1
|
Carcinoembryonic Cell Adhesion-Related Molecule 2 Regulates Insulin Secretion and Energy Balance. Int J Mol Sci 2019; 20:ijms20133231. [PMID: 31266142 PMCID: PMC6651791 DOI: 10.3390/ijms20133231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/12/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022] Open
Abstract
The Carcinoembryonic Antigen-Related Cell Adhesion Molecule (CEACAM) family of proteins plays a significant role in regulating peripheral insulin action by participating in the regulation of insulin metabolism and energy balance. In light of their differential expression, CEACAM1 regulates chiefly insulin extraction, whereas CEACAM2 appears to play a more important role in regulating insulin secretion and overall energy balance, including food intake, energy expenditure and spontaneous physical activity. We will focus this review on the role of CEACAM2 in regulating insulin metabolism and energy balance with an overarching goal to emphasize the importance of the coordinated regulatory effect of these related plasma membrane glycoproteins on insulin metabolism and action.
Collapse
|
2
|
Mißbach S, Aleksic D, Blaschke L, Hassemer T, Lee KJ, Mansfeld M, Hänske J, Handler J, Kammerer R. Alternative splicing after gene duplication drives CEACAM1-paralog diversification in the horse. BMC Evol Biol 2018; 18:32. [PMID: 29544443 PMCID: PMC5856374 DOI: 10.1186/s12862-018-1145-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 03/02/2018] [Indexed: 02/03/2023] Open
Abstract
Background The CEA gene family is one of the most rapidly evolving gene families in the human genome. The founder gene of the family is thought to be an ancestor of the inhibitory immune checkpoint molecule CEACAM1. Comprehensive analyses of mammalian genomes showed that the CEA gene family is subject to tremendous gene family expansion and contraction events in different mammalian species. While in some species (e.g. rabbits) less than three CEACAM1 related genes exist, were in others (certain microbat species) up to 100 CEACAM1 paralogs identified. We have recently reported that the horse has also an extended CEA gene family. Since mechanisms of gene family expansion and diversification are not well understood we aimed to analyze the equine CEA gene family in detail. Results We found that the equine CEA gene family contains 17 functional CEACAM1-related genes. Nine of them were secreted molecules and eight CEACAMs contain transmembrane and cytoplasmic domain exons, the latter being in the focus of the present report. Only one (CEACAM41) gene has exons coding for activating signaling motifs all other CEACAM1 paralogs contain cytoplasmic exons similar to that of the inhibitory receptor CEACAM1. However, cloning of cDNAs showed that only one CEACAM1 paralog contain functional immunoreceptor tyrosine-based inhibitory motifs in its cytoplasmic tail. Three receptors have acquired a stop codon in the transmembrane domain and two have lost their inhibitory motifs due to alternative splicing events. In addition, alternative splicing eliminated the transmembrane exon sequence of the putative activating receptor, rendering it to a secreted molecule. Transfection of eukaryotic cells with FLAG-tagged alternatively spliced CEACAMs indicates that they can be expressed in vivo. Thus detection of CEACAM41 mRNA in activated PBMC suggests that CEACAM41 is secreted by lymphoid cells upon activation. Conclusions The results of our study demonstrate that alternative splicing after gene duplication is a potent mechanism to accelerate functional diversification of the equine CEA gene family members. This potent mechanism has created novel CEACAM receptors with unique signaling capacities and secreted CEACAMs which potentially enables equine lymphoid cells to control distantly located immune cells.
Collapse
Affiliation(s)
- Sophie Mißbach
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany.,Plattform Degenerative Erkrankungen, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Denis Aleksic
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany
| | - Lisa Blaschke
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany
| | - Timm Hassemer
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany.,Department of Cellular Biochemistry, Max-Planck-Institute of Biochemistry, Martinsried, Germany
| | - Kyung Jin Lee
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Martin Mansfeld
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany
| | - Jana Hänske
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany
| | - Johannes Handler
- Clinic for Horses, Veterinary Faculty, Freie Universität Berlin, Oertzenweg 19b, D-14163, Berlin, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institut, Suedufer 10, Greifswald, Insel Riems, Germany. .,Friedrich-Loeffler-Institut, Bundesforschungsinstitut für Tiergesundheit, Federal Research Institute for Animal Health, Südufer 10, D, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
3
|
Russo L, Muturi HT, Ghadieh HE, Ghanem SS, Bowman TA, Noh HL, Dagdeviren S, Dogbey GY, Kim JK, Heinrich G, Najjar SM. Liver-specific reconstitution of CEACAM1 reverses the metabolic abnormalities caused by its global deletion in male mice. Diabetologia 2017; 60:2463-2474. [PMID: 28913658 PMCID: PMC5788286 DOI: 10.1007/s00125-017-4432-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/17/2017] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes insulin clearance. Mice with global null mutation (Cc1 -/-) or with liver-specific inactivation (L-SACC1) of Cc1 (also known as Ceacam1) gene display hyperinsulinaemia resulting from impaired insulin clearance, insulin resistance, steatohepatitis and obesity. Because increased lipolysis contributes to the metabolic phenotype caused by transgenic inactivation of CEACAM1 in the liver, we aimed to further investigate the primary role of hepatic CEACAM1-dependent insulin clearance in insulin and lipid homeostasis. To this end, we examined whether transgenic reconstitution of CEACAM1 in the liver of global Cc1 -/- mutant mice reverses their abnormal metabolic phenotype. METHODS Insulin response was assessed by hyperinsulinaemic-euglycaemic clamp analysis and energy balance was analysed by indirect calorimetry. Mice were overnight-fasted and refed for 7 h to assess fatty acid synthase activity in the liver and the hypothalamus in response to insulin release during refeeding. RESULTS Liver-based rescuing of CEACAM1 restored insulin clearance, plasma insulin level, insulin sensitivity and steatohepatitis caused by global deletion of Cc1. It also reversed the gain in body weight and total fat mass observed with Cc1 deletion, in parallel to normalising energy balance. Mechanistically, reversal of hyperphagia appeared to result from reducing fatty acid synthase activity and restoring insulin signalling in the hypothalamus. CONCLUSIONS/INTERPRETATION Despite the potential confounding effects of deleting Cc1 from extrahepatic tissues, liver-based rescuing of CEACAM1 resulted in full normalisation of the metabolic phenotype, underscoring the key role that CEACAM1-dependent hepatic insulin clearance pathways play in regulating systemic insulin sensitivity, lipid homeostasis and energy balance.
Collapse
Affiliation(s)
- Lucia Russo
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Hilda E Ghadieh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Thomas A Bowman
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Hye Lim Noh
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sezin Dagdeviren
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Godwin Y Dogbey
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
| | - Jason K Kim
- Division of Endocrinology, Metabolism and Diabetes, University of Massachusetts Medical School, Worcester, MA, USA
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Irvine Hall 229, 1 Ohio University, Athens, OH, 45701-2979, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
| |
Collapse
|
4
|
Ghanem SS, Muturi HT, DeAngelis AM, Hu J, Kulkarni RN, Heinrich G, Najjar SM. Age-dependent insulin resistance in male mice with null deletion of the carcinoembryonic antigen-related cell adhesion molecule 2 gene. Diabetologia 2017; 60:1751-1760. [PMID: 28567513 PMCID: PMC5709176 DOI: 10.1007/s00125-017-4307-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
AIMS/HYPOTHESIS Cc2 -/- mice lacking the gene encoding the carcinoembryonic-antigen-related cell adhesion molecule 2 (Cc2 [also known as Ceacam2]) exhibit hyperphagia that leads to obesity and insulin resistance. This starts at 2 months of age in female mice. Male mutants maintain normal body weight and insulin sensitivity until the last age previously examined (7-8 months), owing to increased sympathetic tone to white adipose tissue and energy expenditure. The current study investigates whether insulin resistance develops in mutant male mice at a later age and whether this is accompanied by changes in insulin homeostasis. METHODS Insulin response was assessed by insulin and glucose tolerance tests. Energy balance was analysed by indirect calorimetry. RESULTS Male Cc2 -/- mice developed overt metabolic abnormalities at about 9 months of age. These include elevated global fat mass, hyperinsulinaemia and insulin resistance (as determined by glucose and insulin intolerance, fed hyperglycaemia and decreased insulin signalling pathways). Pair-feeding experiments showed that insulin resistance resulted from hyperphagia. Indirect calorimetry demonstrated that older mutant male mice had compromised energy expenditure. Despite increased insulin secretion caused by Cc2 deletion, chronic hyperinsulinaemia did not develop in mutant male mice until about 9 months of age, at which point insulin clearance began to decline substantially. This was probably mediated by a marked decrease in hepatic CEACAM1 expression. CONCLUSIONS/INTERPRETATION The data demonstrate that at about 9 months of age, Cc2 -/- male mice develop a reduction in energy expenditure and energy imbalance which, combined with a progressive decrease in CEACAM1-dependent hepatic insulin clearance, causes chronic hyperinsulinaemia and sustained age-dependent insulin resistance. This represents a novel mechanistic underpinning of age-related impairment of hepatic insulin clearance.
Collapse
Affiliation(s)
- Simona S Ghanem
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Harrison T Muturi
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Anthony M DeAngelis
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA, USA
| | - Garrett Heinrich
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701-2979, USA
| | - Sonia M Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, USA.
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA.
- Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701-2979, USA.
| |
Collapse
|
5
|
ITIM receptors: more than just inhibitors of platelet activation. Blood 2017; 129:3407-3418. [PMID: 28465343 DOI: 10.1182/blood-2016-12-720185] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/24/2017] [Indexed: 12/12/2022] Open
Abstract
Since their discovery, immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptors have been shown to inhibit signaling from immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors in almost all hematopoietic cells, including platelets. However, a growing body of evidence has emerged demonstrating that this is an oversimplification, and that ITIM-containing receptors are versatile regulators of platelet signal transduction, with functions beyond inhibiting ITAM-mediated platelet activation. PECAM-1 was the first ITIM-containing receptor identified in platelets and appeared to conform to the established model of ITIM-mediated attenuation of ITAM-driven activation. PECAM-1 was therefore widely accepted as a major negative regulator of platelet activation and thrombosis for many years, but more recent findings suggest a more complex role for this receptor, including the facilitation of αIIbβ3-mediated platelet functions. Since the identification of PECAM-1, several other ITIM-containing platelet receptors have been discovered. These include G6b-B, a critical regulator of platelet reactivity and production, and the noncanonical ITIM-containing receptor TREM-like transcript-1, which is localized to α-granules in resting platelets, binds fibrinogen, and acts as a positive regulator of platelet activation. Despite structural similarities and shared binding partners, including the Src homology 2 domain-containing protein-tyrosine phosphatases Shp1 and Shp2, knockout and transgenic mouse models have revealed distinct phenotypes and nonredundant functions for each ITIM-containing receptor in the context of platelet homeostasis. These roles are likely influenced by receptor density, compartmentalization, and as-yet unknown binding partners. In this review, we discuss the diverse repertoire of ITIM-containing receptors in platelets, highlighting intriguing new functions, controversies, and future areas of investigation.
Collapse
|
6
|
Heinrich G, Russo L, Castaneda TR, Pfeiffer V, Ghadieh HE, Ghanem SS, Wu J, Faulkner LD, Ergün S, McInerney MF, Hill JW, Najjar SM. Leptin Resistance Contributes to Obesity in Mice with Null Mutation of Carcinoembryonic Antigen-related Cell Adhesion Molecule 1. J Biol Chem 2016; 291:11124-32. [PMID: 27002145 DOI: 10.1074/jbc.m116.716431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 01/28/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) promotes hepatic insulin clearance. Consistently, mice with null mutation of Ceacam1 (Cc1(-/-)) exhibit impaired insulin clearance with increased lipid production in liver and redistribution to white adipose tissue, leading to visceral obesity at 2 months of age. When the mutation is propagated on the C57/BL6J genetic background, total fat mass rises significantly with age, and glucose intolerance and systemic insulin resistance develop at 6 months of age. This study was carried out to determine the mechanisms underlying the marked increase in total fat mass in 6-month-old mutants. Indirect calorimetry analysis showed that Cc1(-/-) mice develop hyperphagia and a significant reduction in physical activity, in particular in the early hours of the dark cycle, during which energy expenditure is only slightly lower than in wild-type mice. They also exhibit increased triglyceride accumulation in skeletal muscle, due in part to incomplete fatty acid β-oxidation. Mechanistically, hypothalamic leptin signaling is reduced, as demonstrated by blunted STAT3 phosphorylation in coronal sections in response to an intracerebral ventricular injection of leptin. Hypothalamic fatty-acid synthase activity is also elevated in the mutants. Together, the data show that the increase in total fat mass in Cc1(-/-) mice is mainly attributed to hyperphagia and reduced spontaneous physical activity. Although the contribution of the loss of CEACAM1 from anorexigenic proopiomelanocortin neurons in the arcuate nucleus is unclear, leptin resistance and elevated hypothalamic fatty-acid synthase activity could underlie altered energy balance in these mice.
Collapse
Affiliation(s)
| | - Lucia Russo
- From the Center for Diabetes and Endocrine Research and
| | - Tamara R Castaneda
- From the Center for Diabetes and Endocrine Research and Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio 43614
| | - Verena Pfeiffer
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, 97070 Würzburg, Germany, and
| | | | | | - Jieshen Wu
- From the Center for Diabetes and Endocrine Research and
| | | | - Süleyman Ergün
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, 97070 Würzburg, Germany, and
| | - Marcia F McInerney
- From the Center for Diabetes and Endocrine Research and Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, Toledo, Ohio 43614
| | | | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research and the Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701
| |
Collapse
|
7
|
Ghanem SS, Heinrich G, Lester SG, Pfeiffer V, Bhattacharya S, Patel PR, DeAngelis AM, Dai T, Ramakrishnan SK, Smiley ZN, Jung DY, Lee Y, Kitamura T, Ergun S, Kulkarni RN, Kim JK, Giovannucci DR, Najjar SM. Increased Glucose-induced Secretion of Glucagon-like Peptide-1 in Mice Lacking the Carcinoembryonic Antigen-related Cell Adhesion Molecule 2 (CEACAM2). J Biol Chem 2015; 291:980-8. [PMID: 26586918 DOI: 10.1074/jbc.m115.692582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Indexed: 01/11/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 2 (CEACAM2) regulates food intake as demonstrated by hyperphagia in mice with the Ceacam2 null mutation (Cc2(-/-)). This study investigated whether CEACAM2 also regulates insulin secretion. Ceacam2 deletion caused an increase in β-cell secretory function, as assessed by hyperglycemic clamp analysis, without affecting insulin response. Although CEACAM2 is expressed in pancreatic islets predominantly in non-β-cells, basal plasma levels of insulin, glucagon and somatostatin, islet areas, and glucose-induced insulin secretion in pooled Cc2(-/-) islets were all normal. Consistent with immunofluorescence analysis showing CEACAM2 expression in distal intestinal villi, Cc2(-/-) mice exhibited a higher release of oral glucose-mediated GLP-1, an incretin that potentiates insulin secretion in response to glucose. Compared with wild type, Cc2(-/-) mice also showed a higher insulin excursion during the oral glucose tolerance test. Pretreating with exendin(9-39), a GLP-1 receptor antagonist, suppressed the effect of Ceacam2 deletion on glucose-induced insulin secretion. Moreover, GLP-1 release into the medium of GLUTag enteroendocrine cells was increased with siRNA-mediated Ceacam2 down-regulation in parallel to an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels. Thus, CEACAM2 regulates insulin secretion, at least in part, by a GLP-1-mediated mechanism, independent of confounding metabolic factors.
Collapse
Affiliation(s)
- Simona S Ghanem
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Garrett Heinrich
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Sumona G Lester
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Verena Pfeiffer
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, D-97070 Würzburg, Germany
| | - Sumit Bhattacharya
- Neurosciences, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Payal R Patel
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Anthony M DeAngelis
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Tong Dai
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Sadeesh K Ramakrishnan
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Zachary N Smiley
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| | - Dae Y Jung
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Yongjin Lee
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Tadahiro Kitamura
- the Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 371-8512 Gunma, Japan, and
| | - Suleyman Ergun
- the Institut für Anatomie und Zellbiologie, Universität Würzburg, D-97070 Würzburg, Germany
| | - Rohit N Kulkarni
- the Islet Cell and Regenerative Biology, Joslin Diabetes Center and Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02215
| | - Jason K Kim
- the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - David R Giovannucci
- Neurosciences, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, Ohio 43614
| | - Sonia M Najjar
- From the Center for Diabetes and Endocrine Research and Departments of Physiology and Pharmacology and
| |
Collapse
|
8
|
Gebauer F, Wicklein D, Horst J, Sundermann P, Maar H, Streichert T, Tachezy M, Izbicki JR, Bockhorn M, Schumacher U. Carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 as biomarkers in pancreatic cancer. PLoS One 2014; 9:e113023. [PMID: 25409014 PMCID: PMC4237406 DOI: 10.1371/journal.pone.0113023] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/20/2014] [Indexed: 12/24/2022] Open
Abstract
Background Aim of this study was to assess the biological function in tumor progression and metastatic process carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 1, 5 and 6 in pancreatic adenocarcinoma (PDAC). Experimental Design CEACAM knock down cells were established and assessed in vitro and in a subcutaneous and intraperitoneal mouse xenograft model. Tissue and serum expression of patients with PDAC were assessed by immunohistochemistry (IHC) and by enzyme linked immunosorbent assays. Results Presence of lymph node metastasis was correlated with CEACAM 5 and 6 expression (determined by IHC) and tumor recurrence exclusively with CEACAM 6. Patients with CEACAM 5 and 6 expression showed a significantly shortened OS in Kaplan-Meier survival analyses. Elevated CEACAM6 serum values showed a correlation with distant metastasis and. Survival analysis revealed a prolonged OS for patients with low serum CEACAM 1 values. In vitro proliferation and migration capacity was increased in CEACAM knock down PDAC cells, however, mice inoculated with CEACAM knock down cells showed a prolonged overall-survival (OS). The number of spontaneous pulmonary metastasis was increased in the CEACAM knock down group. Conclusion The effects mediated by CEACAM expression in PDAC are complex, though overexpression is correlated with loco-regional aggressive tumor growth. However, loss of CEACAM can be considered as a part of epithelial-mesenchymal transition and is therefore of rather importance in the process of distant metastasis.
Collapse
Affiliation(s)
- Florian Gebauer
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jennifer Horst
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Philipp Sundermann
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Hanna Maar
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Streichert
- Institute of Clinical Chemistry, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michael Tachezy
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Jakob R. Izbicki
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology and University Cancer Center Hamburg (UCCH), University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
CEACAM2 negatively regulates hemi (ITAM-bearing) GPVI and CLEC-2 pathways and thrombus growth in vitro and in vivo. Blood 2014; 124:2431-41. [PMID: 25085348 DOI: 10.1182/blood-2014-04-569707] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule-2 (CEACAM2) is a cell-surface glycoprotein expressed on blood, epithelial, and vascular cells. CEACAM2 possesses adhesive and signaling properties mediated by immunoreceptor tyrosine-based inhibitory motifs. In this study, we demonstrate that CEACAM2 is expressed on the surface and in intracellular pools of platelets. Functional studies of platelets from Ceacam2(-/-)-deficient mice (Cc2(-/-)) revealed that CEACAM2 serves to negatively regulate collagen glycoprotein VI (platelet) (GPVI)-FcRγ-chain and the C-type lectinlike receptor 2 (CLEC-2) signaling. Cc2(-/-) platelets displayed enhanced GPVI and CLEC-2-selective ligands, collagen-related peptide (CRP), collagen, and rhodocytin (Rhod)-mediated platelet aggregation. They also exhibited increased adhesion on type I collagen, and hyperresponsive CRP and CLEC-2-induced α and dense granule release compared with wild-type platelets. Furthermore, using intravital microscopy to ferric chloride (FeCl3)-injured mesenteric arterioles and laser-induced injury of cremaster muscle arterioles, we herein show that thrombi formed in Cc2(-/-) mice were larger and more stable than wild-type controls in vivo. Thus, CEACAM2 is a novel platelet immunoreceptor that acts as a negative regulator of platelet GPVI-collagen interactions and of ITAM receptor CLEC-2 pathways.
Collapse
|
10
|
Salaheldeen E, Kurio H, Howida A, Iida H. Molecular cloning and localization of a CEACAM2 isoform, CEACAM2-L, expressed in spermatids in mouse testis. Mol Reprod Dev 2012; 79:843-52. [PMID: 23070997 DOI: 10.1002/mrd.22123] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2012] [Accepted: 10/06/2012] [Indexed: 11/09/2022]
Abstract
Carcinoembryonic antigen (CEA) family, a subgroup of the immunoglobulin (Ig) superfamily, is divided into two sub-families: the CEA-related cell adhesion molecules (CEACAM) and the pregnancy-specific glycoproteins. The isoform CEACAM2 is expressed in mouse testis; in this study, we identified a novel isoform of Ceacam2, Ceacam2-Long (Ceacam2-L). CEACAM2-L is different from CEACAM2 in that it has much longer cytoplasmic tail region. Ceacam2-L starts to appear faintly in mouse testis after 3 weeks of postnatal development, and its expression level increased after 5 weeks. Immunoblot analysis confirmed the expression of CEACAM2-L in the seminiferous epithelium of mouse testis. Immunohistochemical data showed that CEACAM2-L was not observed on spermatogonia, spermatocytes, round spermatids, or Sertoli cells, but was seen at the plasma membrane of elongating spermatids in contact with extended cytoplasmic processes of Sertoli cells. CEACAM2-L was not detected at the head region of elongating spermatids, where the apical ectoplasmic specialization is constructed. These data suggest that CEACAM2-L might be a novel adhesion molecule contributing to cell-to-cell adhesion between elongating spermatids and Sertoli cells within the seminiferous epithelium.
Collapse
Affiliation(s)
- Elsaid Salaheldeen
- Laboratory of Zoology, Graduate School of Agriculture, Kyushu University, Higashiku Hakozaki, Fukuoka, Japan
| | | | | | | |
Collapse
|
11
|
Slobodskaya O, Snijder EJ, Spaan WJM. Organ tropism of murine coronavirus does not correlate with the expression levels of the membrane-anchored or secreted isoforms of the carcinoembryonic antigen-related cell adhesion molecule 1 receptor. J Gen Virol 2012; 93:1918-1923. [PMID: 22673933 DOI: 10.1099/vir.0.043190-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is the sole known receptor of murine hepatitis virus (MHV) A59, but the available, often qualitative, data about CEACAM1 expression does not explain MHV organ tropism. Ceacam1 transcripts undergo alternative splicing resulting in multiple isoforms, including secreted CEACAM1 isoforms that can neutralize the virus. We determined the quantities of Ceacam1 transcripts encoding membrane-bound and secreted isoforms in mouse organs and a set of cell lines. In vivo, the lowest receptor mRNA levels were found in brain and muscle and these were similar to those in easily infectable cultured cells. While the quantities of the receptor transcripts varied between mouse organs, their abundance did not correlate with susceptibility to MHV infection. The proportion of transcripts encoding secreted isoforms also could not explain the selection of sites for virus replication, as it was constant in all organs. Our data suggest that neither of the two CEACAM1 isoforms defines MHV organ tropism.
Collapse
Affiliation(s)
- Olga Slobodskaya
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands
| | - Willy J M Spaan
- Molecular Virology Laboratory, Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, The Netherlands
| |
Collapse
|
12
|
Patel PR, Ramakrishnan SK, Kaw MK, Raphael CK, Ghosh S, Marino JS, Heinrich G, Lee SJ, Bourey RE, Hill JW, Jung DY, Morgan DA, Kim JK, Rahmouni SK, Najjar SM. Increased metabolic rate and insulin sensitivity in male mice lacking the carcino-embryonic antigen-related cell adhesion molecule 2. Diabetologia 2012; 55:763-72. [PMID: 22159884 PMCID: PMC3272352 DOI: 10.1007/s00125-011-2388-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/07/2011] [Indexed: 10/14/2022]
Abstract
AIMS/HYPOTHESIS The carcino-embryonic antigen-related cell adhesion molecule (CEACAM)2 is produced in many feeding control centres in the brain, but not in peripheral insulin-targeted tissues. Global Ceacam2 null mutation causes insulin resistance and obesity resulting from hyperphagia and hypometabolism in female Ceacam2 homozygous null mutant mice (Cc2 [also known as Ceacam2](-/-)) mice. Because male mice are not obese, the current study examined their metabolic phenotype. METHODS The phenotype of male Cc2(-/-) mice was characterised by body fat composition, indirect calorimetry, hyperinsulinaemic-euglycaemic clamp analysis and direct recording of sympathetic nerve activity. RESULTS Despite hyperphagia, total fat mass was reduced, owing to the hypermetabolic state in male Cc2(-/-) mice. In contrast to females, male mice also exhibited insulin sensitivity with elevated β-oxidation in skeletal muscle, which is likely to offset the effects of increased food intake. Males and females had increased brown adipogenesis. However, only males had increased activation of sympathetic tone regulation of adipose tissue and increased spontaneous activity. The mechanisms underlying sexual dimorphism in energy balance with the loss of Ceacam2 remain unknown. CONCLUSIONS/INTERPRETATION These studies identified a novel role for CEACAM2 in the regulation of metabolic rate and insulin sensitivity via effects on brown adipogenesis, sympathetic nervous outflow to brown adipose tissue, spontaneous activity and energy expenditure in skeletal muscle.
Collapse
Affiliation(s)
- P. R. Patel
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - S. K. Ramakrishnan
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - M. K. Kaw
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - C. K. Raphael
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - S. Ghosh
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - J. S. Marino
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - G. Heinrich
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - S. J. Lee
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - R. E. Bourey
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Internal Medicine at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - J. W. Hill
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| | - D. Y. Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - D. A. Morgan
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - J. K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - S. K. Rahmouni
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - S. M. Najjar
- Center for Diabetes and Endocrine Research, College of Medicine and Life Sciences, University of Toledo, Health Science Campus, 3000 Arlington Avenue, Mail Stop 1009, Toledo, OH 43614, USA,
- Department of Physiology and Pharmacology at the College of Medicine and Life Sciences, University of Toledo, Health Science Campus, Toledo, OH, USA
| |
Collapse
|
13
|
Gupta S, Yan Y, Malhotra D, Liu J, Xie Z, Najjar SM, Shapiro JI. Ouabain and insulin induce sodium pump endocytosis in renal epithelium. Hypertension 2012; 59:665-72. [PMID: 22311908 DOI: 10.1161/hypertensionaha.111.176727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiotonic steroids signaling through the basolateral sodium pump (Na/K-ATPase) have been shown to alter renal salt handling in intact animals. Because the relationship between renal salt handling and blood pressure is a key determinant of hypertension, and patients with insulin resistance are frequently hypertensive, we chose to examine whether there might be competition for resources necessary for receptor-mediated endocytosis. In LLC-PK1 cells, the Na/K-ATPase-α1 and carcinoembryonic antigen cell adhesion molecule 1, a plasma membrane protein that promotes receptor-mediated endocytosis, colocalized in the plasma membranes and translocated to the intracellular region in response to ouabain. Either ouabain or insulin alone caused accumulation of and carcinoembryonic antigen cell adhesion molecule, as well as insulin receptor-β, and epidermal growth factor receptor in early endosomes, but no synergy was demonstrable. Like ouabain, insulin also caused c-Src activation. When caveolin or Na/K-ATPase-α1 expression was knocked down with small interfering RNA, insulin but not ouabain induced carcinoembryonic antigen cell adhesion molecule 1, insulin receptor-β, and epidermal growth factor receptor endocytosis. To determine whether this might be relevant to salt handling in vivo, we examined salt loading in mice with null renal carcinoembryonic antigen cell adhesion molecule 2 expression. The null renal carcinoembryonic antigen cell adhesion molecule 2 animals demonstrated greater increases in blood pressure with increases in dietary salt than control animals. These data demonstrate that cardiotonic steroids and insulin compete for cellular endocytosis resources and suggest that, under conditions where circulating insulin concentrations are high, cardiotonic steroid-mediated natriuresis could be impaired.
Collapse
Affiliation(s)
- Shalini Gupta
- Department of Medicine, University of Toledo College of Medicine, Toledo, OH 43614-2598, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Murine coronavirus receptors are differentially expressed in the central nervous system and play virus strain-dependent roles in neuronal spread. J Virol 2010; 84:11030-44. [PMID: 20739537 DOI: 10.1128/jvi.02688-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coronavirus infection of the murine central nervous system (CNS) provides a model for studies of viral encephalitis and demyelinating disease. Mouse hepatitis virus (MHV) neurotropism varies by strain: MHV-A59 causes mild encephalomyelitis and demyelination, while the highly neurovirulent strain JHM.SD (MHV-4) causes fatal encephalitis with extensive neuronal spread of virus. In addition, while neurons are the predominant CNS cell type infected in vivo, the canonical receptor for MHV, the carcinoembryonic antigen family member CEACAM1a, has been demonstrated only on endothelial cells and microglia. In order to investigate whether CEACAM1a is also expressed in other cell types, ceacam1a mRNA expression was quantified in murine tissues and primary cells. As expected, among CNS cell types, microglia expressed the highest levels of ceacam1a, but lower levels were also detected in oligodendrocytes, astrocytes, and neurons. Given the low levels of neuronal expression of ceacam1a, primary neurons from wild-type and ceacam1a knockout mice were inoculated with MHV to determine the extent to which CEACAM1a-independent infection might contribute to CNS infection. While both A59 and JHM.SD infected small numbers of ceacam1a knockout neurons, only JHM.SD spread efficiently to adjacent cells in the absence of CEACAM1a. Quantification of mRNA for the ceacam1a-related genes ceacam2 and psg16 (bCEA), which encode proposed alternative MHV receptors, revealed low ceacam2 expression in microglia and oligodendrocytes and psg16 expression exclusively in neurons; however, only CEACAM2 mediated infection in human 293T cells. Therefore, neither CEACAM2 nor PSG16 is likely to be an MHV receptor on neurons, and the mechanism for CEACAM1a-independent neuronal spread of JHM.SD remains unknown.
Collapse
|
15
|
Heinrich G, Ghosh S, DeAngelis AM, Schroeder-Gloeckler JM, Patel PR, Castaneda TR, Jeffers S, Lee AD, Jung DY, Zhang Z, Opland DM, Myers MG, Kim JK, Najjar SM. Carcinoembryonic antigen-related cell adhesion molecule 2 controls energy balance and peripheral insulin action in mice. Gastroenterology 2010; 139:644-52, 652.e1. [PMID: 20381490 PMCID: PMC2910848 DOI: 10.1053/j.gastro.2010.03.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/04/2010] [Accepted: 03/25/2010] [Indexed: 01/21/2023]
Abstract
BACKGROUND & AIMS The carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a transmembrane glycoprotein with pleotropic functions, including clearance of hepatic insulin. We investigated the functions of the related protein CEACAM2, which has tissue-specific distribution (kidney, uterus, and crypt epithelia of intestinal tissues), in genetically modified mice. METHODS Ceacam2-null mice (Cc2-/-) were generated from a 129/SvxC57BL/6J background. Female mice were assessed by hyperinsulinemic-euglycemic clamp analysis and indirect calorimetry and body fat composition was measured. Cc2-/- mice and controls were fed as pairs, given insulin tolerance tests, and phenotypically characterized. RESULTS Female, but not male Cc2-/- mice exhibited obesity that resulted from hyperphagia and reduced energy expenditure. Pair feeding experiments showed that hyperphagia led to peripheral insulin resistance. Insulin action was normal in liver but compromised in skeletal muscle of female Cc2-/- mice; the mice had incomplete fatty acid oxidation and impaired glucose uptake and disposal. The mechanism of hyperphagia in Cc2-/- mice is not clear, but appears to result partly from increased hyperinsulinemia-induced hypothalamic fatty acid synthase levels and activity. Hyperinsulinemia was caused by increased insulin secretion. CONCLUSIONS In mice, CEACAM2 is expressed by the hypothalamus. Cc2-/- mice develop obesity from hyperphagia and reduced energy expenditure, indicating its role in regulating energy balance and insulin sensitivity.
Collapse
Affiliation(s)
- Garrett Heinrich
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physiology & Pharmacology at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614
| | - Sumona Ghosh
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physiology & Pharmacology at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614
| | - Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physiology & Pharmacology at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614
| | - Jill M. Schroeder-Gloeckler
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physiology & Pharmacology at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614
| | - Payal R. Patel
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physiology & Pharmacology at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614
| | - Tamara R. Castaneda
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physiology & Pharmacology at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614
| | - Shane Jeffers
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physiology & Pharmacology at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614
| | - Abraham D. Lee
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physical Therapy at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614
| | - Dae Young Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Zhiyou Zhang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033
| | - Darren M. Opland
- Department of Medicine, University of Michigan, Ann Arbor, MI, 48109
| | - Martin G. Myers
- Department of Medicine, University of Michigan, Ann Arbor, MI, 48109
| | - Jason K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, 17033, Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Department of Physiology & Pharmacology at the College of Medicine at the University of Toledo, Health Science Campus, Toledo, Ohio, 43614,Address correspondence to: Sonia M. Najjar, Ph.D. College of Medicine University of Toledo Health Science Campus 3000 Arlington Avenue, Mail stop 1008 Toledo, Ohio, 43614 Tel: (419) 383-4059 FAX: (419) 383-2871
| |
Collapse
|
16
|
Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their neutrophils. PLoS One 2010; 5:e10067. [PMID: 20404914 PMCID: PMC2852402 DOI: 10.1371/journal.pone.0010067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/12/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human CEACAM1 is a cell-cell adhesion molecule with multiple functions including insulin clearance in the liver, vasculogenesis in endothelial cells, lumen formation in the mammary gland, and binding of certain human pathogens. PRINCIPAL FINDINGS Three genomic BAC clones containing the human CEACAM1 gene were microinjected into pronuclei of fertilized FVB mouse oocytes. The embryos were implanted in the oviducts of pseudopregnant females and allowed to develop to term. DNA from newborn mice was evaluated by PCR for the presence of the human CEACAM1 gene. Feces of the PCR positive offspring screened for expression of human CEACAM1. Using this assay, one out of five PCR positive lines was positive for human CEACAM1 expression and showed stable transmission to the F1 generation with the expected transmission frequency (0.5) for heterozygotes. Liver, lung, intestine, kidney, mammary gland, and prostate were strongly positive for the dual expression of both murine and human CEACAM1 and mimic that seen in human tissue. Peripheral blood and bone marrow granulocytes stained strongly for human CEACAM1 and bound Neisseria Opa proteins similar to that in human neutrophils. CONCLUSION These transgenic animals may serve as a model for the binding of human pathogens to human CEACAM1.
Collapse
|
17
|
Functional characterization of antibodies against Neisseria gonorrhoeae opacity protein loops. PLoS One 2009; 4:e8108. [PMID: 19956622 PMCID: PMC2779592 DOI: 10.1371/journal.pone.0008108] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Accepted: 10/26/2009] [Indexed: 11/22/2022] Open
Abstract
Background The development of a gonorrhea vaccine is challenged by the lack of correlates of protection. The antigenically variable neisserial opacity (Opa) proteins are expressed during infection and have a semivariable (SV) and highly conserved (4L) loop that could be targeted in a vaccine. Here we compared antibodies to linear (Ablinear) and cyclic (Abcyclic) peptides that correspond to the SV and 4L loops and selected hypervariable (HV2) loops for surface-binding and protective activity in vitro and in vivo. Methods/Findings AbSV cyclic bound a greater number of different Opa variants than AbSV linear, including variants that differed by seven amino acids. Antibodies to the 4L peptide did not bind Opa-expressing bacteria. AbSVcyclic and AbHV2cyclic, but not AbSVlinear or AbHV2 linear agglutinated homologous Opa variants, and AbHV2BDcyclic but not AbHV2BDlinear blocked the association of OpaB variants with human endocervical cells. Only AbHV2BDlinear were bactericidal against the serum resistant parent strain. Consistent with host restrictions in the complement cascade, the bactericidal activity of AbHV2BDlinear was increased 8-fold when rabbit complement was used. None of the antibodies was protective when administered vaginally to mice. Antibody duration in the vagina was short-lived, however, with <50% of the antibodies recovered 3 hrs post-administration. Conclusions We conclude that an SV loop-specific cyclic peptide can be used to induce antibodies that recognize a broad spectrum of antigenically distinct Opa variants and have agglutination abilities. HV2 loop-specific cyclic peptides elicited antibodies with agglutination and adherence blocking abilities. The use of human complement when testing the bactericidal activity of vaccine-induced antibodies against serum resistant gonococci is also important.
Collapse
|
18
|
DeAngelis AM, Heinrich G, Dai T, Bowman TA, Patel PR, Lee SJ, Hong EG, Jung DY, Assmann A, Kulkarni RN, Kim JK, Najjar SM. Carcinoembryonic antigen-related cell adhesion molecule 1: a link between insulin and lipid metabolism. Diabetes 2008; 57:2296-303. [PMID: 18544705 PMCID: PMC2518480 DOI: 10.2337/db08-0379] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/02/2008] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) by a dominant-negative transgene (l-SACC1 mice) impaired insulin clearance, caused insulin resistance, and increased hepatic lipogenesis. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we characterized the metabolic phenotype of mice with null mutation of the Ceacam1 gene (Cc1(-/-)). RESEARCH DESIGN AND METHODS Mice were originally generated on a mixed C57BL/6x129sv genetic background and then backcrossed 12 times onto the C57BL/6 background. More than 70 male mice of each of the Cc1(-/-) and wild-type Cc1(+/+) groups were subjected to metabolic analyses, including insulin tolerance, hyperinsulinemic-euglycemic clamp studies, insulin secretion in response to glucose, and determination of fasting serum insulin, C-peptide, triglyceride, and free fatty acid levels. RESULTS Like l-SACC1, Cc1(-/-) mice exhibited impairment of insulin clearance and hyperinsulinemia, which caused insulin resistance beginning at 2 months of age, when the mutation was maintained on a mixed C57BL/6x129sv background, but not until 5-6 months of age on a homogeneous inbred C57BL/6 genetic background. Hyperinsulinemic-euglycemic clamp studies revealed that the inbred Cc1(-/-) mice developed insulin resistance primarily in liver. Despite substantial expression of CEACAM1 in pancreatic beta-cells, insulin secretion in response to glucose in vivo and in isolated islets was normal in Cc1(-/-) mice (inbred and outbred strains). CONCLUSIONS Intact insulin secretion in response to glucose and impairment of insulin clearance in l-SACC1 and Cc1(-/-) mice suggest that the principal role of CEACAM1 in insulin action is to mediate insulin clearance in liver.
Collapse
Affiliation(s)
- Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Tong Dai
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Payal R. Patel
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Sang Jun Lee
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Eun-Gyoung Hong
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Dae Young Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Anke Assmann
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | | | - Jason K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
19
|
Kawano K, Ebisawa M, Hase K, Fukuda S, Hijikata A, Kawano S, Date Y, Tsuneda S, Itoh K, Ohno H. Psg18 is specifically expressed in follicle-associated epithelium. Cell Struct Funct 2007; 32:115-26. [PMID: 17984568 DOI: 10.1247/csf.07014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pregnancy-specific glycoproteins (Psgs) secreted by the placenta regulate the immune system to ensure the survival of the fetal allograft by inducing IL-10, an anti-inflammatory cytokine. However, it is unknown whether Psgs are involved in more general aspects of immune response other than maternal immunity. Here, we report that Psg18 is highly expressed in the follicle-associated epithelium (FAE) overlaying Peyer's patches (PPs). Bioinformatics analysis with Reference Database for Immune Cells (RefDIC) as well as RT-PCR data demonstrated that Psg18 is exclusively expressed in FAE in adult mice, in contrast to other Psg family members that are either not expressed or only slightly expressed in FAE. Psg18 expression was observed in FAE of germ-free-conditioned mice, and was slightly upregulated after bacterial inoculation. In situ hybridization analysis revealed that Psg18 is widely expressed throughout FAE. Furthermore, Psg18 protein is deposited on the extracellular matrix in the subepithelial dome beneath FAE, where antigen-presenting cells accumulate. These results suggest that Psg18 is an FAE-specific marker protein that could promote interplay between FAE and immune cells in mucosa-associated lymphoid tissues.
Collapse
Affiliation(s)
- Kazuya Kawano
- Laboratory for Epithelial Immunobiology, Research Center for Allergy and Immunology, RIKEN, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
A carcinoembryonic antigen-related cell adhesion molecule 1 homologue plays a pivotal role in nontypeable Haemophilus influenzae colonization of the chinchilla nasopharynx via the outer membrane protein P5-homologous adhesin. Infect Immun 2007; 76:48-55. [PMID: 17938212 DOI: 10.1128/iai.00980-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vitro studies suggest an important role for CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1) in infection by multiple gram-negative bacteria. However, in vivo evidence supporting this role is lacking, largely because the bacterial adhesins involved in this host-microbe association do not bind to murine-derived CEACAM1. One of several adhesins expressed by nontypeable Haemophilus influenzae (NTHI), the outer membrane protein P5-homologous adhesin (or P5), is essential for colonization of the chinchilla nasopharynx and infection of the middle ear. Here we reveal that NTHI P5 binds to the chinchilla homologue of CEACAM1 and that rabbit anti-human carcinoembryonic antigen blocks NTHI colonization of the chinchilla nasopharynx, providing the first demonstration of a role for CEACAM receptor binding by any bacterial pathogen in vivo.
Collapse
|
21
|
Nagaishi T, Pao L, Lin SH, Iijima H, Kaser A, Qiao SW, Chen Z, Glickman J, Najjar SM, Nakajima A, Neel BG, Blumberg RS. SHP1 Phosphatase-Dependent T Cell Inhibition by CEACAM1 Adhesion Molecule Isoforms. Immunity 2006; 25:769-81. [PMID: 17081782 DOI: 10.1016/j.immuni.2006.08.026] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 06/26/2006] [Accepted: 08/30/2006] [Indexed: 11/20/2022]
Abstract
T cell activation through the T cell receptor (TCR) is subsequently modified by secondary signals that are either stimulatory or inhibitory. We show that CEACAM1 adhesion molecule isoforms containing a long cytoplasmic domain inhibited multiple T cell functions as a consequence of TCR ligation. Overexpression of CEACAM1 resulted in decreased proliferation, allogeneic reactivity, and cytokine production in vitro and delayed type hypersensitivity and inflammatory bowel disease in mouse models in vivo. Conditioned deletion of CEACAM1 in T cells caused increased TCR-CD3 complex signaling. This T cell regulation was dependent upon the presence of immunoreceptor tyrosine-based inhibition motifs (ITIM) within the cytoplasmic domain of CEACAM1 and the Src homology 2 domain-containing protein tyrosine-phosphatase 1 (SHP1) in the T cell. Thus, CEACAM1 overexpression or deletion in T cells resulted in T cell inhibition or activation, respectively, revealing a role for CEACAM1 as a class of inhibitory receptors potentially amenable to therapeutic manipulation.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Gastroenterology Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wynne F, Ball M, McLellan AS, Dockery P, Zimmermann W, Moore T. Mouse pregnancy-specific glycoproteins: tissue-specific expression and evidence of association with maternal vasculature. Reproduction 2006; 131:721-32. [PMID: 16595723 DOI: 10.1530/rep.1.00869] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pregnancy-specific glycoproteins (Psg) are secreted hormones encoded by multiple genes in rodents and primates, and are thought to act as immune modulators. The only Psg receptor identified is CD9, through which Psg17 induces cytokine production from macrophages cultured in vitro. We examined temporal and spatial aspects of Psg and CD9 expression during mouse pregnancy to determine whether their expression patterns support a role in immune modulation. Using in situ hybridisation, immunohistochemistry and RT-PCR we found Psg expression in trophoblast giant cells and in the spongiotrophoblast. Psg22 is the predominant Psg family member expressed in giant cells. Detectable Psg is associated predominantly with endothelial cells lining vascular channels in the decidua, rather than with maternal immune cell markers. CD9 expression exhibited partial overlap with Psg, but without exclusive co-localisation. CD9 was observed in decidual cells surrounding early implantation sites, and in the endometrium. However, embryo transfer of wild-type embryos to CD9-deficient females indicates that maternal CD9 is not essential for successful pregnancy.
Collapse
Affiliation(s)
- Freda Wynne
- Department of Biochemistry, Biosciences Institute, University College Cork, College Road, cork, Ireland
| | | | | | | | | | | |
Collapse
|
23
|
Simms AN, Jerse AE. In vivo selection for Neisseria gonorrhoeae opacity protein expression in the absence of human carcinoembryonic antigen cell adhesion molecules. Infect Immun 2006; 74:2965-74. [PMID: 16622235 PMCID: PMC1459723 DOI: 10.1128/iai.74.5.2965-2974.2006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neisserial opacity (Opa) proteins are phase-variable, antigenically distinct outer membrane proteins that mediate adherence to and invasion of human cells. We previously reported that Neisseria gonorrhoeae Opa protein expression appeared to be selected for or induced during experimental murine genital tract infection. Here we further defined the kinetics of recovery of Opa variants from the lower genital tracts of female mice and investigated the basis for this initial observation. We found that the recovery of different Opa phenotypes from mice appears cyclical. Three phases of infection were defined. Following intravaginal inoculation with primarily Opa- gonococci, the majority of isolates recovered were Opa+ (early phase). A subsequent decline in the percentage of Opa+ isolates occurred in a majority of mice (middle phase) and was followed by a reemergence of Opa+ variants in mice that were infected for longer than 8 days (late phase). We showed the early phase was due to selection for preexisting Opa+ variants in the inoculum by constructing a chloramphenicol-resistant (Cm(r)) strain and following Cm(r) Opa+ populations mixed with a higher percentage of Opa- variants of the wild-type (Cm(s)) strain. Reciprocal experiments (Opa- Cm(r) gonococci spiked with Opa+ Cm(s) bacteria) were consistent with selection of Opa+ variants. Based on the absence in mice of human carcinoembryonic antigen cell adhesion molecules, the major class of Opa protein adherence receptors, we conclude the observed selection for Opa+ variants early in infection is not likely due to a specific adherence advantage and may be due to Opa-mediated evasion of innate defenses.
Collapse
Affiliation(s)
- Amy N Simms
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD 20814-4799, USA
| | | |
Collapse
|
24
|
Zebhauser R, Kammerer R, Eisenried A, McLellan A, Moore T, Zimmermann W. Identification of a novel group of evolutionarily conserved members within the rapidly diverging murine Cea family. Genomics 2005; 86:566-80. [PMID: 16139472 DOI: 10.1016/j.ygeno.2005.07.008] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Revised: 06/15/2005] [Accepted: 07/11/2005] [Indexed: 01/30/2023]
Abstract
The carcinoembryonic antigen (CEA) family comprises a still actively evolving populous group of proteins that are involved in controlling tissue homeostasis, immune responses, and host/pathogen interactions. The genes identified to date in rodents and primates exhibit low sequence similarity and an extremely variable domain composition. Among the 22 murine Cea-related genes, only for Ceacam1 has an ortholog been assigned. To identify all CEA-related genes in mouse, rat, and human we undertook genome-wide analyses. Eight of 9 new expressible genes (Ceacam12-Ceacam20) could be located within the approximately 6.5-Mb murine Cea locus. Five of the genes were rodent-specific (Ceacam12-Ceacam15 and Ceacam17). Surprisingly, for the remaining 4 (Ceacam16 and Ceacam18-Ceacam20) orthologs could be detected in all three genomes at syntenic locations. Gene-specific reverse transcription/PCR analyses of total RNA from 31 murine adult, placental, and embryonic tissues as well as tumors revealed very distinct expression patterns, suggesting diversified functions within the CEA family.
Collapse
Affiliation(s)
- Roland Zebhauser
- Tumor Immunology Laboratory, Department of Urology, University Clinic Grosshadern, Ludwig-Maximilians-University München, Marchioninistrasse 23, D-81377 Munich, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus. BMC Genomics 2005; 6:4. [PMID: 15647114 PMCID: PMC546212 DOI: 10.1186/1471-2164-6-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 01/12/2005] [Indexed: 11/29/2022] Open
Abstract
Background The pregnancy-specific glycoprotein (Psg) genes encode proteins of unknown function, and are members of the carcinoembryonic antigen (Cea) gene family, which is a member of the immunoglobulin gene (Ig) superfamily. In rodents and primates, but not in artiodactyls (even-toed ungulates / hoofed mammals), there have been independent expansions of the Psg gene family, with all members expressed exclusively in placental trophoblast cells. For the mouse Psg genes, we sought to determine the genomic organisation of the locus, the expression profiles of the various family members, and the evolution of exon structure, to attempt to reconstruct the evolutionary history of this locus, and to determine whether expansion of the gene family has been driven by selection for increased gene dosage, or diversification of function. Results We collated the mouse Psg gene sequences currently in the public genome and expressed-sequence tag (EST) databases and used systematic BLAST searches to generate complete sequences for all known mouse Psg genes. We identified a novel family member, Psg31, which is similar to Psg30 but, uniquely amongst mouse Psg genes, has a duplicated N1 domain. We also identified a novel splice variant of Psg16 (bCEA). We show that Psg24 and Psg30 / Psg31 have independently undergone expansion of N-domain number. By mapping BAC, YAC and cosmid clones we described two clusters of Psg genes, which we linked and oriented using fluorescent in situ hybridisation (FISH). Comparison of our Psg locus map with the public mouse genome database indicates good agreement in overall structure and further elucidates gene order. Expression levels of Psg genes in placentas of different developmental stages revealed dramatic differences in the developmental expression profile of individual family members. Conclusion We have combined existing information, and provide new information concerning the evolution of mouse Psg exon organization, the mouse Psg genomic locus structure, and the expression patterns of individual Psg genes. This information will facilitate functional studies of this complex gene family.
Collapse
|
26
|
Hemmila E, Turbide C, Olson M, Jothy S, Holmes KV, Beauchemin N. Ceacam1a-/- mice are completely resistant to infection by murine coronavirus mouse hepatitis virus A59. J Virol 2004; 78:10156-65. [PMID: 15331748 PMCID: PMC515023 DOI: 10.1128/jvi.78.18.10156-10165.2004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 05/10/2004] [Indexed: 01/08/2023] Open
Abstract
CEACAM1a glycoproteins are members of the immunoglobulin (Ig) superfamily and the carcinoembryonic antigen family. Isoforms expressing either two or four alternatively spliced Ig-like domains in mice have been found in a number of epithelial, endothelial, or hematopoietic tissues. CEACAM1a functions as an intercellular adhesion molecule, an angiogenic factor, and a tumor cell growth inhibitor. Moreover, the mouse and human CEACAM1a proteins are targets of viral or bacterial pathogens, respectively, including the murine coronavirus mouse hepatitis virus (MHV), Haemophilus influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis, as well as Moraxella catarrhalis in humans. We have shown that targeted disruption of the Ceacam1a (MHVR) gene resulting in a partial ablation of the protein in mice (p/p mice) led to reduced susceptibility to MHV-A59 infection of the modified mice in the BALB/c background. We have now engineered and produced a Ceacam1a-/- mouse that exhibits complete ablation of the CEACAM1a protein in every tissue where it is normally expressed. We report that 3-week-old Ceacam1a-/- mice in the C57BL/6 genetic background are fully resistant to MHV-A59 infection by both intranasal and intracerebral routes. Whereas virus-inoculated wild-type +/+ C57BL/6 mice showed profound liver damage and spinal cord demyelination under these conditions, Ceacam1a-/- mice displayed normal livers and spinal cords. Virus was recovered from liver and spinal cord tissues of +/+ mice but not of -/- mice. These results indicate that CEACAM1a is the sole receptor for MHV-A59 in both liver and brain and that its deletion from the mouse renders the mouse completely resistant to infection by this virus.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Base Sequence
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/physiology
- Cell Adhesion Molecules
- Coronavirus Infections/etiology
- Coronavirus Infections/genetics
- Coronavirus Infections/immunology
- Coronavirus Infections/pathology
- DNA/genetics
- Gene Targeting
- Glycoproteins/deficiency
- Glycoproteins/genetics
- Glycoproteins/physiology
- Hepatitis, Viral, Animal/etiology
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Murine hepatitis virus/pathogenicity
- Receptors, Virus/deficiency
- Receptors, Virus/genetics
- Receptors, Virus/physiology
Collapse
Affiliation(s)
- Erin Hemmila
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, USA
| | | | | | | | | | | |
Collapse
|
27
|
Bosak N, Faraut T, Mikawa S, Uenishi H, Kiuchi S, Hiraiwa H, Hayashi T, Yasue H. Construction of a high-resolution comparative gene map between swine chromosome region 6q11-->q21 and human chromosome 19 q-arm by RH mapping of 51 genes. Cytogenet Genome Res 2004; 102:109-15. [PMID: 14970688 DOI: 10.1159/000075734] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2003] [Accepted: 07/28/2003] [Indexed: 11/19/2022] Open
Abstract
A comprehensive and comparative map was constructed for the porcine chromosome (SSC) 6q11-->q21 region, where the gene(s) responsible for the maldevelopment of embryos are localized using swine populations of the National Institute of Animal Industry, Japan (NIAI). Since the chromosomal region corresponds to a region of human chromosome (HSA) 19q13.1-->q13.3 based on bi-directional chromosome painting, primer pairs were designed from porcine cDNA sequences identified, on a sequence comparison basis, as being transcripts from genes orthologous to those in the HSA region. Fifty-one genes were successfully assigned to a swine radiation hybrid (RH) map with LOD scores greater than 6. ERF and PSMD8 genes were assigned to SSC4 and SSC1, respectively. The remaining 49 genes were assigned to SSC6, demonstrating that the synteny between the SSC6 and HSA19 chromosomal regions is essentially conserved, therefore confirming, the results of bi-directional chromosome painting. However, when examined precisely, rearrangements have apparently occurred within the region of conserved synteny. For the ERF and PSMD8 genes assigned to SSCs other than SSC6, additional mapping using somatic cell hybrid (SCH) panels was performed to confirm the results of RH-mapping.
Collapse
Affiliation(s)
- N Bosak
- Genome Research Department, National Institute of Agrobiological Sciences, Ikenodai, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Activation of the tyrosine kinase of the insulin receptor by insulin binding initiates a cascade of signaling pathways that mediates the metabolic and growth-promoting effects of insulin. Insulin action is regulated by the amount of circulating insulin, which is, in turn, partially regulated by insulin clearance in liver. Receptor-mediated insulin endocytosis followed by degradation mediates insulin clearance. Earlier studies in transfected cells suggested that the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a substrate of the insulin receptor in liver, upregulates receptor-mediated insulin endocytosis and degradation in a phosphorylation-dependent manner. To test this hypothesis, a transgenic mouse, L-SACC1, overexpressing a dominant-negative phosphorylation-defective S503A CEACAM1 mutant in liver was established. The transgenic mouse demonstrated that CEACAM1 increases insulin clearance to maintain insulin sensitivity. Because insulin resistance is the hallmark of type 2 diabetes, understanding the mechanism of CEACAM1 regulation of insulin clearance and action might lead to novel therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department Pharmacology and Therapeutics, Medical College of Ohio, 3035 Arlington Ave., HSci Building, Room 270, Toledo, OH 43614, USA.
| |
Collapse
|
29
|
Singer BB, Scheffrahn I, Heymann R, Sigmundsson K, Kammerer R, Obrink B. Carcinoembryonic antigen-related cell adhesion molecule 1 expression and signaling in human, mouse, and rat leukocytes: evidence for replacement of the short cytoplasmic domain isoform by glycosylphosphatidylinositol-linked proteins in human leukocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:5139-46. [PMID: 11994468 DOI: 10.4049/jimmunol.168.10.5139] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1), the primordial carcinoembryonic Ag gene family member, is a transmembrane cell adhesion molecule expressed in leukocytes, epithelia, and blood vessel endothelia in humans and rodents. As a result of differential splicing, CEACAM1 occurs as several isoforms, the two major ones being CEACAM1-L and CEACAM1-S, that have long (L) or short (S) cytoplasmic domains, respectively. The L:S expression ratios vary in different cells and tissues. In addition to CEACAM1, human but not rodent cells express GPI-linked CEACAM members (CEACAM5-CEACAM8). We compared the expression patterns of CEACAM1-L, CEACAM1-S, CEACAM6, and CEACAM8 in purified populations of neutrophilic granulocytes, B lymphocytes, and T lymphocytes from rats, mice, and humans. Human granulocytes expressed CEACAM1, CEACAM6, and CEACAM8, whereas human B lymphocytes and T lymphocytes expressed only CEACAM1 and CEACAM6. Whereas granulocytes, B cells, and T cells from mice and rats expressed both CEACAM1-L and CEACAM1-S in ratios of 2.2-2.9:1, CEACAM1-S expression was totally lacking in human granulocytes, B cells, and T cells. Human leukocytes only expressed the L isoforms of CEACAM1. This suggests that the GPI-linked CEACAM members have functionally replaced CEACAM1-S in human leukocytes. Support for the replacement hypothesis was obtained from experiments in which the extracellular signal-regulated kinases (Erk)1/2 were activated by anti-CEACAM Abs. Thus, Abs against CEACAM1 activated Erk1/2 in rat granulocytes, but not in human granulocytes. Erk1/2 in human granulocytes could, however, be activated by Abs against CEACAM8. We demonstrated that CEACAM1 and CEACAM8 are physically associated in human granulocytes. The CEACAM1/CEACAM8 complex in human cells might accordingly play a similar role as CEACAM1-L/CEACAM1-S dimers known to occur in rat cells.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Substitution/genetics
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/genetics
- Antigens, Differentiation/physiology
- Antigens, Neoplasm
- Carcinoembryonic Antigen/biosynthesis
- Carcinoembryonic Antigen/genetics
- Carcinoembryonic Antigen/physiology
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Cell Adhesion Molecules/physiology
- Cytoplasm/enzymology
- Cytoplasm/genetics
- Cytoplasm/metabolism
- GPI-Linked Proteins
- Glycosylphosphatidylinositols/metabolism
- Granulocytes/enzymology
- Granulocytes/metabolism
- Granulocytes/physiology
- Humans
- Leukocytes/enzymology
- Leukocytes/metabolism
- Leukocytes/physiology
- MAP Kinase Signaling System/genetics
- MAP Kinase Signaling System/physiology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/physiology
- Protein Structure, Tertiary/genetics
- Rats
- Rats, Inbred Lew
Collapse
Affiliation(s)
- Bernhard B Singer
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|