. 'Praire Rose') and BA (M. 'Lollipop') formation. These results carry significant implications for crabapple aromatic flower breeding and the essential oil industry etc.
Collapse
Affiliation(s)
- Qin Peng
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wenkai Tao
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Fangyuan Yu
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Qinqin Xiong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Chunshi Nong
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Wangxiang Zhang
- College of Forestry, Nanjing Forestry University, No. 159 Longpan Road, Xuanwu District, Nanjing 210037, China
| | - Junjun Fan
- College of Horticulture, Jinling Institute of Technology, No. 99 Hongjing Avenue, Jiangning District, Nanjing 211169, China
| |
Collapse
|
13
|
Albuquerque-Lima S, Milet-Pinheiro P, Navarro DMAF, Taylor NP, Zappi DC, Machado IC. To be or not to be fragrant: floral scent of some bat-pollinated cacti. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:28-33. [PMID: 37862291 DOI: 10.1111/plb.13586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
Floral scent is a key olfactory cue in both diurnal and nocturnal pollination systems. In the case of nocturnal systems, such as bat-pollinated flowers, odour seems to play a more important role than visual cues. Cactaceae include many bat-pollinated species; however, few studies have investigated the olfactory cues in this family. We analysed and compared the chemical composition of the floral bouquet of three chiropterophilous cactus species, among which are a pair of congeners that differ considerably in scent intensity. Our research presents novel findings regarding the floral scent chemistry of chiropterophilous cactus species. We documented the first case of a bat-pollinated cactus whose flowers lack perceptible floral scent and in which no volatile compounds were detected in our chemical analyses. Additionally, we provide a comprehensive analysis of the chemical composition of the floral bouquet of the other two bat-pollinated species, revealing a resemblance among closely related species within the same genus. We highlight the need for further studies using biotests to investigate the mechanisms through which bats find flowers lacking scent.
Collapse
Affiliation(s)
- S Albuquerque-Lima
- Post-Graduate Program in Plant Biology, Laboratory of Floral and Reproductive Biology, Botany Department, Federal University of Pernambuco, Recife, Brazil
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - P Milet-Pinheiro
- Laboratory of Ecological Interactions and Semiochemicals, University of Pernambuco, Campus Petrolina, Petrolina, Brazil
- Laboratory of Chemical Ecology, Fundamental Chemistry Department, Federal University of Pernambuco, Recife, Brazil
| | - D M A F Navarro
- Laboratory of Ecological Interactions and Semiochemicals, University of Pernambuco, Campus Petrolina, Petrolina, Brazil
| | - N P Taylor
- Rua Doutor Basílio da Rocha, Rio de Contas, Brazil
| | - D C Zappi
- Secretaria de Coordenação de Pós-Graduação em Botânica, University of Brasília, Brasília, Brazil
- Museu Paraense Emílio Goeldi, Belém, Brazil
| | - I C Machado
- Post-Graduate Program in Plant Biology, Laboratory of Floral and Reproductive Biology, Botany Department, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
14
|
Zou Y, Wang J, Peng D, Zhang X, Tembrock LR, Yang J, Zhao J, Liao H, Wu Z. Multi-integrated genomic data for Passiflora foetida provides insights into genome size evolution and floral development in Passiflora. MOLECULAR HORTICULTURE 2023; 3:27. [PMID: 38105261 PMCID: PMC10726625 DOI: 10.1186/s43897-023-00076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
Passiflora is a plant genus known for its extremely distinctive and colorful flowers and a wide range of genome size variation. However, how genome characteristics are related to flower traits among Passiflora species remains poorly understood. Here, we assembled a chromosome-scale genome of P. foetida, which belongs to the same subgenus as the commercial passionfruit P. edulis. The genome of P. foetida is smaller (424.16 Mb) and contains fewer copies of long terminal repeat retrotransposons (LTR-RTs). The disparity in LTR-RTs is one of the main contributors to the differences in genome sizes between these two species and possibly in floral traits. Additionally, we observed variation in insertion times and copy numbers of LTR-RTs across different transposable element (TE) lineages. Then, by integrating transcriptomic data from 33 samples (eight floral organs and flower buds at three developmental stages) with phylogenomic and metabolomic data, we conducted an in-depth analysis of the expression, phylogeny, and copy number of MIKC-type MADS-box genes and identified essential biosynthetic genes responsible for flower color and scent from glandular bracts and other floral organs. Our study pinpoints LRT-RTs as an important player in genome size variation in Passiflora species and provides insights into future genetic improvement.
Collapse
Affiliation(s)
- Yi Zou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China
| | - Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Dan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Agriculture, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoni Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jinliang Yang
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Jianli Zhao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Hong Liao
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, 650504, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124, China.
| |
Collapse
|