1
|
Nair S, Razo-Azamar M, Jayabalan N, Dalgaard LT, Palacios-González B, Sørensen A, Kampmann U, Handberg A, Carrion F, Salomon C. Advances in extracellular vesicles as mediators of cell-to-cell communication in pregnancy. Cytokine Growth Factor Rev 2024; 76:86-98. [PMID: 38233286 DOI: 10.1016/j.cytogfr.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 01/19/2024]
Abstract
Cell-to-cell communication mediated by Extracellular Vesicles (EVs) is a novel and emerging area of research, especially during pregnancy, in which placenta derived EVs can facilitate the feto-maternal communication. EVs comprise a heterogeneous group of vesicle sub-populations with diverse physical and biochemical characteristics and originate by specific biogenesis mechanisms. EVs transfer molecular cargo (including proteins, nucleic acids, and lipids) between cells and are critical mediators of cell communication. There is growing interest among researchers to explore into the molecular cargo of EVs and their functions in a physiological and pathological context. For example, inflammatory mediators such as cytokines are shown to be released in EVs and EVs derived from immune cells play key roles in mediating the immune response as well as immunoregulatory pathways. Pregnancy complications such as gestational diabetes mellitus, preeclampsia, intrauterine growth restriction and preterm birth are associated with altered levels of circulating EVs, with differential EV cargo and bioactivity in target cells. This implicates the intriguing roles of EVs in reprogramming the maternal physiology during pregnancy. Moreover, the capacity of EVs to carry bioactive molecules makes them a promising tool for biomarker development and targeted therapies in pregnancy complications. This review summarizes the physiological and pathological roles played by EVs in pregnancy and pregnancy-related disorders and describes the potential of EVs to be translated into clinical applications in the diagnosis and treatment of pregnancy complications.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - Melissa Razo-Azamar
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Nanthini Jayabalan
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia
| | | | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable del Instituto Nacional de Medicina Genómica (INMEGEN) en el Centro de Investigación sobre Envejecimiento (CIE-CINVESTAV Sede Sur), CDMX, 14330, Mexico
| | - Anne Sørensen
- Department of Obstetrics and Gynecology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Ulla Kampmann
- Steno Diabetes Center Aarhus, Aarhus University Hospital, and Department of Clinical Medicine, Aarhus University, Denmark
| | - Aase Handberg
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae-Oncology Group, University of Queensland Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4029, Australia; Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile.
| |
Collapse
|
2
|
Nair S, Ormazabal V, Carrion F, Handberg A, McIntyre H, Salomon C. Extracellular vesicle-mediated targeting strategies for long-term health benefits in gestational diabetes. Clin Sci (Lond) 2023; 137:1311-1332. [PMID: 37650554 PMCID: PMC10472199 DOI: 10.1042/cs20220150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Extracellular vesicles (EVs) are critical mediators of cell communication, playing important roles in regulating molecular cross-talk between different metabolic tissues and influencing insulin sensitivity in both healthy and gestational diabetes mellitus (GDM) pregnancies. The ability of EVs to transfer molecular cargo between cells imbues them with potential as therapeutic agents. During pregnancy, the placenta assumes a vital role in metabolic regulation, with multiple mechanisms of placenta-mediated EV cross-talk serving as central components in GDM pathophysiology. This review focuses on the role of the placenta in the pathophysiology of GDM and explores the possibilities and prospects of targeting the placenta to address insulin resistance and placental dysfunction in GDM. Additionally, we propose the use of EVs as a novel method for targeted therapeutics in treating the dysfunctional placenta. The primary aim of this review is to comprehend the current status of EV targeting approaches and assess the potential application of these strategies in placental therapeutics, thereby delivering molecular cargo and improving maternal and fetal outcomes in GDM. We propose that EVs have the potential to revolutionize GDM management, offering hope for enhanced maternal-fetal health outcomes and more effective treatments.
Collapse
Affiliation(s)
- Soumyalekshmi Nair
- Translational Extracellular Vesicle in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Australia
| | - Valeska Ormazabal
- Department of Pharmacology, Faculty of Biological Sciences, University of Concepcion, Concepción, Chile
| | - Flavio Carrion
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| | - Aase Handberg
- Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - H David McIntyre
- Mater Research, Faculty of Medicine, University of Queensland, Mater Health, South Brisbane, Australia
| | - Carlos Salomon
- Translational Extracellular Vesicle in Obstetrics and Gynae-Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of Medicine, The University of Queensland, Australia
- Departamento de Investigación, Postgrado y Educación Continua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago, Chile
| |
Collapse
|
3
|
Guru SA, Saha P, Chen L, Tulshyan A, Ge ZD, Baily J, Simons L, Stefanowicz A, Bilewska A, Mehta V, Mishra R, Sharma S, Ali A, Krishnan S, Kaushal S. HSF-1 enhances cardioprotective potential of stem cells via exosome biogenesis and their miRNA cargo enrichment. Stem Cell Rev Rep 2023; 19:2038-2051. [PMID: 37261668 DOI: 10.1007/s12015-023-10565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2023] [Indexed: 06/02/2023]
Abstract
Stem cell therapy provides a hope to no option heart disease patient group. Stem cells work via different mechanisms of which paracrine mechanism is reported to justify most of the effects. Therefore, identifying the control arms for paracrine cocktail production is necessary to tailor stem cell functions in disease contextual manner. In this study, we describe a novel paracrine cocktail regulatory axis, in stem cells, to enhance their cardioprotective abilities. We identified that HSF1 knockout resulted in reduced cardiac regenerative abilities of mesenchymal stem cells (MSCs) while its overexpression had opposite effects. Altered exosome biognesis and their miRNA cargo enrichment were found to be underlying these altered regenerative abilities. Decreased production of exosomes by MSCs accompanied their loss of HSF1 and vice versa. Moreover, the exosomes derived from HSF1 depleted MSCs showed significantly reduced candidate miRNA expression (miR-145, miR-146, 199-3p, 199b and miR-590) compared to those obtained from HSF1 overexpressing MSCs. We further discovered that HSF1 mediates miRNAs' enrichment into exosomes via Y binding protein 1 (YBX1) and showed, by loss and gain of function strategies, that miRNAs' enrichment in mesenchymal stem cell derived exosomes is deregulated with altered YBX1 expression. It was finally demonstrated that absence of YBX1 in MSCs, with normal HSF1 expression, resulted in significant accumulation of candidate miRNAs into the cells. Together, our data shows that HSF1 plays a critical role in determining the regenerative potential of stem cells. HSF1 does that by affecting exosome biogenesis and miRNA cargo sorting via regulation of YBX1 gene expression.
Collapse
Affiliation(s)
- Sameer Ahmad Guru
- Deininger Lab, Versiti, Blood Research Institute, Milwaukee, WI, USA
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Progyaparamita Saha
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Ling Chen
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Antariksh Tulshyan
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Zhi-Dong Ge
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Jeanette Baily
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Lydia Simons
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Artur Stefanowicz
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Agata Bilewska
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Vivek Mehta
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Rachana Mishra
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Sudhish Sharma
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Asif Ali
- David Pincus lab, Molecular Genetics and Cell Biology Committee on Cancer Biology, Chicago University, Chicago, IL, USA
| | - Swetha Krishnan
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA
| | - Sunjay Kaushal
- Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital, 303 E Superior SQRB 4th floor, Chicago, IL, USA.
| |
Collapse
|
4
|
Salas N, Coceres VM, Melo TDS, Pereira-Neves A, Maguire VG, Rodriguez TM, Sabatke B, Ramirez MI, Sha J, Wohlschlegel JA, de Miguel N. VPS32, a member of the ESCRT complex, modulates adherence to host cells in the parasite Trichomonas vaginalis by affecting biogenesis and cargo sorting of released extracellular vesicles. Cell Mol Life Sci 2021; 79:11. [PMID: 34951683 PMCID: PMC11073171 DOI: 10.1007/s00018-021-04083-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Trichomonas vaginalis is a common sexually transmitted extracellular parasite that adheres to epithelial cells in the human urogenital tract. Extracellular vesicles (EVs) have been described as important players in the pathogenesis of this parasite as they deliver proteins and RNA into host cells and modulate parasite adherence. EVs are heterogeneous membrane vesicles released from virtually all cell types that collectively represent a new dimension of intercellular communication. The Endosomal Sorting Complex Required for Transport (ESCRT) machinery contributes to several key mechanisms in which it reshapes membranes. Based on this, some components of the ESCRT have been implicated in EVs biogenesis in other cells. Here, we demonstrated that VPS32, a member of ESCRTIII complex, contribute to the biogenesis and cargo sorting of extracellular vesicles in the parasite T. vaginalis. Moreover, we observe that parasites overexpressing VPS32 have a striking increase in adherence to host cells compared to control parasites; demonstrating a key role for this protein in mediating host: parasite interactions. These results provide valuable information on the molecular mechanisms involved in extracellular vesicles biogenesis, cargo-sorting, and parasite pathogenesis.
Collapse
Affiliation(s)
- Nehuén Salas
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina
| | - Veronica M Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina
| | - Tuanne Dos Santos Melo
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| | - Antonio Pereira-Neves
- Departamento de Microbiologia, Instituto Aggeu Magalhães, Fiocruz, Recife, Pernambuco, Brazil
| | - Vanina G Maguire
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina
| | - Tania M Rodriguez
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina
| | - Bruna Sabatke
- Laboratorio de Biologia Molecular e Sistémica de Tripanossomatideos, Instituto Carlos Chagas, Fiocruz Curitiba, Parana, Brazil
| | - Marcel I Ramirez
- Laboratorio de Biologia Molecular e Sistémica de Tripanossomatideos, Instituto Carlos Chagas, Fiocruz Curitiba, Parana, Brazil
| | - Jihui Sha
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1489, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, 90095-1489, USA
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, Intendente Marino Km 8.2, B7130IWA, Chascomús, Buenos Aires, Argentina.
| |
Collapse
|
5
|
Huang J, Xiong J, Yang L, Zhang J, Sun S, Liang Y. Cell-free exosome-laden scaffolds for tissue repair. NANOSCALE 2021; 13:8740-8750. [PMID: 33969373 DOI: 10.1039/d1nr01314a] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the development of regenerative medicine, tissue repair at the molecular, cellular, tissue, and organ level has seen continuous improvements over traditional techniques. As the core of tissue repair, seed cells are widely used in various fields of regenerative medicine. However, their use is still associated with problems such as decreased cell survival and regeneration capacity after transplantation, immune rejection, and ethical concerns. Therefore, it is difficult to universally and safely apply stem cell banks for regenerative medicine. The paracrine effects of cells, especially secretion of exosomes, play vital roles in cell communication, immune response, angiogenesis, scar formation, tissue repair, and other biological functions. Exosomes are a type of nanoscale extracellular vesicle that contain biologically active molecules such as RNA and proteins; therefore, exosomes can replicate the functions of their parental cells. Meanwhile, exosomes can be used as nanocarriers to deliver active factors or small molecules to promote tissue repair. Preclinical studies of exosomes in tissue engineering and regenerative medicine have been carried in the fields of bone/cartilage repair, nerve regeneration, liver and kidney regeneration, skin repair, vascular tissue regeneration, etc. This review introduces exosomes from the aspects of biogenesis, composition, identification, and isolation, and focuses on the development status of scaffold materials for exosome delivery. In addition, we highlight examples of exosome-laden scaffolds for preclinical applications in tissue repair. We look forward to the broad application prospects of exosome-laden scaffolds.
Collapse
Affiliation(s)
- Jianghong Huang
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China and Tsinghua University Shenzhen International Graduate School, Innovation Leading Engineering Doctor, Class 9 of 2020, Shenzhen, 518055, China
| | - Jianyi Xiong
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China
| | - Lei Yang
- Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen 518035, China
| | - Jun Zhang
- Tsinghua University Shenzhen International Graduate School, Innovation Leading Engineering Doctor, Class 9 of 2020, Shenzhen, 518055, China
| | - Shuqing Sun
- Tsinghua University Shenzhen International Graduate School, Institute of Biomedicine and Health Engineering, Shenzhen, 518055, China
| | - Yujie Liang
- Department of Child and Adolescent Psychiatry, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Key Laboratory for Psychological Healthcare & Shenzhen Institute of Mental Health, Shenzhen, 518020, China.
| |
Collapse
|
6
|
Cone AS, Hurwitz SN, Lee GS, Yuan X, Zhou Y, Li Y, Meckes DG. Alix and Syntenin-1 direct amyloid precursor protein trafficking into extracellular vesicles. BMC Mol Cell Biol 2020; 21:58. [PMID: 32731849 PMCID: PMC7392838 DOI: 10.1186/s12860-020-00302-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/16/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Endosomal trafficking and amyloidogenic cleavage of amyloid precursor protein (APP) is believed to play a role in the neurodegeneration observed in Alzheimer's disease (AD). Recent evidence has suggested that packaging and secretion of APP and its amyloidogenic cleaved products into small extracellular vesicles (EVs) may facilitate uptake of these neurotoxic factors during disease progression. However, the molecular mechanisms underlying trafficking of APP into EVs are poorly understood. RESULTS In this study, the mechanism and impact of APP trafficking into extracellular vesicles (EVs) were assessed by a series of inducible gene knockdowns. We demonstrate that vesicle-associated proteins Alix and Syntenin-1 are essential for proper subcellular localization and efficient EV secretion of APP via an endosomal sorting complexes required for transport (ESCRT)-independent pathway. The neurotoxic C-terminal fragment (CTFβ) of APP is similarly secreted in association with small vesicles. These mechanisms are conserved in terminally differentiated neuron-like cells. Furthermore, knockdown of Alix and Syntenin-1 alters the subcellular localization of APP, sequestering the precursor protein to endoplasmic reticulum and endolysosomal compartments, respectively. Finally, transfer of small EVs containing mutant APP confers an increase in reactive oxygen species production and neurotoxicity to human induced pluripotent stem cell-derived cortical neurons and naïve primary neurons, an effect that is ameliorated by Alix and Syntenin-1 depletion. CONCLUSIONS Altogether these findings elucidate a novel mechanism for understanding the intracellular trafficking of APP and CTFβ into secreted extracellular vesicles, and the resultant potential impact on neurotoxicity in the context of Alzheimer's disease amyloidopathy.
Collapse
Affiliation(s)
- Allaura S Cone
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Stephanie N Hurwitz
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Gloria S Lee
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Xuegang Yuan
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, 1115 West Call Street, Tallahassee, FL, 32306-4300, USA.
| |
Collapse
|
7
|
Ageta H, Tsuchida K. Post-translational modification and protein sorting to small extracellular vesicles including exosomes by ubiquitin and UBLs. Cell Mol Life Sci 2019; 76:4829-4848. [PMID: 31363817 PMCID: PMC11105257 DOI: 10.1007/s00018-019-03246-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023]
Abstract
Exosomes, a type of small extracellular vesicles (sEVs), are secreted membrane vesicles that are derived from various cell types, including cancer cells, mesenchymal stem cells, and immune cells via multivesicular bodies (MVBs). These sEVs contain RNAs (mRNA, miRNA, lncRNA, and rRNA), lipids, DNA, proteins, and metabolites, all of which mediate cell-to-cell communication. This communication is known to be implicated in a diverse set of diseases such as cancers and their metastases and degenerative diseases. The molecular mechanisms, by which proteins are modified and sorted to sEVs, are not fully understood. Various cellular processes, including degradation, transcription, DNA repair, cell cycle, signal transduction, and autophagy, are known to be associated with ubiquitin and ubiquitin-like proteins (UBLs). Recent studies have revealed that ubiquitin and UBLs also regulate MVBs and protein sorting to sEVs. Ubiquitin-like 3 (UBL3)/membrane-anchored Ub-fold protein (MUB) acts as a post-translational modification (PTM) factor to regulate efficient protein sorting to sEVs. In this review, we focus on the mechanism of PTM by ubiquitin and UBLs and the pathway of protein sorting into sEVs and discuss the potential biological significance of these processes.
Collapse
Affiliation(s)
- Hiroshi Ageta
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan
| | - Kunihiro Tsuchida
- Division for Therapies Against Intractable Diseases, Institute for Comprehensive Medical Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
| |
Collapse
|
8
|
Kołat D, Hammouz R, Bednarek AK, Płuciennik E. Exosomes as carriers transporting long non‑coding RNAs: Molecular characteristics and their function in cancer (Review). Mol Med Rep 2019; 20:851-862. [PMID: 31173220 PMCID: PMC6625196 DOI: 10.3892/mmr.2019.10340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/09/2019] [Indexed: 02/07/2023] Open
Abstract
Long non‑coding RNAs (lncRNAs) comprise a sizeable class of non‑coding RNAs with a length of over 200 base pairs. Little is known about their biological function, although over 20,000 lncRNAs have been annotated in the human genome. Through a diverse range of mechanisms, their primary function is in the regulation of the transcription of protein‑coding genes. lncRNA transcriptional activation can result from a group of nucleus‑retained and chromatin‑associated lncRNAs, which function as scaffolds in the cis/trans recruitment of transcription factors, co‑activators or chromatin remodelers, and/or promoter enhancers. Exosomes are released as extracellular vesicles and they are produced by endocytic pathways. Their synthesis is initiated by various processes including ceramide synthesis, release of intracellular Ca2+ or acid‑base balance disorders. Prior to vesicle creation, selective cargo loading occurs in the Endosomal Sorting Complex Required for Transport. Participation of endosomal sorting proteins such as tetraspanins or specific sumoylated proteins required for transport has been indicated in research. The endosomal‑sorting complex consists of four components, these induce the formation of multivesicular bodies and the induction of membrane deformation to form exosomes. Nanovesicles could be formed inside multivesicular bodies to allow transport outside the cell or digestion in lysosomes. The molecular content of exosomes is more heterogenic than its synthesis process, with different cargoes being examined inside vesicles with regard to the type or stage of cancers. This paper will review the importance of lncRNAs as crucial molecular content of exosomes, indicating its involvement in tumour suppression, pro‑tumorigenic events and the development of novel therapeutic approaches in the near future. Further studies of their mechanisms of function are essential, as well as overcoming several challenges to gain a clearer insight to the approaches for the best clinical application.
Collapse
Affiliation(s)
- Damian Kołat
- Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Łódź, 90-752 Łódź, Poland
| | - Raneem Hammouz
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
| | - Elżbieta Płuciennik
- Department of Molecular Carcinogenesis, Medical University of Łódź, 90-752 Łódź, Poland
- Correspondence to: Dr Elżbieta Płuciennik, Department of Molecular Carcinogenesis, Medical University of Łódź, Zeligowskiego 7/9, 90-752 Łódź, Poland, E-mail:
| |
Collapse
|
9
|
Ibl V. ESCRTing in cereals: still a long way to go. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1144-1152. [PMID: 31327097 DOI: 10.1007/s11427-019-9572-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2019] [Indexed: 01/28/2023]
Abstract
The multivesicular body (MVB) sorting pathway provides a mechanism for the delivery of cargo destined for degradation to the vacuole or lysosome. The endosomal sorting complex required for transport (ESCRT) is essential for the MVB sorting pathway by driving the cargo sorting to its destination. Many efforts in plant research have identified the ESCRT machinery and functionally characterised the first plant ESCRT proteins. However, most studies have been performed in the model plant Arabidopsis thaliana that is genetically and physiologically different to crops. Cereal crops are important for animal feed and human nutrition and have further been utilized as promising candidates for recombinant protein production. In this review, I summarize the role of plant ESCRT components in cereals that are involved in efficient adaptation to environmental stress and grain development. A special focus is on barley (Hordeum vulgare L.) ESCRT proteins, where recent studies show their quantitative mapping during grain development, e.g. associating HvSNF7.1 with protein trafficking to protein bodies (PBs) in starchy endosperm. Thus, it is indispensable to identify the molecular key-players within the endomembrane system including ESCRT proteins to optimize and possibly enhance tolerance to environmental stress, grain yield and recombinant protein production in cereal grains.
Collapse
Affiliation(s)
- Verena Ibl
- Department of Ecogenomics and Systems Biology, University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
10
|
Leptin Modulates Exosome Biogenesis in Breast Cancer Cells: An Additional Mechanism in Cell-to-Cell Communication. J Clin Med 2019; 8:jcm8071027. [PMID: 31336913 PMCID: PMC6678227 DOI: 10.3390/jcm8071027] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Exosomes—small membrane vesicles secreted by both normal and malignant cells upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane—play an important role in cell-to-cell communication. During the last decade, several reports have highlighted the involvement of these nanovesicles in many aspects of breast cancer development and progression, but the extracellular signals governing their generation in breast cancer cells have not been completely unraveled. Here, we investigated the role of the obesity hormone leptin, a well-known adipokine implicated in mammary tumorigenesis, on the mechanisms regulating exosome biogenesis and release in both estrogen receptor α (ERα)—positive MCF-7 and triple-negative MDA-MB-231 breast cancer cells. We found that leptin treatment enhanced the number of MVBs in the cytoplasm of breast cancer cells and increased the amount of exosomes released in cell conditioned media. At molecular level, leptin increased the protein expression of Tsg101—a key component of the endosomal sorting complex required for transport I (ESCRT-I)—by a post-transcriptional mechanism involving its direct interaction with the chaperone protein Hsp90. Targeting leptin signaling, by a selective leptin receptor antagonist the peptide LDFI (Leu-Asp-Phe-Ile), abrogated leptin effects on Tsg101 expression and on exosome secretion in breast cancer cells. In conclusion, our findings, identifying for the first time leptin/leptin receptor/Hsp90 axis as an important regulator of exosome generation in mammary carcinoma cells, suggest that targeting this signaling pathway might represent a novel therapeutic strategy to impair exosome secretion and interrupt the dangerous cell-to-cell communication in breast cancer.
Collapse
|
11
|
Wu Z, Wang L, Li J, Wang L, Wu Z, Sun X. Extracellular Vesicle-Mediated Communication Within Host-Parasite Interactions. Front Immunol 2019; 9:3066. [PMID: 30697211 PMCID: PMC6340962 DOI: 10.3389/fimmu.2018.03066] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane-surrounded structures released by different kinds of cells (normal, diseased, and transformed cells) in vivo and in vitro that contain large amounts of important substances (such as lipids, proteins, metabolites, DNA, RNA, and non-coding RNA (ncRNA), including miRNA, lncRNA, tRNA, rRNA, snoRNA, and scaRNA) in an evolutionarily conserved manner. EVs, including exosomes, play a role in the transmission of information, and substances between cells that is increasingly being recognized as important. In some infectious diseases such as parasitic diseases, EVs have emerged as a ubiquitous mechanism for mediating communication during host-parasite interactions. EVs can enable multiple modes to transfer virulence factors and effector molecules from parasites to hosts, thereby regulating host gene expression, and immune responses and, consequently, mediating the pathogenic process, which has made us rethink our understanding of the host-parasite interface. Thus, here, we review the present findings regarding EVs (especially exosomes) and recognize the role of EVs in host-parasite interactions. We hope that a better understanding of the mechanisms of parasite-derived EVs may provide new insights for further diagnostic biomarker, vaccine, and therapeutic development.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lingling Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jiaying Li
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Lifu Wang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory of Tropical Disease Control (SYSU), Ministry of Education, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| |
Collapse
|
12
|
Evidence of Extracellular Vesicles Biogenesis and Release in Mouse Embryonic Stem Cells. Stem Cell Rev Rep 2018; 14:262-276. [PMID: 29032399 DOI: 10.1007/s12015-017-9776-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular vesicles (EVs) released by mouse embryonic stem cells (mESCs) are considered a source of bioactive molecules that modulate their microenvironment by acting on intercellular communication. Either intracellular endosomal machinery or their derived EVs have been considered a relevant system of signal circuits processing. Herein, we show that these features are found in mESCs. Ultrastructural analysis revealed structures and organelles of the endosomal system such as coated pits and endocytosis-related vesicles, prominent rough endoplasmic reticulum and Golgi apparatus, and multivesicular bodies (MVBs) containing either few or many intraluminal vesicles (ILVs) that could be released as exosomes to extracellular milieu. Besides, budding vesicles shed from the plasma membrane to the extracellular space is suggestive of microvesicle biogenesis in mESCs. mESCs and mouse blastocyst express specific markers of the Endosomal Sorting Complex Required for Transport (ESCRT) system. Ultrastructural analysis and Nanoparticle Tracking Analysis (NTA) of isolated EVs revealed a heterogeneous population of exosomes and microvesicles released by mESCs. These vesicles contain Wnt10b and the Notch ligand Delta-like 4 (DLL4) and also the co-chaperone stress inducible protein 1 (STI1) and its partner Hsp90. Wnt10b and Dll4 colocalize with EVs biogenesis markers in mESCs. Overall, the present study supports the function of the mESCs endocytic network and their EVs as players in stem cell biology.
Collapse
|
13
|
Claridge B, Kastaniegaard K, Stensballe A, Greening DW. Post-translational and transcriptional dynamics - regulating extracellular vesicle biology. Expert Rev Proteomics 2018; 16:17-31. [PMID: 30457403 DOI: 10.1080/14789450.2019.1551135] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Extracellular vesicles (EVs) are secreted into their extracellular environment, contain a specific repertoire of cellular cargo, and represent a novel vehicle for cell-cell communication. Protein post-translational modifications (PTMs) are emerging as major effectors of EV biology and function, and in turn, regulate cellular signaling. Areas covered: Discovery and investigation of PTMs such as methylation, glycosylation, acetylation, phosphorylation, sumoylation, and many others has established fundamental roles for PTMs within EVs and associated EV function. The application of enrichment strategies for modifications, high-resolution quantitative mass spectrometry-based proteomics, and improved technological approaches have provided key insights into identification and characterization of EV-based PTMs. Recently, an overwhelming appreciation for the diversity of modifications, including post-transcriptional modifications, dynamic roles of these modifications, and their emerging interplay, including protein-protein, protein-lipid, protein-RNA, and variable RNA modifications, is emerging. At a cellular level, such interplay is essential for gene expression/genome organization, protein function and localization, RNA metabolism, cell division, and cell signaling. Expert commentary: The understanding of these modifications and interactions will provide strategies toward how distinct cargo is localized, sorted, and delivered through EVs to mediate intercellular function, with further understanding of such modifications and intermolecular interactions will provide advances in EV-based therapeutic strategies.
Collapse
Affiliation(s)
- Bethany Claridge
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| | - Kenneth Kastaniegaard
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - Allan Stensballe
- b Department of Health Science and Technology , Laboratory for Medical Mass Spectrometry, Aalborg University , Aalborg Ø , Denmark
| | - David W Greening
- a Department of Biochemistry and Genetics , La Trobe Institute for Molecular Science, La Trobe University , Melbourne , Australia
| |
Collapse
|
14
|
Iriarte LS, Midlej V, Frontera LS, Moros Duarte D, Barbeito CG, de Souza W, Benchimol M, de Miguel N, Coceres VM. TfVPS32 Regulates Cell Division in the Parasite Tritrichomonas foetus. J Eukaryot Microbiol 2017; 65:28-37. [DOI: 10.1111/jeu.12424] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Lucrecia S. Iriarte
- Laboratorio de Parásitos Anaerobios; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM; Chascomús B7130IWA Argentina
| | - Victor Midlej
- Laboratorio de Ultraestrutura Celular Hertha Meyer; Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Cidade Universitaria; Av. Carlos Chagas Filho 373 - G1-019 - Ilha do Fundão Rio de Janeiro RJ 21941-902 Brazil
| | - Lorena S. Frontera
- Laboratorio de Parásitos Anaerobios; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM; Chascomús B7130IWA Argentina
| | - Daniel Moros Duarte
- Laboratorio de Parásitos Anaerobios; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM; Chascomús B7130IWA Argentina
| | - Claudio G. Barbeito
- Histology and Embryology Department; Veterinary Medicine School; National University of La Plata (UNLP); P.O. Box 296 1900 La Plata Buenos Aires Argentina
| | - Wanderley de Souza
- Laboratorio de Ultraestrutura Celular Hertha Meyer; Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Cidade Universitaria; Av. Carlos Chagas Filho 373 - G1-019 - Ilha do Fundão Rio de Janeiro RJ 21941-902 Brazil
| | - Marlene Benchimol
- Laboratorio de Ultraestrutura Celular Hertha Meyer; Centro de Ciências da Saúde; Instituto de Biofísica Carlos Chagas Filho; Universidade Federal do Rio de Janeiro; Cidade Universitaria; Av. Carlos Chagas Filho 373 - G1-019 - Ilha do Fundão Rio de Janeiro RJ 21941-902 Brazil
- Universidade do Grande Rio, UNIGRANRIO; Rua Professor José de Souza Herdy 1160 - Jardim Vinte e Cinco de Agosto Duque de Caxias RJ 25070-000 Brazil
| | - Natalia de Miguel
- Laboratorio de Parásitos Anaerobios; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM; Chascomús B7130IWA Argentina
| | - Veronica M. Coceres
- Laboratorio de Parásitos Anaerobios; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús (IIB-INTECH), CONICET-UNSAM; Chascomús B7130IWA Argentina
| |
Collapse
|
15
|
Kanemoto S, Nitani R, Murakami T, Kaneko M, Asada R, Matsuhisa K, Saito A, Imaizumi K. Multivesicular body formation enhancement and exosome release during endoplasmic reticulum stress. Biochem Biophys Res Commun 2016; 480:166-172. [PMID: 27725157 DOI: 10.1016/j.bbrc.2016.10.019] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/07/2016] [Indexed: 11/19/2022]
Abstract
The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular homeostasis. However, numerous environmental and genetic factors give rise to ER stress by inducing an accumulation of unfolded proteins. Under ER stress conditions, cells initiate the unfolded protein response (UPR). Here, we demonstrate a novel aspect of the UPR by electron microscopy and immunostaining analyses, whereby multivesicular body (MVB) formation was enhanced after ER stress. This MVB formation was influenced by inhibition of ER stress transducers inositol required enzyme 1 (IRE1) and PKR-like ER kinase (PERK). Furthermore, exosome release was also increased during ER stress. However, in IRE1 or PERK deficient cells, exosome release was not upregulated, indicating that IRE1- and PERK-mediated pathways are involved in ER stress-dependent exosome release.
Collapse
Affiliation(s)
- Soshi Kanemoto
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Ryota Nitani
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Tatsuhiko Murakami
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Masayuki Kaneko
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Rie Asada
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Koji Matsuhisa
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
16
|
Matsuda A, Yan IK, Foye C, Parasramka M, Patel T. MicroRNAs as paracrine signaling mediators in cancers and metabolic diseases. Best Pract Res Clin Endocrinol Metab 2016; 30:577-590. [PMID: 27923452 PMCID: PMC5147504 DOI: 10.1016/j.beem.2016.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The contribution of microRNAs to the regulation of mRNA expression during physiological and developmental processes are well-recognized. These roles are being expanded by recent observations that emphasize the capability of miRNA to participate in inter-cellular signaling and communication. Several factors support a functional role for miRNA as mediators of cell-to-cell signaling. miRNA are able to exist within the extracellular milieu or circulation, and their stability and integrity maintained through association with binding proteins or lipoproteins, or through encapsulation within cell-derived membrane vesicles. Furthermore, miRNA can retain functionality and regulate target gene expression following their uptake by recipient cells. In this overview, we review specific examples that will highlight the potential of miRNA to serve as paracrine signaling mediators in metabolic diseases and cancers. Elucidating the mechanisms involved in inter-cellular communication involving miRNA will provide new insights into disease pathogenesis and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Akiko Matsuda
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Irene K Yan
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Catherine Foye
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Mansi Parasramka
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA
| | - Tushar Patel
- Departments of Transplantation and Cancer Biology, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL 32224, USA.
| |
Collapse
|
17
|
Iavello A, Frech VSL, Gai C, Deregibus MC, Quesenberry PJ, Camussi G. Role of Alix in miRNA packaging during extracellular vesicle biogenesis. Int J Mol Med 2016; 37:958-66. [PMID: 26935291 PMCID: PMC4790646 DOI: 10.3892/ijmm.2016.2488] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/21/2016] [Indexed: 02/07/2023] Open
Abstract
Evidence indicates that Alix, an accessory protein of the endosomal sorting complex required for transport (ESCRT), is involved in the biogenesis of extracellular vesicles (EVs). EVs contain selected patterns of microRNAs (miRNAs or miRs); however, little is known about the mechanisms of miRNA enrichment in EVs. The aim of the present study was to evaluate whether Alix is involved in the packaging of miRNAs within EVs released by human liver stem-like cells (HLSCs). EVs released from HLSCs were enriched with miRNAs and expressed Alix and several RNA-binding proteins, including Argonaute 2 (Ago2), a member of the Argonaute family known to be involved in the transport and the processing of miRNAs. Co-immunoprecipitation experiments revealed an association between Alix and Ago2. The results from RT-qPCR indicated that in the Alix/Ago2 immunoprecipitates, miRNAs were detectable. EVs were instrumental in transferring selected miRNAs from HLSCs to human endothelial cells absent in the latter cells. Alix knockdown did not influence the number of EVs released by HLSCs, but it significantly decreased miRNA expression levels in the EVs and consequently their transfer to the endothelium. Our findings indicate that Alix binds to Ago2 and miRNAs, suggesting that it plays a key role in miRNA enrichment during EV biogenesis. These results may represent a novel function of Alix, demonstrating its involvement in the EV-mediated transfer of miRNAs.
Collapse
Affiliation(s)
- Alessandra Iavello
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Valeska S L Frech
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Chiara Gai
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Maria Chiara Deregibus
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| | - Peter J Quesenberry
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Giovanni Camussi
- Department of Medical Sciences and Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy
| |
Collapse
|
18
|
Tan J, Levine SL, Bachman PM, Jensen PD, Mueller GM, Uffman JP, Meng C, Song Z, Richards KB, Beevers MH. No impact of DvSnf7 RNA on honey bee (Apis mellifera L.) adults and larvae in dietary feeding tests. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:287-94. [PMID: 26011006 PMCID: PMC4744748 DOI: 10.1002/etc.3075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/02/2015] [Accepted: 05/18/2015] [Indexed: 05/08/2023]
Abstract
The honey bee (Apis mellifera L.) is the most important managed pollinator species worldwide and plays a critical role in the pollination of a diverse range of economically important crops. This species is important to agriculture and historically has been used as a surrogate species for pollinators to evaluate the potential adverse effects for conventional, biological, and microbial pesticides, as well as for genetically engineered plants that produce pesticidal products. As part of the ecological risk assessment of MON 87411 maize, which expresses a double-stranded RNA targeting the Snf7 ortholog (DvSnf7) in western corn rootworm (Diabrotica virgifera virgifera), dietary feeding studies with honey bee larvae and adults were conducted. Based on the mode of action of the DvSnf7 RNA in western corn rootworm, the present studies were designed to be of sufficient duration to evaluate the potential for adverse effects on larval survival and development through emergence and adult survival to a significant portion of the adult stage. Testing was conducted at concentrations of DvSnf7 RNA that greatly exceeded environmentally relevant exposure levels based on expression levels in maize pollen. No adverse effects were observed in either larval or adult honey bees at these high exposure levels, providing a large margin of safety between environmental exposure levels and no-observed-adverse-effect levels.
Collapse
Affiliation(s)
- Jianguo Tan
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Steven L Levine
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | | | - Peter D Jensen
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | | | - Joshua P Uffman
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Chen Meng
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | - Zihong Song
- Regulatory Sciences, Monsanto Company, St. Louis, Missouri, USA
| | | | | |
Collapse
|
19
|
Hilscher J, Kapusi E, Stoger E, Ibl V. Cell layer-specific distribution of transiently expressed barley ESCRT-III component HvVPS60 in developing barley endosperm. PROTOPLASMA 2016; 253:137-53. [PMID: 25796522 PMCID: PMC4712231 DOI: 10.1007/s00709-015-0798-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/09/2015] [Indexed: 05/29/2023]
Abstract
The significance of the endosomal sorting complexes required for transport (ESCRT)-III in cereal endosperm has been shown by the identification of the recessive mutant supernumerary aleurone layer1 (SAL1) in maize. ESCRT-III is indispensable in the final membrane fission step during biogenesis of multivesicular bodies (MVBs), responsible for protein sorting to vacuoles and to the cell surface. Here, we annotated barley ESCRT-III members in the (model) crop Hordeum vulgare and show that all identified members are expressed in developing barley endosperm. We used fluorescently tagged core ESCRT-III members HvSNF7a/CHMP4 and HvVPS24/CHMP3 and the associated ESCRT-III component HvVPS60a/CHMP5 for transient localization studies in barley endosperm. In vivo confocal microscopic analyses show that the localization of recombinantly expressed HvSNF7a, HvVPS24 and HvVPS60a differs within barley endosperm. Whereas HvSNF7a induces large agglomerations, HvVPS24 shows mainly cytosolic localization in aleurone and subaleurone. In contrast, HvVPS60a localizes strongly at the plasma membrane in aleurone. In subaleurone, HvVPS60a was found to a lesser extent at the plasma membrane and at vacuolar membranes. These results indicate that the steady-state association of ESCRT-III may be influenced by cell layer-specific protein deposition or trafficking and remodelling of the endomembrane system in endosperm. We show that sorting of an artificially mono-ubiquitinated Arabidopsis plasma membrane protein is inhibited by HvVPS60a in aleurone. The involvement of HvVPS60a in different cell layer-specific trafficking pathways, reflected by localization of HvVPS60a at the plasma membrane in aleurone and at the PSV membrane in subaleurone, is discussed.
Collapse
Affiliation(s)
- Julia Hilscher
- Department of Applied Genetics and Cell Biology, Division of Molecular Cell Biology and Glycobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Eszter Kapusi
- Department of Applied Genetics and Cell Biology, Division of Molecular Cell Biology and Glycobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, Division of Molecular Cell Biology and Glycobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | - Verena Ibl
- Department of Applied Genetics and Cell Biology, Division of Molecular Cell Biology and Glycobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
20
|
Parkinson MDJ, Piper SC, Bright NA, Evans JL, Boname JM, Bowers K, Lehner PJ, Luzio JP. A non-canonical ESCRT pathway, including histidine domain phosphotyrosine phosphatase (HD-PTP), is used for down-regulation of virally ubiquitinated MHC class I. Biochem J 2015; 471:79-88. [PMID: 26221024 PMCID: PMC4613529 DOI: 10.1042/bj20150336] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/21/2015] [Accepted: 07/28/2015] [Indexed: 11/17/2022]
Abstract
The Kaposi's sarcoma-associated herpes virus (KSHV) K3 viral gene product effectively down-regulates cell surface MHC class I. K3 is an E3 ubiquitin ligase that promotes Lys(63)-linked polyubiquitination of MHC class I, providing the signal for clathrin-mediated endocytosis. Endocytosis is followed by sorting into the intralumenal vesicles (ILVs) of multivesicular bodies (MVBs) and eventual delivery to lysosomes. The sorting of MHC class I into MVBs requires many individual proteins of the four endosomal sorting complexes required for transport (ESCRTs). In HeLa cells expressing the KSHV K3 ubiquitin ligase, the effect of RNAi-mediated depletion of individual proteins of the ESCRT-0 and ESCRT-I complexes and three ESCRT-III proteins showed that these are required to down-regulate MHC class I. However, depletion of proteins of the ESCRT-II complex or of the ESCRT-III protein, VPS20 (vacuolar protein sorting 20)/CHMP6 (charged MVB protein 6), failed to prevent the loss of MHC class I from the cell surface. Depletion of histidine domain phosphotyrosine phosphatase (HD-PTP) resulted in an increase in the cell surface concentration of MHC class I in HeLa cells expressing the KSHV K3 ubiquitin ligase. Rescue experiments with wild-type (WT) and mutant HD-PTP supported the conclusion that HD-PTP acts as an alternative to ESCRT-II and VPS20/CHMP6 as a link between the ESCRT-I and those ESCRT-III protein(s) necessary for ILV formation. Thus, the down-regulation of cell surface MHC class I, polyubiquitinated by the KSHV K3 ubiquitin ligase, does not employ the canonical ESCRT pathway, but instead utilizes an alternative pathway in which HD-PTP replaces ESCRT-II and VPS20/CHMP6.
Collapse
Affiliation(s)
- Michael D J Parkinson
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - Siân C Piper
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - Nicholas A Bright
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - Jennifer L Evans
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - Jessica M Boname
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - Katherine Bowers
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - Paul J Lehner
- Department of Medicine, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K
| | - J Paul Luzio
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, University of Cambridge School of Clinical Medicine, Wellcome Trust/MRC Building, Biomedical Campus, Hills Road, Cambridge, CB2 0XY, U.K.
| |
Collapse
|
21
|
Kapuralin K, Ćurlin M, Mitrečić D, Kosi N, Schwarzer C, Glavan G, Gajović S. STAM2, a member of the endosome-associated complex ESCRT-0 is highly expressed in neurons. Mol Cell Neurosci 2015; 67:104-15. [DOI: 10.1016/j.mcn.2015.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 06/03/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022] Open
|
22
|
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal Stem Cell-derived Extracellular Vesicles: Toward Cell-free Therapeutic Applications. Mol Ther 2015; 23:812-823. [PMID: 25868399 DOI: 10.1038/mt.2015.44] [Citation(s) in RCA: 808] [Impact Index Per Article: 89.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 02/20/2015] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem (stromal) cells (MSCs) are multipotent cells with the ability to differentiate into several cell types, thus serving as a cell reservoir for regenerative medicine. Much of the current interest in therapeutic application of MSCs to various disease settings can be linked to their immunosuppressive and anti-inflammatory properties. One of the key mechanisms of MSC anti-inflammatory effects is the secretion of soluble factors with paracrine actions. Recently it has emerged that the paracrine functions of MSCs could, at least in part, be mediated by extracellular vesicles (EVs). EVs are predominantly released from the endosomal compartment and contain a cargo that includes miRNA, mRNA, and proteins from their cells of origin. Recent animal model-based studies suggest that EVs have significant potential as a novel alternative to whole cell therapies. Compared to their parent cells, EVs may have a superior safety profile and can be safely stored without losing function. In this article, we review current knowledge related to the potential use of MSC-derived EVs in various diseases and discuss the promising future for EVs as an alternative, cell-free therapy.
Collapse
Affiliation(s)
- Sweta Rani
- Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland.
| | - Aideen E Ryan
- Discipline of Pharmacology and Therapeutics, College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Matthew D Griffin
- Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), College of Medicine, Nursing and Health Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
23
|
Fontana F, Siva K, Denti MA. A network of RNA and protein interactions in Fronto Temporal Dementia. Front Mol Neurosci 2015; 8:9. [PMID: 25852467 PMCID: PMC4365750 DOI: 10.3389/fnmol.2015.00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 02/25/2015] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal dementia (FTD) is a neurodegenerative disorder characterized by degeneration of the fronto temporal lobes and abnormal protein inclusions. It exhibits a broad clinicopathological spectrum and has been linked to mutations in seven different genes. We will provide a picture, which connects the products of these genes, albeit diverse in nature and function, in a network. Despite the paucity of information available for some of these genes, we believe that RNA processing and post-transcriptional regulation of gene expression might constitute a common theme in the network. Recent studies have unraveled the role of mutations affecting the functions of RNA binding proteins and regulation of microRNAs. This review will combine all the recent findings on genes involved in the pathogenesis of FTD, highlighting the importance of a common network of interactions in order to study and decipher the heterogeneous clinical manifestations associated with FTD. This approach could be helpful for the research of potential therapeutic strategies.
Collapse
Affiliation(s)
- Francesca Fontana
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Kavitha Siva
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
| | - Michela A. Denti
- Laboratory of RNA Biology and Biotechnology, Centre for Integrative Biology, University of TrentoTrento, Italy
- CNR, Institute of NeurosciencePadua, Italy
| |
Collapse
|
24
|
Mantel PY, Marti M. The role of extracellular vesicles in Plasmodium and other protozoan parasites. Cell Microbiol 2014; 16:344-54. [PMID: 24406102 DOI: 10.1111/cmi.12259] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 12/25/2013] [Accepted: 01/06/2014] [Indexed: 01/14/2023]
Abstract
Protozoan parasites and other microorganisms use various pathways to communicate within their own populations and to manipulate their outside environments, with the ultimate goal of balancing the rate of growth and transmission. In higher eukaryotes, including humans, circulating extracellular vesicles are increasingly recognized as key mediators of physiological and pathological processes. Recent evidence suggests that protozoan parasites, including those responsible for major human diseases such as malaria and Chagas disease, use similar machinery. Indeed, intracellular and extracellular protozoan parasites secrete extracellular vesicles to promote growth and induce transmission, to evade the host immune system, and to manipulate the microenvironment. In this review we will discuss the general pathways of extracellular vesicle biogenesis and their functions in protozoan infections.
Collapse
Affiliation(s)
- Pierre-Yves Mantel
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA
| | | |
Collapse
|
25
|
Kumar CV, Swetha RG, Ramaiah S, Anbarasu A. Tryptophan to Glycine mutation in the position 116 leads to protein aggregation and decreases the stability of the LITAF protein. J Biomol Struct Dyn 2014; 33:1695-709. [DOI: 10.1080/07391102.2014.968211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Davies CW, Paul LN, Das C. Mechanism of recruitment and activation of the endosome-associated deubiquitinase AMSH. Biochemistry 2013; 52:7818-29. [PMID: 24151880 DOI: 10.1021/bi401106b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AMSH, a deubiquitinating enzyme (DUB) with exquisite specificity for Lys63-linked polyubiquitin chains, is an endosome-associated DUB that regulates sorting of activated cell-surface signaling receptors to the lysosome, a process mediated by the members of the endosomal sorting complexes required for transport (ESCRT) machinery. Whole-exome sequencing of DNA samples from children with microcephaly capillary malformation (MIC-CAP) syndrome identified recessive mutations encoded in the AMSH gene causatively linked to the disease. Herein, we report a number of important observations that significantly advance our understanding of AMSH within the context of the ESCRT machinery. First, we performed mutational and kinetic analysis of the putative residues involved in diubiquitin recognition and catalysis with a view of better understanding the catalytic mechanism of AMSH. Our mutational and kinetic analysis reveals that recognition of the proximal ubiquitin is imperative for the linkage specificity and catalytic efficiency of the enzyme. The MIC-CAP disease mutation, Thr313Ile, yields a substantial loss of catalytic activity without any significant change in the thermodynamic stability of the protein, indicating that its perturbed catalytic activity is the basis of the disease. The catalytic activity of AMSH is stimulated upon binding to the ESCRT-0 member STAM; however, the precise mechanism and its significance are not known. On the basis of a number of biochemical and biophysical analyses, we are able to propose a model for activation according to which activation of AMSH is allowed by facile, simultaneous binding to two ubiquitin groups in a polyubiquitin substrate, one by the catalytic domain of the DUB (binding to the distal ubiquitin) and the other (the proximal ubiquitin) by the ubiquitin interacting motif (UIM) from STAM. Such a mode of binding would stabilize the ubiquitin chain in a productive orientation, resulting in an enhancement of the activity of the enzyme. These data together provide a mechanism for understanding the recruitment and activation of AMSH at ESCRT-0, providing biochemical and biophysical evidence that supports a role for AMSH when it is recruited to the initial ESCRT complex: it functions to facilitate the transfer of ubiquitinated receptors (cargo) from one ESCRT member to the next by disassembling the polyubiquitin chain while leaving some ubiquitin groups still attached to the cargo.
Collapse
Affiliation(s)
- Christopher W Davies
- Department of Chemistry, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | |
Collapse
|
27
|
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013; 126:5553-65. [PMID: 24105262 DOI: 10.1242/jcs.128868] [Citation(s) in RCA: 850] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis have not yet been fully identified although they could be used to modulate exosome formation and therefore are a promising tool in understanding exosome functions. We have performed an RNA interference screen targeting 23 components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1 or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EVs, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, it was not possible to draw any conclusions about their involvement in exosome biogenesis from the screen. Interestingly, silencing of ALIX increased MHC II exosomal secretion, as a result of an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a greater heterogeneity in size, and higher MHC II and lower CD63 levels in vesicles recovered from DCs as compared with HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.
Collapse
Affiliation(s)
- Marina Colombo
- Institut Curie Section Recherche, 26 rue d'Ulm, 75248 Paris cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
29
|
Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
30
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
31
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
32
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
33
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
34
|
Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013; 36:105-11. [PMID: 23807045 PMCID: PMC3887950 DOI: 10.1007/s10059-013-0154-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/21/2013] [Indexed: 01/05/2023] Open
Abstract
The host immune response involves a variety of cell types, including specialized immune and non-immune cells. The delicate coordination among these cells via close communication is central for the proper operation of immune system. Cell-cell communication is mediated by a complex network that includes soluble factors such as cytokines, chemokines, and metabolites exported from cells, as well as membrane-bound receptors and their ligands. Cell-cell communication is also mediated by membrane vesicles (e.g., exosomes, ectosomes), which are either shed by distant cells or exchanged by cells that are making direct contact. Intercellular communication via extracellular membrane vesicles has drawn much attention recently, as they have been shown to carry various biomolecules that modulate the activities of recipient cells. In this review, I will discuss current views on cell-cell communication via extra-cellular membrane vesicles, especially shedded membrane vesicles, and their effects on the control of the immune system.
Collapse
Affiliation(s)
- Inkyu Hwang
- Research Center for Chemical Biology, KRIBB-RIKEN Global R&D Center Program, Korea Research Institute of Bioscience and Biotechnology, Cheongwon 363-883, Korea.
| |
Collapse
|
35
|
Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells 2013. [DOI: 10.1007/s10059-013-0154-2 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
36
|
Ramaseshadri P, Segers G, Flannagan R, Wiggins E, Clinton W, Ilagan O, McNulty B, Clark T, Bolognesi R. Physiological and cellular responses caused by RNAi- mediated suppression of Snf7 orthologue in western corn rootworm (Diabrotica virgifera virgifera) larvae. PLoS One 2013; 8:e54270. [PMID: 23349844 PMCID: PMC3548817 DOI: 10.1371/journal.pone.0054270] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Ingestion of double stranded RNA (dsRNA) has been previously demonstrated to be effective in triggering RNA interference (RNAi) in western corn rootworm (WCR, Diabrotica virgifera virgifera LeConte), providing potential novel opportunities for insect pest control. The putative Snf7 homolog of WCR (DvSnf7) has previously been shown to be an effective RNAi target for insect control, as DvSnf7 RNAi leads to lethality of WCR larvae. Snf7 functions as a part of the ESCRT (Endosomal Sorting Complex Required for Transport) pathway which plays a crucial role in cellular housekeeping by internalization, transport, sorting and lysosomal degradation of transmembrane proteins. To understand the effects that lead to death of WCR larvae by DvSnf7 RNAi, we examined some of the distinct cellular processes associated with ESCRT functions such as de-ubiquitination of proteins and autophagy. Our data indicate that ubiquitinated proteins accumulate in DvSnf7 dsRNA-fed larval tissues and that the autophagy process seems to be impaired. These findings suggest that the malfunctioning of these cellular processes in both midgut and fat body tissues triggered by DvSnf7 RNAi were the main effects leading to the death of WCR. This study also illustrates that Snf7 is an essential gene in WCR and its functions are consistent with biological functions described for other eukaryotes.
Collapse
Affiliation(s)
| | - Gerrit Segers
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Ronald Flannagan
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Elizabeth Wiggins
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - William Clinton
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Oliver Ilagan
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Brian McNulty
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Thomas Clark
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| | - Renata Bolognesi
- Department of Biotechnology, Monsanto Company, Chesterfield, Missouri, United States of America
| |
Collapse
|
37
|
Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, Manel N, Moita LF, Théry C, Raposo G. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci 2013. [DOI: 78495111110.1242/jcs.128868' target='_blank'>'"<>78495111110.1242/jcs.128868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [78495111110.1242/jcs.128868','', '10.1042/bc20090161')">Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
78495111110.1242/jcs.128868" />
Abstract
Exosomes are extracellular vesicles (EVs) secreted upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane. The mechanisms involved in their biogenesis remain so far unclear although they constitute targets to modulate exosome formation and therefore are a promising tool to understand their functions. We have performed an RNA interference screen targeting twenty-three components of the endosomal sorting complex required for transport (ESCRT) machinery and associated proteins in MHC class II (MHC II)-expressing HeLa-CIITA cells. Silencing of HRS, STAM1, or TSG101 reduced the secretion of EV-associated CD63 and MHC II but each gene altered differently the size and/or protein composition of secreted EV, as quantified by immuno-electron microscopy. By contrast, depletion of VPS4B augmented this secretion while not altering the features of EVs. For several other ESCRT subunits, the screen did not allow to conclude on their involvement in exosome biogenesis. Interestingly, silencing of ALIX increased MHC II exosomal secretion, due to an overall increase in intracellular MHC II protein and mRNA levels. In human dendritic cells (DCs), ALIX depletion also increased MHC II in the cells, but not in the released CD63-positive EVs. Such differences could be attributed to a higher heterogeneity in size, and higher MHC II and lower CD63 contents in vesicles recovered from DCs as compared to HeLa-CIITA. The results reveal a role for selected ESCRT components and accessory proteins in exosome secretion and composition by HeLa-CIITA. They also highlight biogenetic differences in vesicles secreted by a tumour cell line and primary DCs.
Collapse
|
38
|
Lee SM, Chin LS, Li L. Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking. ACTA ACUST UNITED AC 2012; 199:799-816. [PMID: 23166352 PMCID: PMC3514783 DOI: 10.1083/jcb.201204137] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
SIMPLE functions with the ESCRT machinery to promote endosome-to-lysosome trafficking, and this function is impaired by Charcot-Marie-Tooth disease–associated mutations. Mutations in small integral membrane protein of lysosome/late endosome (SIMPLE) cause autosomal dominant, Charcot-Marie-Tooth disease (CMT) type 1C. The cellular function of SIMPLE is unknown and the pathogenic mechanism of SIMPLE mutations remains elusive. Here, we report that SIMPLE interacted and colocalized with endosomal sorting complex required for transport (ESCRT) components STAM1, Hrs, and TSG101 on early endosomes and functioned with the ESCRT machinery in the control of endosome-to-lysosome trafficking. Our analyses revealed that SIMPLE was required for efficient recruitment of ESCRT components to endosomal membranes and for regulating endosomal trafficking and signaling attenuation of ErbB receptors. We found that the ability of SIMPLE to regulate ErbB trafficking and signaling was impaired by CMT-linked SIMPLE mutations via a loss-of-function, dominant-negative mechanism, resulting in prolonged activation of ERK1/2 signaling. Our findings indicate a function of SIMPLE as a regulator of endosomal trafficking and provide evidence linking dysregulated endosomal trafficking to CMT pathogenesis.
Collapse
Affiliation(s)
- Samuel M Lee
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
39
|
HIV Assembly and Budding: Ca(2+) Signaling and Non-ESCRT Proteins Set the Stage. Mol Biol Int 2012; 2012:851670. [PMID: 22761998 PMCID: PMC3384956 DOI: 10.1155/2012/851670] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 03/26/2012] [Indexed: 12/16/2022] Open
Abstract
More than a decade has elapsed since the link between the endosomal sorting complex required for transport (ESCRT) machinery and HIV-1 protein trafficking and budding was first identified. L domains in HIV-1 Gag mediate recruitment of ESCRT which function in bud abscission releasing the viral particle from the host cell. Beyond virus budding, the ESCRT machinery is also involved in the endocytic pathway, cytokinesis, and autophagy. In the past few years, the number of non-ESCRT host proteins shown to be required in the assembly process has also grown. In this paper, we highlight the role of recently identified cellular factors that link ESCRT machinery to calcium signaling machinery and we suggest that this liaison contributes to setting the stage for productive ESCRT recruitment and mediation of abscission. Parallel paradigms for non-ESCRT roles in virus budding and cytokinesis will be discussed.
Collapse
|
40
|
Han JH, Ryu HH, Jun MH, Jang DJ, Lee JA. The functional analysis of the CHMP2B missense mutation associated with neurodegenerative diseases in the endo-lysosomal pathway. Biochem Biophys Res Commun 2012; 421:544-9. [PMID: 22521643 DOI: 10.1016/j.bbrc.2012.04.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 04/07/2012] [Indexed: 12/12/2022]
Abstract
Endosomal sorting complexes required for transport (ESCRTs) regulate a key sorting step of protein trafficking between endosomal compartments in lysosomal degradation. Interestingly, mutations in charged multivesicular body protein 2B (CHMP2B), which is a core subunit of ESCRT-III, have been identified in some neurodegenerative diseases. However, the cellular pathogenesis resulting from CHMP2B missense mutations is unclear. Furthermore, little is known about their functional analysis in post-mitotic neurons. In order to examine their cellular pathogenesis, we analyzed their effects in the endo-lysosomal pathway in post-mitotic neurons. Interestingly, of the missense mutant proteins, CHMP2B(T104N) mostly accumulated in the Rab5- and Rab7-positive endosomes and caused delayed degradation of EGFR as compared to CHMP2B(WT). Furthermore, CHMP2B(T104N) showed less association with Vps4 ATPase and was avidly associated with Snf7-2, a core component of ESCRT-III, suggesting that it may cause defects in the process of dissociation from ESCRT. Of the missense variants, CHMP2B(T104N) caused prominent accumulation of autophagosomes. However, neuronal cell survival was not dramatically affected by expression of CHMP2B(T104N). These findings suggested that, from among the various missense mutants, CHMP2B(T104N) was associated with relatively mild cellular pathogenesis in post-mitotic neurons. This study provided a better understanding of the cellular pathogenesis of neurodegenerative diseases associated with various missense mutations of CHMP2B as well as endocytic defects.
Collapse
Affiliation(s)
- Jeong-Ho Han
- Department of Biotechnology, College of Life Science and Nano Technology, Hannam University, 461-6, Jeonmin-dong, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | | | | | | | | |
Collapse
|
41
|
Abstract
Marburg and Ebola viruses cause a severe hemorrhagic disease in humans with high fatality rates. Early target cells of filoviruses are monocytes, macrophages, and dendritic cells. The infection spreads to the liver, spleen and later other organs by blood and lymph flow. A hallmark of filovirus infection is the depletion of non-infected lymphocytes; however, the molecular mechanisms leading to the observed bystander lymphocyte apoptosis are poorly understood. Also, there is limited knowledge about the fate of infected cells in filovirus disease. In this review we will explore what is known about the intracellular events leading to virus amplification and cell damage in filovirus infection. Furthermore, we will discuss how cellular dysfunction and cell death may correlate with disease pathogenesis.
Collapse
Affiliation(s)
- Judith Olejnik
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
| | - Elena Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Science, Pr. Lavrent’eva, 8, Novosibirsk 630090, Russian Federation; E-Mail:
| | - Ronald B. Corley
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
| | - Elke Mühlberger
- Department of Microbiology, School of Medicine, Boston University, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.O.); (R.B.C.)
- National Emerging Infectious Diseases Laboratories Institute, Boston University, 72 East Concord Street, Boston, MA 02118, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-617-638-0336; Fax: +1-617-638-4286
| |
Collapse
|
42
|
Brankatschk B, Wichert SP, Johnson SD, Schaad O, Rossner MJ, Gruenberg J. Regulation of the EGF transcriptional response by endocytic sorting. Sci Signal 2012; 5:ra21. [PMID: 22416276 DOI: 10.1126/scisignal.2002351] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ligand binding to the epidermal growth factor receptor (EGFR) on the cell surface activates the extracellular signal-regulated kinase (ERK) cascade. Activated, ligand-bound receptors are internalized, and this process may contribute to termination of signaling or enable signaling from intracellular sites. ESCRT (endosomal sorting complex required for transport) complexes may contribute to termination of signaling by sorting receptors into intraluminal vesicles of multivesicular endosomes from which the receptors continue into lysosomes for degradation. We showed that depletion of ESCRTs, which causes the retention of the EGFR in endosomes, increased the activation of the EGFR and its downstream kinases but had little effect on the overall profile and amplitude of the EGF-induced transcriptional response. In contrast, interfering with receptor endocytosis or ubiquitination to keep the EGFR at the cell surface stimulated increases in the abundance of many EGF-induced transcripts, similar to those induced by EGFR overexpression. We also found that the complete EGF transcriptional program was rapidly activated after ligand binding to the receptor. We conclude that the transcriptional response is elicited primarily by receptor molecules at the cell surface.
Collapse
Affiliation(s)
- Ben Brankatschk
- Department of Biochemistry, University of Geneva, 30 Quai E. Ansermet, 1211 Geneva 4, Switzerland
| | | | | | | | | | | |
Collapse
|
43
|
Posttranslational modification and trafficking of PIN auxin efflux carriers. Mech Dev 2012; 130:82-94. [PMID: 22425600 DOI: 10.1016/j.mod.2012.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/03/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
Abstract
Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.
Collapse
|
44
|
EhADH112 is a Bro1 domain-containing protein involved in the Entamoeba histolytica multivesicular bodies pathway. J Biomed Biotechnol 2012; 2012:657942. [PMID: 22500103 PMCID: PMC3303925 DOI: 10.1155/2012/657942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/03/2011] [Indexed: 12/21/2022] Open
Abstract
EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [35S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.
Collapse
|
45
|
Biard-Piechaczyk M, Borel S, Espert L, de Bettignies G, Coux O. HIV-1, ubiquitin and ubiquitin-like proteins: the dialectic interactions of a virus with a sophisticated network of post-translational modifications. Biol Cell 2012; 104:165-87. [PMID: 22188301 DOI: 10.1111/boc.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.
Collapse
Affiliation(s)
- Martine Biard-Piechaczyk
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS-CNRS), Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Vesicle-mediated cargo transport within the endomembrane system requires precise coordination between adaptor molecules, which recognize sorting signals on substrates, and factors that promote changes in membrane architecture. At endosomal compartments, a set of protein complexes collectively known as the ESCRT machinery sequesters transmembrane cargoes that harbor a ubiquitin modification and packages them into vesicles that bud into the endosome lumen. Several models have been postulated to describe this process. However, consensus in the field remains elusive. Here, we discuss recent findings regarding the structure and function of the ESCRT machinery, highlighting specific roles for ESCRT-0 and ESCRT-III in regulating cargo selection and vesicle formation.
Collapse
Affiliation(s)
- Jonathan R Mayers
- Department of Biomolecular Chemistry; University of Wisconsin-Madison Medical School; Madison, WI USA
| | | |
Collapse
|
47
|
Richardson LG, Mullen RT. Meta-analysis of the expression profiles of the Arabidopsis ESCRT machinery. PLANT SIGNALING & BEHAVIOR 2011; 6:1897-903. [PMID: 22105035 PMCID: PMC3337174 DOI: 10.4161/psb.6.12.18023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) machinery is a set of multi-protein complexes that are well conserved among all eukaryotes and mediate a remarkable array of cellular processes including late endosome/multivesicular body (MVB) formation, retroviral particle release, and membrane abscission during cytokinesis. While the molecular mechanisms underlying ESCRT function have been relatively well characterized in yeasts and mammals, far less is known about ESCRT in plants. In this study, we utilized publicly-available microarray, massively parallel signature sequencing (MPSS) and proteome data sets in order to survey the expression profiles of many of the components of the Arabidopsis thaliana ESCRT machinery. Overall, the results indicate that ESCRT expression in Arabidopsis is highly dynamic across a wide range of organs, tissues and treatments, consistent with the complex interplay that likely exists between the spatial and temporal regulation of the ESCRT machinery and the diverse array of roles that ESCRT participates in during plant growth and development.
Collapse
|
48
|
Ehrlich LS, Medina GN, Carter CA. ESCRT machinery potentiates HIV-1 utilization of the PI(4,5)P(2)-PLC-IP3R-Ca(2+) signaling cascade. J Mol Biol 2011; 413:347-58. [PMID: 21875593 PMCID: PMC3193579 DOI: 10.1016/j.jmb.2011.08.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 08/05/2011] [Accepted: 08/16/2011] [Indexed: 01/09/2023]
Abstract
Human immunodeficiency virus type 1 (HIV-1) release efficiency is directed by late (L) domain motifs in the viral structural precursor polyprotein Gag, which serve as links to the ESCRT (endosomal sorting complex required for transport) machinery. Linkage is normally through binding of Tsg101, an ESCRT-1 component, to the P(7)TAP motif in the p6 region of Gag. In its absence, budding is directed by binding of Alix, an ESCRT adaptor protein, to the LY(36)PX(n)L motif in Gag. We recently showed that budding requires activation of the inositol 1,4,5-triphosphate receptor (IP3R), a protein that "gates" Ca(2+) release from intracellular stores, triggers Ca(2+) cell influx and thereby functions as a major regulator of Ca(2+) signaling. In the present study, we determined whether the L domain links Gag to Ca(2+) signaling machinery. Depletion of IP3R and inactivation of phospholipase C (PLC) inhibited budding whether or not Tsg101 was bound to Gag. PLC hydrolysis of phosphatidylinositol-(4,5)-bisphosphate generates inositol (1,4,5)-triphosphate, the ligand that activates IP3R. However, with Tsg101 bound, Gag release was independent of Gq-mediated activation of PLC, and budding was readily enhanced by pharmacological stimulation of PLC. Moreover, IP3R was redistributed to the cell periphery and cytosolic Ca(2+) was elevated, events indicative of induction of Ca(2+) signaling. The results suggest that L domain function, ESCRT machinery and Ca(2+) signaling are linked events in Gag release.
Collapse
Affiliation(s)
- Lorna S. Ehrlich
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Gisselle N. Medina
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| | - Carol A. Carter
- Dept. of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, NY 11794-5222, USA
| |
Collapse
|
49
|
Hislop JN, Henry AG, von Zastrow M. Ubiquitination in the first cytoplasmic loop of μ-opioid receptors reveals a hierarchical mechanism of lysosomal down-regulation. J Biol Chem 2011; 286:40193-204. [PMID: 21953467 DOI: 10.1074/jbc.m111.288555] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
μ-Type opioid receptors (MORs) are members of the large seven-transmembrane receptor family which transduce the effects of both endogenous neuropeptides and clinically important opioid drugs. Prolonged activation of MORs promotes their proteolytic degradation by endocytic trafficking to lysosomes. This down-regulation process is known to contribute to homeostatic regulation of cellular opioid responsiveness, but mechanisms that mediate and control MOR down-regulation have not been defined. We show here that lysosomal down-regulation of MORs is ESCRT (endosomal sorting complex required for transport)-dependent and involves ubiquitin-promoted transfer of internalized MORs from the limiting endosome membrane to lumen. We also show that MOR down-regulation measured by conventional radioligand binding assay is determined specifically by ubiquitination in the first cytoplasmic loop. Surprisingly, we were unable to find any role of ubiquitination in determining whether internalized receptors recycle or are delivered to lysosomes. Instead, this decision is dictated specifically by the MOR C-tail and occurs irrespectively of the presence or absence of receptor ubiquitination. Our results support a hierarchical organization of discrete ubiquitin-independent and -dependent sorting operations, which function non-redundantly in the conserved down-regulation pathway to mediate precise endocytic control. Furthermore, they show that this hierarchical mechanism discriminates the endocytic regulation of naturally occurring MOR isoforms. Moreover, they are the first to reveal, we believe, for any seven-transmembrane receptor, a functional role of ubiquitination in the first cytoplasmic loop.
Collapse
Affiliation(s)
- James N Hislop
- Department of Psychiatry, University of California, San Francisco, California 94158, USA
| | | | | |
Collapse
|
50
|
Abstract
Being deeply connected to signalling, cell dynamics, growth, regulation, and defence, endocytic processes are linked to almost all aspects of cell life and disease. In this review, we focus on endosomes in the classical endocytic pathway, and on the programme of changes that lead to the formation and maturation of late endosomes/multivesicular bodies. The maturation programme entails a dramatic transformation of these dynamic organelles disconnecting them functionally and spatially from early endosomes and preparing them for their unidirectional role as a feeder pathway to lysosomes.
Collapse
|