1
|
Joladarashi D, Thej C, Mallaredy V, Magadum A, Cimini M, Gonzalez C, Truongcao M, Nigro JT, Sethi MK, Gibb AA, Benedict C, Koch WJ, Kishore R. GPC3-mediated metabolic rewiring of diabetic mesenchymal stromal cells enhances their cardioprotective functions via PKM2 activation. iScience 2024; 27:111021. [PMID: 39429777 PMCID: PMC11490746 DOI: 10.1016/j.isci.2024.111021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/02/2024] [Accepted: 09/20/2024] [Indexed: 10/22/2024] Open
Abstract
Mesenchymal stromal cells (MSC) are promising stem cell therapy for treating cardiovascular and other degenerative diseases. Diabetes affects the functional capability of MSC and impedes cell-based therapy. Despite numerous studies, the impact of diabetes on MSC myocardial reparative activity, metabolic fingerprint, and the mechanism of dysfunction remains inadequately perceived. We demonstrated that the transplantation of diabetic-MSC (db/db-MSC) into the ischemic myocardium of mice does not confer cardiac benefit post-MI. Metabolomic studies identified defective energy metabolism in db/db-MSC. Furthermore, we found that glypican-3 (GPC3), a heparan sulfate proteoglycan, is highly upregulated in db/db-MSC and is involved in metabolic alterations in db/db-MSC via pyruvate kinase M2 (PKM2) activation. GPC3-knockdown reprogrammed-db/db-MSC restored their energy metabolic rates, immunomodulation, angiogenesis, and cardiac reparative activities. Together, these data indicate that GPC3-metabolic reprogramming in diabetic MSC may represent a strategy to enhance MSC-based therapeutics for myocardial repair in diabetic patients.
Collapse
Affiliation(s)
- Darukeshwara Joladarashi
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Charan Thej
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Vandana Mallaredy
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ajit Magadum
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Maria Cimini
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Carolina Gonzalez
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - May Truongcao
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Joseph T. Nigro
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Manveen K. Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry & Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Andrew A. Gibb
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, University of Louisville, 580 South Preston Street, Louisville, KY, USA
| | - Cindy Benedict
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Walter J. Koch
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Raj Kishore
- Aging and Cardiovascular Discovery Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
2
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Wculek SK, Heras-Murillo I, Mastrangelo A, Mañanes D, Galán M, Miguel V, Curtabbi A, Barbas C, Chandel NS, Enríquez JA, Lamas S, Sancho D. Oxidative phosphorylation selectively orchestrates tissue macrophage homeostasis. Immunity 2023; 56:516-530.e9. [PMID: 36738738 DOI: 10.1016/j.immuni.2023.01.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/02/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
| | - Ignacio Heras-Murillo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Annalaura Mastrangelo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Diego Mañanes
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Miguel Galán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain
| | - Verónica Miguel
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO, CSIC-UAM), 28049 Madrid, Spain
| | - Andrea Curtabbi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; Centro de Investigaciónes Biomédicas en Red en Fragilidad y Envejecimiento Saludabe (CIBERFES), 28029 Madrid, Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), School of Pharmacy, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, 28660 Madrid, Spain
| | - Navdeep S Chandel
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain; Centro de Investigaciónes Biomédicas en Red en Fragilidad y Envejecimiento Saludabe (CIBERFES), 28029 Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO, CSIC-UAM), 28049 Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain.
| |
Collapse
|
4
|
Aragón-Vela J, Alcalá-Bejarano Carrillo J, Moreno-Racero A, Plaza-Diaz J. The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children. Int J Mol Sci 2022; 23:15413. [PMID: 36499740 PMCID: PMC9737554 DOI: 10.3390/ijms232315413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Obesity and overweight are defined as abnormal fat accumulations. Adipose tissue consists of more than merely adipocytes; each adipocyte is closely coupled with the extracellular matrix. Adipose tissue stores excess energy through expansion. Obesity is caused by the abnormal expansion of adipose tissue as a result of adipocyte hypertrophy and hyperplasia. The process of obesity is controlled by several molecules, such as integrins, kindlins, or matrix metalloproteinases. In children with obesity, metabolomics studies have provided insight into the existence of unique metabolic profiles. As a result of low-grade inflammation in the system, abnormalities were observed in several metabolites associated with lipid, carbohydrate, and amino acid pathways. In addition, obesity and related hormones, such as leptin, play an instrumental role in regulating food intake and contributing to childhood obesity. The World Health Organization states that physical activity benefits the heart, the body, and the mind. Several noncommunicable diseases, such as cardiovascular disease, cancer, and diabetes, can be prevented and managed through physical activity. In this work, we reviewed pediatric studies that examined the molecular and hormonal control of obesity and the influence of physical activity on children with obesity or overweight. The purpose of this review was to examine some orchestrators involved in this disease and how they are related to pediatric populations. A larger number of randomized clinical trials with larger sample sizes and long-term studies could lead to the discovery of new key molecules as well as the detection of significant factors in the coming years. In order to improve the health of the pediatric population, omics analyses and machine learning techniques can be combined in order to improve treatment decisions.
Collapse
Affiliation(s)
- Jerónimo Aragón-Vela
- Department of Health Sciences, Area of Physiology, Building B3, Campus s/n “Las Lagunillas”, University of Jaén, 23071 Jaén, Spain
| | - Jesús Alcalá-Bejarano Carrillo
- Department of Health, University of the Valley of Mexico, Robles 600, Tecnologico I, San Luis Potosí 78220, Mexico
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Aurora Moreno-Racero
- Research and Advances in Molecular and Cellular Immunology, Center of Biomedical Research, University of Granada, Avda, del Conocimiento s/n, 18016 Armilla, Spain
| | - Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Instituto de Investigación Biosanitaria IBS, Granada, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|
5
|
Bispo DSC, Jesus CSH, Romek K, Marques IMC, Oliveira MB, Mano JF, Gil AM. An Intracellular Metabolic Signature as a Potential Donor-Independent Marker of the Osteogenic Differentiation of Adipose Tissue Mesenchymal Stem Cells. Cells 2022; 11:cells11233745. [PMID: 36497004 PMCID: PMC9739047 DOI: 10.3390/cells11233745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
This paper describes an untargeted NMR metabolomics study to identify potential intracellular donor-dependent and donor-independent metabolic markers of proliferation and osteogenic differentiation of human adipose mesenchymal stem cells (hAMSCs). The hAMSCs of two donors with distinct proliferating/osteogenic characteristics were fully characterized regarding their polar endometabolome during proliferation and osteogenesis. An 18-metabolites signature (including changes in alanine, aspartate, proline, tyrosine, ATP, and ADP, among others) was suggested to be potentially descriptive of cell proliferation, independently of the donor. In addition, a set of 11 metabolites was proposed to compose a possible donor-independent signature of osteogenesis, mostly involving changes in taurine, glutathione, methylguanidine, adenosine, inosine, uridine, and creatine/phosphocreatine, choline/phosphocholine and ethanolamine/phosphocholine ratios. The proposed signatures were validated for a third donor, although they require further validation in a larger donor cohort. We believe that this proof of concept paves the way to exploit metabolic markers to monitor (and potentially predict) cell proliferation and the osteogenic ability of different donors.
Collapse
|
6
|
Lopez-Yus M, Lorente-Cebrian S, Del Moral-Bergos R, Hörndler C, Garcia-Sobreviela MP, Casamayor C, Sanz-Paris A, Bernal-Monterde V, Arbones-Mainar JM. Identification of novel targets in adipose tissue involved in non-alcoholic fatty liver disease progression. FASEB J 2022; 36:e22429. [PMID: 35792898 DOI: 10.1096/fj.202200118rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/06/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Obesity is a major risk factor for the development of Nonalcoholic fatty liver disease (NAFLD). We hypothesize that a dysfunctional subcutaneous white adipose tissue (scWAT) may lead to an accumulation of ectopic fat in the liver. Our aim was to investigate the molecular mechanisms involved in the causative role of scWAT in NALFD progression. We performed a RNA-sequencing analysis in a discovery cohort (n = 45) to identify genes in scWAT correlated with fatty liver index, a qualitative marker of liver steatosis. We then validated those targets in a second cohort (n = 47) of obese patients who had liver biopsies available. Finally, we obtained scWAT mesenchymal stem cells (MSCs) from 13 obese patients at different stages of NAFLD and established in vitro models of human MSC (hMSC)-derived adipocytes. We observed impaired adipogenesis in hMSC-derived adipocytes as liver steatosis increased, suggesting that an impaired adipogenic capacity is a critical event in the development of NAFLD. Four genes showed a differential expression pattern in both scWAT and hMSC-derived adipocytes, where their expression paralleled steatosis degree: SOCS3, DUSP1, SIK1, and GADD45B. We propose these genes as key players in NAFLD progression. They could eventually constitute potential new targets for future therapies against liver steatosis.
Collapse
Affiliation(s)
- Marta Lopez-Yus
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain
| | - Silvia Lorente-Cebrian
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Departamento de Farmacología, Fisiología y Medicina Legal y Forense, Universidad de Zaragoza, Zaragoza, Spain.,Instituto Agroalimentario de Aragón (IA2) (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Raquel Del Moral-Bergos
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain
| | - Carlos Hörndler
- Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Pathology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Maria Pilar Garcia-Sobreviela
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain
| | - Carmen Casamayor
- Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Endocrine, Bariatric and Breast Surgery Unit, General and Digestive Surgery Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Alejandro Sanz-Paris
- Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Nutrition Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Vanesa Bernal-Monterde
- Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,Gastroenterology Department, Miguel Servet University Hospital, Zaragoza, Spain
| | - Jose M Arbones-Mainar
- Adipocyte and Fat Biology Laboratory (AdipoFat), Translational Research Unit, University Hospital Miguel Servet, Instituto Aragones de Ciencias de la Salud (IACS), Zaragoza, Spain.,Instituto de Investigación Sanitaria (IIS) Aragon, Zaragoza, Spain.,CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
GMP Compliant Production of a Cryopreserved Adipose-Derived Stromal Cell Product for Feasible and Allogeneic Clinical Use. Stem Cells Int 2022; 2022:4664917. [PMID: 35769340 PMCID: PMC9236818 DOI: 10.1155/2022/4664917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/20/2022] [Accepted: 05/31/2022] [Indexed: 12/13/2022] Open
Abstract
The emerging field of advanced therapy medicinal products (ATMP) holds promise of treating a variety of diseases. Adipose-derived stromal cells (ASCs) are currently being marketed or tested as cell-based therapies in numerous clinical trials. To ensure safety and efficacy of treatments, high-quality products must be manufactured. A good manufacturing practice (GMP) compliant and consistent manufacturing process including validated quality control methods is critical. Product design and formulation are equally important to ensure clinical feasibility. Here, we present a GMP-compliant, xeno-free, and semiautomated manufacturing process and quality controls, used for large-scale production of a cryopreserved off-the-shelf ASC product and tested in several phase I and II allogeneic clinical applications.
Collapse
|
8
|
Lima MF, Amaral AG, Moretto IA, Paiva-Silva FJTN, Pereira FOB, Barbas C, dos Santos AM, Simionato AVC, Rupérez FJ. Untargeted Metabolomics Studies of H9c2 Cardiac Cells Submitted to Oxidative Stress, β-Adrenergic Stimulation and Doxorubicin Treatment: Investigation of Cardiac Biomarkers. Front Mol Biosci 2022; 9:898742. [PMID: 35847971 PMCID: PMC9277393 DOI: 10.3389/fmolb.2022.898742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/26/2022] [Indexed: 11/13/2022] Open
Abstract
One of the biggest challenges in the search for more effective treatments for diseases is understanding their etiology. Cardiovascular diseases (CVD) are an important example of this, given the high number of deaths annually. Oxidative stress (the imbalance between oxidant and antioxidant species in biological system) is one of the factors responsible for CVD occurrence, demanding extensive investigation. Excess of reactive oxygen species (ROS) are primarily responsible for this condition, and clinical and scientific literature have reported a significant increase in ROS when therapeutic drugs, such as doxorubicin and isoproterenol, are administered. In this context, the aim of this study is the investigation of potential biomarkers that might be associated with oxidative stress in cardiomyocytes. For this purpose, H9c2 cardiomyocytes were submitted to oxidative stress conditions by treatment with doxorubicin (DOX), isoproterenol (ISO) and hydrogen peroxide (PER). Metabolomics analyses of the cell extract and the supernatant obtained from the culture medium were then evaluated by CE-ESI(+)-TOF-MS. Following signal processing, statistical analyses, and molecular features annotations, the results indicate changes in the aspartate, serine, pantothenic acid, glycerophosphocholine and glutathione metabolism in the cell extract.
Collapse
Affiliation(s)
- Monica Força Lima
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Alan Gonçalves Amaral
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
| | - Isabela Aparecida Moretto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Flávia Oliveira Borges Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Aline Mara dos Santos
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- *Correspondence: Aline Mara dos Santos, ; Francisco Javier Rupérez,
| | - Ana Valéria Colnaghi Simionato
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas (UNICAMP), Campinas, Brazil
- National Institute of Science and Technology in Bioanalytics (INCTBio), Campinas, Brazil
| | - Francisco Javier Rupérez
- Center for Metabolomics and Bioanalysis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
- *Correspondence: Aline Mara dos Santos, ; Francisco Javier Rupérez,
| |
Collapse
|
9
|
Rey-Stolle F, Dudzik D, Gonzalez-Riano C, Fernández-García M, Alonso-Herranz V, Rojo D, Barbas C, García A. Low and high resolution gas chromatography-mass spectrometry for untargeted metabolomics: A tutorial. Anal Chim Acta 2022; 1210:339043. [PMID: 35595356 DOI: 10.1016/j.aca.2021.339043] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/28/2022]
Abstract
GC-MS for untargeted metabolomics is a well-established technique. Small molecules and molecules made volatile by derivatization can be measured and those compounds are key players in main biological pathways. This tutorial provides ready-to-use protocols for GC-MS-based metabolomics, using either the well-known low-resolution approach (GC-Q-MS) with nominal mass or the more recent high-resolution approach (GC-QTOF-MS) with accurate mass, discussing their corresponding strengths and limitations. Analytical procedures are covered for different types of biofluids (plasma/serum, bronchoalveolar lavage, urine, amniotic fluid) tissue samples (brain/hippocampus, optic nerve, lung, kidney, liver, pancreas) and samples obtained from cell cultures (adipocytes, macrophages, Leishmania promastigotes, mitochondria, culture media). Together with the sample preparation and data acquisition, data processing strategies are described specially focused on Agilent equipments, including deconvolution software and database annotation using spectral libraries. Manual curation strategies and quality control are also deemed. Finally, considerations to obtain a semiquantitative value for the metabolites are also described. As a case study, an illustrative example from one of our experiments at CEMBIO Research Centre, is described and findings discussed.
Collapse
Affiliation(s)
- Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Danuta Dudzik
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain; Department of Biopharmaceutics and Pharmacodynamics, Faculty of Pharmacy, Medical University of Gdańsk, Poland
| | - Carolina Gonzalez-Riano
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Miguel Fernández-García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Vanesa Alonso-Herranz
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - David Rojo
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain
| | - Antonia García
- Centre for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, Universidad San Pablo CEU, CEU Universities. Campus Monteprincipe, Boadilla Del Monte, 28668, Madrid, Spain.
| |
Collapse
|
10
|
Amaral AG, Moretto IA, Zandonadi FDS, Zamora-Obando HR, Rocha I, Sussulini A, Thomaz AAD, Oliveira RV, Santos AMD, Simionato AVC. Comprehending Cardiac Dysfunction by Oxidative Stress: Untargeted Metabolomics of In Vitro Samples. Front Chem 2022; 10:836478. [PMID: 35464220 PMCID: PMC9023746 DOI: 10.3389/fchem.2022.836478] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/09/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases (CVDs) are noncommunicable diseases known for their complex etiology and high mortality rate. Oxidative stress (OS), a condition in which the release of free radical exceeds endogenous antioxidant capacity, is pivotal in CVC, such as myocardial infarction, ischemia/reperfusion, and heart failure. Due to the lack of information about the implications of OS on cardiovascular conditions, several methodologies have been applied to investigate the causes and consequences, and to find new ways of diagnosis and treatment as well. In the present study, cardiac dysfunction was evaluated by analyzing cells’ alterations with untargeted metabolomics, after simulation of an oxidative stress condition using hydrogen peroxide (H2O2) in H9c2 myocytes. Optimizations of H2O2 concentration, cell exposure, and cell recovery times were performed through MTT assays. Intracellular metabolites were analyzed right after the oxidative stress (oxidative stress group) and after 48 h of cell recovery (recovery group) by ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS) in positive and negative ESI ionization mode. Significant alterations were found in pathways such as “alanine, aspartate and glutamate metabolism”, “glycolysis”, and “glutathione metabolism”, mostly with increased metabolites (upregulated). Furthermore, our results indicated that the LC-MS method is effective for studying metabolism in cardiomyocytes and generated excellent fit (R2Y > 0.987) and predictability (Q2 > 0.84) values.
Collapse
|
11
|
Endo- and Exometabolome Crosstalk in Mesenchymal Stem Cells Undergoing Osteogenic Differentiation. Cells 2022; 11:cells11081257. [PMID: 35455937 PMCID: PMC9024772 DOI: 10.3390/cells11081257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 02/04/2023] Open
Abstract
This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.
Collapse
|
12
|
Zhou D, Long C, Shao Y, Li F, Sun W, Zheng Z, Wang X, Huang Y, Pan F, Chen G, Guo Y, Huang Y. Integrated Metabolomics and Proteomics Analysis of Urine in a Mouse Model of Posttraumatic Stress Disorder. Front Neurosci 2022; 16:828382. [PMID: 35360173 PMCID: PMC8963102 DOI: 10.3389/fnins.2022.828382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a serious stress disorder that occurs in individuals who have experienced major traumatic events. The underlying pathological mechanisms of PTSD are complex, and the related predisposing factors are still not fully understood. In this study, label-free quantitative proteomics and untargeted metabolomics were used to comprehensively characterize changes in a PTSD mice model. Differential expression analysis showed that 12 metabolites and 27 proteins were significantly differentially expressed between the two groups. Bioinformatics analysis revealed that the differentiated proteins were mostly enriched in: small molecule binding, transporter activity, extracellular region, extracellular space, endopeptidase activity, zymogen activation, hydrolase activity, proteolysis, peptidase activity, sodium channel regulator activity. The differentially expressed metabolites were mainly enriched in Pyrimidine metabolism, D-Glutamine and D-glutamate metabolism, Alanine, aspartate and glutamate metabolism, Arginine biosynthesis, Glutathione metabolism, Arginine, and proline metabolism. These results expand the existing understanding of the molecular basis of the pathogenesis and progression of PTSD, and also suggest a new direction for potential therapeutic targets of PTSD. Therefore, the combination of urine proteomics and metabolomics explores a new approach for the study of the underlying pathological mechanisms of PTSD.
Collapse
Affiliation(s)
- Daxue Zhou
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Chengyan Long
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
| | - Yan Shao
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Fei Li
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Wei Sun
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Zihan Zheng
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Xiaoyang Wang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Yiwei Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Feng Pan
- Biomedical Analysis Center, Army Medical University, Chongqing, China
| | - Gang Chen
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
- Chongqing Key Laboratory of Cytomics, Chongqing, China
- *Correspondence: Gang Chen,
| | - Yanlei Guo
- Chongqing Academy of Chinese Materia Medica, Chongqing, China
- Yanlei Guo,
| | - Yi Huang
- Biomedical Analysis Center, Army Medical University, Chongqing, China
- Yi Huang,
| |
Collapse
|
13
|
Bispo DC, Jesus CSH, Correia M, Ferreira F, Bonifazio G, Goodfellow BJ, Oliveira MB, Mano JF, Gil AM. NMR Metabolomics Assessment of Osteogenic Differentiation of Adipose-Tissue-Derived Mesenchymal Stem Cells. J Proteome Res 2022; 21:654-670. [PMID: 35061379 PMCID: PMC9776527 DOI: 10.1021/acs.jproteome.1c00832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This Article presents, for the first time to our knowledge, an untargeted nuclear magnetic resonance (NMR) metabolomic characterization of the polar intracellular metabolic adaptations of human adipose-derived mesenchymal stem cells during osteogenic differentiation. The use of mesenchymal stem cells (MSCs) for bone regeneration is a promising alternative to conventional bone grafts, and untargeted metabolomics may unveil novel metabolic information on the osteogenic differentiation of MSCs, allowing their behavior to be understood and monitored/guided toward effective therapies. Our results unveiled statistically relevant changes in the levels of just over 30 identified metabolites, illustrating a highly dynamic process with significant variations throughout the whole 21-day period of osteogenic differentiation, mainly involving amino acid metabolism and protein synthesis; energy metabolism and the roles of glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation; cell membrane metabolism; nucleotide metabolism (including the specific involvement of O-glycosylation intermediates and NAD+); and metabolic players in protective antioxidative mechanisms (such as glutathione and specific amino acids). Different metabolic stages are proposed and are supported by putative biochemical explanations for the metabolite changes observed. This work lays the groundwork for the use of untargeted NMR metabolomics to find potential metabolic markers of osteogenic differentiation efficacy.
Collapse
Affiliation(s)
- Daniela
S. C. Bispo
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Catarina S. H. Jesus
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Marlene Correia
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Filipa Ferreira
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Giulia Bonifazio
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal,Department
of Biotechnology Lazzaro Spallanzani, University
of Pavia, Corso Str.
Nuova, 65, 27100 Pavia PV, Italy
| | - Brian J. Goodfellow
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana B. Oliveira
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - João F. Mano
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
| | - Ana M. Gil
- Department
of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal,
| |
Collapse
|
14
|
Bispo DSC, Jesus CSH, Marques IMC, Romek KM, Oliveira MB, Mano JF, Gil AM. Metabolomic Applications in Stem Cell Research: a Review. Stem Cell Rev Rep 2021; 17:2003-2024. [PMID: 34131883 DOI: 10.1007/s12015-021-10193-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/17/2022]
Abstract
This review describes the use of metabolomics to study stem cell (SC) characteristics and function, excluding SCs in cancer research, suited to a fully dedicated text. The interest in employing metabolomics in SC research has consistently grown and emphasis is, here, given to developments reported in the past five years. This text informs on the existing methodologies and their complementarity regarding the information provided, comprising untargeted/targeted approaches, which couple mass spectrometry or nuclear magnetic resonance spectroscopy with multivariate analysis (and, in some cases, pathway analysis and integration with other omics), and more specific analytical approaches, namely isotope tracing to highlight particular metabolic pathways, or in tandem microscopic strategies to pinpoint characteristics within a single cell. The bulk of this review covers the existing applications in various aspects of mesenchymal SC behavior, followed by pluripotent and neural SCs, with a few reports addressing other SC types. Some of the central ideas investigated comprise the metabolic/biological impacts of different tissue/donor sources and differentiation conditions, including the importance of considering 3D culture environments, mechanical cues and/or media enrichment to guide differentiation into specific lineages. Metabolomic analysis has considered cell endometabolomes and exometabolomes (fingerprinting and footprinting, respectively), having measured both lipid species and polar metabolites involved in a variety of metabolic pathways. This review clearly demonstrates the current enticing promise of metabolomics in significantly contributing towards a deeper knowledge on SC behavior, and the discovery of new biomarkers of SC function with potential translation to in vivo clinical practice.
Collapse
Affiliation(s)
- Daniela S C Bispo
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Catarina S H Jesus
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Inês M C Marques
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Katarzyna M Romek
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal
| | - Ana M Gil
- Department of Chemistry, CICECO - Aveiro Institute of Materials (CICECO/UA), University of Aveiro, Campus Universitario de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
15
|
Posada-González M, Villagrasa A, García-Arranz M, Vorwald P, Olivera R, Olmedillas-López S, Vega-Clemente L, Salcedo G, García-Olmo D. Comparative Analysis Between Mesenchymal Stem Cells From Subcutaneous Adipose Tissue and Omentum in Three Types of Patients: Cancer, Morbid Obese and Healthy Control. Surg Innov 2021; 29:9-21. [PMID: 33929270 DOI: 10.1177/15533506211013142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective. The aims of this study are to compare 2 origins of adipose-derived mesenchymal stem cells (MSCs) (omentum and subcutaneous) from 2 pathologies (morbid obesity and cancer) vs healthy donors. Adipose tissue has revealed to be the ideal MSC source. However, in developing adipose-derived stem cells (ASCs) for clinical use, it is important to consider the effects of different fat depots and also the effect of donor variability. Methods. We isolated and characterized the membrane markers and differentiation capacities of ASCs obtained from patients with these diseases and different origin. During the culture period, we further analysed the cells' proliferation capacity in an in vitro assay as well as their secretome. Results. Adipose-derived stem cells isolated from obese and cancer patients have mesenchymal phenotype and similar cell proliferation as ASCs derived from healthy donors, some higher in cells derived from subcutaneous fat. However, cells from these 2 types of patients do not have the same differentiation potential, especially in cancer patients from omentum, and exhibit distinct secretion of both pro-inflammatory and regulatory cytokines, which could explain the differences in use due to origin as well as pathology associated with the donor. Conclusion. Subcutaneous and omentum ASCs are slightly different; omentum generates fewer cells but with greater anti-inflammatory capacity. Adipose-derived stem cells from patients with either obesity or cancer are slightly altered, which limits their therapeutic properties.
Collapse
Affiliation(s)
- María Posada-González
- Department of Surgery, 16436University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Alejandro Villagrasa
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Mariano García-Arranz
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain.,Department of Surgery, School of Medicine, 16722Universidad Autónoma de Madrid, Madrid, Spain
| | - Peter Vorwald
- Department of Surgery, 16436University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Rocío Olivera
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Susana Olmedillas-López
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Luz Vega-Clemente
- New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| | - Gabriel Salcedo
- Department of Surgery, 16436University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Damián García-Olmo
- Department of Surgery, 16436University Hospital Fundación Jiménez Díaz, Madrid, Spain.,New Therapies Laboratory, 218187Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain.,Department of Surgery, School of Medicine, 16722Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
16
|
Molecular pathways behind acquired obesity: Adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI. CELL REPORTS MEDICINE 2021; 2:100226. [PMID: 33948567 PMCID: PMC8080113 DOI: 10.1016/j.xcrm.2021.100226] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022]
Abstract
Tissue-specific mechanisms prompting obesity-related development complications in humans remain unclear. We apply multiomics analyses of subcutaneous adipose tissue and skeletal muscle to examine the effects of acquired obesity among 49 BMI-discordant monozygotic twin pairs. Overall, adipose tissue appears to be more affected by excess body weight than skeletal muscle. In heavier co-twins, we observe a transcriptional pattern of downregulated mitochondrial pathways in both tissues and upregulated inflammatory pathways in adipose tissue. In adipose tissue, heavier co-twins exhibit lower creatine levels; in skeletal muscle, glycolysis- and redox stress-related protein and metabolite levels remain higher. Furthermore, metabolomics analyses in both tissues reveal that several proinflammatory lipids are higher and six of the same lipid derivatives are lower in acquired obesity. Finally, in adipose tissue, but not in skeletal muscle, mitochondrial downregulation and upregulated inflammation are associated with a fatty liver, insulin resistance, and dyslipidemia, suggesting that adipose tissue dominates in acquired obesity. Multiomics analyses of adipose tissue and skeletal muscle in BMI-discordant twins Excess body weight downregulates mitochondrial pathways in both tissues Excess body weight upregulates proinflammatory pathways in both tissues Adipose tissue alterations are associated with metabolic health in acquired obesity
Collapse
|
17
|
Adipose stem cells in obesity: challenges and opportunities. Biosci Rep 2021; 40:225001. [PMID: 32452515 PMCID: PMC7284323 DOI: 10.1042/bsr20194076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue, the storage of excessive energy in the body, secretes various proteins called adipokines, which connect the body’s nutritional status to the regulation of energy balance. Obesity triggers alterations of quantity and quality of various types of cells that reside in adipose tissue, including adipose stem cells (ASCs; referred to as adipose-derived stem/stromal cells in vitro). These alterations in the functionalities and properties of ASCs impair adipose tissue remodeling and adipose tissue function, which induces low-grade systemic inflammation, progressive insulin resistance, and other metabolic disorders. In contrast, the ability of ASCs to recruit new adipocytes when faced with caloric excess leads to healthy adipose tissue expansion, associated with lower amounts of inflammation, fibrosis, and insulin resistance. This review focuses on recent advances in our understanding of the identity of ASCs and their roles in adipose tissue development, homeostasis, expansion, and thermogenesis, and how these roles go awry in obesity. A better understanding of the biology of ASCs and their adipogenesis may lead to novel therapeutic targets for obesity and metabolic disease.
Collapse
|
18
|
Osawa S, Kato H, Maeda Y, Takakura H, Ogasawara J, Izawa T. Metabolomic Profiles in Adipocytes Differentiated from Adipose-Derived Stem Cells Following Exercise Training or High-Fat Diet. Int J Mol Sci 2021; 22:ijms22020966. [PMID: 33478060 PMCID: PMC7835847 DOI: 10.3390/ijms22020966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 01/10/2021] [Indexed: 11/16/2022] Open
Abstract
Controlling the differentiation potential of adipose-derived stem cells (ADSCs) is attracting attention as a new strategy for the prevention and treatment of obesity. Here, we aimed to observe the effect of exercise training (TR) and high-fat diet (HFD) on the metabolic profiles of ADSCs-derived adipocytes. The rats were divided into four groups: normal diet (ND)-fed control (ND-SED), ND-fed TR (ND-TR), HFD-fed control (HFD-SED), and HFD-fed TR (HFD-TR). After 9 weeks of intervention, ADSCs of epididymal and inguinal adipose tissues were differentiated into adipocytes. In the metabolome analysis of adipocytes after isoproterenol stimulation, 116 metabolites were detected. The principal component analysis demonstrated that ADSCs-derived adipocytes segregated into four clusters in each fat pad. Amino acid accumulation was greater in epididymal ADSCs-derived adipocytes of ND-TR and HFD-TR, but lower in inguinal ADSCs-derived adipocytes of ND-TR, than in the respective controls. HFD accumulated several metabolites including amino acids in inguinal ADSCs-derived adipocytes and more other metabolites in epididymal ones. Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that TR mainly affected the pathways related to amino acid metabolism, except in inguinal ADSCs-derived adipocytes of HFD-TR rats. These findings provide a new way to understand the mechanisms underlying possible changes in the differentiation of ADSCs due to TR or HFD.
Collapse
Affiliation(s)
- Seita Osawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Hisashi Kato
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
- Organisation for Research Initiatives and Development, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Yuki Maeda
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Hisashi Takakura
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| | - Junetsu Ogasawara
- Division of Health Science, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Hokkaido 078-8510, Japan
| | - Tetsuya Izawa
- Graduate School of Health and Sports Science, Doshisha University, 1-3 Tatara-Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
19
|
Abstract
Coronary artery disease (CAD), the most common cardiovascular disease (CVD), contributes to significant mortality worldwide. CAD is a multifactorial disease wherein various factors contribute to its pathogenesis often complicating management. Biomarker based personalized medicine may provide a more effective way to individualize therapy in multifactorial diseases in general and CAD specifically. Systems' biology "Omics" biomarkers have been investigated for this purpose. These biomarkers provide a more comprehensive understanding on pathophysiology of the disease process and can help in identifying new therapeutic targets and tailoring therapy to achieve optimum outcome. Metabolomics biomarkers usually reflect genetic and non-genetic factors involved in the phenotype. Metabolomics analysis may provide better understanding of the disease pathogenesis and drug response variation. This will help in guiding therapy, particularly for multifactorial diseases such as CAD. In this chapter, advances in metabolomics analysis and its role in personalized medicine will be reviewed with comprehensive focus on CAD. Assessment of risk, diagnosis, complications, drug response and nutritional therapy will be discussed. Together, this chapter will review the current application of metabolomics in CAD management and highlight areas that warrant further investigation.
Collapse
Affiliation(s)
- Arwa M Amin
- Department of Clinical and Hospital Pharmacy, College of Pharmacy, Taibah University, Medina, Saudi Arabia.
| |
Collapse
|
20
|
Vyas KS, Bole M, Vasconez HC, Banuelos JM, Martinez-Jorge J, Tran N, Lemaine V, Mardini S, Bakri K. Profile of Adipose-Derived Stem Cells in Obese and Lean Environments. Aesthetic Plast Surg 2019; 43:1635-1645. [PMID: 31267153 DOI: 10.1007/s00266-019-01397-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 05/04/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND With the demand for stem cells in regenerative medicine, new methods of isolating stem cells are highly sought. Adipose tissue is a readily available and non-controversial source of multipotent stem cells that carries a low risk for potential donors. However, elevated donor body mass index has been associated with an altered cellular microenvironment and thus has implications for stem cell efficacy in recipients. This review explored the literature on adipose-derived stem cells (ASCs) and the effect of donor obesity on cellular function. METHODS A review of published articles on obesity and ASCs was conducted with the PubMed database and the following search terms: obesity, overweight, adipose-derived stem cells and ASCs. Two investigators screened and reviewed the relevant abstracts. RESULTS There is agreement on reduced ASC function in response to obesity in terms of angiogenic differentiation, proliferation, migration, viability, and an altered and inflammatory transcriptome. Osteogenic differentiation and cell yield do not show reasonable agreement. Weight loss partially rescues some of the aforementioned features. CONCLUSIONS Generally, obesity reduces ASC qualities and may have an effect on the therapeutic value of ASCs. Because weight loss and some biomolecules have been shown to rescue these qualities, further research should be conducted on methods to return obese-derived ASCs to baseline. LEVEL V This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors- www.springer.com/00266.
Collapse
Affiliation(s)
- Krishna S Vyas
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA.
| | - Madhav Bole
- Division of Orthopaedic Surgery, London Health Sciences Centre, University Hospital, 339 Windermere Rd., London, ON, N6A 5A5, Canada
| | - Henry C Vasconez
- Division of Plastic Surgery, University of Kentucky, Lexington, KY, USA
| | - Joseph M Banuelos
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Jorys Martinez-Jorge
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Nho Tran
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Valerie Lemaine
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Samir Mardini
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| | - Karim Bakri
- Division of Plastic Surgery, Department of Surgery, Mayo Clinic, 200 1st Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
21
|
Ferré S, González-Ruiz V, Guillarme D, Rudaz S. Analytical strategies for the determination of amino acids: Past, present and future trends. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1132:121819. [PMID: 31704619 DOI: 10.1016/j.jchromb.2019.121819] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes the analytical methods that have been developed over the years to tackle the high polarity and non-chromophoric nature of amino acids (AAs). First, the historical methods are briefly presented, with a strong focus on the use of derivatization reagents to make AAs detectable with spectroscopic techniques (ultraviolet and fluorescence) and/or sufficiently retained in reversed phase liquid chromatography. Then, an overview of the current analytical strategies for achiral separation of AAs is provided, in which mass spectrometry (MS) becomes the most widely used detection mode in combination with innovative liquid chromatography or capillary electrophoresis conditions to detect AAs at very low concentration in complex matrixes. Finally, some future trends of AA analysis are provided in the last section of the review, including the use of supercritical fluid chromatography (SFC), multidimensional liquid chromatography and electrophoretic separations, hyphenation of ion exchange chromatography to mass spectrometry, and use of ion mobility spectrometry mass spectrometry (IM-MS). Various application examples will also be presented throughout the review to highlight the benefits and limitations of these different analytical approaches for AAs determination.
Collapse
Affiliation(s)
- Sabrina Ferré
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | - Víctor González-Ruiz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| | - Davy Guillarme
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland.
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, CMU - Rue Michel Servet 1, 1211 Geneva 4, Switzerland; Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland
| |
Collapse
|
22
|
Metabolomic and glycomic findings in posttraumatic stress disorder. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:181-193. [PMID: 30025792 DOI: 10.1016/j.pnpbp.2018.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/21/2018] [Accepted: 07/14/2018] [Indexed: 01/10/2023]
Abstract
Posttraumatic stress disorder (PTSD) is a stressor-related disorder that develops in a subset of individuals exposed to a traumatic experience. Factors associated with vulnerability to PTSD are still not fully understood. PTSD is frequently comorbid with various psychiatric and somatic disorders, moderate response to treatment and remission rates. The term "theranostics" combines diagnosis, prognosis, and therapy and offers targeted therapy based on specific analyses. Theranostics, combined with novel techniques and approaches called "omics", which integrate genomics, transcriptomic, proteomics and metabolomics, might improve knowledge about biological underpinning of PTSD, and offer novel therapeutic strategies. The focus of this review is on metabolomic and glycomic data in PTSD. Metabolomics evaluates changes in the metabolome of an organism by exploring the set of small molecules (metabolites), while glycomics studies the glycome, a complete repertoire of glycan structures with their functional roles in biological systems. Both metabolome and glycome reflect the physiological and pathological conditions in individuals. Only a few studies evaluated metabolic and glycomic changes in patients with PTSD. The metabolomics studies in PTSD patients uncovered different metabolites that might be associated with psychopathological alterations in PTSD. The glycomics study in PTSD patients determined nine N-glycan structures and found accelerated and premature aging in traumatized subjects and subjects with PTSD based on a GlycoAge index. Therefore, further larger studies and replications are needed. Better understanding of the biological basis of PTSD, including metabolomic and glycomic data, and their integration with other "omics" approaches, might identify new molecular targets and might provide improved therapeutic approaches.
Collapse
|
23
|
Abstract
Although capillary electrophoresis (CE) coupled to mass spectrometry (MS) is a separation technique not extensively implemented, it offers differential possibilities in the study of polar and ionic metabolites in complex matrices with minimum sample treatment. However, in order to get successful results, some efforts at early stages and following specific recommendations are necessary.In this chapter, we describe our updated and well-tested methods for untargeted metabolomics using CE-MS-TOF for common biological samples: urine, serum or plasma, feces, tissues, and cells. Sample treatment, as well as separation and detection conditions are described in detail and other steps in the workflow for untargeted metabolomics are also explained. Special attention is paid to instrumental setup and advices for daily practice.Characteristic electropherograms obtained with each type of sample are depicted as well as groups of metabolites easily measured by this technique. Their global or individual comparisons have been given undoubtedly important information to unveil altered metabolic pathways, diagnosis, and prognosis or biomarker discovery in the study of diseases or conditions over decades.
Collapse
|
24
|
Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis-mass spectrometry: Instrumentation, methodology and applications. Electrophoresis 2018; 40:79-112. [PMID: 30260009 DOI: 10.1002/elps.201800331] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
Capillary electrophoresis (CE) offers fast and high-resolution separation of charged analytes from small injection volumes. Coupled to mass spectrometry (MS), it represents a powerful analytical technique providing (exact) mass information and enables molecular characterization based on fragmentation. Although hyphenation of CE and MS is not straightforward, much emphasis has been placed on enabling efficient ionization and user-friendly coupling. Though several interfaces are now commercially available, research on more efficient and robust interfacing with nano-electrospray ionization (ESI), matrix-assisted laser desorption/ionization (MALDI) and inductively coupled plasma mass spectrometry (ICP) continues with considerable results. At the same time, CE-MS has been used in many fields, predominantly for the analysis of proteins, peptides and metabolites. This review belongs to a series of regularly published articles, summarizing 248 articles covering the time between June 2016 and May 2018. Latest developments on hyphenation of CE with MS as well as instrumental developments such as two-dimensional separation systems with MS detection are mentioned. Furthermore, applications of various CE-modes including capillary zone electrophoresis (CZE), nonaqueous capillary electrophoresis (NACE), capillary gel electrophoresis (CGE) and capillary isoelectric focusing (CIEF) coupled to MS in biological, pharmaceutical and environmental research are summarized.
Collapse
Affiliation(s)
| | - Kevin Jooß
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Neuherberg, Germany
| | - Oliver Höcker
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Instrumental Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Jennifer Römer
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Johannes Schlecht
- Faculty of Chemistry, Aalen University, Aalen, Germany.,Department of Pharmaceutical/Medicinal Chemistry, Friedrich Schiller University, Jena, Germany
| | | |
Collapse
|
25
|
Louwen F, Ritter A, Kreis NN, Yuan J. Insight into the development of obesity: functional alterations of adipose-derived mesenchymal stem cells. Obes Rev 2018. [PMID: 29521029 DOI: 10.1111/obr.12679] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is associated with a variety of disorders including cardiovascular diseases, diabetes mellitus and cancer. Obesity changes the composition and structure of adipose tissue, linked to pro-inflammatory environment, endocrine/metabolic dysfunction, insulin resistance and oxidative stress. Adipose-derived mesenchymal stem cells (ASCs) have multiple functions like cell renewal, spontaneous repair and homeostasis in adipose tissue. In this review article, we have summarized the recent data highlighting that ASCs in obesity are defective in various functionalities and properties including differentiation, angiogenesis, motility, multipotent state, metabolism and immunomodulation. Inflammatory milieu, hypoxia and abnormal metabolites in obese tissue are crucial for impairing the functions of ASCs. Further work is required to explore the precise molecular mechanisms underlying its alterations and impairments. Based on these data, we suggest that deregulated ASCs, possibly also other mesenchymal stem cells, are important in promoting the development of obesity. Restoration of ASCs/mesenchymal stem cells might be an additional strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- F Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - A Ritter
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - N N Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
26
|
The Impact of GFP Reporter Gene Transduction and Expression on Metabolomics of Placental Mesenchymal Stem Cells Determined by UHPLC-Q/TOF-MS. Stem Cells Int 2017; 2017:3167985. [PMID: 29230249 PMCID: PMC5694582 DOI: 10.1155/2017/3167985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/23/2017] [Accepted: 08/07/2017] [Indexed: 02/07/2023] Open
Abstract
Introduction Green fluorescent protein (GFP) is widely used as a reporter gene in regenerative medicine research to label and track stem cells. Here, we examined whether expressing GFP gene may impact the metabolism of human placental mesenchymal stem cells (hPMSCs). Methods The GFP gene was transduced into hPMSCs using lentiviral-based infection to establish GFP+hPMSCs. A sensitive 13C/12C-dansyl labeling LC-MS method targeting the amine/phenol submetabolome was used for in-depth cell metabolome profiling. Results A total of 1151 peak pairs or metabolites were detected from 12 LC-MS runs. Principal component analysis and partial least squares discriminant analysis showed poor separation, and the volcano plots demonstrated that most of the metabolites were not significantly changed when hPMSCs were tagged with GFP. Overall, 739 metabolites were positively or putatively identified. Only 11 metabolites showed significant changes. Metabolic pathway analyses indicated that three of the identified metabolites were involved in nine pathways. However, these metabolites are unlikely to have a large impact on the metabolic pathways due to their nonessential roles and limited hits in pathway analysis. Conclusion This study indicated that the expression of ectopic GFP reporter gene did not significantly alter the metabolomics pathways covered by the amine/phenol submetabolome.
Collapse
|
27
|
Poinsot V, Ong-Meang V, Ric A, Gavard P, Perquis L, Couderc F. Recent advances in amino acid analysis by capillary electromigration methods: June 2015-May 2017. Electrophoresis 2017; 39:190-208. [PMID: 28805963 DOI: 10.1002/elps.201700270] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
In the tenth edition of this article focused on recent advances in amino acid analysis using capillary electrophoresis, we describe the most important research articles published on this topic during the period from June 2015 to May 2017. This article follows the format of the previous articles published in Electrophoresis. The new developments in amino acid analysis with CE mainly describe improvements in CE associated with mass spectrometry. Focusing on applications, we mostly describe clinical works, although metabolomics studies are also very important. Finally, works focusing on amino acids in food and agricultural applications are also described.
Collapse
Affiliation(s)
- Véréna Poinsot
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | | | - Audrey Ric
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - Pierre Gavard
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - Lucie Perquis
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| | - François Couderc
- Laboratoire des IMRCP, Université Paul Sabatier, Université de Toulouse, France
| |
Collapse
|
28
|
Dudzik D, Barbas-Bernardos C, García A, Barbas C. Quality assurance procedures for mass spectrometry untargeted metabolomics. a review. J Pharm Biomed Anal 2017; 147:149-173. [PMID: 28823764 DOI: 10.1016/j.jpba.2017.07.044] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 12/16/2022]
Abstract
Untargeted metabolomics, as a global approach, has already proven its great potential and capabilities for the investigation of health and disease, as well as the wide applicability for other research areas. Although great progress has been made on the feasibility of metabolomics experiments, there are still some challenges that should be faced and that includes all sources of fluctuations and bias affecting every step involved in multiplatform untargeted metabolomics studies. The identification and reduction of the main sources of unwanted variation regarding the pre-analytical, analytical and post-analytical phase of metabolomics experiments is essential to ensure high data quality. Nowadays, there is still a lack of information regarding harmonized guidelines for quality assurance as those available for targeted analysis. In this review, sources of variations to be considered and minimized along with methodologies and strategies for monitoring and improvement the quality of the results are discussed. The given information is based on evidences from different groups among our own experiences and recommendations for each stage of the metabolomics workflow. The comprehensive overview with tools presented here might serve other researchers interested in monitoring, controlling and improving the reliability of their findings by implementation of good experimental quality practices in the untargeted metabolomics study.
Collapse
Affiliation(s)
- Danuta Dudzik
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Cecilia Barbas-Bernardos
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Antonia García
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| | - Coral Barbas
- Center for Metabolomics and Bioanalysis (CEMBIO), Faculty of Pharmacy, San Pablo CEU University, Boadilla del Monte, ES-28668, Madrid, Spain.
| |
Collapse
|
29
|
Pérez LM, de Lucas B, Lunyak VV, Gálvez BG. Adipose stem cells from obese patients show specific differences in the metabolic regulators vitamin D and Gas5. Mol Genet Metab Rep 2017; 12:51-56. [PMID: 28580301 PMCID: PMC5447652 DOI: 10.1016/j.ymgmr.2017.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/22/2017] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue is a significant source of mesenchymal stem cells for regenerative therapies; however, caution should be taken as their environmental niche can affect their functional properties. We have previously demonstrated the negative impact of obesity on the function of adipose-derived stem cells (ASCs). Here we have evaluated other possible properties and targets that are altered by obesity such as the recently described long non-coding molecule Gas5, which is involved in glucocorticoid resistance. Using ASCs isolated from obese (oASCs) and control subjects (cASCs), we have analyzed additional metabolic and inflammatory conditions that could be related with their impaired therapeutic potential and consequently their possible usefulness in the clinic. Altered genetic and metabolic targets by obesity in adipose stem cells population Gas5 involved in glucocorticoid resistance such as altered target Additional metabolic and inflammation conditions on obese adipose stem cells
Collapse
Affiliation(s)
- Laura M Pérez
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| | - Beatriz de Lucas
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| | | | - Beatriz G Gálvez
- Universidad Europea de Madrid, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i + 12), Madrid, Spain
| |
Collapse
|
30
|
Capillary electrophoresis mass spectrometry as a tool for untargeted metabolomics. Bioanalysis 2017; 9:99-130. [PMID: 27921456 DOI: 10.4155/bio-2016-0216] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Highly polar and ionic metabolites, such as sugars, most amino acids, organic acids or nucleotides are not retained by conventional reversed-phase LC columns and polar stationary phases and hydrophilic-interaction LC lacks of robustness, which is still limiting their applications for untargeted metabolomics where reproducibility is a must. Biological samples such as blood, urine or even tissues include many hydrophilic compounds secreted from cells, their analysis is essential for biomarker discovery, disease progression or treatment effects. This review focuses on CE coupled to MS as a mature technique for untargeted metabolomics including sample pretreatment, types of matrices, analytical methods, applications and data treatment strategies for polar compound analysis in biological matrices. The main applications and results of CE-MS in untargeted metabolomics are discussed and presented in a tabulated format.
Collapse
|