1
|
Bagheri H, Friedman H, Hadwen A, Jarweh C, Cooper E, Oprea L, Guerrier C, Khadra A, Collin A, Cohen‐Adad J, Young A, Victoriano GM, Swire M, Jarjour A, Bechler ME, Pryce RS, Chaurand P, Cougnaud L, Vuckovic D, Wilion E, Greene O, Nishiyama A, Benmamar‐Badel A, Owens T, Grouza V, Tuznik M, Liu H, Rudko DA, Zhang J, Siminovitch KA, Peterson AC. Myelin basic protein mRNA levels affect myelin sheath dimensions, architecture, plasticity, and density of resident glial cells. Glia 2024; 72:1893-1914. [PMID: 39023138 PMCID: PMC11426340 DOI: 10.1002/glia.24589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024]
Abstract
Myelin Basic Protein (MBP) is essential for both elaboration and maintenance of CNS myelin, and its reduced accumulation results in hypomyelination. How different Mbp mRNA levels affect myelin dimensions across the lifespan and how resident glial cells may respond to such changes are unknown. Here, to investigate these questions, we used enhancer-edited mouse lines that accumulate Mbp mRNA levels ranging from 8% to 160% of wild type. In young mice, reduced Mbp mRNA levels resulted in corresponding decreases in Mbp protein accumulation and myelin sheath thickness, confirming the previously demonstrated rate-limiting role of Mbp transcription in the control of initial myelin synthesis. However, despite maintaining lower line specific Mbp mRNA levels into old age, both MBP protein levels and myelin thickness improved or fully normalized at rates defined by the relative Mbp mRNA level. Sheath length, in contrast, was affected only when mRNA levels were very low, demonstrating that sheath thickness and length are not equally coupled to Mbp mRNA level. Striking abnormalities in sheath structure also emerged with reduced mRNA levels. Unexpectedly, an increase in the density of all glial cell types arose in response to reduced Mbp mRNA levels. This investigation extends understanding of the role MBP plays in myelin sheath elaboration, architecture, and plasticity across the mouse lifespan and illuminates a novel axis of glial cell crosstalk.
Collapse
Affiliation(s)
- Hooman Bagheri
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Hana Friedman
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Amanda Hadwen
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Celia Jarweh
- Department of Pharmacology & TherapeuticsMcGill UniversityMontrealQuebecCanada
| | - Ellis Cooper
- Department of PhysiologyMcGill UniversityMontrealQuebecCanada
| | - Lawrence Oprea
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
| | | | - Anmar Khadra
- Integrated Program in NeuroscienceMcGill UniversityMontréalQuebecCanada
| | - Armand Collin
- Institute of Biomedical Engineering, Ecole Polytechnique de MontrealMontrealQuebecCanada
| | - Julien Cohen‐Adad
- Institute of Biomedical Engineering, Ecole Polytechnique de MontrealMontrealQuebecCanada
| | - Amanda Young
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Gerardo Mendez Victoriano
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Matthew Swire
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Andrew Jarjour
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Marie E. Bechler
- Department of Cell and Developmental BiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
- Department of Neuroscience and PhysiologyState University of New York Upstate Medical UniversitySyracuseNew YorkUSA
| | - Rachel S. Pryce
- Department of ChemistryUniversité de MontréalMontrealQuebecCanada
| | - Pierre Chaurand
- Department of ChemistryUniversité de MontréalMontrealQuebecCanada
| | - Lise Cougnaud
- Department of Chemistry and BiochemistryConcordia UniversityMontrealQuebecCanada
| | - Dajana Vuckovic
- Department of Chemistry and BiochemistryConcordia UniversityMontrealQuebecCanada
| | - Elliott Wilion
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Owen Greene
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
| | - Akiko Nishiyama
- Department of Physiology and NeurobiologyUniversity of ConnecticutStorrsConnecticutUSA
- Institute for Systems Genomics, University of ConnecticutStorrsConnecticutUSA
- The Connecticut Institute for Brain and Cognitive Sciences, University of ConnecticutStorrsConnecticutUSA
| | - Anouk Benmamar‐Badel
- Department of Neurobiology ResearchInstitute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Trevor Owens
- Department of Neurobiology ResearchInstitute for Molecular Medicine, University of Southern DenmarkOdenseDenmark
| | - Vladimir Grouza
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Marius Tuznik
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - Hanwen Liu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
| | - David A. Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and HospitalMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
| | - Jinyi Zhang
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Mount Sinai Hospital, Lunenfeld‐Tanenbaum and Toronto General Hospital Research InstitutesTorontoOntarioCanada
| | - Katherine A. Siminovitch
- Department of MedicineUniversity of TorontoTorontoOntarioCanada
- Department of ImmunologyUniversity of TorontoTorontoOntarioCanada
- Mount Sinai Hospital, Lunenfeld‐Tanenbaum and Toronto General Hospital Research InstitutesTorontoOntarioCanada
| | - Alan C. Peterson
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
- Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada
- Gerald Bronfman Department of OncologyMcGill UniversityQuebecCanada
| |
Collapse
|
2
|
Miyazaki H, Nishioka S, Yamanaka T, Abe M, Imamura Y, Miyasaka T, Kakuda N, Oohashi T, Shimogori T, Yamakawa K, Ikawa M, Nukina N. Generation and characterization of cerebellar granule neurons specific knockout mice of Golli-MBP. Transgenic Res 2024; 33:99-117. [PMID: 38684589 PMCID: PMC11176102 DOI: 10.1007/s11248-024-00382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Golli-myelin basic proteins, encoded by the myelin basic protein gene, are widely expressed in neurons and oligodendrocytes in the central nervous system. Further, prior research has shown that Golli-myelin basic protein is necessary for myelination and neuronal maturation during central nervous system development. In this study, we established Golli-myelin basic protein-floxed mice to elucidate the cell-type-specific effects of Golli-myelin basic protein knockout through the generation of conditional knockout mice (Golli-myelin basic proteinsfl/fl; E3CreN), in which Golli-myelin basic proteins were specifically deleted in cerebellar granule neurons, where Golli-myelin basic proteins are expressed abundantly in wild-type mice. To investigate the role of Golli-myelin basic proteins in cerebellar granule neurons, we further performed histopathological analyses of these mice, with results indicating no morphological changes or degeneration of the major cellular components of the cerebellum. Furthermore, behavioral analysis showed that Golli-myelin basic proteinsfl/fl; E3CreN mice were healthy and did not display any abnormal behavior. These results suggest that the loss of Golli-myelin basic proteins in cerebellar granule neurons does not lead to cerebellar perturbations or behavioral abnormalities. This mouse model could therefore be employed to analyze the effect of Golli-myelin basic protein deletion in specific cell types of the central nervous system, such as other neuronal cells and oligodendrocytes, or in lymphocytes of the immune system.
Collapse
Grants
- 16K07005 Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 16H06276 Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 17H01564 Grants-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) of Japan
- 20ek0109310h0003 AMED
- The Center for Baby Science, Doshisha University
- Takeda Science Foundation
- Ichiro Kanehara Foundation for the Promotion of Medical Sciences and Medical Care
- Okayama University
Collapse
Affiliation(s)
- Haruko Miyazaki
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan.
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Saki Nishioka
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, 1-757 Asahimachidori, Chuo-ku, Niigata, 951-8585, Japan
| | - Yukio Imamura
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Tomohiro Miyasaka
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Nobuto Kakuda
- Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Toshitaka Oohashi
- Department of Molecular Biology and Biochemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Tomomi Shimogori
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, 467-8601, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Graduate School of Brain Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan.
| |
Collapse
|
3
|
Lamont H, Ille A, Amico-Ruvio SA. Identification of a novel variant of Golli myelin basic protein BG21 in the uniquely neuroprotective white-footed mouse. Neurosci Lett 2019; 701:8-13. [PMID: 30742937 DOI: 10.1016/j.neulet.2019.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/12/2019] [Accepted: 02/05/2019] [Indexed: 11/26/2022]
Abstract
The myelin basic protein (MBP) gene is a complex gene which codes for several distinct forms of MBP. The various forms of MBP are functionally involved in the development of the nervous system, T-cell regulation, and myelination. Several neurological disorders have been linked to MBP abnormality, further demonstrating its functional significance in the nervous system. The white-footed mouse (Peromyscus leucopus) exhibits profound neuroprotective characteristics, is asymptomatic to various disease-states, and has a lifespan twice that of the house mouse (Mus musculus). We used M. musculus mouse MBP as a reference to explore MBP in P. leucopus mice. Through genetic and downstream proteomic data analysis, we identified a novel variant of the BG21 isoform of MBP in P. leucopus mice. Variation in this isoform is present at the genetic level between the two species of mice. Our results show differences within the open reading frame of the transcripts accompanied by corresponding differences in protein structure prediction. These data introduce the potential of MBP variation as one of many causal variables contributing to the unique presentation of enhanced neuroprotection and longevity in P. leucopus mice.
Collapse
Affiliation(s)
- Hannah Lamont
- D'Youville College, 320 Porter Ave, Buffalo, NY, 14201, USA.
| | - Alexander Ille
- D'Youville College, 320 Porter Ave, Buffalo, NY, 14201, USA.
| | | |
Collapse
|
4
|
Hammann J, Bassetti D, White R, Luhmann HJ, Kirischuk S. α2 isoform of Na +,K +-ATPase via Na +,Ca 2+ exchanger modulates myelin basic protein synthesis in oligodendrocyte lineage cells in vitro. Cell Calcium 2018; 73:1-10. [PMID: 29880193 DOI: 10.1016/j.ceca.2018.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/05/2018] [Accepted: 03/25/2018] [Indexed: 11/26/2022]
Abstract
Oligodendrocytes in the CNS myelinate neuronal axons, facilitating rapid propagation of action potentials. Myelin basic protein (MBP) is an essential component of myelin and its absence results in severe hypomyelination. In oligodendrocyte lineage cell (OLC) monocultures MBP synthesis starts at DIV4. Ouabain (10 nM), a Na+,K+-ATPase (NKA) blocker, stimulates MBP synthesis. As OLCs express the α2 isoform of NKA (α2-NKA) that has a high affinity for ouabain, we hypothesized that α2-NKA mediates this effect. Knockdown of α2-NKA with small interfering (si)RNA (α2-siRNA) significantly potentiated MBP synthesis at DIV4 and 5. This effect was completely blocked by KB-R7943 (1 μM), a Na+,Ca2+ exchanger (NCX) antagonist. α2-NKA ablation increased the frequency of NCX-mediated spontaneous Ca2+ transients ([Ca2+]t) at DIV4, whereas in control OLC cultures comparable frequency of [Ca2+]t was observed at DIV5. At DIV6 almost no [Ca2+]t were observed either in control or in α2-siRNA-treated cultures. Immunocytochemical analyses showed that α2-NKA co-localizes with MBP in proximal processes of immature OLCs but is only weakly present in MBP-enriched membrane sheets. Knockdown of α2-NKA in cortical slice cultures did not change MBP levels but reduced co-localization of neurofilament- and MBP-positive compartments. We conclude that α2-NKA activity in OLCs affects NCX-mediated [Ca2+]t and the onset of MBP synthesis. We suggest therefore that neuronal activity, presumably in form of local extracellular [K+] changes, might locally influence NCX-mediated [Ca2+]t in OLC processes thus triggering local MBP synthesis in the vicinity of an active axon.
Collapse
Affiliation(s)
- Jens Hammann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Davide Bassetti
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Robin White
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
| | - Sergei Kirischuk
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany.
| |
Collapse
|
5
|
Intracellular ion signaling influences myelin basic protein synthesis in oligodendrocyte precursor cells. Cell Calcium 2016; 60:322-330. [PMID: 27417499 DOI: 10.1016/j.ceca.2016.06.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 11/20/2022]
Abstract
Myelination in the central nervous system depends on axon-oligodendrocyte precursor cell (OPC) interaction. We suggest that myelin synthesis may be influenced by [Na+]i and [Ca2+]i signaling in OPCs. Experiments were performed in mouse cultured OPCs at day in vitro (DIV) 2-6 or acute slices of the corpus callosum at postnatal days (P) 10-30. Synthesis of Myelin Basic Protein (MBP), an "executive molecule of myelin", was used as readout of myelination. Immunohistological data revealed that MBP synthesis in cultured OPCs starts around DIV4. Transient elevations of resting [Ca2+]i and [Na+]i levels were observed in the same temporal window (DIV4-5). At DIV4, but not at DIV2, both extracellular [K+] ([K+]e) elevation (+5mM) and partial Na+,K+-ATPase (NKA) inhibition elicited [Na+]i and [Ca2+]i transients. These responses were blocked with KB-R7943 (1μM), a blocker of Na+-Ca2+ exchanger (NCX), indicating an involvement of NCX which operates in reverse mode. Treatment of OPCs with culture medium containing elevated [K+] (+5mM, 24h) or ouabain (500nM, 24h) increased resting [Ca2+]i and facilitated MBP synthesis. Blockade of NCX with KB-R7943 (1μM, 12h) reduced resting [Ca2+]i and decreased MBP synthesis. Similar to the results obtained in OPC cultures, OPCs in acute callosal slices demonstrated an increase in resting [Ca2+]i and [Na+]i levels during development. NCX blockade induced [Ca2+]i and [Na+]i responses in OPCs at P20-30 but not at P10. We conclude that local [Na+]i and/or membrane potential changes can modulate Ca2+ influx through NCX and in turn MBP synthesis. Thus neuronal activity-induced changes in [K+]e may via NCX and NKA modulate myelination.
Collapse
|
6
|
Cheli VT, Santiago González DA, Spreuer V, Handley V, Campagnoni AT, Paez PM. Golli Myelin Basic Proteins Modulate Voltage-Operated Ca(++) Influx and Development in Cortical and Hippocampal Neurons. Mol Neurobiol 2015; 53:5749-71. [PMID: 26497031 DOI: 10.1007/s12035-015-9499-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/19/2015] [Indexed: 12/14/2022]
Abstract
The golli proteins, products of the myelin basic protein gene, are widely expressed in oligodendrocyte progenitor cells and neurons during the postnatal development of the brain. While golli appears to be important for oligodendrocyte migration and differentiation, its function in neuronal development is completely unknown. We have found that golli proteins function as new and novel modulators of voltage-operated Ca(++) channels (VOCCs) in neurons. In vitro, golli knock-out (KO) neurons exhibit decreased Ca(++) influx after plasma membrane depolarization and a substantial maturational delay. Increased expression of golli proteins enhances L-type Ca(++) entry and processes outgrowth in cortical neurons, and pharmacological activation of L-type Ca(++) channels stimulates maturation and prevents cell death in golli-KO neurons. In situ, Ca(++) influx mediated by L-type VOCCs was significantly decreased in cortical and hippocampal neurons of the golli-KO brain. These Ca(++) alterations affect cortical and hippocampal development and the proliferation and survival of neural progenitor cells during the postnatal development of the golli-KO brain. The CA1/3 sections and the dentate gyrus of the hippocampus were reduced in the golli-KO mice as well as the density of dendrites in the somatosensory cortex. Furthermore, the golli-KO mice display abnormal behavior including deficits in episodic memory and reduced anxiety. Because of the expression of the golli proteins within neurons in learning and memory centers of the brain, this work has profound implication in neurodegenerative diseases and neurological disorders.
Collapse
Affiliation(s)
- V T Cheli
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA
| | - D A Santiago González
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA
| | - V Spreuer
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA
| | - V Handley
- Semel Institute for Neuroscience and Human Behavior, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Neuroscience Research Building, 635 Charles Young Drive, Los Angeles, CA, 90095, USA
| | - A T Campagnoni
- Semel Institute for Neuroscience and Human Behavior, Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, UCLA, Neuroscience Research Building, 635 Charles Young Drive, Los Angeles, CA, 90095, USA
| | - P M Paez
- Hunter James Kelly Research Institute, Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, SUNY, University at Buffalo, NYS Center of Excellence, 701 Ellicott St., Buffalo, NY, 14203, USA.
| |
Collapse
|
7
|
Siu CR, Balsor JL, Jones DG, Murphy KM. Classic and Golli Myelin Basic Protein have distinct developmental trajectories in human visual cortex. Front Neurosci 2015; 9:138. [PMID: 25964736 PMCID: PMC4408849 DOI: 10.3389/fnins.2015.00138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/02/2015] [Indexed: 01/03/2023] Open
Abstract
Traditionally, myelin is viewed as insulation around axons, however, more recent studies have shown it also plays an important role in plasticity, axonal metabolism, and neuroimmune signaling. Myelin is a complex multi-protein structure composed of hundreds of proteins, with Myelin Basic Protein (MBP) being the most studied. MBP has two families: Classic-MBP that is necessary for activity driven compaction of myelin around axons, and Golli-MBP that is found in neurons, oligodendrocytes, and T-cells. Furthermore, Golli-MBP has been called a “molecular link” between the nervous and immune systems. In visual cortex specifically, myelin proteins interact with immune processes to affect experience-dependent plasticity. We studied myelin in human visual cortex using Western blotting to quantify Classic- and Golli-MBP expression in post-mortem tissue samples ranging in age from 20 days to 80 years. We found that Classic- and Golli-MBP have different patterns of change across the lifespan. Classic-MBP gradually increases to 42 years and then declines into aging. Golli-MBP has early developmental changes that are coincident with milestones in visual system sensitive period, and gradually increases into aging. There are three stages in the balance between Classic- and Golli-MBP expression, with Golli-MBP dominating early, then shifting to Classic-MBP, and back to Golli-MBP in aging. Also Golli-MBP has a wave of high inter-individual variability during childhood. These results about cortical MBP expression are timely because they compliment recent advances in MRI techniques that produce high resolution maps of cortical myelin in normal and diseased brain. In addition, the unique pattern of Golli-MBP expression across the lifespan suggests that it supports high levels of neuroimmune interaction in cortical development and in aging.
Collapse
Affiliation(s)
- Caitlin R Siu
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | - Justin L Balsor
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada
| | | | - Kathryn M Murphy
- McMaster Integrative Neuroscience Discovery and Study Program, McMaster University Hamilton, ON, Canada ; Psychology, Neuroscience and Behaviour, McMaster University Hamilton, ON, Canada
| |
Collapse
|
8
|
Murcia-Belmonte V, Esteban PF, Martínez-Hernández J, Gruart A, Luján R, Delgado-García JM, de Castro F. Anosmin-1 over-expression regulates oligodendrocyte precursor cell proliferation, migration and myelin sheath thickness. Brain Struct Funct 2015; 221:1365-85. [PMID: 25662897 DOI: 10.1007/s00429-014-0977-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 12/22/2014] [Indexed: 12/11/2022]
Abstract
During development of the central nervous system, anosmin-1 (A1) works as a chemotropic cue contributing to axonal outgrowth and collateralization, as well as modulating the migration of different cell types, fibroblast growth factor receptor 1 (FGFR1) being the main receptor involved in all these events. To further understand the role of A1 during development, we have analysed the over-expression of human A1 in a transgenic mouse line. Compared with control mice during development and in early adulthood, A1 over-expressing transgenic mice showed an enhanced oligodendrocyte precursor cell (OPC) proliferation and a higher number of OPCs in the subventricular zone and in the corpus callosum (CC). The migratory capacity of OPCs from the transgenic mice is increased in vitro due to a higher basal activation of ERK1/2 mediated through FGFR1 and they also produced more myelin basic protein (MBP). In vivo, the over-expression of A1 resulted in an elevated number of mature oligodendrocytes with higher levels of MBP mRNA and protein, as well as increased levels of activation of the ERK1/2 proteins, while electron microscopy revealed thicker myelin sheaths around the axons of the CC in adulthood. Also in the mature CC, the nodes of Ranvier were significantly longer and the conduction velocity of the nerve impulse in vivo was significantly increased in the CC of A1 over-expressing transgenic mice. Altogether, these data confirmed the involvement of A1 in oligodendrogliogenesis and its relevance for myelination.
Collapse
Affiliation(s)
- Verónica Murcia-Belmonte
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca La Peraleda, s/n, 45071, Toledo, Spain.,Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Campus San Juan de Alicante, 03550, Alicante, Spain
| | - Pedro F Esteban
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca La Peraleda, s/n, 45071, Toledo, Spain
| | - José Martínez-Hernández
- Departamento de Ciencias Médicas, CRIB-Facultad de Medicina, Universidad de Castilla-La Mancha, C/Almansa 14, 02006, Albacete, Spain
| | - Agnès Gruart
- División de Neurociencias, Universidad Pablo de Olavide, Ctra. De Utrera, Km.1, 41013, Seville, Spain
| | - Rafael Luján
- Departamento de Ciencias Médicas, CRIB-Facultad de Medicina, Universidad de Castilla-La Mancha, C/Almansa 14, 02006, Albacete, Spain
| | - José María Delgado-García
- División de Neurociencias, Universidad Pablo de Olavide, Ctra. De Utrera, Km.1, 41013, Seville, Spain
| | - Fernando de Castro
- Grupo de Neurobiología del Desarrollo-GNDe, Hospital Nacional de Parapléjicos, Finca La Peraleda, s/n, 45071, Toledo, Spain.
| |
Collapse
|
9
|
Jaramillo-Tatis S, Bamm VV, Vassall KA, Harauz G. Over-expression in E. coli and purification of functional full-length murine small C-terminal domain phosphatase (SCP1, or Golli-interacting protein). Protein Expr Purif 2014; 101:106-14. [PMID: 24925644 DOI: 10.1016/j.pep.2014.05.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/26/2014] [Accepted: 05/31/2014] [Indexed: 01/13/2023]
Abstract
During myelination in the central nervous system, proteins arising from the gene in the oligodendrocyte lineage (golli) participate in diverse events in signal transduction and gene regulation. One of the interacting partners of the Golli-isoform BG21 was discovered by yeast-2-hybrid means and was denoted the Golli-interacting-protein (GIP). In subsequent in vitro studies of recombinant murine GIP, it was not possible to produce a full-length version of recombinant murine rmGIP in functional form under native conditions, primarily because of solubility issues, necessitating the study of a hexahistidine-tagged, truncated form ΔN-rmGIP. This protein is an acidic phosphatase belonging to the family of RNA-polymerase-2, small-subunit, C-terminal phosphatases (SCP1), and studies of the human ortholog hSCP1 have also been performed on truncated forms. Here, a new SUMO-expression and purification protocol has been developed for the preparation of a functional, full-length mSCP1/GIP (our nomenclature henceforth), with no additional purification tags. Both full-length mSCP1/GIP and the truncated murine form (now denoted ΔN-rmSCP1/GIP) had similar melting temperatures, indicating that the integrity of the catalytic core per se was minimally affected by the N-terminus. Characterization of mSCP1/GIP activity with the artificial substrate p-NPP (p-nitrophenylphosphate) yielded kinetic parameters comparable to those of ΔN-rmSCP1/GIP and the truncated human ortholog ΔN-hSCP1. Similarly, mSCP1/GIP dephosphorylated a more natural CTD-peptide substrate (but not protein kinase C-phosphorylated BG21) with comparable kinetics to ΔN-hSCP1. The successful production of an active, full-length mSCP1/GIP will enable future evaluation of the functional role of its N-terminus in protein-protein interactions (e.g., BG21) that regulate its phosphatase activity.
Collapse
Affiliation(s)
- Sergio Jaramillo-Tatis
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Kenrick A Vassall
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
10
|
Harauz G, Boggs JM. Myelin management by the 18.5-kDa and 21.5-kDa classic myelin basic protein isoforms. J Neurochem 2013; 125:334-61. [PMID: 23398367 DOI: 10.1111/jnc.12195] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/15/2022]
Abstract
The classic myelin basic protein (MBP) splice isoforms range in nominal molecular mass from 14 to 21.5 kDa, and arise from the gene in the oligodendrocyte lineage (Golli) in maturing oligodendrocytes. The 18.5-kDa isoform that predominates in adult myelin adheres the cytosolic surfaces of oligodendrocyte membranes together, and forms a two-dimensional molecular sieve restricting protein diffusion into compact myelin. However, this protein has additional roles including cytoskeletal assembly and membrane extension, binding to SH3-domains, participation in Fyn-mediated signaling pathways, sequestration of phosphoinositides, and maintenance of calcium homeostasis. Of the diverse post-translational modifications of this isoform, phosphorylation is the most dynamic, and modulates 18.5-kDa MBP's protein-membrane and protein-protein interactions, indicative of a rich repertoire of functions. In developing and mature myelin, phosphorylation can result in microdomain or even nuclear targeting of the protein, supporting the conclusion that 18.5-kDa MBP has significant roles beyond membrane adhesion. The full-length, early-developmental 21.5-kDa splice isoform is predominantly karyophilic due to a non-traditional P-Y nuclear localization signal, with effects such as promotion of oligodendrocyte proliferation. We discuss in vitro and recent in vivo evidence for multifunctionality of these classic basic proteins of myelin, and argue for a systematic evaluation of the temporal and spatial distributions of these protein isoforms, and their modified variants, during oligodendrocyte differentiation.
Collapse
Affiliation(s)
- George Harauz
- Department of Molecular and Cellular Biology, Biophysics Interdepartmental Group and Collaborative Program in Neuroscience, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
11
|
The 21.5-kDa isoform of myelin basic protein has a non-traditional PY-nuclear-localization signal. Biochem Biophys Res Commun 2012; 422:670-5. [PMID: 22609403 DOI: 10.1016/j.bbrc.2012.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 05/09/2012] [Indexed: 12/16/2022]
Abstract
The predominant 18.5-kDa classic myelin basic protein (MBP) is mainly responsible for compaction of the myelin sheath in the central nervous system, but is multifunctional, having numerous interactions with Ca(2+)-calmodulin, actin, tubulin, and SH3-domains, and can tether these proteins to a lipid membrane in vitro. The full-length 21.5-kDa MBP isoform has an additional 26 residues encoded by exon-II of the classic gene, which causes it to be trafficked to the nucleus of oligodendrocytes (OLGs). We have performed site-directed mutagenesis of selected residues within this segment in red fluorescent protein (RFP)-tagged constructs, which were then transfected into the immortalized N19-OLG cell line to view protein localization using epifluorescence microscopy. We found that 21.5-kDa MBP contains two non-traditional PY-nuclear-localization signals, and that arginine and lysine residues within these motifs were involved in subcellular trafficking of this protein to the nucleus, where it may have functional roles during myelinogenesis.
Collapse
|
12
|
Paez PM, Cheli VT, Ghiani CA, Spreuer V, Handley VW, Campagnoni AT. Golli myelin basic proteins stimulate oligodendrocyte progenitor cell proliferation and differentiation in remyelinating adult mouse brain. Glia 2012; 60:1078-93. [PMID: 22447683 DOI: 10.1002/glia.22336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 03/09/2012] [Indexed: 02/06/2023]
Abstract
Golli myelin basic proteins are necessary for normal myelination, acting via voltage and store-dependent Ca(2+) entry at multiple steps during oligodendrocyte progenitor cell (OPC) development. To date nothing is known regarding the role of golli proteins in demyelination or remyelination events. Here the effects of golli ablation and overexpression in myelin loss and recovery were examined using the cuprizone (CPZ) model of demyelination/remyelination. We found severe demyelination in the corpus callosum (CC) of golli-overexpressing mice (JOE) during the CPZ treatment, which was accompanied by an increased number of reactive astrocytes and activation of microglia/macrophages. During demyelination of JOE brains, a significant increase in the number of proliferating OPCs was found in the CC as well as in the subventricular zone, and our data indicate that these progenitors matured and fully remyelinated the CC of JOE animals after CPZ withdrawal. In contrast, in the absence of golli (golli-KO mice) delayed myelin loss associated with a smaller immune response, and a lower number of OPCs was found in these mice during the CPZ treatment. Furthermore, incomplete remyelination was observed after CPZ removal in large areas of the CC of golli-KO mice, reflecting irregular recovery of the oligodendrocyte population and subsequent myelin sheath formation. Our findings demonstrate that golli proteins sensitize mature oligodendrocytes to CPZ-induced demyelination, while at the same time stimulate the proliferation/recruitment of OPCs during demyelination, resulting in accelerated remyelination.
Collapse
Affiliation(s)
- Pablo M Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-7332, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Smith GST, Homchaudhuri L, Boggs JM, Harauz G. Classic 18.5- and 21.5-kDa myelin basic protein isoforms associate with cytoskeletal and SH3-domain proteins in the immortalized N19-oligodendroglial cell line stimulated by phorbol ester and IGF-1. Neurochem Res 2012; 37:1277-95. [PMID: 22249765 DOI: 10.1007/s11064-011-0700-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 11/17/2011] [Accepted: 12/31/2011] [Indexed: 01/10/2023]
Abstract
The 18.5-kDa classic myelin basic protein (MBP) is an intrinsically disordered protein arising from the Golli (Genes of Oligodendrocyte Lineage) gene complex and is responsible for compaction of the myelin sheath in the central nervous system. This MBP splice isoform also has a plethora of post-translational modifications including phosphorylation, deimination, methylation, and deamidation, that reduce its overall net charge and alter its protein and lipid associations within oligodendrocytes (OLGs). It was originally thought that MBP was simply a structural component of myelin; however, additional investigations have demonstrated that MBP is multi-functional, having numerous protein-protein interactions with Ca²⁺-calmodulin, actin, tubulin, and proteins with SH3-domains, and it can tether these proteins to a lipid membrane in vitro. Here, we have examined cytoskeletal interactions of classic 18.5-kDa MBP, in vivo, using early developmental N19-OLGs transfected with fluorescently-tagged MBP, actin, tubulin, and zonula occludens 1 (ZO-1). We show that MBP redistributes to distinct 'membrane-ruffled' regions of the plasma membrane where it co-localizes with actin and tubulin, and with the SH3-domain-containing proteins cortactin and ZO-1, when stimulated with PMA, a potent activator of the protein kinase C pathway. Moreover, using phospho-specific antibody staining, we show an increase in phosphorylated Thr98 MBP (human sequence numbering) in membrane-ruffled OLGs. Previously, Thr98 phosphorylation of MBP has been shown to affect its conformation, interactions with other proteins, and tethering of other proteins to the membrane in vitro. Here, MBP and actin were also co-localized in new focal adhesion contacts induced by IGF-1 stimulation in cells grown on laminin-2. This study supports a role for classic MBP isoforms in cytoskeletal and other protein-protein interactions during membrane and cytoskeletal remodeling in OLGs.
Collapse
Affiliation(s)
- Graham S T Smith
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
14
|
Smith GS, De Avila M, Paez PM, Spreuer V, Wills MK, Jones N, Boggs JM, Harauz G. Proline substitutions and threonine pseudophosphorylation of the SH3 ligand of 18.5-kDa myelin basic protein decrease its affinity for the Fyn-SH3 domain and alter process development and protein localization in oligodendrocytes. J Neurosci Res 2012; 90:28-47. [PMID: 21887699 PMCID: PMC3527418 DOI: 10.1002/jnr.22733] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/28/2022]
Abstract
The developmentally regulated myelin basic proteins (MBPs), which arise from the golli (gene of oligodendrocyte lineage) complex, are highly positively charged, intrinsically disordered, multifunctional proteins having several alternatively spliced isoforms and posttranslational modifications, and they play key roles in myelin compaction. The classic 18.5-kDa MBP isoform has a proline-rich region comprising amino acids 92-99 (murine sequence -T(92)PRTPPPS(99)-) that contains a minimal SH3 ligand domain. We have previously shown that 18.5-kDa MBP binds to several SH3 domains, including that of Fyn, a member of the Src family of tyrosine kinases involved in a number of signaling pathways during CNS development. To determine the physiological role of this binding as well as the role of phosphorylation of Thr92 and Thr95, in the current study we have produced several MBP variants specifically targeting phosphorylation sites and key structural regions of MBP's SH3 ligand domain. Using isothermal titration calorimetry, we have demonstrated that, compared with the wild-type protein, these variants have lower affinity for the SH3 domain of Fyn. Moreover, overexpression of N-terminal-tagged GFP versions in immortalized oligodendroglial N19 and N20.1 cell cultures results in aberrant elongation of membrane processes and increased branching complexity and inhibits the ability of MBP to decrease Ca(2+) influx. Phosphorylation of Thr92 can also cause MBP to traffic to the nucleus, where it may participate in additional protein-protein interactions. Coexpression of MBP with a constitutively active form of Fyn kinase resulted in membrane process elaboration, a phenomenon that was abolished by point amino acid substitutions in MBP's SH3 ligand domain. These results suggest that MBP's SH3 ligand domain plays a key role in intracellular protein interactions in vivo and may be required for proper membrane elaboration of developing oligodendrocytes and, further, that phosphorylation of Thr92 and Thr95 can regulate this function.
Collapse
Affiliation(s)
- Graham S.T. Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Miguel De Avila
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Pablo M. Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Vilma Spreuer
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California
| | - Melanie K.B. Wills
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Nina Jones
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Joan M. Boggs
- Molecular Structure and Function, Hospital for Sick Children, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Paez PM, Fulton D, Spreuer V, Handley V, Campagnoni AT. Modulation of canonical transient receptor potential channel 1 in the proliferation of oligodendrocyte precursor cells by the golli products of the myelin basic protein gene. J Neurosci 2011; 31:3625-37. [PMID: 21389218 PMCID: PMC3076512 DOI: 10.1523/jneurosci.4424-10.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Revised: 11/22/2010] [Accepted: 01/03/2011] [Indexed: 12/18/2022] Open
Abstract
Golli proteins, products of the myelin basic protein gene, function as a new type of modulator of intracellular Ca(2+) levels in oligodendrocyte progenitor cells (OPCs). Because of this, they affect a number of Ca(2+)-dependent functions, such as OPC migration and process extension. To examine further the Ca(2+) channels regulated by golli, we studied the store-operated Ca(2+) channels (SOCCs) in OPCs and acute brain slice preparations from golli knock-out and golli-overexpressing mice. Our results showed that pharmacologically induced Ca(2+) release from intracellular stores evoked a significant extracellular Ca(2+) entry after store depletion in OPCs. They also indicated that, under these pharmacological conditions, golli promoted activation of Ca(2+) influx by SOCCs in cultured OPCs as well as in tissue slices. The canonical transient receptor potential family of Ca(2+) channels (TRPCs) has been postulated to be SOCC subunits in oligodendrocytes. Using a small interfering RNA knockdown approach, we provided direct evidence that TRPC1 is involved in store-operated Ca(2+) influx in OPCs and that it is modulated by golli. Furthermore, our data indicated that golli is probably associated with TRPC1 at OPC processes. Additionally, we found that TRPC1 expression is essential for the effects of golli on OPC proliferation. In summary, our data indicate a key role for golli proteins in the regulation of TRPC-mediated Ca(2+) influx, a finding that has profound consequences for the regulation of multiple biological processes in OPCs. More important, we have shown that extracellular Ca(2+) uptake through TRPC1 is an essential component in the mechanism of OPC proliferation.
Collapse
Affiliation(s)
- Pablo M Paez
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California at Los Angeles, California 90095-7332, USA.
| | | | | | | | | |
Collapse
|
16
|
Fulton D, Paez PM, Fisher R, Handley V, Colwell CS, Campagnoni AT. Regulation of L-type Ca++ currents and process morphology in white matter oligodendrocyte precursor cells by golli-myelin proteins. Glia 2011; 58:1292-303. [PMID: 20607717 DOI: 10.1002/glia.21008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The golli myelin basic proteins are expressed in oligodendroglial precursor cells (OPCs) where they play a role in regulating Ca(2+) homeostasis. During depolarization, they influence process outgrowth and migration through their action on voltage-operated Ca(2+) channels (VOCCs). To identify ion channels that are modulated by golli, we examined the electrophysiological properties of VOCCs in OPCs in the white matter of golli knock-out and control mice. OPCs exhibited two distinct Ca(2+) channels, which were distinguished by their voltage dependence and pharmacological profiles and which exhibited many of the hallmarks of LVA/T-type and HVA/L-type Ca(2+) channels. The density of high-voltage-activated (HVA) currents was reduced in OPCs recorded in golli-KO tissue, while low-voltage-activated (LVA) currents remained unaltered in these cells. These data indicate that golli exerts an exclusive influence on L-type Ca(2+) channels in OPCs. Oligodendrocytes (OLs) also displayed LVA and HVA currents, although the density of these currents was much reduced at this developmental stage. These currents were not altered in golli-KO OLs showing the influence of golli on L-type Ca(2+) channels is restricted to a specific time-window during the course of oligodendroglial development. The actions of golli on OPC L-type Ca(2+) channels were accompanied by changes in process morphology, including a reduction in process complexity and the appearance of enlarged varicosities that decorated these cellular processes. These data on L-type Ca(2+) channels and process development provide in situ evidence for the influence of golli on VOCCs, and offer an explanation for the hypomyelination observed in the brains of golli-KO mice.
Collapse
Affiliation(s)
- Daniel Fulton
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, 90095, USA
| | | | | | | | | | | |
Collapse
|
17
|
Smith GST, Paez PM, Spreuer V, Campagnoni CW, Boggs JM, Campagnoni AT, Harauz G. Classical 18.5-and 21.5-kDa isoforms of myelin basic protein inhibit calcium influx into oligodendroglial cells, in contrast to golli isoforms. J Neurosci Res 2011; 89:467-80. [PMID: 21312222 DOI: 10.1002/jnr.22570] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Revised: 11/02/2010] [Accepted: 11/04/2010] [Indexed: 11/10/2022]
Abstract
The myelin basic protein (MBP) family arises from different transcription start sites of the golli (gene of oligodendrocyte lineage) complex, with further variety generated by differential splicing. The "classical" MBP isoforms are peripheral membrane proteins that facilitate compaction of the mature myelin sheath but also have multiple protein interactions. The early developmental golli isoforms have previously been shown to promote process extension and enhance Ca(2+) influx into primary and immortalized oligodendrocyte cell lines. Here, we have performed similar studies with the classical 18.5- and 21.5-kDa isoforms of MBP. In contrast to golli proteins, overexpression of classical MBP isoforms significantly reduces Ca(2+) influx in the oligodendrocyte cell line N19 as well as in primary cultures of oligodendroglial progenitor cells. Pharmacological experiments demonstrate that this effect is mediated by voltage-operated Ca(2+) channels (VOCCs) and not by ligand-gated Ca(2+) channels or Ca(2+) release from intracellular stores. The pseudo-deiminated 18.5-kDa and the full-length 21.5-kDa isoforms do not reduce Ca(2+) influx as much as the unmodified 18.5-kDa isoform. However, more efficient membrane localization (of overexpressed, pseudo-deiminated 18.5-kDa and 21.5-kDa isoforms of classical MBP containing the 21-nt 3'-untranslated region transit signal) further reduces the Ca(2+) response after plasma membrane depolarization, suggesting that binding of classical MBP isoforms to the plasma membrane is important for modulation of Ca(2+) homeostasis. Furthermore, we have found that the mature 18.5-kDa isoform expressed in oligodendrocytes colocalizes with VOCCs, particularly at the leading edge of extending membrane processes. In summary, our findings suggest a key role for classical MBP proteins in regulating voltage-gated Ca(2+) channels at the plasma membrane of oligodendroglial cells and thus also in regulation of multiple developmental stages in this cell lineage.
Collapse
Affiliation(s)
- Graham S T Smith
- Department of Molecular and Cellular Biology, and Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Growth defects in the dorsal pallium after genetically targeted ablation of principal preplate neurons and neuroblasts: a morphometric analysis. ASN Neuro 2010; 2:e00046. [PMID: 20957077 PMCID: PMC2949088 DOI: 10.1042/an20100022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/28/2010] [Accepted: 08/02/2010] [Indexed: 11/17/2022] Open
Abstract
The present study delineates the large-scale, organic responses of growth in the dorsal pallium to targeted genetic ablations of the principal PP (preplate) neurons of the neocortex. Ganciclovir treatment during prenatal development [from E11 (embryonic age 11) to E13] of mice selectively killed cells with shared S-phase vulnerability and targeted expression of a GPT [golli promoter transgene; GPT linked to HSV-TK (herpes simplex virus-thymidine kinase), τ-eGFP and lacZ reporters] localized in PP neurons and their intermediate progenitor neuroblasts. The volume, area and thickness of the pallium were measured in an E12-P4 (postnatal age 4) longitudinal study with comparisons between ablated (HSV-TK(+/0)) and control (HSV-TK(0/0)) littermates. The extent of ablations was also systematically varied, and the effect on physical growth was assessed in an E18 cross-sectional study. The morphological evidence obtained in the present study supports the conclusion that genetically targeted ablations delay the settlement of the principal PP neurons of the dorsal pallium. This leads to progressive and substantial reductions of growth, despite compensatory responses that rapidly replace the ablated cells. These growth defects originate from inductive cellular interactions in the proliferative matrix of the ventricular zone of the pallium, but are amplified by subsequent morphogenic and trophic cellular interactions. The defects persist during the course of prenatal and postnatal development to demonstrate a constrained dose-response relationship with the extent of specific killing of GPT neurons. The defects propagate simultaneously in both the horizontal and vertical cytoarchitectural dimensions of the developing pallium, an outcome that produces a localized shortfall of volume in the telencephalic vesicles.
Collapse
Key Words
- BrdU, bromodeoxyuridine
- CP/D, cortical plate/distal division
- CP/P, cortical plate/proximal division
- E11, embryonic age 11
- GPT, golli promoter transgene
- HSV-TK, herpes simplex virus-thymidine kinase
- IZ, intermediate zone
- MBP, myelin basic protein
- NA, numerical aperture
- P4, postnatal age 4
- PP, preplate
- Pα, probability of type I error
- SP, subplate
- SVZ, subventricular zone
- TUNEL, terminal deoxynucleotidyltransferase-mediated dUTP nick-end labelling
- VZ, ventricular zone
- VZ/SVZ, the combined VZ and SVZ
- X-gal, 5-bromo-4-chloro-3-indolyl-β-d-galactoside
- df, degrees of freedom
- forebrain growth
- morphogenesis
- neocortex
- pathogenesis
- preplate
- targeted ablation
Collapse
|
19
|
The multiple roles of myelin protein genes during the development of the oligodendrocyte. ASN Neuro 2010; 2:e00027. [PMID: 20017732 PMCID: PMC2814326 DOI: 10.1042/an20090051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 12/14/2009] [Accepted: 12/17/2009] [Indexed: 11/22/2022] Open
Abstract
It has become clear that the products of several of the earliest identified myelin protein genes perform functions that extend beyond the myelin sheath. Interestingly, these myelin proteins, which comprise proteolipid protein, 2′,3′-cyclic nucleotide 3′-phosphodiesterase and the classic and golli MBPs (myelin basic proteins), play important roles during different stages of oligodendroglial development. These non-myelin-related functions are varied and include roles in the regulation of process outgrowth, migration, RNA transport, oligodendrocyte survival and ion channel modulation. However, despite the wide variety of cellular functions performed by the different myelin genes, the route by which they achieve these many functions seems to converge upon a common mechanism involving Ca2+ regulation, cytoskeletal rearrangements and signal transduction. In the present review, the newly emerging functions of these myelin proteins will be described, and these will then be discussed in the context of their contribution to oligodendroglial development.
Collapse
|