1
|
Abraham BD, Gysel E, Kallos MS, Hu J. Biofunctionalization of Cellulose Microcarriers Using a Carbohydrate Binding Module Linked with Fibroblast Growth Factor for the Expansion of Human Umbilical Mesenchymal Stromal Cells in Stirred Suspension Bioreactors. ACS APPLIED BIO MATERIALS 2024; 7:5956-5964. [PMID: 39190068 DOI: 10.1021/acsabm.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mesenchymal stromal cells (MSCs) have the potential to be used as autologous or allogenic cell therapy in several diseases due to their beneficial secretome and capacity for immunomodulation and differentiation. However, clinical trials using MSCs require a large number of cells. As an alternative to traditional culture flasks, suspension bioreactors provide a scalable platform to produce clinically relevant quantities of cells. When cultured in bioreactors, anchorage-dependent cells like MSCs require the addition of microcarriers, which provide a surface for cell attachment while in suspension. The best performing microcarriers are typically coated in animal derived proteins, which increases cellular attachment and proliferation but present issues from a regulatory perspective. To overcome this issue, a recombinant fusion protein was generated linking basic fibroblast growth factor (bFGF) to a cellulose-specific carbohydrate binding module (CBM) and used to functionalize the surface of cellulose microcarriers for the expansion of human umbilical MSCs in suspension bioreactors. The fusion protein was shown to support the growth of MSCs when used as a soluble growth factor in the absence of cellulose, readily bound to cellulose microcarriers in a dose-dependent manner, and ultimately improved the expansion of MSCs when grown in bioreactors using cellulose microcarriers. The use of CBM fusion proteins offers a simple method for the surface immobilization of growth factors to animal component-free substrates such as cellulose, which can be used alongside bioreactors to increase growth factor lifespan, decrease culture medium cost, and increase cell production in the manufacturing of therapeutic cells.
Collapse
Affiliation(s)
- Brett D Abraham
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Emilie Gysel
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Michael S Kallos
- Department of Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
2
|
Guo X, Zhang X, Li M, Peng Y, Wang Z, Liu J. Preliminary screening of biomarkers and drug candidates in a mouse model of β-thalassemia based on quasi-targeted metabolomics. Front Physiol 2024; 15:1452558. [PMID: 39247159 PMCID: PMC11377281 DOI: 10.3389/fphys.2024.1452558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/06/2024] [Indexed: 09/10/2024] Open
Abstract
Background β-thalassemia (β-TH) is a hereditary hemolytic anemia that results in deficient hemoglobin (Hb) synthesis. It is characterized by ineffective erythropoiesis, anemia, splenomegaly, and systemic iron overload. Exploration new potential biomarkers and drug candidates is important to facilitate the prevention and treatment of β-TH. Methods We applied quasi-targeted metabolomics between wild type (Wt) and heterozygous β-TH mice (Th3/+), a model of non-transfusion-dependent β-TH intermedia, in plasma and peripheral blood (PB) cells. Futher data was deeply mined by Kyoto Encyclopedia of Genomes (KEGG) and machine algorithms methods. Results Using KEGG enrichment analysis, we found that taurine and hypotaurine metabolism disorders in plasma and alanine, aspartate and glutamate metabolism disorders in PB cells. After systematically anatomize the metabolites by machine algorithms, we confirmed that alpha-muricholic acidUP and N-acetyl-DL-phenylalanineUP in plasma and Dl-3-hydroxynorvalineUP, O-acetyl-L-serineUP, H-abu-OHUP, S-(Methyl) glutathioneUP, sepiapterinDOWN, and imidazoleacetic acidDOWN in PB cells play key roles in predicting the occurrence of β-TH. Furthermore, Sepiapterin, Imidazoleacetic acid, Methyl alpha-D-glucopyranoside and alpha-ketoglutaric acid have a good binding capacity to hemoglobin E through molecular docking and are considered to be potential drug candidates for β-TH. Conclusion Those results may help in identify useful molecular targets in the diagnosis and treatment of β-TH and lays a strong foundation for further research.
Collapse
Affiliation(s)
- Xianfeng Guo
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Xuchao Zhang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Min Li
- Department of medical laboratory college, Changsha Medical University, Changsha, China
| | - Yuanliang Peng
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Zi Wang
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| | - Jing Liu
- Department of Hematology, The Second Xiangya Hospital, Molecular Biology Research Center, Center for Medical Genetics, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha, China
| |
Collapse
|
3
|
Lv S, Chen Z, Mi H, Yu X. Cofilin Acts as a Booster for Progression of Malignant Tumors Represented by Glioma. Cancer Manag Res 2022; 14:3245-3269. [PMID: 36452435 PMCID: PMC9703913 DOI: 10.2147/cmar.s389825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/10/2022] [Indexed: 07/20/2023] Open
Abstract
Cofilin, as a depolymerization factor of actin filaments, has been widely studied. Evidences show that cofilin has a role in actin structural reorganization and dynamic regulation. In recent years, several studies have demonstrated a regulatory role for cofilin in the migration and invasion mediated by cell dynamics and epithelial to mesenchymal transition (EMT)/EMT-like process, apoptosis, radiotherapy resistance, immune escape, and transcriptional dysregulation of malignant tumor cells, particularly glioma cells. On this basis, it is practical to evaluate cofilin as a biomarker for predicting tumor metastasis and prognosis. Targeting cofilin regulating kinases, Lin11, Isl-1 and Mec-3 kinases (LIM kinases/LIMKs) and their major upstream molecules inhibits tumor cell migration and invasion and targeting cofilin-mediated mitochondrial pathway induces apoptosis of tumor cells represent effective options for the development of novel anti-malignant tumor drug, especially anti-glioma drugs. This review explores the structure, general biological function, and regulation of cofilin, with an emphasis on the critical functions and prospects for clinical therapeutic applications of cofilin in malignant tumors represented by glioma.
Collapse
Affiliation(s)
- Shihong Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang Medical College, Mudanjiang, 157011, People’s Republic of China
| | - Zhiye Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Hailong Mi
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| | - Xingjiang Yu
- Department of Histology and Embryology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People’s Republic of China
| |
Collapse
|
4
|
Lv J, Hou B, Song J, Xu Y, Xie S. The Relationship Between Ferroptosis and Diseases. J Multidiscip Healthc 2022; 15:2261-2275. [PMID: 36225859 PMCID: PMC9549801 DOI: 10.2147/jmdh.s382643] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/22/2022] [Indexed: 11/07/2022] Open
Abstract
Ferroptosis is an iron-dependent mode of cell death. It can occur through two major pathways, exogenous (or transporter-dependent) and endogenous (or enzyme-regulated) pathways are activated by biological or chemical inducers, and glutathione peroxidase activity is inhibited, which causes intracellular iron accumulation and lipid Peroxidation. Ferroptosis is closely related to the pathological process of many diseases. How to intervene in the occurrence and development of related diseases by regulating ferroptosis has become a hot research topic. At present, studies have shown that ferroptosis is found in common diseases such as tumors, inflammatory diseases, bacterial infections, pulmonary fibrosis, hepatitis, inflammatory bowel disease, neurodegenerative diseases, kidney injury, ischemia-reperfusion injury and skeletal muscle injury. This article reviews the characteristics and mechanism of ferroptosis, and summarizes how ferroptosis participates in the pathophysiological process in various systemic diseases of the body, which may provide new references for the treatment of clinical diseases in the future.
Collapse
Affiliation(s)
- Jinchang Lv
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
| | - Biao Hou
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
| | - Jiangang Song
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
| | - Yunhua Xu
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
| | - Songlin Xie
- Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of University of South China, Hengyang, People’s Republic of China
- Correspondence: Songlin Xie, Department of Hand and Foot Microsurgery, The affiliated Nanhua Hospital of the University of South China, Hengyang, People’s Republic of China, Tel +86 13975404959, Email
| |
Collapse
|
5
|
Li J, Wang X, Wang X, Liu Y, Zheng N, Xu P, Zhang X, Xue L. CMTM Family and Gastrointestinal Tract Cancers: A Comprehensive Review. Cancer Manag Res 2022; 14:1551-1563. [PMID: 35502328 PMCID: PMC9056025 DOI: 10.2147/cmar.s358963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/26/2022] [Indexed: 11/28/2022] Open
Abstract
Gastrointestinal tract cancers are a highly heterogeneous group of malignant diseases, contributing significantly to the burden of death worldwide. Chemokine-like factor (CKLF)-like MARVEL transmembrane domain-containing family (CMTMs) plays important roles in cancer development and progression. Since the first member was cloned, there have been abundant studies on the relationships between the CMTM family and human cancers. It has been reported that the CMTM family has a large potential prognostic value for multiple cancers. Meanwhile, upregulated or downregulated expression of the family members was related to advanced tumor stage, metastasis, and overall survival. Studies have also reported that these proteins play critical roles in antitumor immunity. We performed a systematic review to sum up the latest advances of CMTM family’ roles in gastrointestinal tract cancers, with a primary focus on hepatocellular carcinoma and gastric carcinoma.
Collapse
Affiliation(s)
- Jie Li
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaozi Wang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xiaoning Wang
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Yan Liu
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Na Zheng
- Department of Hematology, Hebei General Hospital, Shijiazhuang, 050000, People’s Republic of China
| | - Pengwei Xu
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Xianghong Zhang
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
| | - Liying Xue
- Laboratory of Pathology, Hebei Medical University, Shijiazhuang, 050000, People’s Republic of China
- Correspondence: Liying Xue, Laboratory of Pathology, Hebei Medical University, No. 361, Zhongshan Eastern Road, Shijiazhuang, 050000, People’s Republic of China, Tel +86 311 86265561, Email
| |
Collapse
|
6
|
Seo TB, Cho YH, Sakong H, Kim YP. Effect of treadmill exercise and bone marrow stromal cell engraftment on activation of BDNF-ERK-CREB signaling pathway in the crushed sciatic nerve. J Exerc Rehabil 2022; 17:403-409. [PMID: 35036389 PMCID: PMC8743602 DOI: 10.12965/jer.2142626.313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 01/29/2023] Open
Abstract
The effect of combined approach of exercise training and bone marrow stromal cell (BMSC) engraftment on activation of brain-derived neurotrophic factor (BDNF)-extracellular signal-regulated kinase 1 and 2 (ERK1/2)-cyclic adenosine monophosphate response element-binding protein (CREB) signaling pathway after sciatic nerve injury (SNI) was investigated. Sixty male Sprague-Dawley rats divided into the normal control, nonexercise (NEX), exercise training (EX), BMSC transplantation (TP), and exercise training+BMSC transplantation (EX+TP) groups 4 weeks after SCI. Exercise training was carried out on the treadmill device at 5-10 m/min for 20 min for 4 weeks. Single dose of 5×106 harvested BMSC was injected into the injury area of the injured sciatic nerve. In order to evaluate induction levels of BDNF-ERK1/2-CREB signaling molecules in the whole cell and nuclear cell lysates of the injured sciatic nerve, we applied Western blot analysis. BDNF was significantly increased only in EX+TP compared to NEX, EX, and TP groups. Phosphoinositide-dependent kinase-1 was more increased in EX, TP, and EX+TP groups than NEX group, but EX+TP group showed the most upregulation of phosphorylated protein kinase B compared to other groups. In addition, in the whole cell lysate, phosphorylated ERK1/2, but not activating transcription factor-3 (ATF-3) and phosphorylated CREB, was significantly increased in TP and EX+TP groups. In the nuclear cell lysate, ATF-3 and phosphorylated CREB were strongly activated in EX+TP group compared to EX group. Regular exercise training combined with BMSC engraftment would seem to be more effective in controlling activation of regeneration-related signaling pathway after SNI.
Collapse
Affiliation(s)
- Tae-Beom Seo
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Yeong-Hyun Cho
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Hyuk Sakong
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| | - Young-Pyo Kim
- Department of Kinesiology, College of Natural Science, Jeju National University, Jeju, Korea
| |
Collapse
|
7
|
Durand N, Aguilar P, Demondion E, Bourgeois T, Bozzolan F, Debernard S. Neuroligin 1 expression is linked to plasticity of behavioral and neuronal responses to sex pheromone in the male moth Agrotis ipsilon. J Exp Biol 2021; 224:273481. [PMID: 34647597 DOI: 10.1242/jeb.243184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/07/2021] [Indexed: 11/20/2022]
Abstract
In the moth Agrotis ipsilon, the behavioral response of males to the female-emitted sex pheromone increases throughout adult life and following a prior exposure to sex pheromone, whereas it is temporally inhibited after the onset of mating. This behavioral flexibility is paralleled with changes in neuronal sensitivity to pheromone signal within the primary olfactory centers, the antennal lobes. In the present study, we tested the hypothesis that neuroligins, post-synaptic transmembrane proteins known to act as mediators of neuronal remodeling, are involved in the olfactory modulation in A. ipsilon males. We cloned a full-length cDNA encoding neuroligin 1, which is expressed predominantly in brain and especially in antennal lobes. The level of neuroligin 1 expression in antennal lobes gradually raised from day-2 until day-4 of adult life, as well as at 24 h, 48 h and 72 h following pre-exposure to sex pheromone, and the temporal dynamic of these changes correlated with increased sex pheromone responsiveness. By contrast, there was no significant variation in antennal lobe neuroligin 1 expression during the post-mating refractory period. Taken together, these results highlight that age- and odor experience-related increase in sex pheromone responsiveness is linked to the overexpression of neuroligin 1 in antennal lobes, thus suggesting a potential role played by this post-synaptic cell-adhesion molecule in mediating the plasticity of the central olfactory system in A. ipsilon.
Collapse
Affiliation(s)
- Nicolas Durand
- FRE CNRS 3498, Ecologie et Dynamique des Systèmes Anthropisés, Université de Picardie, Jules Verne, 80039 Amiens, France
| | - Paleo Aguilar
- Institute of Biology, Complutense University of Madrid, Pozuelo de Alarcon, 28223 Madrid, Spain
| | - Elodie Demondion
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Thomas Bourgeois
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 78026 Versailles, France
| | - Françoise Bozzolan
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| | - Stéphane Debernard
- Sorbonne Université, INRA, CNRS, UPEC, IRD, Univ. P7, Institute of Ecology and Environmental Sciences of Paris, 75005 Paris, France
| |
Collapse
|
8
|
Lee TY. Lactate: a multifunctional signaling molecule. Yeungnam Univ J Med 2021; 38:183-193. [PMID: 33596629 PMCID: PMC8225492 DOI: 10.12701/yujm.2020.00892] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Since its discovery in 1780, lactate has long been misunderstood as a waste by-product of anaerobic glycolysis with multiple deleterious effects. Owing to the lactate shuttle concept introduced in the early 1980s, a paradigm shift began to occur. Increasing evidence indicates that lactate is a coordinator of whole-body metabolism. Lactate is not only a readily accessible fuel that is shuttled throughout the body but also a metabolic buffer that bridges glycolysis and oxidative phosphorylation between cells and intracellular compartments. Lactate also acts as a multifunctional signaling molecule through receptors expressed in various cells and tissues, resulting in diverse biological consequences including decreased lipolysis, immune regulation, anti-inflammation, wound healing, and enhanced exercise performance in association with the gut microbiome. Furthermore, lactate contributes to epigenetic gene regulation by lactylating lysine residues of histones, accounting for its key role in immune modulation and maintenance of homeostasis.
Collapse
Affiliation(s)
- Tae-Yoon Lee
- Department of Microbiology, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
9
|
Nikitin D, Choi S, Mican J, Toul M, Ryu WS, Damborsky J, Mikulik R, Kim DE. Development and Testing of Thrombolytics in Stroke. J Stroke 2021; 23:12-36. [PMID: 33600700 PMCID: PMC7900387 DOI: 10.5853/jos.2020.03349] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Despite recent advances in recanalization therapy, mechanical thrombectomy will never be a treatment for every ischemic stroke because access to mechanical thrombectomy is still limited in many countries. Moreover, many ischemic strokes are caused by occlusion of cerebral arteries that cannot be reached by intra-arterial catheters. Reperfusion using thrombolytic agents will therefore remain an important therapy for hyperacute ischemic stroke. However, thrombolytic drugs have shown limited efficacy and notable hemorrhagic complication rates, leaving room for improvement. A comprehensive understanding of basic and clinical research pipelines as well as the current status of thrombolytic therapy will help facilitate the development of new thrombolytics. Compared with alteplase, an ideal thrombolytic agent is expected to provide faster reperfusion in more patients; prevent re-occlusions; have higher fibrin specificity for selective activation of clot-bound plasminogen to decrease bleeding complications; be retained in the blood for a longer time to minimize dosage and allow administration as a single bolus; be more resistant to inhibitors; and be less antigenic for repetitive usage. Here, we review the currently available thrombolytics, strategies for the development of new clot-dissolving substances, and the assessment of thrombolytic efficacies in vitro and in vivo.
Collapse
Affiliation(s)
- Dmitri Nikitin
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Seungbum Choi
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea
| | - Jan Mican
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Toul
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Wi-Sun Ryu
- Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Jiri Damborsky
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Robert Mikulik
- International Centre for Clinical Research, St. Anne's Hospital, Brno, Czech Republic.,Department of Neurology, St. Anne's Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dong-Eog Kim
- Molecular Imaging and Neurovascular Research Laboratory, Department of Neurology, Dongguk University College of Medicine, Goyang, Korea.,Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Korea
| |
Collapse
|
10
|
Mitrović A, Sosič I, Kos Š, Tratar UL, Breznik B, Kranjc S, Mirković B, Gobec S, Lah T, Serša G, Kos J. Addition of 2-(ethylamino)acetonitrile group to nitroxoline results in significantly improved anti-tumor activity in vitro and in vivo. Oncotarget 2017; 8:59136-59147. [PMID: 28938624 PMCID: PMC5601720 DOI: 10.18632/oncotarget.19296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/10/2017] [Indexed: 12/26/2022] Open
Abstract
Lysosomal cysteine peptidase cathepsin B, involved in multiple processes associated with tumor progression, is validated as a target for anti-cancer therapy. Nitroxoline, a known antimicrobial agent, is a potent and selective inhibitor of cathepsin B, hence reducing tumor progression in vitro and in vivo. In order to further improve its anti-cancer properties we developed a number of derivatives using structure-based chemical synthesis. Of these, the 7-aminomethylated derivative (compound 17) exhibited significantly improved kinetic properties over nitroxoline, inhibiting cathepsin B endopeptidase activity selectively. In the present study, we have evaluated its anti-cancer properties. It was more effective than nitroxoline in reducing tumor cell invasion and migration, as determined in vitro on two-dimensional cell models and tumor spheroids, under either endpoint or real time conditions. Moreover, it exhibited improved action over nitroxoline in impairing tumor growth in vivo in LPB mouse fibrosarcoma tumors in C57Bl/6 mice. Taken together, the addition of a 2-(ethylamino)acetonitrile group to nitroxoline at position 7 significantly improves its pharmacological characteristics and its potential for use as an anti-cancer drug.
Collapse
Affiliation(s)
- Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Izidor Sosič
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Špela Kos
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Urša Lampreht Tratar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Breznik
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia.,International Postgraduate School Jožef Stefan, 1000 Ljubljana, Slovenia
| | - Simona Kranjc
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Bojana Mirković
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tamara Lah
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| | - Gregor Serša
- Department of Experimental Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia.,Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Della Corte CM, Viscardi G, Papaccio F, Esposito G, Martini G, Ciardiello D, Martinelli E, Ciardiello F, Morgillo F. Implication of the Hedgehog pathway in hepatocellular carcinoma. World J Gastroenterol 2017; 23:4330-4340. [PMID: 28706416 PMCID: PMC5487497 DOI: 10.3748/wjg.v23.i24.4330] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
The prognosis for patients who are diagnosed with advanced stage hepatocellular carcinoma (HCC) is poor because there are few treatment options. Recent research has focused on the identification of novel molecular entities that can be targeted to inhibit oncogenic signals that are involved in the carcinogenesis, proliferation and progression of HCC. Among all of the pathways that are involved in the development of HCC, Hedgehog (HH) signalling has demonstrated a substantial role in hepatocarcinogenesis and HCC progression. HH plays a physiological role in embryogenesis, through the induction of the differentiation of hepatocytes from endodermal progenitors. The re-activation of the HH pathway in chronic damaged liver is a mechanism of fibrotic degeneration and is implicated in various stages of HCC development. HH activation sustains the sub-population of immature liver epithelial cells that are involved in the pathogenesis of cirrhosis and HCC, and HH itself is a mediator of the alcohol-derived malignant transformation of liver cells. High levels of expression of HH protein markers in liver tumour tissues are correlated with aggressive histological and biological features and a poor clinical outcome. In vitro and in vivo inhibition models of the HH pathway confirm that HH is essential in maintaining tumour growth, metastasis and a mesenchymal phenotype.
Collapse
|
12
|
Rein S, Hanisch U, Schaller HE, Zwipp H, Rammelt S, Weindel S. Evaluation of bone remodeling in regard to the age of scaphoid non-unions. World J Orthop 2016; 7:418-425. [PMID: 27458552 PMCID: PMC4945508 DOI: 10.5312/wjo.v7.i7.418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/26/2016] [Accepted: 05/11/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyse bone remodeling in regard to the age of scaphoid non-unions (SNU) with immunohistochemistry.
METHODS: Thirty-six patients with symptomatic SNU underwent surgery with resection of the pseudarthrosis. The resected material was evaluated histologically after staining with hematoxylin-eosin (HE), tartrate resistant acid phosphatase (TRAP), CD 68, osteocalcin (OC) and osteopontin (OP). Histological examination was performed in a blinded fashion.
RESULTS: The number of multinuclear osteoclasts in the TRAP-staining correlated with the age of the SNU and was significantly higher in younger SNU (P = 0.034; r = 0.75). A higher number of OP-immunoreactive osteoblasts significantly correlated with a higher number of OC-immunoreactive osteoblasts (P = 0.001; r = 0.55). Furthermore, a greater number of OP-immunoreactive osteoblasts correlated significantly with a higher number of OP-immunoreactive multinuclear osteoclasts (P = 0.008; r = 0.43). SNU older than 6 mo showed a significant decrease of the number of fibroblasts (P = 0.04). Smoking and the age of the patients had no influence on bone remodeling in SNU.
CONCLUSION: Multinuclear osteoclasts showed a significant decrease in relation to the age of SNU. However, most of the immunhistochemical findings of bone remodeling do not correlate with the age of the SNU. This indicates a permanent imbalance of bone formation and resorption as indicated by a concurrent increase in both osteoblast and osteoclast numbers. A clear histological differentiation into phases of bone remodeling in SNU is not possible.
Collapse
|
13
|
Tsekovska R, Sredovska-Bozhinov A, Niwa T, Ivanov I, Mironova R. Maillard reaction and immunogenicity of protein therapeutics. World J Immunol 2016; 6:19-38. [DOI: 10.5411/wji.v6.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 02/05/2023] Open
Abstract
The recombinant DNA technology enabled the production of a variety of human therapeutic proteins. Accumulated clinical experience, however, indicates that the formation of antibodies against such proteins is a general phenomenon rather than an exception. The immunogenicity of therapeutic proteins results in inefficient therapy and in the development of undesired, sometimes life-threatening, side reactions. The human proteins, designed for clinical application, usually have the same amino acid sequence as their native prototypes and it is not yet fully clear what the reasons for their immunogenicity are. In previous studies we have demonstrated for the first time that interferon-β (IFN-β) pharmaceuticals, used for treatment of patients with multiple sclerosis, do contain advanced glycation end products (AGEs) that contribute to IFN-β immunogenicity. AGEs are the final products of a chemical reaction known as the Maillard reaction or glycation, which implication in protein drugs’ immunogenicity has been overlooked so far. Therefore, the aim of the present article is to provide a comprehensive overview on the Maillard reaction with emphasis on experimental data and theoretical consideration telling us why the Maillard reaction warrants special attention in the context of the well-documented protein drugs’ immunogenicity.
Collapse
|
14
|
Hameed I, Masoodi SR, Mir SA, Nabi M, Ghazanfar K, Ganai BA. Type 2 diabetes mellitus: From a metabolic disorder to an inflammatory condition. World J Diabetes 2015; 6:598-612. [PMID: 25987957 PMCID: PMC4434080 DOI: 10.4239/wjd.v6.i4.598] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/14/2014] [Accepted: 12/31/2014] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus is increasing at an alarming rate and has become a global challenge. Insulin resistance in target tissues and a relative deficiency of insulin secretion from pancreatic β-cells are the major features of type 2 diabetes (T2D). Chronic low-grade inflammation in T2D has given an impetus to the field of immuno-metabolism linking inflammation to insulin resistance and β-cell dysfunction. Many factors advocate a causal link between metabolic stress and inflammation. Numerous cellular factors trigger inflammatory signalling cascades, and as a result T2D is at the moment considered an inflammatory disorder triggered by disordered metabolism. Cellular mechanisms like activation of Toll-like receptors, Endoplasmic Reticulum stress, and inflammasome activation are related to the nutrient excess linking pathogenesis and progression of T2D with inflammation. This paper aims to systematically review the metabolic profile and role of various inflammatory pathways in T2D by capturing relevant evidence from various sources. The perspectives include suggestions for the development of therapies involving the shift from metabolic stress to homeostasis that would favour insulin sensitivity and survival of pancreatic β-cells in T2D.
Collapse
|
15
|
Grob A, McStay B. Construction of synthetic nucleoli and what it tells us about propagation of sub-nuclear domains through cell division. Cell Cycle 2014; 13:2501-8. [PMID: 25486191 PMCID: PMC4614152 DOI: 10.4161/15384101.2014.949124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/19/2022] Open
Abstract
The cell nucleus is functionally compartmentalized into numerous membraneless and dynamic, yet defined, bodies. The cell cycle inheritance of these nuclear bodies (NBs) is poorly understood at the molecular level. In higher eukaryotes, their propagation is challenged by cell division through an "open" mitosis, where the nuclear envelope disassembles along with most NBs. A deeper understanding of the mechanisms involved can be achieved using the engineering principles of synthetic biology to construct artificial NBs. Successful biogenesis of such synthetic NBs demonstrates knowledge of the basic mechanisms involved. Application of this approach to the nucleolus, a paradigm of nuclear organization, has highlighted a key role for mitotic bookmarking in the cell cycle propagation of NBs.
Collapse
Key Words
- 1°, primary
- 2°, secondary
- CBs, Cajal bodies
- CDK, cyclin-dependent kinase
- DFC, dense fibrillar component
- DJ, distal junction
- FCs, fibrillar centers
- GC, granular component
- HLBs, histone locus bodies
- HMG, high mobility group
- IGS, intergenic spacers
- NBs, nuclear bodies
- NORs, nucleolar organizer regions
- Nucleolar Organizer Region (NOR)
- PJ, proximal junction
- PML, promyelocytic leukemia
- PNBs, pre-nucleolar bodies
- TFs, transcription factors
- UBF
- UBF, Upstream binding factor
- XEn, Xenopus enhancer
- cell cycle
- mitotic bookmarking
- neo-NOR
- neonucleoli
- nuclear bodies
- nucleolus
- pol, RNA polymerase
- pre-rRNA, precursor rRNA
- pseudo-NOR
- rDNA, ribosomal genes
- rRNA, ribosomal RNA; RNP, ribonucleoprotein
- synthetic biology
- t-UTPs, transcription U 3 proteins
Collapse
Affiliation(s)
- Alice Grob
- Center for Chromosome Biology; School of Natural Sciences; National University of Ireland; Galway, Ireland
| | - Brian McStay
- Center for Chromosome Biology; School of Natural Sciences; National University of Ireland; Galway, Ireland
| |
Collapse
|
16
|
Shin JW, Chung YH. Molecular targeted therapy for hepatocellular carcinoma: current and future. World J Gastroenterol 2013; 19:6144-55. [PMID: 24115810 PMCID: PMC3787343 DOI: 10.3748/wjg.v19.i37.6144] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 07/18/2013] [Accepted: 08/04/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequent tumors worldwide. The majority of HCC cases occur in patients with chronic liver disease. Despite regular surveillance to detect small HCC in these patients, HCC is often diagnosed at an advanced stage. Because HCC is highly resistant to conventional systemic therapies, the prognosis for advanced HCC patients remains poor. The introduction of sorafenib as the standard systemic therapy has unveiled a new direction for future research regarding HCC treatment. However, given the limited efficacy of the drug, a need exists to look beyond sorafenib. Many molecular targeted agents that inhibit different pathways involved in hepatocarcinogenesis are under various phases of clinical development, and novel targets are being assessed in HCC. This review aims to summarize the efforts to target molecular components of the signaling pathways that are responsible for the development and progression of HCC and to discuss perspectives on the future direction of research.
Collapse
|
17
|
Hu LS, George J, Wang JH. Current concepts on the role of nitric oxide in portal hypertension. World J Gastroenterol 2013; 19:1707-1717. [PMID: 23555159 PMCID: PMC3607747 DOI: 10.3748/wjg.v19.i11.1707] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/13/2012] [Accepted: 12/06/2012] [Indexed: 02/06/2023] Open
Abstract
Portal hypertension (PHT) is defined as a pathological increase in portal venous pressure and frequently accompanies cirrhosis. Portal pressure can be increased by a rise in portal blood flow, an increase in vascular resistance, or the combination. In cirrhosis, the primary factor leading to PHT is an increase in intra-hepatic resistance to blood flow. Although much of this increase is a mechanical consequence of architectural disturbances, there is a dynamic and reversible component that represents up to a third of the increased vascular resistance in cirrhosis. Many vasoactive substances contribute to the development of PHT. Among these, nitric oxide (NO) is the key mediator that paradoxically regulates the sinusoidal (intra-hepatic) and systemic/splanchnic circulations. NO deficiency in the liver leads to increased intra-hepatic resistance while increased NO in the circulation contributes to the hyperdynamic systemic/splanchnic circulation. NO mediated-angiogenesis also plays a role in splanchnic vasodilation and collateral circulation formation. NO donors reduce PHT in animals models but the key clinical challenge is the development of an NO donor or drug delivery system that selectively targets the liver.
Collapse
|
18
|
Xiao F, Liu B, Zhu QX. c-Jun N-terminal kinase is required for thermotherapy-induced apoptosis in human gastric cancer cells. World J Gastroenterol 2012; 18:7348-7356. [PMID: 23326144 PMCID: PMC3544041 DOI: 10.3748/wjg.v18.i48.7348] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/21/2012] [Accepted: 11/15/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the role of c-Jun N-terminal kinase (JNK) in thermotherapy-induced apoptosis in human gastric cancer SGC-7901 cells.
METHODS: Human gastric cancer SGC-7901 cells were cultured in vitro. Following thermotherapy at 43 °C for 0, 0.5, 1, 2 or 3 h, the cells were cultured for a further 24 h with or without the JNK specific inhibitor, SP600125 for 2 h. Apoptosis was evaluated by immunohistochemistry [terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)] and flow cytometry (Annexin vs propidium iodide). Cell proliferation was determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. The production of p-JNK, Bcl-2, Bax and caspase-3 proteins was evaluated by Western blotting. The expression of JNK at mRNA level was determined by reverse transcription polymerase chain reaction.
RESULTS: The proliferation of gastric carcinoma SGC-7901 cells was significantly inhibited following thermotherapy, and was 32.7%, 30.6%, 43.8% and 52.9% at 0.5, 1, 2 and 3 h post-thermotherapy, respectively. Flow cytometry analysis revealed an increased population of SGC-790l cells in G0/G1 phase, but a reduced population in S phase following thermotherapy for 1 or 2 h, compared to untreated cells (P < 0.05). The increased number of SGC-790l cells in G0/G1 phase was consistent with induced apoptosis (flow cytometry) following thermotherapy for 0.5, 1, 2 or 3 h, compared to the untreated group (46.5% ± 0.23%, 39.9% ± 0.53%, 56.6% ± 0.35% and 50.4% ± 0.29% vs 7.3% ± 0.10%, P < 0.01), respectively. This was supported by the TUNEL assay (48.2% ± 0.4%, 40.1% ± 0.2%, 61.2% ± 0.29% and 52.0% ± 0.42% vs 12.2% ± 0.22%, P < 0.01) respectively. More importantly, the expression of p-JNK protein and JNK mRNA levels were significantly higher at 0.5 h than at 0 h post-treatment (P < 0.01), and peaked at 2 h. A similar pattern was detected for Bax and caspase-3 proteins. Bcl-2 increased at 0.5 h, peaked at 1 h, and then decreased. Furthermore, the JNK specific inhibitor, SP600125, suppressed p-JNK, Bax and caspase-3 at the protein level in SGC790l cells following thermotherapy, compared to mock-inhibitor treatment, which was in line with the decreased rate of apoptosis. The expression of Bcl-2 was consistent with thermotherapy alone.
CONCLUSION: Thermotherapy induced apoptosis in gastric cancer cells by promoting p-JNK at the mRNA and protein levels, and up-regulated the expression of Bax and caspase-3 proteins. Bcl-2 may play a protective role during thermotherapy. Activation of JNK via the Bax-caspase-3 pathway may be important in thermotherapy-induced apoptosis in gastric cancer cells.
Collapse
|
19
|
Gassler N. Sphingolipids in intestine and liver: How to analyze? World J Gastrointest Pathophysiol 2012; 3:99-101. [PMID: 23515208 PMCID: PMC3602439 DOI: 10.4291/wjgp.v3.i6.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 11/26/2012] [Accepted: 12/10/2012] [Indexed: 02/06/2023] Open
Abstract
Identification and quantification of lipids, in particular sphingolipids from intestine and liver, using multidimensional mass spectrometry has dramatically improved our understanding of lipid-based molecular pathways and signaling. The editorial gives a short overview about basic technical approaches to characterize lipids from intestine and liver.
Collapse
|
20
|
Fischer H, Fischer J, Boknik P, Gergs U, Schmitz W, Domschke W, Konturek JW, Neumann J. Reduced expression of Ca 2+-regulating proteins in the upper gastrointestinal tract of patients with achalasia. World J Gastroenterol 2006; 12:6002-7. [PMID: 17009399 PMCID: PMC4124408 DOI: 10.3748/wjg.v12.i37.6002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare expression of Ca2+-regulating proteins in upper gastrointestinal (GI) tract of achalasia patients and healthy volunteers and to elucidate their role in achalasia.
METHODS: Sarcoplasmic reticulum Ca2+ ATPase (SERCA) isoforms 2a and 2b, phospholamban (PLB), calsequestrin (CSQ), and calreticulin (CRT) were assessed by quantitative Western blotting in esophagus and heart of rats, rabbits, and humans. Furthermore, expression profiles of these proteins in biopsies of lower esophageal sphincter and esophagus from patients with achalasia and healthy volunteers were analyzed.
RESULTS: SERCA 2a protein expression was much higher in human heart (cardiac ventricle) compared to esophagus. However, SERCA 2b was expressed predominantly in the esophagus. The highest CRT expression was noted in the human esophagus, while PLB, although highly expressed in the heart, was below our detection limit in upper GI tissue. Compared to healthy controls, CSQ and CRT expression in lower esophageal sphincter and distal esophageal body were significantly reduced in patients with achalasia (P < 0.05).
CONCLUSION: PLB in the human esophagus might be of lesser importance for regulation of SERCA than in heart. Lower expression of Ca2+ storage proteins (CSQ and CRT) might contribute to increased lower esophageal sphincter pressure in achalasia, possibly by increasing free intracellular Ca2+.
Collapse
Affiliation(s)
- Harald Fischer
- Medizinische Klinik und Poliklinik B, Universitätsklinikum Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|