1
|
Huang L, Li Z, Lv Y, Zhang X, Li Y, Li Y, Yu C. Unveiling disulfidptosis-related biomarkers and predicting drugs in Alzheimer's disease. Sci Rep 2024; 14:20185. [PMID: 39215110 PMCID: PMC11364544 DOI: 10.1038/s41598-024-70893-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is the predominant form of dementia, and disulfidptosis is the latest reported mode of cell death that impacts various disease processes. This study used bioinformatics to analyze genes associated with disulfidptosis in Alzheimer's disease comprehensively. Based on the public datasets, the differentially expressed genes associated with disulfidptosis were identified, and immune cell infiltration was investigated through correlation analysis. Subsequently, hub genes were determined by a randomforest model. A prediction model was constructed using logistic regression. In addition, the drug-target affinity was predicted by a graph neural network model, and the results were validated by molecular docking. Five hub genes (PPEF1, NEUROD6, VIP, NUPR1, and GEM) were identified. The gene set showed significant enrichment for AD-related pathways. The logistic regression model demonstrated an AUC of 0.952, with AUC values of 0.916 and 0.864 in validated datasets. The immune infiltration analysis revealed significant heterogeneity between the Alzheimer's disease and control groups. High-affinity drugs for hub genes were identified. Through our study, a disease prediction model was constructed using potential biomarkers, and drugs targeting the genes were predicted. These results contribute to further understanding of the molecular mechanisms underlying Alzheimer's disease.
Collapse
Affiliation(s)
- Lei Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhengtai Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | | | - Yifan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yingji Li
- ICE Bioscience Inc., Beijing, 100176, China.
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Abstract
The midbrain dopamine (mDA) system is composed of molecularly and functionally distinct neuron subtypes that mediate specific behaviours and are linked to various brain diseases. Considerable progress has been made in identifying mDA neuron subtypes, and recent work has begun to unveil how these neuronal subtypes develop and organize into functional brain structures. This progress is important for further understanding the disparate physiological functions of mDA neurons and their selective vulnerability in disease, and will ultimately accelerate therapy development. This Review discusses recent advances in our understanding of molecularly defined mDA neuron subtypes and their circuits, ranging from early developmental events, such as neuron migration and axon guidance, to their wiring and function, and future implications for therapeutic strategies.
Collapse
|
3
|
Sun J, Zhang Y, Yan L, Liu S, Wang W, Zhu Y, Wang W, Li S, He B, Wu L, Zhang L. Action of the Nrf2/ARE signaling pathway on oxidative stress in choroid plexus epithelial cells following lanthanum chloride treatment. J Inorg Biochem 2022; 231:111792. [DOI: 10.1016/j.jinorgbio.2022.111792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/01/2022]
|
4
|
Hernández-Aguirre LE, Fuentes-Sidas YI, Rivera-Rangel LR, Gutiérrez-Méndez N, Yepiz-Plascencia G, Chávez-Flores D, Zavala-Díaz de la Serna FJ, Peralta-Pérez MDR, García-Triana A. cDNA Characterization and Expression of Selenium-Dependent CqGPx3 Isoforms in the Crayfish Cherax quadricarinatus under High Temperature and Hypoxia. Genes (Basel) 2022; 13:179. [PMID: 35205224 PMCID: PMC8872551 DOI: 10.3390/genes13020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Glutathione peroxidase 3 (GPx3) is the only extracellular selenoprotein (Sel) that enzymatically reduces H2O2 to H2O and O2. Two GPx3 (CqGPx3) cDNAs were characterized from crayfish Cherax quadricarinatus. The nerve cord CqGPx3a isoform encodes for a preprotein containing an N-terminal signal peptide of 32 amino acid residues, with the mature Sel region of 192 residues and a dispensable phosphorylation domain of 36 residues. In contrast, the pereiopods CqGPx3b codes for a precursor protein with 19 residues in the N-terminal signal peptide, then the mature 184 amino acid residues protein and finally a Pro-rich peptide of 42 residues. CqGPx3 are expressed in cerebral ganglia, pereiopods and nerve cord. CqGPx3a is expressed mainly in cerebral ganglia, antennulae and nerve cord, while CqGPx3b was detected mainly in pereiopods. CqGPx3a expression increases with high temperature and hypoxia; meanwhile, CqGPx3b is not affected. We report the presence and differential expression of GPx3 isoforms in crustacean tissues in normal conditions and under stress for high temperature and hypoxia. The two isoforms are tissue specific and condition specific, which could indicate an important role of CqGPx3a in the central nervous system and CqGPx3b in exposed tissues, both involved in different responses to environmental stressors.
Collapse
Affiliation(s)
- Laura E. Hernández-Aguirre
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Yazmin I. Fuentes-Sidas
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Lizandro R. Rivera-Rangel
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Néstor Gutiérrez-Méndez
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Gloria Yepiz-Plascencia
- Research Center in Food & Development (CIAD), Gustavo Enrique Astiazarán Rosas Road, No 46, La Victoria Suburb, Hermosillo 83304, Sonora, Mexico;
| | - David Chávez-Flores
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Francisco J. Zavala-Díaz de la Serna
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - María del R. Peralta-Pérez
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| | - Antonio García-Triana
- Molecular Biology Laboratory, Chemical Sciences Faculty, Circuit # 1 New Universitarium Campus, Autonomous University of Chihuahua (UACH), Chihuahua 31125, Chihuahua, Mexico; (L.E.H.-A.); (Y.I.F.-S.); (L.R.R.-R.); (N.G.-M.); (D.C.-F.); (F.J.Z.-D.d.l.S.); (M.d.R.P.-P.)
| |
Collapse
|
5
|
Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021; 81:459-485. [PMID: 33843671 DOI: 10.3233/jad-201418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aβ-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.
Collapse
|
6
|
Li H, Li QQ, Hong Y. Global gene expression signatures in response to citrate-coated silver nanoparticles exposure. Toxicology 2021; 461:152898. [PMID: 34403730 DOI: 10.1016/j.tox.2021.152898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/04/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in medical and commercial products for their unique antibacterial functions. However, the impact of AgNPs on human neural development is not well understood. To investigate the effect of AgNPs on human neural development, various doses of 20 nm citrate-coated AgNP (AgSC) were administered to human embryonic stem cell derived neural progenitors during the neuronal differentiation. Immunofluorescence staining with neuronal progenitor markers SOX2 (sex determining region Y-box 2) and Nestin (VI intermediate filament protein) showed that AgSC inhibited rosette formation, neuronal progenitor proliferation, and neurite outgrowth. Furthermore, AgSC promoted astrocyte activation and neuronal apoptosis. These adverse effects can be partially recovered with ascorbic acid. A genome-wide transcriptome analysis of both AgSC treated and untreated samples indicated that the most up-graduated genes were a group of Metallothionein (1F, 1E, 2A) proteins, a metal-binding protein that plays an essential role in metal homeostasis, heavy metal detoxification, and cellular anti-oxidative defence. The most significantly down-regulated genes were neuronal differentiation 6 (NEUROD6) and fork head box G1 (FOXG1). GO analyse indicated that the regulation of cholesterol biosynthetic process, neuron differentiation, synapse organization and pattern specification, oliogenesis, and neuronal apoptosis were the most impacted biological processes. KEGG pathway analyse showed that the most significantly impacted pathways were C5 isoprenoid, axon guidance, Notch, WNT, RAS-MAPK signalling pathways, lysosome, and apoptosis. Our data suggests that AgSCs interfered with metal homeostasis and cholesterol biosynthesis which induced oxidative stress, inhibited neurogenesis, axon guidance, and promoted apoptosis. Supplementation with ascorbic acid could act as an antioxidant to prevent AgSC-mediated neurotoxicity.
Collapse
Affiliation(s)
- Hao Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766-1854, USA
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, 361102, China; Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, 91766-1854, USA.
| |
Collapse
|
7
|
Tutukova S, Tarabykin V, Hernandez-Miranda LR. The Role of Neurod Genes in Brain Development, Function, and Disease. Front Mol Neurosci 2021; 14:662774. [PMID: 34177462 PMCID: PMC8221396 DOI: 10.3389/fnmol.2021.662774] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/11/2021] [Indexed: 01/14/2023] Open
Abstract
Transcriptional regulation is essential for the correct functioning of cells during development and in postnatal life. The basic Helix-loop-Helix (bHLH) superfamily of transcription factors is well conserved throughout evolution and plays critical roles in tissue development and tissue maintenance. A subgroup of this family, called neural lineage bHLH factors, is critical in the development and function of the central nervous system. In this review, we will focus on the function of one subgroup of neural lineage bHLH factors, the Neurod family. The Neurod family has four members: Neurod1, Neurod2, Neurod4, and Neurod6. Available evidence shows that these four factors are key during the development of the cerebral cortex but also in other regions of the central nervous system, such as the cerebellum, the brainstem, and the spinal cord. We will also discuss recent reports that link the dysfunction of these transcription factors to neurological disorders in humans.
Collapse
Affiliation(s)
- Svetlana Tutukova
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| | - Victor Tarabykin
- Institute of Neuroscience, Lobachevsky University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| | - Luis R Hernandez-Miranda
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute for Cell- and Neurobiology, Berlin, Germany
| |
Collapse
|
8
|
Kramer DJ, Aisenberg EE, Kosillo P, Friedmann D, Stafford DA, Lee AYF, Luo L, Hockemeyer D, Ngai J, Bateup HS. Generation of a DAT-P2A-Flpo mouse line for intersectional genetic targeting of dopamine neuron subpopulations. Cell Rep 2021; 35:109123. [PMID: 33979604 PMCID: PMC8240967 DOI: 10.1016/j.celrep.2021.109123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic projections exert widespread influence over multiple brain regions and modulate various behaviors including movement, reward learning, and motivation. It is increasingly appreciated that dopamine neurons are heterogeneous in their gene expression, circuitry, physiology, and function. Current approaches to target dopamine neurons are largely based on single gene drivers, which either label all dopamine neurons or mark a subset but concurrently label non-dopaminergic neurons. Here, we establish a mouse line with Flpo recombinase expressed from the endogenous Slc6a3 (dopamine active transporter [DAT]) locus. DAT-P2A-Flpo mice can be used together with Cre-expressing mouse lines to efficiently and selectively label dopaminergic subpopulations using Cre/Flp-dependent intersectional strategies. We demonstrate the utility of this approach by generating DAT-P2A-Flpo;NEX-Cre mice that specifically label Neurod6-expressing dopamine neurons, which project to the nucleus accumbens medial shell. DAT-P2A-Flpo mice add to a growing toolbox of genetic resources that will help parse the diverse functions mediated by dopaminergic circuits. Kramer et al. generate a DAT-P2A-Flpo mouse line that enables intersectional genetic targeting of dopamine neuron subpopulations using Flp/Cre-dependent constructs. They show that ventral tegmental area dopamine neurons expressing Neurod6 give rise to the majority of dopaminergic projections to the nucleus accumbens medial shell and olfactory tubercle.
Collapse
Affiliation(s)
- Daniel J Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erin E Aisenberg
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Polina Kosillo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Drew Friedmann
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - David A Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Angus Yiu-Fai Lee
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Liqun Luo
- Howard Hughes Medical Institute and Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Helen S Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
9
|
Wu WD, Wang LH, Wei NX, Kong DH, Shao G, Zhang SR, Du YS. MicroRNA-15a inhibits inflammatory response and apoptosis after spinal cord injury via targeting STAT3. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2020; 23:9189-9198. [PMID: 31773669 DOI: 10.26355/eurrev_201911_19409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To clarify the function of microRNA-15a in the spinal cord injury (SCI) and its potential mechanism. PATIENTS AND METHODS The plasma levels of microRNA-15a and signal transducer and activator of transcription 3 (STAT3) in SCI patients were determined by quantitative Real Time-Polymerase Chain Reaction (qRT-PCR). The correlation between the expressions of microRNA-15a and STAT3 was analyzed. The in vitro SCI model was established in H2O2-induced C8-D1A and C8B4 cells, and in vivo SCI model was established in mice by hitting T10. The mRNA and protein expressions of tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) were detected in the SCI model. The apoptosis was examined by flow cytometry or TUNEL staining, respectively. The motor function of mouse hindlimb was evaluated using the Basso Beattie Bresnahan (BBB) standard scale. The target gene of microRNA-15a was predicted by bioinformatics and further verified by dual-luciferase reporter gene assay. The expression changes of target genes in C8-D1A and C8B4 cells with microRNA-15a overexpression or knockdown were examined by qRT-PCR and Western blot. Finally, rescue experiments were performed to evaluate the regulatory effects of microRNA-15a and STAT3 on cell apoptosis. RESULTS MicroRNA-15a was lowly expressed in plasma of SCI patients, while STAT3 was highly expressed with a negative correlation to microRNA-15a. Identically, microRNA-15a was lowly expressed in H2O2-induced C8-D1A and C8B4 cells, and STAT3 was highly expressed. MicroRNA-15a overexpression downregulated mRNA and protein levels of TNF-α and IL-6 in C8-D1A and C8B4 cells. BBB score was markedly low in SCI mice relative to controls. SCI mice injected with microRNA-15a mimics had higher BBB score than those injected with negative control. Besides, SCI mice with microRNA-15a overexpression had downregulated expressions of STAT3, TNF-α, and IL-6 in the impaired spinal cord tissues, as well as lower apoptotic rate. Through bioinformatics, we found binding sites between STAT3 and microRNA-15a. Their binding conditions were further verified by dual-luciferase reporter gene assay. Moreover, STAT3 expression was negatively regulated by microRNA-15a. Finally, rescue experiments showed that STAT3 overexpression could reverse the regulatory effects of microRNA-15a on expressions of TNF-α and IL-6, as well as apoptosis. CONCLUSIONS MicroRNA-15a expression decreases in the SCI model, which participates in the process of SCI by regulating inflammatory response and cell apoptosis via targeting STAT3.
Collapse
Affiliation(s)
- W-D Wu
- Anesthesiology Department, Danyang People's Hospital of Jiangsu Province & Danyang Hospital Affiliated to Nantong University, Danyang, Jiangsu, China.
| | | | | | | | | | | | | |
Collapse
|
10
|
Majolo F, Marinowic DR, Palmini ALF, DaCosta JC, Machado DC. Migration and Synaptic Aspects of Neurons Derived from Human Induced Pluripotent Stem Cells from Patients with Focal Cortical Dysplasia II. Neuroscience 2019; 408:81-90. [DOI: 10.1016/j.neuroscience.2019.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/30/2023]
|
11
|
Ren Y, Mu Y, Yue Y, Jin H, Tao K, Hou T. Neochamaejasmin A extracted from Stellera chamaejasme L. induces apoptosis involving mitochondrial dysfunction and oxidative stress in Sf9 cells. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 157:169-177. [PMID: 31153465 DOI: 10.1016/j.pestbp.2019.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/18/2019] [Accepted: 03/31/2019] [Indexed: 06/09/2023]
Abstract
To explore the toxicity mechanisms of neochamaejasmin A (NCA), extracted from Stellera chamaejasme L., we first evaluated its cytotoxicity on the Spodoptera frugiperda (Sf9) cell line. The results confirmed that NCA inhibited Sf9 cell survival in both a dose- and time-dependent manner. Then, intracellular biochemical assays showed that NCA induced apoptosis in Sf9 cells. Evidence of apoptosis was confirmed by morphological changes and the activation of caspases-3/9. We also observed that NCA induced apoptosis via mitochondrial-dependent intrinsic apoptotic pathway by upregulating cytochrome c and proapoptotic protein (Bax) and downregulating the mitochondrial membrane potential (MMP) and antiapoptotic protein (Bcl-2). Moreover, we found a dose-dependent increase in reactive oxygen species (ROS), accumulation of lipid peroxidation product and an inactivation of the antioxidant enzymes in treated cells. Additionally, the cleavage of PARP and G2/M arrest were also detected in Sf9 cells exposed to NCA. These findings provide critical information that NCA effectively induced apoptosis in Sf9 cells through mitochondrial pathways.
Collapse
Affiliation(s)
- Yuanhang Ren
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yangping Mu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ying Yue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hong Jin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Ke Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Taiping Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
12
|
Molecular Pathophysiology of Insulin Depletion, Mitochondrial Dysfunction, and Oxidative Stress in Alzheimer’s Disease Brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1128:27-44. [DOI: 10.1007/978-981-13-3540-2_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
Pinchi E, Frati A, Cantatore S, D'Errico S, Russa RL, Maiese A, Palmieri M, Pesce A, Viola RV, Frati P, Fineschi V. Acute Spinal Cord Injury: A Systematic Review Investigating miRNA Families Involved. Int J Mol Sci 2019; 20:E1841. [PMID: 31013946 PMCID: PMC6515063 DOI: 10.3390/ijms20081841] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/06/2019] [Accepted: 04/10/2019] [Indexed: 02/07/2023] Open
Abstract
Acute traumatic spinal cord injury (SCI) involves primary and secondary injury mechanisms. The primary mechanism is related to the initial traumatic damage caused by the damaging impact and this damage is irreversible. Secondary mechanisms, which begin as early as a few minutes after the initial trauma, include processes such as spinal cord ischemia, cellular excitotoxicity, ionic dysregulation, and free radical-mediated peroxidation. SCI is featured by different forms of injury, investigating the pathology and degree of clinical diagnosis and treatment strategies, the animal models that have allowed us to better understand this entity and, finally, the role of new diagnostic and prognostic tools such as miRNA could improve our ability to manage this pathological entity. Autopsy could benefit from improvements in miRNA research: the specificity and sensitivity of miRNAs could help physicians in determining the cause of death, besides the time of death.
Collapse
Affiliation(s)
- Enrica Pinchi
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
| | - Alessandro Frati
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | - Santina Cantatore
- Forensic Pathology Institute, University of Foggia, 71122 Foggia, Italy.
| | - Stefano D'Errico
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- Legal Medicine Division, Ospedale Sant'Andrea, 00189 Rome, Italy.
| | - Raffaele La Russa
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Aniello Maiese
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Mauro Palmieri
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | - Alessandro Pesce
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
- NESMOS Department ⁻ Neurosurgery Division, "Sapienza" University of Roma, 00189 Rome, Italy.
| | | | - Paola Frati
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| | - Vittorio Fineschi
- Department SAIMLAL, "Sapienza" University of Roma, 00161 Rome, Italy.
- IRCCS "Neuromed" ⁻ Neurosurgery Division, 86077 Pozzilli. (IS) Italy.
| |
Collapse
|
14
|
Ranjbar A, Soleimani Asl S, Firozian F, Heidary Dartoti H, Seyedabadi S, Taheri Azandariani M, Ganji M. Role of Cerium Oxide Nanoparticles in a Paraquat-Induced Model of Oxidative Stress: Emergence of Neuroprotective Results in the Brain. J Mol Neurosci 2018; 66:420-427. [DOI: 10.1007/s12031-018-1191-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/25/2018] [Indexed: 12/25/2022]
|
15
|
Luna E, Decker SC, Riddle DM, Caputo A, Zhang B, Cole T, Caswell C, Xie SX, Lee VMY, Luk KC. Differential α-synuclein expression contributes to selective vulnerability of hippocampal neuron subpopulations to fibril-induced toxicity. Acta Neuropathol 2018; 135:855-875. [PMID: 29502200 DOI: 10.1007/s00401-018-1829-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/21/2022]
Abstract
The accumulation of misfolded α-synuclein (aSyn) and neuron loss define several neurodegenerative disorders including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the precise relationship between pathology and neurotoxicity and why these processes disproportionately affect certain neuron subpopulations are poorly understood. We show here that Math2-expressing neurons in the hippocampal Cornu ammonis (CA), a region significantly affected by aSyn pathology in advanced PD and DLB, are highly susceptible to pathological seeding with pre-formed fibrils (PFFs), in contrast to dentate gyrus neurons, which are relatively spared. Math2+ neurons also exhibited more rapid and severe cell loss in both in vitro and in vivo models of synucleinopathy. Toxicity resulting from PFF exposure was dependent on endogenous aSyn and could be attenuated by N-acetyl-cysteine through a glutathione-dependent process. Moreover, aSyn expression levels strongly correlate with relative vulnerability among hippocampal neuron subtypes of which Math2+ neurons contained the highest amount. Consistent with this, antisense oligonucleotide (ASO)-mediated knockdown of aSyn reduced the neuronal pathology in a time-dependent manner. However, significant neuroprotection was observed only with early ASO intervention and a substantial reduction of aSyn pathology, indicating toxicity occurs after a critical threshold of pathological burden is exceeded in vulnerable neurons. Together, our findings reveal considerable heterogeneity in endogenous aSyn levels among hippocampal neurons and suggest that this may contribute to the selective vulnerability observed in the context of synucleinopathies.
Collapse
Affiliation(s)
- Esteban Luna
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Samantha C Decker
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Dawn M Riddle
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Anna Caputo
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Bin Zhang
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Tracy Cole
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Carrie Caswell
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Sharon X Xie
- Department of Biostatistics and Epidemiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104-4283, USA
| | - Virginia M Y Lee
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, 19104-4283, USA.
| |
Collapse
|
16
|
Hain EG, Sparenberg M, Rasińska J, Klein C, Akyüz L, Steiner B. Indomethacin promotes survival of new neurons in the adult murine hippocampus accompanied by anti-inflammatory effects following MPTP-induced dopamine depletion. J Neuroinflammation 2018; 15:162. [PMID: 29803225 PMCID: PMC5970532 DOI: 10.1186/s12974-018-1179-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 04/25/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by dopaminergic cell loss and inflammation in the substantia nigra (SN) leading to motor deficits but also to hippocampus-associated non-motor symptoms such as spatial learning and memory deficits. The cognitive decline is correlated with impaired adult hippocampal neurogenesis resulting from dopamine deficit and inflammation, represented in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) mouse model of PD. In the inflammatory tissue, cyclooxygenase (COX) is upregulated leading to an ongoing inflammatory process such as prostaglandin-mediated increased cytokine levels. Therefore, inhibition of COX by indomethacin may prevent the inflammatory response and the impairment of adult hippocampal neurogenesis. METHODS Wildtype C57Bl/6 and transgenic Nestin-GFP mice were treated with MPTP followed by short-term or long-term indomethacin treatment. Then, aspects of inflammation and neurogenesis were evaluated by cell counts using immunofluorescence and immunohistochemical stainings in the SN and dentate gyrus (DG). Furthermore, hippocampal mRNA expression of neurogenesis-related genes of the Notch, Wnt, and sonic hedgehog signaling pathways and neurogenic factors were assessed, and protein levels of serum cytokines were measured. RESULTS Indomethacin restored the reduction of the survival rate of new mature neurons and reduced the amount of amoeboid CD68+ cells in the DG after MPTP treatment. Indomethacin downregulated genes of the Wnt and Notch signaling pathways and increased neuroD6 expression. In the SN, indomethacin reduced the pro-inflammatory cellular response without reversing dopaminergic cell loss. CONCLUSION Indomethacin has a pro-neurogenic and thereby restorative effect and an anti-inflammatory effect on the cellular level in the DG following MPTP treatment. Therefore, COX inhibitors such as indomethacin may represent a therapeutic option to restore adult neurogenesis in PD.
Collapse
Affiliation(s)
- Elisabeth G Hain
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany.
| | - Maria Sparenberg
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Justyna Rasińska
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Charlotte Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| | - Levent Akyüz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin, and Berlin Institute of Health, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Augustenburger Platz 1, 13353, Berlin, Germany
| | - Barbara Steiner
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
17
|
Kramer DJ, Risso D, Kosillo P, Ngai J, Bateup HS. Combinatorial Expression of Grp and Neurod6 Defines Dopamine Neuron Populations with Distinct Projection Patterns and Disease Vulnerability. eNeuro 2018; 5:ENEURO.0152-18.2018. [PMID: 30135866 PMCID: PMC6104179 DOI: 10.1523/eneuro.0152-18.2018] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/14/2018] [Indexed: 12/15/2022] Open
Abstract
Midbrain dopamine neurons project to numerous targets throughout the brain to modulate various behaviors and brain states. Within this small population of neurons exists significant heterogeneity based on physiology, circuitry, and disease susceptibility. Recent studies have shown that dopamine neurons can be subdivided based on gene expression; however, the extent to which genetic markers represent functionally relevant dopaminergic subpopulations has not been fully explored. Here we performed single-cell RNA-sequencing of mouse dopamine neurons and validated studies showing that Neurod6 and Grp are selective markers for dopaminergic subpopulations. Using a combination of multiplex fluorescent in situ hybridization, retrograde labeling, and electrophysiology in mice of both sexes, we defined the anatomy, projection targets, physiological properties, and disease vulnerability of dopamine neurons based on Grp and/or Neurod6 expression. We found that the combinatorial expression of Grp and Neurod6 defines dopaminergic subpopulations with unique features. Grp+/Neurod6+ dopamine neurons reside in the ventromedial VTA, send projections to the medial shell of the nucleus accumbens, and have noncanonical physiological properties. Grp+/Neurod6- dopamine neurons are found in the VTA as well as in the ventromedial portion of the SNc, where they project selectively to the dorsomedial striatum. Grp-/Neurod6+ dopamine neurons represent a smaller VTA subpopulation, which is preferentially spared in a 6-OHDA model of Parkinson's disease. Together, our work provides detailed characterization of Neurod6 and Grp expression in the midbrain and generates new insights into how these markers define functionally relevant dopaminergic subpopulations.
Collapse
Affiliation(s)
- Daniel J. Kramer
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Davide Risso
- Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, NY 10065
| | - Polina Kosillo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - John Ngai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Helen S. Bateup
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
18
|
Maternal high-salt diet alters redox state and mitochondrial function in newborn rat offspring's brain. Br J Nutr 2018; 119:1003-1011. [PMID: 29502538 DOI: 10.1017/s0007114518000235] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Excessive salt intake is a common feature of Western dietary patterns, and has been associated with important metabolic changes including cerebral redox state imbalance. Considering that little is known about the effect on progeny of excessive salt intake during pregnancy, the present study investigated the effect of a high-salt diet during pregnancy and lactation on mitochondrial parameters and the redox state of the brains of resulting offspring. Adult female Wistar rats were divided into two dietary groups (n 20 rats/group): control standard chow (0·675 % NaCl) or high-salt chow (7·2 % NaCl), received throughout pregnancy and for 7 d after delivery. On postnatal day 7, the pups were euthanised and their cerebellum, hypothalamus, hippocampus, prefrontal and parietal cortices were dissected. Maternal high-salt diet reduced cerebellar mitochondrial mass and membrane potential, promoted an increase in reactive oxygen species allied to superoxide dismutase activation and decreased offspring cerebellar nitric oxide levels. A significant increase in hypothalamic nitric oxide levels and mitochondrial superoxide in the hippocampus and prefrontal cortex was observed in the maternal high-salt group. Antioxidant enzymes were differentially modulated by oxidant increases in each brain area studied. Taken together, our results suggest that a maternal high-salt diet during pregnancy and lactation programmes the brain metabolism of offspring, favouring impaired mitochondrial function and promoting an oxidative environment; this highlights the adverse effect of high-salt intake in the health state of the offspring.
Collapse
|
19
|
Epigenetic modifiers promote mitochondrial biogenesis and oxidative metabolism leading to enhanced differentiation of neuroprogenitor cells. Cell Death Dis 2018; 9:360. [PMID: 29500414 PMCID: PMC5834638 DOI: 10.1038/s41419-018-0396-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 01/07/2023]
Abstract
During neural development, epigenetic modulation of chromatin acetylation is part of a dynamic, sequential and critical process to steer the fate of multipotent neural progenitors toward a specific lineage. Pan-HDAC inhibitors (HDCis) trigger neuronal differentiation by generating an “acetylation” signature and promoting the expression of neurogenic bHLH transcription factors. Our studies and others have revealed a link between neuronal differentiation and increase of mitochondrial mass. However, the neuronal regulation of mitochondrial biogenesis has remained largely unexplored. Here, we show that the HDACi, sodium butyrate (NaBt), promotes mitochondrial biogenesis via the NRF-1/Tfam axis in embryonic hippocampal progenitor cells and neuroprogenitor-like PC12-NeuroD6 cells, thereby enhancing their neuronal differentiation competency. Increased mitochondrial DNA replication by several pan-HDACis indicates a common mechanism by which they regulate mitochondrial biogenesis. NaBt also induces coordinates mitochondrial ultrastructural changes and enhanced OXPHOS metabolism, thereby increasing key mitochondrial bioenergetics parameters in neural progenitor cells. NaBt also endows the neuronal cells with increased mitochondrial spare capacity to confer resistance to oxidative stress associated with neuronal differentiation. We demonstrate that mitochondrial biogenesis is under HDAC-mediated epigenetic regulation, the timing of which is consistent with its integrative role during neuronal differentiation. Thus, our findings add a new facet to our mechanistic understanding of how pan-HDACis induce differentiation of neuronal progenitor cells. Our results reveal the concept that epigenetic modulation of the mitochondrial pool prior to neurotrophic signaling dictates the efficiency of initiation of neuronal differentiation during the transition from progenitor to differentiating neuronal cells. The histone acetyltransferase CREB-binding protein plays a key role in regulating the mitochondrial biomass. By ChIP-seq analysis, we show that NaBt confers an H3K27ac epigenetic signature in several interconnected nodes of nuclear genes vital for neuronal differentiation and mitochondrial reprogramming. Collectively, our study reports a novel developmental epigenetic layer that couples mitochondrial biogenesis to neuronal differentiation.
Collapse
|
20
|
Schmitz J, Kumsta R, Moser D, Güntürkün O, Ocklenburg S. DNA methylation in candidate genes for handedness predicts handedness direction. Laterality 2017; 23:441-461. [DOI: 10.1080/1357650x.2017.1377726] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Judith Schmitz
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| | - Robert Kumsta
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Dirk Moser
- Genetic Psychology, Department of Psychology, Ruhr University, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Department of Psychology, Ruhr University, Bochum, Germany
| |
Collapse
|
21
|
Gascón S, Masserdotti G, Russo GL, Götz M. Direct Neuronal Reprogramming: Achievements, Hurdles, and New Roads to Success. Cell Stem Cell 2017; 21:18-34. [DOI: 10.1016/j.stem.2017.06.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Richetin K, Moulis M, Millet A, Arràzola MS, Andraini T, Hua J, Davezac N, Roybon L, Belenguer P, Miquel MC, Rampon C. Amplifying mitochondrial function rescues adult neurogenesis in a mouse model of Alzheimer's disease. Neurobiol Dis 2017; 102:113-124. [PMID: 28286181 DOI: 10.1016/j.nbd.2017.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 03/03/2017] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
Adult hippocampal neurogenesis is strongly impaired in Alzheimer's disease (AD). In several mouse models of AD, it was shown that adult-born neurons exhibit reduced survival and altered synaptic integration due to a severe lack of dendritic spines. In the present work, using the APPxPS1 mouse model of AD, we reveal that this reduced number of spines is concomitant of a marked deficit in their neuronal mitochondrial content. Remarkably, we show that targeting the overexpression of the pro-neural transcription factor Neurod1 into APPxPS1 adult-born neurons restores not only their dendritic spine density, but also their mitochondrial content and the proportion of spines associated with mitochondria. Using primary neurons, a bona fide model of neuronal maturation, we identified that increases of mitochondrial respiration accompany the stimulating effect of Neurod1 overexpression on dendritic growth and spine formation. Reciprocally, pharmacologically impairing mitochondria prevented Neurod1-dependent trophic effects. Thus, since overexpression of Neurod1 into new neurons of APPxPS1 mice rescues spatial memory, our present data suggest that manipulating the mitochondrial system of adult-born hippocampal neurons provides neuronal plasticity to the AD brain. These findings open new avenues for far-reaching therapeutic implications towards neurodegenerative diseases associated with cognitive impairment.
Collapse
Affiliation(s)
- Kevin Richetin
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Manon Moulis
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Aurélie Millet
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Macarena S Arràzola
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Trinovita Andraini
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France; Department of Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Jennifer Hua
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Noélie Davezac
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Laurent Roybon
- Stem Cell Laboratory for CNS Diseases Modeling, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund Stem Cell Center and MultiPark, Lund University, BMC A10, 221 84 Lund, Sweden
| | - Pascale Belenguer
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Marie-Christine Miquel
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
23
|
Wang S, Zhang C, Niyazi S, Zheng L, Li J, Zhang W, Xu M, Rong R, Yang C, Zhu T. A novel cytoprotective peptide protects mesenchymal stem cells against mitochondrial dysfunction and apoptosis induced by starvation via Nrf2/Sirt3/FoxO3a pathway. J Transl Med 2017; 15:33. [PMID: 28202079 PMCID: PMC5309997 DOI: 10.1186/s12967-017-1144-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
Background Mesenchymal stem cell (MSC) has been widely explored in the past decade as a cell-based treatment for various diseases. However, poor survival of adaptively transferred MSCs limits their clinical therapeutic potentials, which is largely ascribed to the nutrient starvation. In this study, we determined whether a novel kidney protective peptide CHBP could protect MSCs against starvation and invested the underlying mechanisms. Methods MSCs were subjected to serum deprivation and CHBP of graded concentrations was administered. Cell viability and apoptosis were detected by CCK-8, Annexin V/PI assay and Hoechst staining. ROS generation, mitochondrial membrane potential indicated by JC-1 and mitochondrial mass were measured by flow cytometry. The location of cytochrome c within cells was observed under fluorescence microscopy. Expressions of Nrf2, Sirt3, and FoxO3a were analyzed by western blot. In addition, preconditioning MSCs with CHBP was applied to test the possible protection against starvation. Finally, the effect of CHBP on the differentiation and self-renewal capacity of MSCs was also examined. Results CHBP improved cell viability and suppressed apoptosis in a dose dependent manner. Starvation resulted in the mitochondrial dysfunction and treatment of CHBP could alleviate mitochondrial stress by diminishing oxidative injury of ROS, restoring mitochondrial membrane potential and maintaining mitochondrial membrane integrity. Importantly, Nrf2/Sirt3/FoxO3a pathway was activated by CHBP and Sirt3 knockdown partially abolished the protection of CHBP. Moreover, MSCs pretreated with CHBP were more resistant to starvation. Under normal condition, CHBP exerted little effects on the differential and self-renewal capacity of MSCs. Conclusions The present study demonstrated the efficient protection of CHBP upon MSCs against starvation-induced mitochondrial dysfunction and apoptosis and indicated possible involvement of Nrf2/Sirt3/FoxO3a pathway in the protective effect.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Chao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Sidikejiang Niyazi
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
Yang M, Wang B, Gao J, Zhang Y, Xu W, Tao L. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells. CHEMOSPHERE 2017; 169:155-161. [PMID: 27870937 DOI: 10.1016/j.chemosphere.2016.11.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/22/2016] [Accepted: 11/12/2016] [Indexed: 06/06/2023]
Abstract
Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release.
Collapse
Affiliation(s)
- Mingjun Yang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Bo Wang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jufang Gao
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yang Zhang
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenping Xu
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Liming Tao
- Shanghai Key Lab of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
25
|
Survival of a Novel Subset of Midbrain Dopaminergic Neurons Projecting to the Lateral Septum Is Dependent on NeuroD Proteins. J Neurosci 2017; 37:2305-2316. [PMID: 28130357 PMCID: PMC5354344 DOI: 10.1523/jneurosci.2414-16.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/07/2016] [Accepted: 11/30/2016] [Indexed: 11/21/2022] Open
Abstract
Midbrain dopaminergic neurons are highly heterogeneous. They differ in their connectivity and firing patterns and, therefore, in their functional properties. The molecular underpinnings of this heterogeneity are largely unknown, and there is a paucity of markers that distinguish these functional subsets. In this paper, we report the identification and characterization of a novel subset of midbrain dopaminergic neurons located in the ventral tegmental area that expresses the basic helix-loop-helix transcription factor, Neurogenic Differentiation Factor-6 (NEUROD6). Retrograde fluorogold tracing experiments demonstrate that Neurod6+ midbrain dopaminergic neurons neurons project to two distinct septal regions: the dorsal and intermediate region of the lateral septum. Loss-of-function studies in mice demonstrate that Neurod6 and the closely related family member Neurod1 are both specifically required for the survival of this lateral-septum projecting neuronal subset during development. Our findings underscore the complex organization of midbrain dopaminergic neurons and provide an entry point for future studies of the functions of the Neurod6+ subset of midbrain dopaminergic neurons.SIGNIFICANCE STATEMENT Midbrain dopaminergic neurons regulate diverse brain functions, including voluntary movement and cognitive and emotive behaviors. These neurons are heterogeneous, and distinct subsets are thought to regulate different behaviors. However, we currently lack the means to identify and modify gene function in specific subsets of midbrain dopaminergic neurons. In this study, we identify the transcription factor NEUROD6 as a specific marker for a novel subset of midbrain dopaminergic neurons in the ventral midbrain that project to the lateral septum, and we reveal essential roles for Neurod1 and Neurod6 in the survival of these neurons during development. Our findings highlight the molecular and anatomical heterogeneity of midbrain dopaminergic neurons and contribute to a better understanding of this functionally complex group of neurons.
Collapse
|
26
|
Palomera-Ávalos V, Griñán-Ferré C, Izquierdo V, Camins A, Sanfeliu C, Pallàs M. Metabolic Stress Induces Cognitive Disturbances and Inflammation in Aged Mice: Protective Role of Resveratrol. Rejuvenation Res 2017; 20:202-217. [PMID: 27998210 DOI: 10.1089/rej.2016.1885] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Inflammation and oxidative stress (OS) are key points in age progression. Both processes impact negatively in cognition and in brain functions. Resveratrol (RV) has been postulated as a potent antioxidant natural compound, with rejuvenating properties. Inducing a metabolic stress by high-fat (HF) diet in aged C56/BL6 (24 months) led to cognitive disturbances compared with control age mated and with young mice. These changes were prevented by RV. Molecular determinations demonstrated a significant increase in some inflammatory parameters (TNF-α, Cxcl10, IL-1, IL-6, and Ccl3) in old mice, but slight changes in OS machinery. RV mainly induced the recovery of the metabolically stressed animals. The study of key markers involved in senescence and rejuvenation (mitochondrial biogenesis and Sirt1-AMPK-PGC1-α) demonstrated that RV is also able to modulate the changes in these cellular metabolic pathways. Moreover, changes of epigenetic marks (methylation and acetylation) that are depending on OS were demonstrated. On the whole, results showed the importance of integrative role of different cellular mechanisms in the deleterious effects of age in cognition and the beneficial role of RV. The work presented in this study showed a wide range of processes modified in old age and by metabolic stress, weighting the importance of each one and the role of RV as a possible strategy for fighting against.
Collapse
Affiliation(s)
- Veronica Palomera-Ávalos
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Christian Griñán-Ferré
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Vanesa Izquierdo
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Antonio Camins
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| | - Coral Sanfeliu
- 2 Institut d'Investigacions Biomèdiques de Barcelona (IIBB) , CSIC, and IDIBAPS, Barcelona, Spain
| | - Mercè Pallàs
- 1 Pharmacology Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Institute of Neuroscience, University of Barcelona , Barcelona, Spain
| |
Collapse
|
27
|
Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain. Mech Ageing Dev 2017; 161:95-104. [DOI: 10.1016/j.mad.2016.05.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/20/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023]
|
28
|
Cao Y, Yan Z, Zhou T, Wang G. SIRT1 Regulates Cognitive Performance and Ability of Learning and Memory in Diabetic and Nondiabetic Models. J Diabetes Res 2017; 2017:7121827. [PMID: 29164153 PMCID: PMC5661098 DOI: 10.1155/2017/7121827] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/08/2017] [Indexed: 12/15/2022] Open
Abstract
Type 2 diabetes mellitus is a complex age-related metabolic disease. Cognitive dysfunction and learning and memory deficits are main characteristics of age-related metabolic diseases in the central nervous system. The underlying mechanisms contributing to cognitive decline are complex, especially cognitive dysfunction associated with type 2 diabetes mellitus. SIRT1, as one of the modulators in insulin resistance, is indispensable for learning and memory. In the present study, deacetylation, oxidative stress, mitochondrial dysfunction, inflammation, microRNA, and tau phosphorylation are considered in the context of mechanism and significance of SIRT1 in learning and memory in diabetic and nondiabetic murine models. In addition, future research directions in this field are discussed, including therapeutic potential of its activator, resveratrol, and application of other compounds in cognitive improvement. Our findings suggest that SIRT1 might be a potential therapeutic target for the treatment of cognitive impairment induced by type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yue Cao
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zi Yan
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Tong Zhou
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Guixia Wang
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
29
|
Almeida AS, Vieira HLA. Role of Cell Metabolism and Mitochondrial Function During Adult Neurogenesis. Neurochem Res 2016; 42:1787-1794. [DOI: 10.1007/s11064-016-2150-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 12/15/2022]
|
30
|
Uittenbogaard M, Chiaramello A. Novel subcellular localization of the DNA helicase Twinkle at the kinetochore complex during mitosis in neuronal-like progenitor cells. Histochem Cell Biol 2015; 145:275-86. [PMID: 26678504 DOI: 10.1007/s00418-015-1388-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
Abstract
During mitosis, the kinetochore, a multi-protein structure located on the centromeric DNA, is responsible for proper segregation of the replicated genome. More specifically, the outer kinetochore complex component Ndc80/Hec1 plays a critical role in regulating microtubule attachment to the spindle for accurate sister chromatid segregation. In addition, DNA helicases play a key contribution for precise and complete disjunction of sister chromatids held together through double-stranded DNA catenations until anaphase. In this study, we focused our attention on the nuclear-encoded DNA helicase Twinkle, which functions as an essential helicase for replication of mitochondrial DNA. It regulates the copy number of the mitochondrial genome, while maintaining its integrity, two processes essential for mitochondrial biogenesis and bioenergetic functions. Although the majority of the Twinkle protein is imported into mitochondria, a small fraction remains cytosolic with an unknown function. In this study, we report a novel expression pattern of Twinkle during chromosomal segregation at distinct mitotic phases. By immunofluorescence microscopy, we found that Twinkle protein colocalizes with the outer kinetochore protein HEC1 as early as prophase until late anaphase in neuronal-like progenitor cells. Thus, our collective results have revealed an unexpected cell cycle-regulated expression pattern of the DNA helicase Twinkle, known for its role in mtDNA replication. Therefore, its recruitment to the kinetochore suggests an evolutionary conserved function for both mitochondrial and nuclear genomic inheritance.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, 2300 I Street N.W., Washington, DC, 20037, USA
| | - Anne Chiaramello
- Department of Anatomy and Regenerative Biology, George Washington University Medical Center, 2300 I Street N.W., Washington, DC, 20037, USA.
| |
Collapse
|
31
|
Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1α signaling pathway. Neurotoxicology 2015; 51:116-37. [DOI: 10.1016/j.neuro.2015.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 09/03/2015] [Accepted: 10/05/2015] [Indexed: 01/13/2023]
|
32
|
Valek L, Kanngießer M, Häussler A, Agarwal N, Lillig CH, Tegeder I. Redoxins in peripheral neurons after sciatic nerve injury. Free Radic Biol Med 2015; 89:581-92. [PMID: 26456799 DOI: 10.1016/j.freeradbiomed.2015.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 01/24/2023]
Abstract
Peripheral nerve injury causes redox stress in injured neurons by upregulations of pro-oxidative enzymes, but most neurons survive suggesting an activation of endogenous defense against the imbalance. As potential candidates we assessed thioredoxin-fold proteins, called redoxins, which maintain redox homeostasis by reduction of hydrogen peroxide or protein dithiol-disulfide exchange. Using a histologic approach, we show that the peroxiredoxins (Prdx1-6), the glutaredoxins (Glrx1, 2, 3 and 5), thioredoxin (Txn1 and 2) and their reductases (Txnrd1 and 2) are expressed in neurons, glial and/or vascular cells of the dorsal root ganglia (DRGs) and in the spinal cord. They show distinct cellular and subcellular locations in agreement with the GO terms for "cellular component". The expression and localization of Glrx, Txn and Txnrd proteins was not affected by sciatic nerve injury but peroxiredoxins were upregulated in the DRGs, Prdx1 and Prdx6 mainly in non-neuronal cells and Prdx4 and Prdx5 in DRG neurons, the latter associated with an increase of respective mRNAs and protein accumulation in peripheral and/or central fibers. The upregulation of Prdx4 and Prdx5 in DRG neurons was reduced in mice with a cre-loxP mediated deficiency of hypoxia inducible factor 1 alpha (HIF1α) in these neurons. The results identify Prdx4 and Prdx5 as endogenous HIF1α-dependent, transcriptionally regulated defenders of nerve injury evoked redox stress that may be important for neuronal survival and regeneration.
Collapse
Affiliation(s)
- Lucie Valek
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Maike Kanngießer
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Annett Häussler
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany
| | - Nitin Agarwal
- Institute of Pharmacology, Medical Faculty, University of Heidelberg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, Medical Faculty of the Ernst-Moritz Arndt-University, Greifswald, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Goethe-University Hospital, Frankfurt, Germany.
| |
Collapse
|
33
|
Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder. Mol Psychiatry 2015; 20:1397-405. [PMID: 25560755 PMCID: PMC4492919 DOI: 10.1038/mp.2014.171] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/14/2014] [Accepted: 11/12/2014] [Indexed: 12/12/2022]
Abstract
Schizophrenia is associated with alterations in working memory that reflect dysfunction of dorsolateral prefrontal cortex (DLPFC) circuitry. Working memory depends on the activity of excitatory pyramidal cells in DLPFC layer 3 and, to a lesser extent, in layer 5. Although many studies have profiled gene expression in DLPFC gray matter in schizophrenia, little is known about cell-type-specific transcript expression in these two populations of pyramidal cells. We hypothesized that interrogating gene expression, specifically in DLPFC layer 3 or 5 pyramidal cells, would reveal new and/or more robust schizophrenia-associated differences that would provide new insights into the nature of pyramidal cell dysfunction in the illness. We also sought to determine the impact of other variables, such as a diagnosis of schizoaffective disorder or medication use at the time of death, on the patterns of gene expression in pyramidal neurons. Individual pyramidal cells in DLPFC layers 3 or 5 were captured by laser microdissection from 36 subjects with schizophrenia or schizoaffective disorder and matched normal comparison subjects. The mRNA from cell collections was subjected to transcriptome profiling by microarray followed by quantitative PCR validation. Expression of genes involved in mitochondrial (MT) or ubiquitin-proteasome system (UPS) functions were markedly downregulated in the patient group (P-values for MT-related and UPS-related pathways were <10(-7) and <10(-5), respectively). MT-related gene alterations were more prominent in layer 3 pyramidal cells, whereas UPS-related gene alterations were more prominent in layer 5 pyramidal cells. Many of these alterations were not present, or found to a lesser degree, in samples of DLPFC gray matter from the same subjects, suggesting that they are pyramidal cell specific. Furthermore, these findings principally reflected alterations in the schizophrenia subjects were not present or present to a lesser degree in the schizoaffective disorder subjects (diagnosis of schizoaffective disorder was the most significant covariate, P<10(-6)) and were not attributable to factors frequently comorbid with schizophrenia. In summary, our findings reveal expression deficits in MT- and UPS-related genes specific to layer 3 and/or layer 5 pyramidal cells in the DLPFC of schizophrenia subjects. These cell type-specific transcriptome signatures are not characteristic of schizoaffective disorder, providing a potential molecular-cellular basis of differences in clinical phenotypes.
Collapse
|
34
|
Becherel OJ, Sun J, Yeo AJ, Nayler S, Fogel BL, Gao F, Coppola G, Criscuolo C, De Michele G, Wolvetang E, Lavin MF. A new model to study neurodegeneration in ataxia oculomotor apraxia type 2. Hum Mol Genet 2015; 24:5759-74. [PMID: 26231220 PMCID: PMC4581605 DOI: 10.1093/hmg/ddv296] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/12/2015] [Accepted: 07/20/2015] [Indexed: 12/18/2022] Open
Abstract
Ataxia oculomotor apraxia type 2 (AOA2) is a rare autosomal recessive cerebellar ataxia. Recent evidence suggests that the protein defective in this syndrome, senataxin (SETX), functions in RNA processing to protect the integrity of the genome. To date, only patient-derived lymphoblastoid cells, fibroblasts and SETX knockdown cells were available to investigate AOA2. Recent disruption of the Setx gene in mice did not lead to neurobehavioral defects or neurodegeneration, making it difficult to study the etiology of AOA2. To develop a more relevant neuronal model to study neurodegeneration in AOA2, we derived neural progenitors from a patient with AOA2 and a control by induced pluripotent stem cell (iPSC) reprogramming of fibroblasts. AOA2 iPSC and neural progenitors exhibit increased levels of oxidative damage, DNA double-strand breaks, increased DNA damage-induced cell death and R-loop accumulation. Genome-wide expression and weighted gene co-expression network analysis in these neural progenitors identified both previously reported and novel affected genes and cellular pathways associated with senataxin dysfunction and the pathophysiology of AOA2, providing further insight into the role of senataxin in regulating gene expression on a genome-wide scale. These data show that iPSCs can be generated from patients with the autosomal recessive ataxia, AOA2, differentiated into neurons, and that both cell types recapitulate the AOA2 cellular phenotype. This represents a novel and appropriate model system to investigate neurodegeneration in this syndrome.
Collapse
Affiliation(s)
- Olivier J Becherel
- UQ Centre for Clinical Research (UQCCR), School of Chemistry and Molecular Biosciences and
| | - Jane Sun
- Australian Institute for Bioengineering and Nanotechnology
| | - Abrey J Yeo
- UQ Centre for Clinical Research (UQCCR), School of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | - Sam Nayler
- Australian Institute for Bioengineering and Nanotechnology
| | | | - Fuying Gao
- Department of Psychiatry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA and
| | - Giovanni Coppola
- Department of Neurology and Department of Psychiatry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA and
| | - Chiara Criscuolo
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | - Giuseppe De Michele
- Department of Neuroscience and Reproductive and Odontostomatological Sciences, Federico II University, Napoli, Italy
| | | | | |
Collapse
|
35
|
Fowler KD, Funt JM, Artyomov MN, Zeskind B, Kolitz SE, Towfic F. Leveraging existing data sets to generate new insights into Alzheimer's disease biology in specific patient subsets. Sci Rep 2015; 5:14324. [PMID: 26395074 PMCID: PMC4585817 DOI: 10.1038/srep14324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 08/24/2015] [Indexed: 02/07/2023] Open
Abstract
To generate new insights into the biology of Alzheimer’s Disease (AD), we developed methods to combine and reuse a wide variety of existing data sets in new ways. We first identified genes consistently associated with AD in each of four separate expression studies, and confirmed this result using a fifth study. We next developed algorithms to search hundreds of thousands of Gene Expression Omnibus (GEO) data sets, identifying a link between an AD-associated gene (NEUROD6) and gender. We therefore stratified patients by gender along with APOE4 status, and analyzed multiple SNP data sets to identify variants associated with AD. SNPs in either the region of NEUROD6 or SNAP25 were significantly associated with AD, in APOE4+ females and APOE4+ males, respectively. We developed algorithms to search Connectivity Map (CMAP) data for medicines that modulate AD-associated genes, identifying hypotheses that warrant further investigation for treating specific AD patient subsets. In contrast to other methods, this approach focused on integrating multiple gene expression datasets across platforms in order to achieve a robust intersection of disease-affected genes, and then leveraging these results in combination with genetic studies in order to prioritize potential genes for targeted therapy.
Collapse
Affiliation(s)
- Kevin D Fowler
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | - Jason M Funt
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | - Maxim N Artyomov
- Immuneering Corporation, Cambridge, Massachusetts, United States of America.,Department of Immunology and Pathology, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Benjamin Zeskind
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | - Sarah E Kolitz
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| | - Fadi Towfic
- Immuneering Corporation, Cambridge, Massachusetts, United States of America
| |
Collapse
|
36
|
Li X, Long J, He T, Belshaw R, Scott J. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer's disease. Sci Rep 2015. [PMID: 26202100 PMCID: PMC4511863 DOI: 10.1038/srep12393] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previous studies have evaluated gene expression in Alzheimer’s disease (AD) brains to identify mechanistic processes, but have been limited by the size of the datasets studied. Here we have implemented a novel meta-analysis approach to identify differentially expressed genes (DEGs) in published datasets comprising 450 late onset AD (LOAD) brains and 212 controls. We found 3124 DEGs, many of which were highly correlated with Braak stage and cerebral atrophy. Pathway Analysis revealed the most perturbed pathways to be (a) nitric oxide and reactive oxygen species in macrophages (NOROS), (b) NFkB and (c) mitochondrial dysfunction. NOROS was also up-regulated, and mitochondrial dysfunction down-regulated, in healthy ageing subjects. Upstream regulator analysis predicted the TLR4 ligands, STAT3 and NFKBIA, for activated pathways and RICTOR for mitochondrial genes. Protein-protein interaction network analysis emphasised the role of NFKB; identified a key interaction of CLU with complement; and linked TYROBP, TREM2 and DOK3 to modulation of LPS signalling through TLR4 and to phosphatidylinositol metabolism. We suggest that NEUROD6, ZCCHC17, PPEF1 and MANBAL are potentially implicated in LOAD, with predicted links to calcium signalling and protein mannosylation. Our study demonstrates a highly injurious combination of TLR4-mediated NFKB signalling, NOROS inflammatory pathway activation, and mitochondrial dysfunction in LOAD.
Collapse
Affiliation(s)
- Xinzhong Li
- Centre for Biostatistics, Bioinformatics and Biomarkers, Plymouth University, Plymouth UK
| | - Jintao Long
- Centre for Biostatistics, Bioinformatics and Biomarkers, Plymouth University, Plymouth UK
| | - Taigang He
- Institute of Cardiovascular and Cell Sciences, St. George University, London UK
| | - Robert Belshaw
- School of Biomedicine and Healthcare Sciences, Plymouth University, Plymouth UK
| | - James Scott
- National Heart and Lung Institute, Imperial College, London UK
| |
Collapse
|
37
|
Abstract
Mitochondria are organelles derived from primitive symbiosis between archeon ancestors and prokaryotic α-proteobacteria species, which lost the capacity of synthetizing most proteins encoded the bacterial DNA, along the evolutionary process of eukaryotes. Nowadays, mitochondria are constituted by small circular mitochondrial DNA of 16 kb, responsible for the control of several proteins, including polypeptides of the electron transport chain. Throughout evolution, these organelles acquired the capacity of regulating energy production and metabolism, thus becoming central modulators of cell fate. In fact, mitochondria are crucial for a variety of cellular processes, including adenosine triphosphate production by oxidative phosphorylation, intracellular Ca(2+) homeostasis, generation of reactive oxygen species, and also cellular specialization in a variety of tissues that ultimately relies on specific mitochondrial specialization and maturation. In this review, we discuss recent evidence extending the importance of mitochondrial function and energy metabolism to the context of neuronal development and adult neurogenesis.
Collapse
Affiliation(s)
- Joana M Xavier
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
38
|
Abstract
During the development of the central nervous system (CNS), neurons and glia are derived from multipotent neural stem cells (NSCs) undergoing self-renewal. NSC commitment and differentiation are tightly controlled by intrinsic and external regulatory mechanisms in space- and time-related fashions. SIRT1, a silent information regulator 2 (Sir2) ortholog, is expressed in several areas of the brain and has been reported to be involved in the self-renewal, multipotency, and fate determination of NSCs. Recent studies have highlighted the role of the deacetylase activity of SIRT1 in the determination of the final fate of NSCs. This review summarizes the roles of SIRT1 in the expansion and differentiation of NSCs, specification of neuronal subtypes and glial cells, and reprogramming of functional neurons from embryonic stem cells and fibroblasts. This review also discusses potential signaling pathways through which SIRT1 can exhibit versatile functions in NSCs to regulate the cell fate decisions of neurons and glia.
Collapse
|
39
|
Ouyang YB, Stary CM, White RE, Giffard RG. The use of microRNAs to modulate redox and immune response to stroke. Antioxid Redox Signal 2015; 22:187-202. [PMID: 24359188 PMCID: PMC4281877 DOI: 10.1089/ars.2013.5757] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Cerebral ischemia is a major cause of death and disability throughout the world, yet therapeutic options remain limited. The interplay between the cellular redox state and the immune response plays a critical role in determining the extent of neural cell injury after ischemia and reperfusion. Excessive amounts of reactive oxygen species (ROS) generated by mitochondria and other sources act both as triggers and effectors of inflammation. This review will focus on the interplay between these two mechanisms. RECENT ADVANCES MicroRNAs (miRNAs) are important post-transcriptional regulators that interact with multiple target messenger RNAs coordinately regulating target genes, including those involved in controlling mitochondrial function, redox state, and inflammatory pathways. This review will focus on the regulation of mitochondria, ROS, and inflammation by miRNAs in the chain of deleterious intra- and intercellular events that lead to brain cell death after cerebral ischemia. CRITICAL ISSUES Although pretreatment using miRNAs was effective in cerebral ischemia in rodents, testing treatment after the onset of ischemia is an essential next step in the development of acute stroke treatment. In addition, miRNA formulation and delivery into the CNS remain a challenge in the clinical translation of miRNA therapy. FUTURE DIRECTIONS Future research should focus on post-treatment and potential clinical use of miRNAs.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine , Stanford, California
| | | | | | | |
Collapse
|
40
|
RNA-Seq data mining: downregulation of NeuroD6 serves as a possible biomarker for alzheimer's disease brains. DISEASE MARKERS 2014; 2014:123165. [PMID: 25548427 PMCID: PMC4274867 DOI: 10.1155/2014/123165] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/17/2014] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide with no curative therapies currently available. Previously, global transcriptome analysis of AD brains by microarray failed to identify the set of consistently deregulated genes for biomarker development of AD. Therefore, the molecular pathogenesis of AD remains largely unknown. Whole RNA sequencing (RNA-Seq) is an innovative technology for the comprehensive transcriptome profiling on a genome-wide scale that overcomes several drawbacks of the microarray-based approach. To identify biomarker genes for AD, we analyzed a RNA-Seq dataset composed of the comprehensive transcriptome of autopsized AD brains derived from two independent cohorts. We identified the core set of 522 genes deregulated in AD brains shared between both, compared with normal control subjects. They included downregulation of neuronal differentiation 6 (NeuroD6), a basic helix-loop-helix (bHLH) transcription factor involved in neuronal development, differentiation, and survival in AD brains of both cohorts. We verified the results of RNA-Seq by analyzing three microarray datasets of AD brains different in brain regions, ethnicities, and microarray platforms. Thus, both RNA-Seq and microarray data analysis indicated consistent downregulation of NeuroD6 in AD brains. These results suggested that downregulation of NeuroD6 serves as a possible biomarker for AD brains.
Collapse
|
41
|
Ning B, Gao L, Liu RH, Liu Y, Zhang NS, Chen ZY. microRNAs in spinal cord injury: potential roles and therapeutic implications. Int J Biol Sci 2014; 10:997-1006. [PMID: 25210498 PMCID: PMC4159691 DOI: 10.7150/ijbs.9058] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 08/01/2014] [Indexed: 12/30/2022] Open
Abstract
microRNAs (miRNAs) are a novel class of small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. miRNAs can modulate gene expression and thus play important roles in diverse neurobiological processes, such as cell differentiation, growth, proliferation and neural activity, as well as the pathogenic processes of spinal cord injury (SCI) like inflammation, oxidation, demyelination and apoptosis. Results from animal studies have revealed the temporal alterations in the expression of a large set of miRNAs following SCI in adult rats, and the expressional changes in miRNAs following SCI is bidirectional (increase or decrease). In addition, several miRNAs have distinct roles in prognosis of SCI (protective, detrimental and varied). Taken together, the existing evidence suggests that abnormal miRNA expression following SCI contributes to the pathogenesis of SCI, and miRNAs may become potential targets for the therapy of SCI.
Collapse
Affiliation(s)
- Bin Ning
- 1. Department Spinal Surgery, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China; ; 2. Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Gao
- 3. School of Medicine, Shandong University, Jinan, Shandong, China
| | - Rong-Han Liu
- 1. Department Spinal Surgery, Jinan Central Hospital affiliated to Shandong University, Jinan, Shandong, China; ; 3. School of Medicine, Shandong University, Jinan, Shandong, China
| | - Yang Liu
- 3. School of Medicine, Shandong University, Jinan, Shandong, China
| | - Na-Sha Zhang
- 3. School of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhe-Yu Chen
- 2. Department of Neurobiology, Shandong Provincial Key Laboratory of Mental Disorders, School of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
42
|
Iruretagoyena JI, Davis W, Bird C, Olsen J, Radue R, Teo Broman A, Kendziorski C, Splinter BonDurant S, Golos T, Bird I, Shah D. Differential changes in gene expression in human brain during late first trimester and early second trimester of pregnancy. Prenat Diagn 2014; 34:431-7. [PMID: 24436137 DOI: 10.1002/pd.4322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study aimed to describe brain development during the first (B1) and second trimester (B3) in human fetuses. DESIGN Ten brains from 10 to 18 weeks of gestational age (GA) were collected, and the RNA was used for transcriptome analysis (Affymetrix 1.0 ST microarray chip). Differences in brain development within 10 to 18 GA were investigated by dividing the sample into 10 to 12 (B1), 13 to 15(B2) and 16 to 18(B3) weeks. A fold change of 2 or above, with a false discovery rate of 5%, was used as cut-off to determine differential gene expression for individual genes. Quantitative real-time PCR was used to confirm differences. Tests for enrichment procedures (using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes) were then used to identify functional groups of mRNA. RESULTS At 10 to 12 weeks, brains showed neuronal migration to be upregulated. From 10 to 18 weeks, brains showed genes coding for neuronal migration, differentiation and connectivity upregulated. ALDH1A1 and NPY genes, marker of spinal cord and striatum, were upregulated in B1 and B3 brains, respectively. Also, SLITRK6-HAS2 and CRYAB-PCDH18 genes for ear and eye sensory input were upregulated in B1. CONCLUSIONS For the first time, brain global gene expression was described in human samples. Period B1 was dominated by genes coding for neuronal migration, differentiation, programmed cell death and sensory organs. B3 was dominated by neuronal proliferation, branching and myelination. Creating such a database will allow comparison with abnormals in future studies.
Collapse
Affiliation(s)
- J I Iruretagoyena
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Uittenbogaard M, Chiaramello A. Mitochondrial biogenesis: a therapeutic target for neurodevelopmental disorders and neurodegenerative diseases. Curr Pharm Des 2014; 20:5574-93. [PMID: 24606804 PMCID: PMC4823001 DOI: 10.2174/1381612820666140305224906] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/03/2014] [Indexed: 11/22/2022]
Abstract
In the developing and mature brain, mitochondria act as central hubs for distinct but interwined pathways, necessary for neural development, survival, activity, connectivity and plasticity. In neurons, mitochondria assume diverse functions, such as energy production in the form of ATP, calcium buffering and generation of reactive oxygen species. Mitochondrial dysfunction contributes to a range of neurodevelopmental and neurodegenerative diseases, making mitochondria a potential target for pharmacological-based therapies. Pathogenesis associated with these diseases is accompanied by an increase in mitochondrial mass, a quantitative increase to overcome a qualitative deficiency due to mutated mitochondrial proteins that are either nuclear- or mitochondrial-encoded. This compensatory biological response is maladaptive, as it fails to sufficiently augment the bioenergetically functional mitochondrial mass and correct for the ATP deficit. Since regulation of neuronal mitochondrial biogenesis has been scantily investigated, our current understanding on the network of transcriptional regulators, co-activators and signaling regulators mainly derives from other cellular systems. The purpose of this review is to present the current state of our knowledge and understanding of the transcriptional and signaling cascades controlling neuronal mitochondrial biogenesis and the various therapeutic approaches to enhance the functional mitochondrial mass in the context of neurodevelopmental disorders and adult-onset neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Anne Chiaramello
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Regenerative Biology, 2300 I Street N.W., Washington DC 20037.
| |
Collapse
|
44
|
Identification and distribution of rRNH1, a gene upregulated after spinal cord primary neuron injury. In Vitro Cell Dev Biol Anim 2013; 50:183-7. [PMID: 24288130 DOI: 10.1007/s11626-013-9714-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/13/2013] [Indexed: 01/19/2023]
Abstract
Our previous study identified and characterized one differentially expressed gene, Rattus norvegicus ribonuclease/angiogenin inhibitor 1 (rRNH1). Transcriptional activity of lots of genes involves in spinal cord injury (SCI) and regeneration, but the mechanisms remain unknown. In the present study, we analyzed the sequences of rRNH1 and examined the expression pattern of rRNH1 in different adult rat tissues. We found the sequences of rRNH1 show high homology to Homo sapiens ribonuclease/angiogenin inhibitor 1; it encoded a protein of 461 amino acid residues and contained 13 leucine-rich repeat motifs. Using real-time quantitative PCR (q-PCR), rRNH1 mRNA was widely expressed in adult rat tissues, especially in the central nervous system. Moreover, rRNH1 protein was found to be upregulated after SCI. Although the precise function of rRNH1 is unknown, its unique expression pattern and upregulation after SCI suggest that rRNH1 might be involved in the succeeding injury and/or regeneration processes of injured spinal cord. All these data make rRNH1 a new interesting start to study the mechanisms of SCI and neuron regeneration.
Collapse
|
45
|
Aluminium induced oxidative stress results in decreased mitochondrial biogenesis via modulation of PGC-1α expression. Toxicol Appl Pharmacol 2013; 273:365-80. [PMID: 24084166 DOI: 10.1016/j.taap.2013.09.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 09/02/2013] [Accepted: 09/19/2013] [Indexed: 12/31/2022]
Abstract
The present investigation was carried out to elucidate a possible molecular mechanism related to the effects of aluminium-induced oxidative stress on various mitochondrial respiratory complex subunits with special emphasis on the role of Peroxisome proliferator activated receptor gamma co-activator 1α (PGC-1α) and its downstream targets i.e. Nuclear respiratory factor-1(NRF-1), Nuclear respiratory factor-2(NRF-2) and Mitochondrial transcription factor A (Tfam) in mitochondrial biogenesis. Aluminium lactate (10mg/kgb.wt./day) was administered intragastrically to rats for 12 weeks. After 12 weeks of exposure, we found an increase in ROS levels, mitochondrial DNA oxidation and decrease in citrate synthase activity in the Hippocampus (HC) and Corpus striatum (CS) regions of rat brain. On the other hand, there was a decrease in the mRNA levels of the mitochondrial encoded subunits-NADH dehydrogenase (ND) subunits i.e. ND1, ND2, ND3, Cytochrome b (Cytb), Cytochrome oxidase (COX) subunits i.e. COX1, COX3, ATP synthase (ATPase) subunit 6 along with reduced expression of nuclear encoded subunits COX4, COX5A, COX5B of Electron transport chain (ETC). Besides, a decrease in mitochondrial DNA copy number and mitochondrial content in both regions of rat brain was observed. The PGC-1α was down-regulated in aluminium treated rats along with NRF-1, NRF-2 and Tfam, which act downstream from PGC-1α in aluminium treated rats. Electron microscopy results revealed a significant increase in the mitochondrial swelling, loss of cristae, chromatin condensation and decreases in mitochondrial number in case of aluminium treated rats as compared to control. So, PGC-1α seems to be a potent target for aluminium neurotoxicity, which makes it an almost ideal target to control or limit the damage that has been associated with the defective mitochondrial function seen in neurodegenerative diseases.
Collapse
|
46
|
Zhao CF, Liu Y, Ni YL, Yang JW, Hui HD, Sun ZB, Liu SJ. SCIRR39 promotes neurite extension via RhoA in NGF-induced PC12 cells. Dev Neurosci 2013; 35:373-83. [PMID: 24021527 DOI: 10.1159/000350715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/17/2013] [Indexed: 11/19/2022] Open
Abstract
SCIRR39 is an identified upregulated gene in rat primary neuron injury and/or regeneration process with roles largely unexplored. Using real-time quantitative PCR, Western blotting and immunofluorescence, SCIRR39 expression was detected in normal PC12 cells and upregulated in differentiated cells. The results of cell proliferation by Cell Counting Kit and cell cycle by flow cytometry indicated that SCIRR39 inhibited cell proliferation and induced the decrease in S phase. Importantly, immunofluorescent and RhoA pull-down assays showed that SCIRR39 strongly affected the neurite extension of NGF-treated PC12 cells through a RhoA-dependent mechanism, but the truncated mutants of SCIRR39 containing a truncation from 141AA to 211AA or from 397AA to 424AA failed to mock the SCIRR39 effect on neurite extension. Moreover, change of SCIRR39 expression in NGF-treated PC12 cells regulated the expression and phosphorylation of Fyn, a regulator of RhoA activity, but not the expression of ROCK II protein. Finally, immunofluorescence and RhoA pull-down assays revealed that obvious inhibition of neurite extension by SCIRR39 shRNA was reversed by RhoA inhibitor C3-transferase. Our results indicated that SCIRR39 increased the neurite extension in NGF-treated PC12 cells via RhoA, suggesting that SCIRR39 contributes to the regeneration of neuron injury by specifically altering the differentiation program.
Collapse
Affiliation(s)
- C F Zhao
- State Key Laboratory of Proteomics, Department of Neurobiology, Institute of Basic Medical Sciences, The Academy of Military Medical Sciences, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Hokama M, Oka S, Leon J, Ninomiya T, Honda H, Sasaki K, Iwaki T, Ohara T, Sasaki T, LaFerla FM, Kiyohara Y, Nakabeppu Y. Altered expression of diabetes-related genes in Alzheimer's disease brains: the Hisayama study. ACTA ACUST UNITED AC 2013; 24:2476-88. [PMID: 23595620 PMCID: PMC4128707 DOI: 10.1093/cercor/bht101] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diabetes mellitus (DM) is considered to be a risk factor for dementia including Alzheimer's disease (AD). However, the molecular mechanism underlying this risk is not well understood. We examined gene expression profiles in postmortem human brains donated for the Hisayama study. Three-way analysis of variance of microarray data from frontal cortex, temporal cortex, and hippocampus was performed with the presence/absence of AD and vascular dementia, and sex, as factors. Comparative analyses of expression changes in the brains of AD patients and a mouse model of AD were also performed. Relevant changes in gene expression identified by microarray analysis were validated by quantitative real-time reverse-transcription polymerase chain reaction and western blotting. The hippocampi of AD brains showed the most significant alteration in gene expression profile. Genes involved in noninsulin-dependent DM and obesity were significantly altered in both AD brains and the AD mouse model, as were genes related to psychiatric disorders and AD. The alterations in the expression profiles of DM-related genes in AD brains were independent of peripheral DM-related abnormalities. These results indicate that altered expression of genes related to DM in AD brains is a result of AD pathology, which may thereby be exacerbated by peripheral insulin resistance or DM.
Collapse
Affiliation(s)
- Masaaki Hokama
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Department of Neurosurgery, Graduate School of Medical Sciences
| | - Sugako Oka
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Research Center for Nucleotide Pool
| | - Julio Leon
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation
| | - Toshiharu Ninomiya
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences
| | - Hiroyuki Honda
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Kensuke Sasaki
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Toru Iwaki
- Department of Neuropathology, Graduate School of Medical Sciences
| | - Tomoyuki Ohara
- Department of Neuropsychiatry, Graduate School of Medical Sciences
| | - Tomio Sasaki
- Department of Neurosurgery, Graduate School of Medical Sciences
| | - Frank M LaFerla
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Yutaka Kiyohara
- Department of Environmental Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan and
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Department of Immunobiology and Neuroscience, Medical Institute of Bioregulation, Research Center for Nucleotide Pool
| |
Collapse
|
48
|
Abstract
The consequences of injuries to the CNS are profound and persistent, resulting in substantial burden to both the individual patient and society. Existing treatments for CNS injuries such as stroke, traumatic brain injury and spinal cord injury have proved inadequate, partly owing to an incomplete understanding of post-injury cellular and molecular changes. MicroRNAs (miRNAs) are RNA molecules composed of 20-24 nucleotides that function to inhibit mRNA translation and have key roles in normal CNS development and function, as well as in disease. However, a role for miRNAs as effectors of CNS injury has recently emerged. Use of bioinformatics to assess the mRNA targets of miRNAs enables high-order analysis of interconnected networks, and can reveal affected pathways that may not be identifiable with the use of traditional techniques such as gene knock-in or knockout approaches, or mRNA microarrays. In this Review, we discuss the findings of miRNA microarray studies of spinal cord injury, traumatic brain injury and stroke, as well as the use of gene ontological algorithms to discern global patterns of molecular and cellular changes following such injuries. Furthermore, we examine the current state of miRNA-based therapies and their potential to improve functional outcomes in patients with CNS injuries.
Collapse
|
49
|
Solá S, Morgado AL, Rodrigues CMP. Death receptors and mitochondria: two prime triggers of neural apoptosis and differentiation. Biochim Biophys Acta Gen Subj 2012; 1830:2160-6. [PMID: 23041071 DOI: 10.1016/j.bbagen.2012.09.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 09/21/2012] [Accepted: 09/27/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells. SCOPE OF REVIEW This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome. MAJOR CONCLUSIONS Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision. GENERAL SIGNIFICANCE A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.
Collapse
Affiliation(s)
- Susana Solá
- Research Institute for Medicines and Pharmaceutical Sciences, Lisbon, Portugal.
| | | | | |
Collapse
|
50
|
Valero T, Moschopoulou G, Mayor-Lopez L, Kintzios S. Moderate superoxide production is an early promoter of mitochondrial biogenesis in differentiating N2a neuroblastoma cells. Neurochem Int 2012; 61:1333-43. [PMID: 23022608 DOI: 10.1016/j.neuint.2012.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 09/07/2012] [Accepted: 09/13/2012] [Indexed: 01/25/2023]
Abstract
Reactive oxygen species (ROS) have been widely considered as harmful for cell development and as promoters of cell aging by increasing oxidative stress. However, ROS have an important role in cell signaling and they have been demonstrated to be beneficial by triggering hormetic signals, which could protect the organism from later insults. In the present study, N2a murine neuroblastoma cells were used as a paradigm of cell-specific (neural) differentiation partly mediated by ROS. Differentiation was triggered by the established treatments of serum starvation, forskolin or dibutyryl cyclic AMP. A marked differentiation, expressed as the development of neurites, was detected by fixation and staining with coomassie brilliant blue after 48 h treatment. This was accompanied by an increase in mitochondrial mass detected by mitotracker green staining, an increased expression of the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1-alpha (PGC-1α) and succinate dehydrogenase activity as detected by MTT. In line with these results, an increase in free radicals, specifically superoxide anion, was detected in differentiating cells by flow cytometry. Superoxide scavenging by MnTBAP and MAPK inhibition by PD98059 partially reversed differentiation and mitochondrial biogenesis. In this way, we demonstrated that mitochondrial biogenesis and differentiation are mediated by superoxide and MAPK cues. Our data suggest that differentiation and mitochondrial biogenesis in N2a cells are part of a hormetic response which is triggered by a modest increase of superoxide anion concentration within the mitochondria.
Collapse
Affiliation(s)
- T Valero
- Department of Physiology and Morphology, Faculty of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece.
| | | | | | | |
Collapse
|