1
|
Díaz-Piña DA, Rivera-Ramírez N, García-López G, Díaz NF, Molina-Hernández A. Calcium and Neural Stem Cell Proliferation. Int J Mol Sci 2024; 25:4073. [PMID: 38612887 PMCID: PMC11012558 DOI: 10.3390/ijms25074073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Intracellular calcium plays a pivotal role in central nervous system (CNS) development by regulating various processes such as cell proliferation, migration, differentiation, and maturation. However, understanding the involvement of calcium (Ca2+) in these processes during CNS development is challenging due to the dynamic nature of this cation and the evolving cell populations during development. While Ca2+ transient patterns have been observed in specific cell processes and molecules responsible for Ca2+ homeostasis have been identified in excitable and non-excitable cells, further research into Ca2+ dynamics and the underlying mechanisms in neural stem cells (NSCs) is required. This review focuses on molecules involved in Ca2+ entrance expressed in NSCs in vivo and in vitro, which are crucial for Ca2+ dynamics and signaling. It also discusses how these molecules might play a key role in balancing cell proliferation for self-renewal or promoting differentiation. These processes are finely regulated in a time-dependent manner throughout brain development, influenced by extrinsic and intrinsic factors that directly or indirectly modulate Ca2+ dynamics. Furthermore, this review addresses the potential implications of understanding Ca2+ dynamics in NSCs for treating neurological disorders. Despite significant progress in this field, unraveling the elements contributing to Ca2+ intracellular dynamics in cell proliferation remains a challenging puzzle that requires further investigation.
Collapse
Affiliation(s)
- Dafne Astrid Díaz-Piña
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
- Facultad de Medicina, Circuito Exterior Universitario, Universidad Nacional Autónoma de México Universitario, Copilco Universidad, Coyoacán, Ciudad de México 04360, Mexico
| | - Nayeli Rivera-Ramírez
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Guadalupe García-López
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Néstor Fabián Díaz
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| | - Anayansi Molina-Hernández
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Miguel Hidalgo, Ciudad de México 11000, Mexico
| |
Collapse
|
2
|
Chao XL, Jiang SZ, Xiong JW, Zhan JQ, Yan K, Yang YJ, Jiang LP. The association between serum insulin-like growth factor 1 and cognitive impairments in patients with schizophrenia. Psychiatry Res 2020; 285:112731. [PMID: 31839419 DOI: 10.1016/j.psychres.2019.112731] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 01/24/2023]
Abstract
Accumulating evidence has shown that insulin-like growth factors (IGFs) are implicated in schizophrenia. Altered serum levels of IGF-1 have been found in schizophrenia patients and are associated with psychopathological symptoms. However, whether there is a relationship between IGF-1 and cognitive impairment in schizophrenia remains unknown. Thirty schizophrenia patients and 26 healthy controls were recruited for this study. The Positive and Negative Syndrome Scale was adopted to assess schizophrenic symptoms, and a battery of neuropsychological tests was employed to evaluate cognitive function. Serum IGF-1 content was determined by enzyme-linked immunosorbent assay (ELISA). We found that patients with schizophrenia performed more poorly than healthy controls in most cognitive tasks, excluding visual memory. The serum IGF-1 concentrations in schizophrenia patients were much lower than those in controls. Correlation analyses revealed that the levels of serum IGF-1 were positively correlated with executive function and attention scores in patients. Furthermore, IGF-1 was an independent contributor to deficits in executive function and attention among schizophrenia patients. Collectively, serum IGF-1 levels were significantly correlated with cognitive performance in schizophrenia patients, indicating that decreased IGF-1 levels might contribute to the pathophysiology of schizophrenia-associated cognitive impairments. The regulation of IGF-1 signaling might be a potential treatment strategy for cognitive impairments in schizophrenia.
Collapse
Affiliation(s)
- Xue-Lin Chao
- Department of Psychosomatic Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China
| | - Shu-Zhen Jiang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China
| | - Jian-Wen Xiong
- Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China
| | - Jin-Qiong Zhan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China
| | - Kun Yan
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China
| | - Yuan-Jian Yang
- Biological Psychiatry Laboratory, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China; Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University, Nanchang 330029, PR China.
| | - Li-Ping Jiang
- Department of Ultrasound, The First Affiliated Hospital of Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
3
|
Safian D, Bogerd J, Schulz RW. Regulation of spermatogonial development by Fsh: The complementary roles of locally produced Igf and Wnt signaling molecules in adult zebrafish testis. Gen Comp Endocrinol 2019; 284:113244. [PMID: 31415728 DOI: 10.1016/j.ygcen.2019.113244] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022]
Abstract
Spermatogenesis is a cellular developmental process characterized by the coordinated proliferation and differentiation activities of somatic and germ cells in order to produce a large number of spermatozoa, the cellular basis of male fertility. Somatic cells in the testis, such as Leydig, peritubular myoid and Sertoli cells, provide structural and metabolic support and contribute to the regulatory microenvironment required for proper germ cell survival and development. The pituitary follicle-stimulating hormone (Fsh) is a major endocrine regulator of vertebrate spermatogenesis, targeting somatic cell functions in the testes. In fish, Fsh regulates Leydig and Sertoli cell functions, such as sex steroid and growth factor production, processes that also control the development of spermatogonia, the germ cell stages at the basis of the spermatogenic process. Here, we summarize recent advances in our understanding of mechanisms used by Fsh to regulate the development of spermatogonia. This involves discussing the roles of insulin-like growth factor (Igf) 3 and canonical and non-canonical Wnt signaling pathways. We will also discuss how these locally active regulatory systems interact to maintain testis tissue homeostasis.
Collapse
Affiliation(s)
- Diego Safian
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Jan Bogerd
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands
| | - Rüdiger W Schulz
- Reproductive Biology Group, Division Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, University of Utrecht, 3584 CH Utrecht, The Netherlands; Reproduction and Developmental Biology Group, Institute of Marine Research, P.O. Box 1870, Nordnes, 5817 Bergen, Norway.
| |
Collapse
|
4
|
Kadoya M, Sasai N. Negative Regulation of mTOR Signaling Restricts Cell Proliferation in the Floor Plate. Front Neurosci 2019; 13:1022. [PMID: 31607856 PMCID: PMC6773814 DOI: 10.3389/fnins.2019.01022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/09/2019] [Indexed: 01/07/2023] Open
Abstract
The neural tube is composed of a number of neural progenitors and postmitotic neurons distributed in a quantitatively and spatially precise manner. The floor plate, located in the ventral-most region of the neural tube, has a lot of unique characteristics, including a low cell proliferation rate. The mechanisms by which this region-specific proliferation rate is regulated remain elusive. Here we show that the activity of the mTOR signaling pathway, which regulates the proliferation of the neural progenitor cells, is significantly lower in the floor plate than in other domains of the embryonic neural tube. We identified the forkhead-type transcription factor FoxA2 as a negative regulator of mTOR signaling in the floor plate, and showed that FoxA2 transcriptionally induces the expression of the E3 ubiquitin ligase RNF152, which together with its substrate RagA, regulates cell proliferation via the mTOR pathway. Silencing of RNF152 led to the aberrant upregulation of the mTOR signal and aberrant cell division in the floor plate. Taken together, the present findings suggest that floor plate cell number is controlled by the negative regulation of mTOR signaling through the activity of FoxA2 and its downstream effector RNF152.
Collapse
Affiliation(s)
- Minori Kadoya
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Noriaki Sasai
- Developmental Biomedical Science, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
5
|
Pan S, Qi Z, Li Q, Ma Y, Fu C, Zheng S, Kong W, Liu Q, Yang X. Graphene oxide-PLGA hybrid nanofibres for the local delivery of IGF-1 and BDNF in spinal cord repair. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:651-664. [PMID: 30829545 DOI: 10.1080/21691401.2019.1575843] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Su Pan
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Zhiping Qi
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Qiuju Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Yue Ma
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun TX, PR China
| | - Chuan Fu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Shuang Zheng
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Weijian Kong
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Qinyi Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun TX, PR China
| |
Collapse
|
6
|
Clemens MM, Kennon-McGill S, Apte U, James LP, Finck BN, McGill MR. The inhibitor of glycerol 3-phosphate acyltransferase FSG67 blunts liver regeneration after acetaminophen overdose by altering GSK3β and Wnt/β-catenin signaling. Food Chem Toxicol 2019; 125:279-288. [PMID: 30654094 PMCID: PMC6443093 DOI: 10.1016/j.fct.2019.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/23/2018] [Accepted: 01/13/2019] [Indexed: 12/15/2022]
Abstract
Repair mechanisms after acetaminophen (APAP) hepatotoxicity are poorly understood. We recently discovered that phosphatidic acid (PA) increases in mice and humans after APAP overdose, and is critical for liver regeneration. Here, we hypothesized that PA inhibits glycogen synthase kinase-3β (GSK3β), a component of canonical Wnt/β-catenin signaling, after APAP overdose. To test that, we treated mice with 300 mg/kg APAP at 0 h followed by vehicle or 20 mg/kg of the glycerol 3-phosphate acyltransferase inhibitor FSG67 at 3, 24 and 48 h. Some mice also received the GSK3 inhibitor L803-mts. Blood and liver were collected at multiple time points. Consistent with our earlier results, FSG67 did not affect toxicity (ALT, histology), APAP bioactivation (total glutathione), or oxidative stress (oxidized glutathione), but did reduce expression of proliferating cell nuclear antigen (PCNA) at 52 h. We then measured GSK3β phosphorylation and found it was dramatically decreased by FSG67 at 24 h, before PCNA dropped. Expression of cyclin D1, downstream of Wnt/β-catenin, was also reduced. To determine if the effect of FSG67 on GSK3β is important, we treated mice with FSG67 and L803-mts after APAP. Importantly, L803-mts rescued hepatocyte proliferation and survival. Our data indicate PA and lysoPA may support recovery after APAP overdose by inhibiting GSK3β.
Collapse
Affiliation(s)
- Melissa M Clemens
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Interdisciplinary Biomedical Sciences Graduate Program, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Stefanie Kennon-McGill
- Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Udayan Apte
- Dept. of Pharmacology, Toxicology, and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Laura P James
- Dept. of Pediatrics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Brian N Finck
- Div. of Geriatrics and Nutritional Sciences, Dept. of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell R McGill
- Dept. of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Dept. of Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Center for Dietary Supplement Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
7
|
Qi Z, Guo W, Zheng S, Fu C, Ma Y, Pan S, Liu Q, Yang X. Enhancement of neural stem cell survival, proliferation and differentiation by IGF-1 delivery in graphene oxide-incorporated PLGA electrospun nanofibrous mats. RSC Adv 2019; 9:8315-8325. [PMID: 35518668 PMCID: PMC9061867 DOI: 10.1039/c8ra10103e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/04/2019] [Indexed: 11/21/2022] Open
Abstract
The mammalian central nervous system has a limited ability for self-repair under injury conditions.
Collapse
Affiliation(s)
- Zhiping Qi
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Wenlai Guo
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Shuang Zheng
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Chuan Fu
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Yue Ma
- Department of Gynecological Oncology
- The First Hospital of Jilin University
- Changchun TX 130000
- PR China
| | - Su Pan
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Qinyi Liu
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| | - Xiaoyu Yang
- Department of Orthopedic Surgery
- The Second Hospital of Jilin University
- Changchun TX 130041
- PR China
| |
Collapse
|
8
|
Lin JG, Lin SZ, Lin LH, Wu CC, Tsai WT, Harn HJ, Su LH, Ho WY, Hsieh CJ, Ho TJ. Effects of Moxibustion on the Levels of Insulin-Like Growth Factor 1: A Pilot Study. Cell Transplant 2018; 27:551-556. [PMID: 29692183 PMCID: PMC6038048 DOI: 10.1177/0963689717724795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Moxibustion (艾灸) is a traditional Chinese medicine therapy performed using Artemisia argyii. Zusanli (足三里, ST36) is an acupoint in the stomach meridian, long associated in ancient Chinese medical practices with the extension of life span when moxibustion is applied to it. The aim of this study was to investigate changes in insulin-like growth factor 1 (IGF-1) levels after application of moxibustion to ST36. Four healthy men and women participated in this 28-day trial and were randomly divided into 2 groups. Group A received moxibustion treatment from days 1 to 14, while group B received moxibustion treatment from days 15 to 28. Blood samples were taken 5 times during this study to measure serum IGF-1 (s-IGF-1) levels. The s-IGF-1 levels increased in both groups after 7 and 14 d of moxibustion therapy (group A: 11.02% [7 d] and 29.65% [14 d]; group B: 169.12% [7 d] and 274.85% [14 d]). After moxibustion therapy had been completed (day 14), s-IGF-1 levels continued to increase in group A (increases on day 21 and day 28 were 53.19% and 61.45%, respectively). There were no adverse events in either group. The s-IGF-1 levels were significantly raised in both groups after 7 and 14 d of moxibustion therapy. Moreover, once therapy had been completed, s-IGF-1 levels continued to increase in group A up to 14 d after the treatment.
Collapse
Affiliation(s)
- Jaung-Geng Lin
- 1 School of Chinese Medicine, China Medical University, Shenyang Shi, Taichung, Taiwan
| | - Shinn-Zong Lin
- 2 Bioinnovation Center, Tzu Chi Foundation, Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Lih-Hwa Lin
- 3 Division of Chinese Medicine, An Nan Hospital, China Medical University, Liaoning Sheng, Tainan, Taiwan.,4 Graduate Institute of Chinese Medicine, School of Chinese Medicine, China Medical University, Liaoning Sheng, Taichung, Taiwan
| | - Chun-Chang Wu
- 5 Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan
| | - Wan-Ting Tsai
- 5 Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan
| | - Horng-Jyh Harn
- 6 Bioinnovation Center, Tzu Chi Foundation, Department of Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tzu Chi University, Hualien, Taiwan
| | - Li-Hui Su
- 7 Department of Nursing, China Medical University Beigang Hospital, Yunlin County, Taiwan
| | - Wen-Yu Ho
- 8 Department of Laboratory Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan.,9 Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli County, Taiwan
| | - Che-Jui Hsieh
- 1 School of Chinese Medicine, China Medical University, Shenyang Shi, Taichung, Taiwan
| | - Tsung-Jung Ho
- 1 School of Chinese Medicine, China Medical University, Shenyang Shi, Taichung, Taiwan.,3 Division of Chinese Medicine, An Nan Hospital, China Medical University, Liaoning Sheng, Tainan, Taiwan.,5 Division of Chinese Medicine, China Medical University Beigang Hospital, Yunlin County, Taiwan
| |
Collapse
|
9
|
Ji L, Bishayee K, Sadra A, Choi S, Choi W, Moon S, Jho EH, Huh SO. Defective neuronal migration and inhibition of bipolar to multipolar transition of migrating neural cells by Mesoderm-Specific Transcript, Mest, in the developing mouse neocortex. Neuroscience 2017; 355:126-140. [PMID: 28501506 DOI: 10.1016/j.neuroscience.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022]
Abstract
Brain developmental disorders such as lissencephaly can result from faulty neuronal migration and differentiation during the formation of the mammalian neocortex. The cerebral cortex is a modular structure, where developmentally, newborn neurons are generated as a neuro-epithelial sheet and subsequently differentiate, migrate and organize into their final positions in the cerebral cortical plate via a process involving both tangential and radial migration. The specific role of Mest, an imprinted gene, in neuronal migration has not been previously studied. In this work, we reduced expression of Mest with in utero electroporation of neuronal progenitors in the developing embryonic mouse neocortex. Reduction of Mest levels by shRNA significantly reduced the number of neurons migrating to the cortical plate. Also, Mest-knockdown disrupted the transition of bipolar neurons into multipolar neurons migrating out of the sub-ventricular zone region. The migrating neurons also adopted a more tangential migration pattern upon knockdown of the Mest message, losing their potential to attach to radial glia cells, required for radial migration. The differentiation and migration properties of neurons via Wnt-Akt signaling were affected by Mest changes. In addition, miR-335, encoded in a Mest gene intron, was identified as being responsible for blocking the default tangential migration of the neurons. Our results suggest that Mest and its intron product, miR-335, play important roles in neuronal migration with Mest regulating the morphological transition of primary neurons required in the formation of the mammalian neocortex.
Collapse
Affiliation(s)
- Liting Ji
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Kausik Bishayee
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Ali Sadra
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Seunghyuk Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Wooyul Choi
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea
| | - Sungho Moon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, Gangwon-do, South Korea.
| |
Collapse
|
10
|
Nieto-Estévez V, Defterali Ç, Vicario-Abejón C. IGF-I: A Key Growth Factor that Regulates Neurogenesis and Synaptogenesis from Embryonic to Adult Stages of the Brain. Front Neurosci 2016; 10:52. [PMID: 26941597 PMCID: PMC4763060 DOI: 10.3389/fnins.2016.00052] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/05/2016] [Indexed: 12/28/2022] Open
Abstract
The generation of neurons in the adult mammalian brain requires the activation of quiescent neural stem cells (NSCs). This activation and the sequential steps of neuron formation from NSCs are regulated by a number of stimuli, which include growth factors. Insulin-like growth factor-I (IGF-I) exert pleiotropic effects, regulating multiple cellular processes depending on their concentration, cell type, and the developmental stage of the animal. Although IGF-I expression is relatively high in the embryonic brain its levels drop sharply in the adult brain except in neurogenic regions, i.e., the hippocampus (HP) and the subventricular zone-olfactory bulb (SVZ-OB). By contrast, the expression of IGF-IR remains relatively high in the brain irrespective of the age of the animal. Evidence indicates that IGF-I influences NSC proliferation and differentiation into neurons and glia as well as neuronal maturation including synapse formation. Furthermore, recent studies have shown that IGF-I not only promote adult neurogenesis by regulating NSC number and differentiation but also by influencing neuronal positioning and migration as described during SVZ-OB neurogenesis. In this article we will revise and discuss the actions reported for IGF-I signaling in a variety of in vitro and in vivo models, focusing on the maintenance and proliferation of NSCs/progenitors, neurogenesis, and neuron integration in synaptic circuits.
Collapse
Affiliation(s)
- Vanesa Nieto-Estévez
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto CajalMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Çağla Defterali
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto CajalMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| | - Carlos Vicario-Abejón
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto CajalMadrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)Madrid, Spain
| |
Collapse
|
11
|
Yang JW, Ru J, Ma W, Gao Y, Liang Z, Liu J, Guo JH, Li LY. BDNF promotes the growth of human neurons through crosstalk with the Wnt/β-catenin signaling pathway via GSK-3β. Neuropeptides 2015; 54:35-46. [PMID: 26311646 DOI: 10.1016/j.npep.2015.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 07/30/2015] [Accepted: 08/12/2015] [Indexed: 12/30/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in neuronal growth; however, the downstream regulatory mechanisms remain unclear. In this study, we investigated whether BDNF exerts its neurotrophic effects through the Wnt/β-catenin signaling pathway in human embryonic spinal cord neurons in vitro. We found that neuronal growth (soma size and average neurite length) was increased by transfection with a BDNF overexpression plasmid. Western blotting and real-time quantitative PCR showed that expression of the BDNF pathway components TrkB, PI3K, Akt and PLC-γ was increased by BDNF overexpression. Furthermore, the Wnt signaling factors Wnt, Frizzled and Dsh and the downstream target β-catenin were upregulated, whereas GSK-3β was downregulated. In contrast, when BDNF signaling was downregulated with BDNF siRNA, the growth of neurons was decreased. Furthermore, BDNF signaling factors, Wnt pathway components and β-catenin were all downregulated, whereas GSK-3β was upregulated. This suggests that BDNF affects the growth of neurons in vitro through crosstalk with Wnt signaling, and that GSK-3β may be a critical factor linking these two pathways. To evaluate this possibility, we treated neurons with 6-bromoindirubin-3'-oxime (BIO), a small molecule GSK-3β inhibitor. BIO reduced the effects of BDNF upregulation/downregulation on soma size and average neurite length, and suppressed the impact of BDNF modulation on the Wnt signaling pathway. Taken together, our findings suggest that BDNF promotes the growth of neurons in vitro through crosstalk with the Wnt/β-catenin signaling pathway, and that this interaction may be mediated by GSK-3β.
Collapse
Affiliation(s)
- Jin-Wei Yang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China; Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Jin Ru
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China; Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Yan Gao
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Pathology, Children's Hospital of Kunming City, Kunming, Yunnan 650034, China.
| | - Zhang Liang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China.
| | - Jia Liu
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Jian-Hui Guo
- Second Department of General Surgery, First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, China.
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, China.
| |
Collapse
|
12
|
Schlupf J, Steinbeisser H. IGF antagonizes the Wnt/β-Catenin pathway and promotes differentiation of extra-embryonic endoderm. Differentiation 2014; 87:209-19. [PMID: 25287945 DOI: 10.1016/j.diff.2014.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/15/2014] [Indexed: 11/28/2022]
Abstract
Mouse F9 teratocarcinoma cells are an established model for the differentiation of extra-embryonic endoderm (ExEn). Primitive endoderm, parietal and visceral endoderm can be generated by stimulation of F9 cells with retinoic acid and dibutyryl cyclic adenosine monophosphate. Here we show that Wnt/β-Catenin signaling is down-regulated during ExEn differentiation in F9 cells and that the inhibition of the Wnt pathway promotes differentiation of the three extra-embryonic endoderm lineages. Wnt inhibition is achieved through the IGF pathway, which is up-regulated during differentiation. IGF signaling antagonizes the Wnt pathway by stimulating transcription of axin2 and by stabilizing Axin1 protein. Both Axin1 and Axin2 are components of the β-Catenin destruction complex and act as intra-cellular inhibitors of the Wnt/β-Catenin pathway. The data presented reveal a mechanism which restricts pluripotency of undifferentiated cells and directs them toward extra-embryonic lineages.
Collapse
Affiliation(s)
- Judith Schlupf
- Institute of Human Genetics, University Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany.
| | - Herbert Steinbeisser
- Institute of Human Genetics, University Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Hussaini SMQ, Choi CI, Cho CH, Kim HJ, Jun H, Jang MH. Wnt signaling in neuropsychiatric disorders: ties with adult hippocampal neurogenesis and behavior. Neurosci Biobehav Rev 2014; 47:369-83. [PMID: 25263701 DOI: 10.1016/j.neubiorev.2014.09.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 07/20/2014] [Accepted: 09/05/2014] [Indexed: 12/27/2022]
Abstract
In an effort to better understand and treat mental disorders, the Wnt pathway and adult hippocampal neurogenesis have received increased attention in recent years. One is a signaling pathway regulating key aspects of embryonic patterning, cell specification and adult tissue homeostasis. The other is the generation of newborn neurons in adulthood that integrate into the neural circuit and function in learning and memory, and mood behavior. In this review, we discuss the growing relationship between Wnt signaling-mediated regulation of adult hippocampal neurogenesis as it applies to neuropsychiatric disorders. Evidence suggests dysfunctional Wnt signaling may aberrantly regulate new neuron development and cognitive function. Indeed, altered expression of key Wnt pathway components are observed in the hippocampus of patients suffering from neuropsychiatric disorders. Clinically-utilized mood stabilizers also proceed through modulation of Wnt signaling in the hippocampus, while Wnt pathway antagonists can regulate the antidepressant response. Here, we review the role of Wnt signaling in disease etiology and pathogenesis, regulation of adult neurogenesis and behavior, and the therapeutic targeting of disease symptoms.
Collapse
Affiliation(s)
| | - Chan-Il Choi
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Chang Hoon Cho
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Hyo Jin Kim
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Heechul Jun
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA
| | - Mi-Hyeon Jang
- Department of Neurologic Surgery, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
14
|
Comprehensive analysis of β-catenin target genes in colorectal carcinoma cell lines with deregulated Wnt/β-catenin signaling. BMC Genomics 2014; 15:74. [PMID: 24467841 PMCID: PMC3909937 DOI: 10.1186/1471-2164-15-74] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 01/17/2014] [Indexed: 12/12/2022] Open
Abstract
Background Deregulation of Wnt/β-catenin signaling is a hallmark of the majority of sporadic forms of colorectal cancer and results in increased stability of the protein β-catenin. β-catenin is then shuttled into the nucleus where it activates the transcription of its target genes, including the proto-oncogenes MYC and CCND1 as well as the genes encoding the basic helix-loop-helix (bHLH) proteins ASCL2 and ITF-2B. To identify genes commonly regulated by β-catenin in colorectal cancer cell lines, we analyzed β-catenin target gene expression in two non-isogenic cell lines, DLD1 and SW480, using DNA microarrays and compared these genes to β-catenin target genes published in the PubMed database and DNA microarray data presented in the Gene Expression Omnibus (GEO) database. Results Treatment of DLD1 and SW480 cells with β-catenin siRNA resulted in differential expression of 1501 and 2389 genes, respectively. 335 of these genes were regulated in the same direction in both cell lines. Comparison of these data with published β-catenin target genes for the colon carcinoma cell line LS174T revealed 193 genes that are regulated similarly in all three cell lines. The overlapping gene set includes confirmed β-catenin target genes like AXIN2, MYC, and ASCL2. We also identified 11 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways that are regulated similarly in DLD1 and SW480 cells and one pathway – the steroid biosynthesis pathway – was regulated in all three cell lines. Conclusions Based on the large number of potential β-catenin target genes found to be similarly regulated in DLD1, SW480 and LS174T cells as well as the large overlap with confirmed β-catenin target genes, we conclude that DLD1 and SW480 colon carcinoma cell lines are suitable model systems to study Wnt/β-catenin signaling and associated colorectal carcinogenesis. Furthermore, the confirmed and the newly identified potential β-catenin target genes are useful starting points for further studies.
Collapse
|
15
|
Bernis ME, Oksdath M, Dupraz S, Nieto Guil A, Fernández MM, Malchiodi EL, Rosso SB, Quiroga S. Wingless-type family member 3A triggers neuronal polarization via cross-activation of the insulin-like growth factor-1 receptor pathway. Front Cell Neurosci 2013; 7:194. [PMID: 24298236 PMCID: PMC3829478 DOI: 10.3389/fncel.2013.00194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/07/2013] [Indexed: 02/04/2023] Open
Abstract
Initial axonal elongation is essential for neuronal polarization and requires polarized activation of IGF-1 receptors (IGF-1r) and the phosphatidylinositol 3 kinase (PI3k) pathway. Wingless-type family growth factors (Wnts) have also been implied in the regulation of axonal development. It is not known, however, if Wnts have any participation in the regulation of initial axonal outgrowth and the establishment of neuronal polarity. We used cultured hippocampal neurons and growth cone particles (GCPs) isolated from fetal rat brain to show that stimulation with the wingless family factor 3A (Wnt3a) was sufficient to promote neuronal polarization in the absence of IGF-1 or high insulin. We also show that Wnt3a triggered a strong activation of IGF-1r, PI3k, and Akt in developmental Stage 2 neurons and that the presence of activatable IGF-1r and PI3k activation were necessary for Wnt3a polarizing effects. Surface plasmon resonance (SPR) experiments show that Wnt3a did not bind specifically to the IGF-1r. Using crosslinking and immuno-precipitation experiments, we show that stimulation with Wnt3a triggered the formation of a complex including IGF-1r-Wnt3a-Frizzled-7. We conclude that Wnt3a triggers polarization of neurons via cross-activation of the IGF-1r/PI3k pathway upon binding to Fz7.
Collapse
Affiliation(s)
- María E Bernis
- Departamento de Química Biológica-CIQUIBIC, Fac. de Ciencias Químicas, Universidad Nacional de Córdoba-CONICET , Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rosso SB, Inestrosa NC. WNT signaling in neuronal maturation and synaptogenesis. Front Cell Neurosci 2013; 7:103. [PMID: 23847469 PMCID: PMC3701138 DOI: 10.3389/fncel.2013.00103] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/12/2013] [Indexed: 01/01/2023] Open
Abstract
The Wnt signaling pathway plays a role in the development of the central nervous system and growing evidence indicates that Wnts also regulates the structure and function of the adult nervous system. Wnt components are key regulators of a variety of developmental processes, including embryonic patterning, cell specification, and cell polarity. In the nervous system, Wnt signaling also regulates the formation and function of neuronal circuits by controlling neuronal differentiation, axon outgrowth and guidance, dendrite development, synaptic function, and neuronal plasticity. Wnt factors can signal through three very well characterized cascades: canonical or β-catenin pathway, planar cell polarity pathway and calcium pathway that control different processes. However, divergent downstream cascades have been identified to control neuronal morphogenesis. In the nervous system, the expression of Wnt proteins is a highly controlled process. In addition, deregulation of Wnt signaling has been associated with neurodegenerative diseases. Here, we will review different aspects of neuronal and dendrite maturation, including spinogenesis and synaptogenesis. Finally, the role of Wnt pathway components on Alzheimer’s disease will be revised.
Collapse
Affiliation(s)
- Silvana B Rosso
- Laboratorio de Toxicología Experimental, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Rosario, Santa Fe, Argentina
| | | |
Collapse
|
17
|
Alterations in tyrosine kinase receptor (Trk) expression induced by insulin-like growth factor-1 in cultured dorsal root ganglion neurons. Brain Res Bull 2013; 90:25-34. [DOI: 10.1016/j.brainresbull.2012.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 12/27/2022]
|