1
|
Nedomova M, Haberecht-Müller S, Möller S, Venz S, Prochazkova M, Prochazka J, Sedlak F, Chawengsaksophak K, Hammer E, Kasparek P, Adamek M, Sedlacek R, Konvalinka J, Krüger E, Grantz Saskova K. DDI2 protease controls embryonic development and inflammation via TCF11/NRF1. iScience 2024; 27:110893. [PMID: 39328932 PMCID: PMC11424978 DOI: 10.1016/j.isci.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
DDI2 is an aspartic protease that cleaves polyubiquitinated substrates. Upon proteotoxic stress, DDI2 activates the transcription factor TCF11/NRF1 (NFE2L1), crucial for maintaining proteostasis in mammalian cells, enabling the expression of rescue factors, including proteasome subunits. Here, we describe the consequences of DDI2 ablation in vivo and in cells. DDI2 knock-out (KO) in mice caused embryonic lethality at E12.5 with severe developmental failure. Molecular characterization of embryos showed insufficient proteasome expression with proteotoxic stress, accumulation of high molecular weight ubiquitin conjugates and induction of the unfolded protein response (UPR) and cell death pathways. In DDI2 surrogate KO cells, proteotoxic stress activated the integrated stress response (ISR) and induced a type I interferon (IFN) signature and IFN-induced proliferative signaling, possibly ensuring survival. These results indicate an important role for DDI2 in the cell-tissue proteostasis network and in maintaining a balanced immune response.
Collapse
Affiliation(s)
- Monika Nedomova
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Sophie Möller
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Michaela Prochazkova
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Jan Prochazka
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Frantisek Sedlak
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Kallayanee Chawengsaksophak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Elke Hammer
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Petr Kasparek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Michael Adamek
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Klara Grantz Saskova
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| |
Collapse
|
2
|
Rai S, Szaruga M, Pitera AP, Bertolotti A. Integrated stress response activator halofuginone protects mice from diabetes-like phenotypes. J Cell Biol 2024; 223:e202405175. [PMID: 39150520 PMCID: PMC11329777 DOI: 10.1083/jcb.202405175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024] Open
Abstract
The integrated stress response (ISR) is a vital signaling pathway initiated by four kinases, PERK, GCN2, HRI and PKR, that ensure cellular resilience and protect cells from challenges. Here, we investigated whether increasing ISR signaling could rescue diabetes-like phenotypes in a mouse model of diet-induced obesity (DIO). We show that the orally available and clinically approved GCN2 activator halofuginone (HF) can activate the ISR in mouse tissues. We found that daily oral administration of HF increases glucose tolerance whilst reducing weight gain, insulin resistance, and serum insulin in DIO mice. Conversely, the ISR inhibitor GSK2656157, used at low doses to optimize its selectivity, aggravates glucose intolerance in DIO mice. Whilst loss of function mutations in mice and humans have revealed that PERK is the essential ISR kinase that protects from diabetes, our work demonstrates the therapeutic value of increasing ISR signaling by activating the related kinase GCN2 to reduce diabetes phenotypes in a DIO mouse model.
Collapse
Affiliation(s)
- Shashank Rai
- MRC Laboratory of Molecular Biology , Cambridge, UK
| | | | | | | |
Collapse
|
3
|
Zhang F, Luo W, Liu S, Zhao L, Su Y. Protein phosphatase 2A regulates blood cell proliferation and differentiation in Drosophila larval lymph glands. FEBS J 2024; 291:4558-4580. [PMID: 39185698 DOI: 10.1111/febs.17247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024]
Abstract
Protein phosphatase 2A (PP2A), one of the most abundant protein phosphatases, has divergent functions in multiple types of cells. Its inactivation has been closely associated with leukemia diseases. However, the physiological function of PP2A for hematopoiesis has been poorly understood in organisms. Drosophila hematopoiesis parallels the vertebrate counterpart in developmental and functional features but involves a much simpler hematopoietic system. Here, utilizing the Drosophila major larval hematopoietic organ lymph gland, we studied the function of PP2A for hematopoiesis in vivo. By knocking down the expression of Pp2A-29B that encodes the scaffold subunit of the PP2A holoenzyme complex, we found that PP2A silencing in the differentiating hemocytes resulted in their excessive proliferation. Furthermore, this PP2A inhibition downregulated the expression of Smoothened (Smo), a crucial component in the Hedgehog pathway, and smo overexpression was able to rescue the phenotypes of PP2A depletion, indicating that Smo functions as a downstream effector of PP2A to restrict the hemocyte proliferation. PDGF/VEGF-receptor (Pvr) overexpression also restored the Smo expression and lymph gland morphology of PP2A silencing, suggesting a PP2A-Pvr-Smo axis to regulate lymph gland growth and hemocyte proliferation. Moreover, inhibiting PP2A activity in the blood progenitor cells promoted their differentiation, but which was independent with Smo. Together, our data suggested that PP2A plays a dual role in the Drosophila lymph gland by preserving the progenitor population and restraining the hemocyte proliferation, to properly regulate the hematopoietic process.
Collapse
Affiliation(s)
- Fang Zhang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Wang Luo
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Sumin Liu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Ying Su
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
4
|
Chen Y, McDonald JA. Collective cell migration relies on PPP1R15-mediated regulation of the endoplasmic reticulum stress response. Curr Biol 2024; 34:1390-1402.e4. [PMID: 38428416 PMCID: PMC11003853 DOI: 10.1016/j.cub.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 12/19/2023] [Accepted: 02/07/2024] [Indexed: 03/03/2024]
Abstract
Collective cell migration is integral to many developmental and disease processes. Previously, we discovered that protein phosphatase 1 (Pp1) promotes border cell collective migration in the Drosophila ovary. We now report that the Pp1 phosphatase regulatory subunit dPPP1R15 is a critical regulator of border cell migration. dPPP1R15 is an ortholog of mammalian PPP1R15 proteins that attenuate the endoplasmic reticulum (ER) stress response. We show that, in collectively migrating border cells, dPPP1R15 phosphatase restrains an active physiological protein kinase R-like ER kinase- (PERK)-eIF2α-activating transcription factor 4 (ATF4) stress pathway. RNAi knockdown of dPPP1R15 blocks border cell delamination from the epithelium and subsequent migration, increases eIF2α phosphorylation, reduces translation, and drives expression of the stress response transcription factor ATF4. We observe similar defects upon overexpression of ATF4 or the eIF2α kinase PERK. Furthermore, we show that normal border cells express markers of the PERK-dependent ER stress response and require PERK and ATF4 for efficient migration. In many other cell types, unresolved ER stress induces initiation of apoptosis. In contrast, border cells with chronic RNAi knockdown of dPPP1R15 survive. Together, our results demonstrate that the PERK-eIF2α-ATF4 pathway, regulated by dPPP1R15 activity, counteracts the physiological ER stress that occurs during collective border cell migration. We propose that in vivo collective cell migration is intrinsically "stressful," requiring tight homeostatic control of the ER stress response for collective cell cohesion, dynamics, and movement.
Collapse
Affiliation(s)
- Yujun Chen
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Jocelyn A McDonald
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA.
| |
Collapse
|
5
|
Papadimitropoulou A, Makri M, Zoidis G. MYC the oncogene from hell: Novel opportunities for cancer therapy. Eur J Med Chem 2024; 267:116194. [PMID: 38340508 DOI: 10.1016/j.ejmech.2024.116194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024]
Abstract
Cancer comprises a heterogeneous disease, characterized by diverse features such as constitutive expression of oncogenes and/or downregulation of tumor suppressor genes. MYC constitutes a master transcriptional regulator, involved in many cellular functions and is aberrantly expressed in more than 70 % of human cancers. The Myc protein belongs to a family of transcription factors whose structural pattern is referred to as basic helix-loop-helix-leucine zipper. Myc binds to its partner, a smaller protein called Max, forming an Myc:Max heterodimeric complex that interacts with specific DNA recognition sequences (E-boxes) and regulates the expression of downstream target genes. Myc protein plays a fundamental role for the life of a cell, as it is involved in many physiological functions such as proliferation, growth and development since it controls the expression of a very large percentage of genes (∼15 %). However, despite the strict control of MYC expression in normal cells, MYC is often deregulated in cancer, exhibiting a key role in stimulating oncogenic process affecting features such as aberrant proliferation, differentiation, angiogenesis, genomic instability and oncogenic transformation. In this review we aim to meticulously describe the fundamental role of MYC in tumorigenesis and highlight its importance as an anticancer drug target. We focus mainly on the different categories of novel small molecules that act as inhibitors of Myc function in diverse ways hence offering great opportunities for an efficient cancer therapy. This knowledge will provide significant information for the development of novel Myc inhibitors and assist to the design of treatments that would effectively act against Myc-dependent cancers.
Collapse
Affiliation(s)
- Adriana Papadimitropoulou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Maria Makri
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece
| | - Grigoris Zoidis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, GR-15771, Athens, Greece.
| |
Collapse
|
6
|
Fatalska A, Hodgson G, Freund SMV, Maslen SL, Morgan T, Thorkelsson SR, van Slegtenhorst M, Lorenz S, Andreeva A, Kaat LD, Bertolotti A. Recruitment of trimeric eIF2 by phosphatase non-catalytic subunit PPP1R15B. Mol Cell 2024; 84:506-521.e11. [PMID: 38159565 PMCID: PMC7615683 DOI: 10.1016/j.molcel.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.
Collapse
Affiliation(s)
- Agnieszka Fatalska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Tomos Morgan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sigurdur R Thorkelsson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
7
|
Hicks D, Giresh K, Wrischnik LA, Weiser DC. The PPP1R15 Family of eIF2-alpha Phosphatase Targeting Subunits (GADD34 and CReP). Int J Mol Sci 2023; 24:17321. [PMID: 38139150 PMCID: PMC10743859 DOI: 10.3390/ijms242417321] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
The vertebrate PPP1R15 family consists of the proteins GADD34 (growth arrest and DNA damage-inducible protein 34, the product of the PPP1R15A gene) and CReP (constitutive repressor of eIF2α phosphorylation, the product of the PPP1R15B gene), both of which function as targeting/regulatory subunits for protein phosphatase 1 (PP1) by regulating subcellular localization, modulating substrate specificity and assembling complexes with target proteins. The primary cellular function of these proteins is to facilitate the dephosphorylation of eukaryotic initiation factor 2-alpha (eIF2α) by PP1 during cell stress. In this review, we will provide a comprehensive overview of the cellular function, biochemistry and pharmacology of GADD34 and CReP, starting with a brief introduction of eIF2α phosphorylation via the integrated protein response (ISR). We discuss the roles GADD34 and CReP play as feedback inhibitors of the unfolded protein response (UPR) and highlight the critical function they serve as inhibitors of the PERK-dependent branch, which is particularly important since it can mediate cell survival or cell death, depending on how long the stressful stimuli lasts, and GADD34 and CReP play key roles in fine-tuning this cellular decision. We briefly discuss the roles of GADD34 and CReP homologs in model systems and then focus on what we have learned about their function from knockout mice and human patients, followed by a brief review of several diseases in which GADD34 and CReP have been implicated, including cancer, diabetes and especially neurodegenerative disease. Because of the potential importance of GADD34 and CReP in aspects of human health and disease, we will discuss several pharmacological inhibitors of GADD34 and/or CReP that show promise as treatments and the controversies as to their mechanism of action. This review will finish with a discussion of the biochemical properties of GADD34 and CReP, their regulation and the additional interacting partners that may provide insight into the roles these proteins may play in other cellular pathways. We will conclude with a brief outline of critical areas for future study.
Collapse
Affiliation(s)
- Danielle Hicks
- Department of Science, Mathematics and Engineering, Modesto Junior College, Modesto, CA 95350, USA
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Krithika Giresh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Lisa A. Wrischnik
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, USA
| |
Collapse
|
8
|
Song S, Cho B, Weiner AT, Nissen SB, Ojeda Naharros I, Sanchez Bosch P, Suyama K, Hu Y, He L, Svinkina T, Udeshi ND, Carr SA, Perrimon N, Axelrod JD. Protein phosphatase 1 regulates core PCP signaling. EMBO Rep 2023; 24:e56997. [PMID: 37975164 PMCID: PMC10702827 DOI: 10.15252/embr.202356997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 10/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023] Open
Abstract
Planar cell polarity (PCP) signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of protein phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one serine/threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.
Collapse
Affiliation(s)
- Song Song
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- Present address:
GenScriptPiscatawayNJUSA
| | - Bomsoo Cho
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Alexis T Weiner
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Silas Boye Nissen
- Department of PathologyStanford University School of MedicineStanfordCAUSA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW)University of CopenhagenCopenhagenDenmark
| | - Irene Ojeda Naharros
- Department of OphthalmologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | | | - Kaye Suyama
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
| | - Li He
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
- Present address:
School of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | | | | | | | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical SchoolHarvard UniversityBostonMAUSA
- Howard Hughes Medical InstituteBostonMAUSA
| | - Jeffrey D Axelrod
- Department of PathologyStanford University School of MedicineStanfordCAUSA
| |
Collapse
|
9
|
Wu C, Zhang W, Luo Y, Cheng C, Wang X, Jiang Y, Li S, Luo L, Yang Y. Zebrafish ppp1r21 mutant as a model for the study of primary biliary cholangitis. J Genet Genomics 2023; 50:1004-1013. [PMID: 37271428 DOI: 10.1016/j.jgg.2023.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 06/06/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune cholestatic liver disease that progresses to fibrosis and cirrhosis, resulting from the gradual destruction of intrahepatic bile ducts. Exploring genetic variants associated with PBC is essential to understand the pathogenesis of PBC. Here we identify a zebrafish balloon dog (blg) mutant with intrahepatic bile duct branching defects, exhibiting several key pathological PBC-like features, including immunodominant autoantigen PDC-E2 production, cholangiocyte apoptosis, immune cell infiltration, inflammatory activation, and liver fibrosis. blg encodes the protein phosphatase 1 regulatory subunit 21 (Ppp1r21), which is enriched in the liver and its peripheral tissues and plays a vital role in the early intrahepatic bile duct formation stage. Further studies show an excessive activation of the PI3K/AKT/mTOR pathway in the hepatic tissues in the mutant, while treatment with the pathway inhibitor LY294002 and rapamycin partially rescues intrahepatic bile duct branching defects and alleviates the PBC-like symptoms. These findings implicate the potential role of the Ppp1r21-mediated PI3K/AKT/mTOR pathway in the pathophysiology of PBC.
Collapse
Affiliation(s)
- Chaoying Wu
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Wenfeng Zhang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yiyu Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Chaoqing Cheng
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Xinjuan Wang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yan Jiang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Shuang Li
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China
| | - Yun Yang
- Institute of Developmental Biology and Regenerative Medicine, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
10
|
Song S, Cho B, Weiner AT, Nissen SB, Naharros IO, Bosch PS, Suyama K, Hu Y, He L, Svinkina T, Udeshi ND, Carr SA, Perrimon N, Axelrod JD. Protein phosphatase 1 regulates core PCP signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.556998. [PMID: 37745534 PMCID: PMC10515792 DOI: 10.1101/2023.09.12.556998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
PCP signaling polarizes epithelial cells within the plane of an epithelium. Core PCP signaling components adopt asymmetric subcellular localizations within cells to both polarize and coordinate polarity between cells. Achieving subcellular asymmetry requires additional effectors, including some mediating post-translational modifications of core components. Identification of such proteins is challenging due to pleiotropy. We used mass spectrometry-based proximity labeling proteomics to identify such regulators in the Drosophila wing. We identified the catalytic subunit of Protein Phosphatase1, Pp1-87B, and show that it regulates core protein polarization. Pp1-87B interacts with the core protein Van Gogh and at least one Serine/Threonine kinase, Dco/CKIε, that is known to regulate PCP. Pp1-87B modulates Van Gogh subcellular localization and directs its dephosphorylation in vivo. PNUTS, a Pp1 regulatory subunit, also modulates PCP. While the direct substrate(s) of Pp1-87B in control of PCP is not known, our data support the model that cycling between phosphorylated and unphosphorylated forms of one or more core PCP components may regulate acquisition of asymmetry. Finally, our screen serves as a resource for identifying additional regulators of PCP signaling.
Collapse
Affiliation(s)
- Song Song
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Present Address: GenScript, 860 Centennial Avenue, Piscataway, NJ, 08854, USA
| | - Bomsoo Cho
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexis T. Weiner
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Silas Boye Nissen
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Irene Ojeda Naharros
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA 94143-3120, USA
| | - Pablo Sanchez Bosch
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kaye Suyama
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Li He
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Present Address: School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02138, USA
| | - Jeffrey D. Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Szaruga M, Janssen DA, de Miguel C, Hodgson G, Fatalska A, Pitera AP, Andreeva A, Bertolotti A. Activation of the integrated stress response by inhibitors of its kinases. Nat Commun 2023; 14:5535. [PMID: 37684277 PMCID: PMC10491595 DOI: 10.1038/s41467-023-40823-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α to initiate the integrated stress response (ISR) is a vital signalling event. Protein kinases activating the ISR, including PERK and GCN2, have attracted considerable attention for drug development. Here we find that the widely used ATP-competitive inhibitors of PERK, GSK2656157, GSK2606414 and AMG44, inhibit PERK in the nanomolar range, but surprisingly activate the ISR via GCN2 at micromolar concentrations. Similarly, a PKR inhibitor, C16, also activates GCN2. Conversely, GCN2 inhibitor A92 silences its target but induces the ISR via PERK. These findings are pivotal for understanding ISR biology and its therapeutic manipulations because most preclinical studies used these inhibitors at micromolar concentrations. Reconstitution of ISR activation with recombinant proteins demonstrates that PERK and PKR inhibitors directly activate dimeric GCN2, following a Gaussian activation-inhibition curve, with activation driven by allosterically increasing GCN2 affinity for ATP. The tyrosine kinase inhibitors Neratinib and Dovitinib also activate GCN2 by increasing affinity of GCN2 for ATP. Thus, the mechanism uncovered here might be broadly relevant to ATP-competitive inhibitors and perhaps to other kinases.
Collapse
Affiliation(s)
- Maria Szaruga
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Dino A Janssen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Claudia de Miguel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Agnieszka Fatalska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Aleksandra P Pitera
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
12
|
Qin S, Kitty I, Hao Y, Zhao F, Kim W. Maintaining Genome Integrity: Protein Kinases and Phosphatases Orchestrate the Balancing Act of DNA Double-Strand Breaks Repair in Cancer. Int J Mol Sci 2023; 24:10212. [PMID: 37373360 DOI: 10.3390/ijms241210212] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
DNA double-strand breaks (DSBs) are the most lethal DNA damages which lead to severe genome instability. Phosphorylation is one of the most important protein post-translation modifications involved in DSBs repair regulation. Kinases and phosphatases play coordinating roles in DSB repair by phosphorylating and dephosphorylating various proteins. Recent research has shed light on the importance of maintaining a balance between kinase and phosphatase activities in DSB repair. The interplay between kinases and phosphatases plays an important role in regulating DNA-repair processes, and alterations in their activity can lead to genomic instability and disease. Therefore, study on the function of kinases and phosphatases in DSBs repair is essential for understanding their roles in cancer development and therapeutics. In this review, we summarize the current knowledge of kinases and phosphatases in DSBs repair regulation and highlight the advancements in the development of cancer therapies targeting kinases or phosphatases in DSBs repair pathways. In conclusion, understanding the balance of kinase and phosphatase activities in DSBs repair provides opportunities for the development of novel cancer therapeutics.
Collapse
Affiliation(s)
- Sisi Qin
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA
| | - Ichiwa Kitty
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| | - Yalan Hao
- Analytical Instrumentation Center, Hunan University, Changsha 410082, China
| | - Fei Zhao
- College of Biology, Hunan University, Changsha 410082, China
| | - Wootae Kim
- Department of Integrated Biomedical Science, Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan 31151, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
13
|
Castillo Villamizar GA, Nacke H, Daniel R. Functional Metagenomics Approach for the Discovery of Novel Genes Encoding Phosphatase Activity. Methods Mol Biol 2023; 2555:103-114. [PMID: 36306081 DOI: 10.1007/978-1-0716-2795-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phosphate release from inorganic and organic phosphorus compounds can be enzymatically mediated. Phosphate-releasing enzymes, comprising acid and alkaline phosphatases, are recognized as useful biocatalysts in applications such as plant and animal nutrition, bioremediation, and diagnostic analysis. Here, we describe a functional metagenomics approach enabling rapid identification of genes encoding these enzymes. The target genes are detected based on small- and large-insert metagenomic libraries derived from diverse environments. This approach has the potential to unveil entirely new phosphatase families or subfamilies and members of known enzyme classes that hydrolyze phosphomonoester bonds such as phytases. Additionally, we provide a strategy for efficient heterologous expression of phosphatase genes.
Collapse
Affiliation(s)
- Genis A Castillo Villamizar
- Corporación para la investigación de la corrosión (CIC), Santander, Piedecuesta, Colombia
- Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| | - Heiko Nacke
- Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany
| | - Rolf Daniel
- Institute of Microbiology and Genetics, Georg August University Göttingen, Göttingen, Germany.
| |
Collapse
|
14
|
Protein Targeting to Glycogen (PTG): A Promising Player in Glucose and Lipid Metabolism. Biomolecules 2022; 12:biom12121755. [PMID: 36551183 PMCID: PMC9775135 DOI: 10.3390/biom12121755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Protein phosphorylation and dephosphorylation are widely considered to be the key regulatory factors of cell function, and are often referred to as "molecular switches" in the regulation of cell metabolic processes. A large number of studies have shown that the phosphorylation/dephosphorylation of related signal molecules plays a key role in the regulation of liver glucose and lipid metabolism. As a new therapeutic strategy for metabolic diseases, the potential of using inhibitor-based therapies to fight diabetes has gained scientific momentum. PTG, a protein phosphatase, also known as glycogen targeting protein, is a member of the protein phosphatase 1 (PP1) family. It can play a role by catalyzing the dephosphorylation of phosphorylated protein molecules, especially regulating many aspects of glucose and lipid metabolism. In this review, we briefly summarize the role of PTG in glucose and lipid metabolism, and update its role in metabolic regulation, with special attention to glucose homeostasis and lipid metabolism.
Collapse
|
15
|
Beacham GM, Wei DT, Beyrent E, Zhang Y, Zheng J, Camacho MMK, Florens L, Hollopeter G. The Caenorhabditis elegans ASPP homolog APE-1 is a junctional protein phosphatase 1 modulator. Genetics 2022; 222:iyac102. [PMID: 35792852 PMCID: PMC9434228 DOI: 10.1093/genetics/iyac102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/28/2022] [Indexed: 08/19/2023] Open
Abstract
How serine/threonine phosphatases are spatially and temporally tuned by regulatory subunits is a fundamental question in cell biology. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins are protein phosphatase 1 catalytic subunit binding partners associated with cardiocutaneous diseases. Ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize protein phosphatase 1 catalytic subunit to cell-cell junctions, but how ankyrin repeat, SH3 domain, proline-rich-region-containing proteins localize and whether they regulate protein phosphatase 1 catalytic subunit activity in vivo is unclear. Through a Caenorhabditis elegans genetic screen, we find that loss of the ankyrin repeat, SH3 domain, proline-rich-region-containing protein homolog, APE-1, suppresses a pathology called "jowls," providing us with an in vivo assay for APE-1 activity. Using immunoprecipitations and mass spectrometry, we find that APE-1 binds the protein phosphatase 1 catalytic subunit called GSP-2. Through structure-function analysis, we discover that APE-1's N-terminal half directs the APE-1-GSP-2 complex to intercellular junctions. Additionally, we isolated mutations in highly conserved residues of APE-1's ankyrin repeats that suppress jowls yet do not preclude GSP-2 binding, implying APE-1 does more than simply localize GSP-2. Indeed, in vivo reconstitution of APE-1 suggests the ankyrin repeats modulate phosphatase output, a function we find to be conserved among vertebrate homologs.
Collapse
Affiliation(s)
| | - Derek T Wei
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Erika Beyrent
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jian Zheng
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Mari M K Camacho
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gunther Hollopeter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
16
|
Herneisen AL, Li ZH, Chan AW, Moreno SNJ, Lourido S. Temporal and thermal profiling of the Toxoplasma proteome implicates parasite Protein Phosphatase 1 in the regulation of Ca 2+-responsive pathways. eLife 2022; 11:e80336. [PMID: 35976251 PMCID: PMC9436416 DOI: 10.7554/elife.80336] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Apicomplexan parasites cause persistent mortality and morbidity worldwide through diseases including malaria, toxoplasmosis, and cryptosporidiosis. Ca2+ signaling pathways have been repurposed in these eukaryotic pathogens to regulate parasite-specific cellular processes governing the replicative and lytic phases of the infectious cycle, as well as the transition between them. Despite the presence of conserved Ca2+-responsive proteins, little is known about how specific signaling elements interact to impact pathogenesis. We mapped the Ca2+-responsive proteome of the model apicomplexan Taxoplasma gondii via time-resolved phosphoproteomics and thermal proteome profiling. The waves of phosphoregulation following PKG activation and stimulated Ca2+ release corroborate known physiological changes but identify specific proteins operating in these pathways. Thermal profiling of parasite extracts identified many expected Ca2+-responsive proteins, such as parasite Ca2+-dependent protein kinases. Our approach also identified numerous Ca2+-responsive proteins that are not predicted to bind Ca2+, yet are critical components of the parasite signaling network. We characterized protein phosphatase 1 (PP1) as a Ca2+-responsive enzyme that relocalized to the parasite apex upon Ca2+ store release. Conditional depletion of PP1 revealed that the phosphatase regulates Ca2+ uptake to promote parasite motility. PP1 may thus be partly responsible for Ca2+-regulated serine/threonine phosphatase activity in apicomplexan parasites.
Collapse
Affiliation(s)
- Alice L Herneisen
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Alex W Chan
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Silvia NJ Moreno
- Center for Tropical and Emerging Global Diseases, University of GeorgiaAthensUnited States
| | - Sebastian Lourido
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
- Biology Department, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
17
|
JENKINSON F, ZEGERMAN P. Roles of phosphatases in eukaryotic DNA replication initiation control. DNA Repair (Amst) 2022; 118:103384. [DOI: 10.1016/j.dnarep.2022.103384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/03/2022]
|
18
|
Xu X, He X, Zhang Z, Chen Y, Li J, Ma S, Huang Q, Li M. CREB Inactivation by HDAC1/PP1γ Contributes to Dopaminergic Neurodegeneration in Parkinson's Disease. J Neurosci 2022; 42:4594-4604. [PMID: 35501151 PMCID: PMC9172078 DOI: 10.1523/jneurosci.1419-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Understanding the pathogenesis of nigral dopaminergic neurodegeneration is critical for developing mechanism-based treatments for Parkinson's disease (PD). In the nigral dopaminergic neurons of postmortem human PD brains, we found that CREB, a well-recognized pro-survival transcription factor in neurons, was inactivated by dephosphorylation at Ser133. CREB dephosphorylation correlated with decreased expression of NURR1, one of its target genes crucial for dopaminergic neuron survival, confirming that CREB function was impaired in nigral dopaminergic neurons in PD. An MPTP mouse model was used to further elucidate the mechanism underlying CREB dephosphorylation. Protein phosphatase 1γ (PP1γ), which dephosphorylates CREB, was constitutively associated with histone deacetylase 1 (HDAC1). HDAC1 promotes CREB Ser133 dephosphorylation via a stable interaction with PP1γ. We found that CREB interacted with the HDAC1/PP1γ complex during dopaminergic neurodegeneration. Importantly, increased CREB/HDAC1 interaction occurred in the nigral dopaminergic neurons of PD patients as demonstrated using a proximity ligation assay. Disrupting CREB/HDAC1 interaction via either overexpression of GAL4 M1, a CREB mutant, or administration of trichostatin A, a pan-HDAC inhibitor, restored the expression levels of phospho-CREB (Ser133) and NURR1, and protected nigral dopaminergic neurons in the MPTP-treated mouse brain. Collectively, our results demonstrated that HDAC1/PP1γ-mediated CREB inactivation contributed to dopaminergic neuronal degeneration. Disruption of CREB/HDAC1 interaction has the potential to be a new approach for PD therapy.SIGNIFICANCE STATEMENT Parkinson's disease (PD) is the most common movement disorder attributed to the progressive loss of dopaminergic neurons in the substantia nigra. Understanding the pathogenesis of nigral dopaminergic neurodegeneration is critical for developing mechanism-based treatments for PD. We found in nigral dopaminergic neurons of postmortem human PD brains that CREB, a well-recognized pro-survival transcription factor in neurons, was inactivated by dephosphorylation at Ser133. HDAC1, constitutively associated with PP1γ, interacted with CREB to mediate its dephosphorylation during dopaminergic neurodegeneration. Disrupting CREB/HDAC1 interaction restored CREB activity and protected nigral dopaminergic neurons in the MPTP mouse brains. This work suggests that disruption of the CREB/HDAC1 interaction to restore CREB activity may be a potential therapeutic approach in PD.
Collapse
Affiliation(s)
- Xiaoyi Xu
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xin He
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zeyan Zhang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yanyi Chen
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Junyu Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanshan Ma
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qiaoying Huang
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Mingtao Li
- Guangdong Provincial Key Laboratory of Brain Function and Disease and Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
19
|
Pitera AP, Szaruga M, Peak‐Chew S, Wingett SW, Bertolotti A. Cellular responses to halofuginone reveal a vulnerability of the GCN2 branch of the integrated stress response. EMBO J 2022; 41:e109985. [PMID: 35466425 PMCID: PMC9156968 DOI: 10.15252/embj.2021109985] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 12/13/2022] Open
Abstract
Halofuginone (HF) is a phase 2 clinical compound that inhibits the glutamyl-prolyl-tRNA synthetase (EPRS) thereby inducing the integrated stress response (ISR). Here, we report that halofuginone indeed triggers the predicted canonical ISR adaptations, consisting of attenuation of protein synthesis and gene expression reprogramming. However, the former is surprisingly atypical and occurs to a similar magnitude in wild-type cells, cells lacking GCN2 and those incapable of phosphorylating eIF2α. Proline supplementation rescues the observed HF-induced changes indicating that they result from inhibition of EPRS. The failure of the GCN2-to-eIF2α pathway to elicit a measurable protective attenuation of translation initiation allows translation elongation defects to prevail upon HF treatment. Exploiting this vulnerability of the ISR, we show that cancer cells with increased proline dependency are more sensitive to halofuginone. This work reveals that the consequences of EPRS inhibition are more complex than anticipated and provides novel insights into ISR signaling, as well as a molecular framework to guide the targeted development of halofuginone as a therapeutic.
Collapse
|
20
|
Krzyzosiak A, Pitera AP, Bertolotti A. An Overview of Methods for Detecting eIF2α Phosphorylation and the Integrated Stress Response. Methods Mol Biol 2022; 2428:3-18. [PMID: 35171470 DOI: 10.1007/978-1-0716-1975-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorylation of the translation initiation factor eIF2α is an adaptive signaling event that is essential for cell and organismal survival from yeast to humans. It is central to the integrated stress response (ISR) that maintains cellular homeostasis in the face of threats ranging from viral infection, amino acid, oxygen, and heme deprivation to the accumulation of misfolded proteins in the endoplasmic reticulum. Phosphorylation of eIF2α has broad physiological, pathological, and therapeutic relevance. However, despite more than two decades of research and growing pharmacological interest, phosphorylation of eIF2α remains difficult to detect and quantify, because of its transient nature and because substoichiometric amounts of this modification are sufficient to profoundly reshape cellular physiology. This review aims to provide a roadmap for facilitating a robust evaluation of eIF2α phosphorylation and its downstream consequences in cells and organisms.
Collapse
|
21
|
Chen PH, Hu Z, An E, Okeke IO, Zheng S, Luo X, Gong A, Jaime-Figueroa S, Crews CM. Modulation of Phosphoprotein Activity by Phosphorylation Targeting Chimeras (PhosTACs). ACS Chem Biol 2021; 16:2808-2815. [PMID: 34780684 PMCID: PMC10437008 DOI: 10.1021/acschembio.1c00693] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Protein phosphorylation, which regulates many critical aspects of cell biology, is dynamically governed by kinases and phosphatases. Many diseases are associated with dysregulated hyperphosphorylation of critical proteins, such as retinoblastoma protein in cancer. Although kinase inhibitors have been widely applied in the clinic, growing evidence of off-target effects and increasing drug resistance prompts the need to develop a new generation of drugs. Here, we propose a proof-of-concept study of phosphorylation targeting chimeras (PhosTACs). Similar to PROTACs in their ability to induce ternary complexes, PhosTACs focus on recruiting a Ser/Thr phosphatase to a phosphosubstrate to mediate its dephosphorylation. However, distinct from PROTACs, PhosTACs can uniquely provide target gain-of-function opportunities to manipulate protein activity. In this study, we applied a chemical biology approach to evaluate the feasibility of PhosTACs by recruiting the scaffold and catalytic subunits of the PP2A holoenzyme to protein substrates such as PDCD4 and FOXO3a for targeted protein dephosphorylation. For FOXO3a, this dephosphorylation resulted in the transcriptional activation of a FOXO3a-responsive reporter gene.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Zhenyi Hu
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Elvira An
- Department of Pharmacology, Yale University, New Haven, Connecticut, 06511, United States
| | - Ifunanya Ozioma Okeke
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Sijin Zheng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
- Yale University School of Medicine, New Haven, Connecticut, 06511, United States
| | - Xuanmeng Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Angela Gong
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Saul Jaime-Figueroa
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
| | - Craig M. Crews
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut, 06511, United States
- Department of Chemistry, Yale University, New Haven, Connecticut, 06511, United States
- Department of Pharmacology, Yale University, New Haven, Connecticut, 06511, United States
- Yale University School of Medicine, New Haven, Connecticut, 06511, United States
| |
Collapse
|
22
|
Passot FM, Cantlay S, Flärdh K. Protein phosphatase SppA regulates apical growth and dephosphorylates cell polarity determinant DivIVA in Streptomyces coelicolor. Mol Microbiol 2021; 117:411-428. [PMID: 34862689 DOI: 10.1111/mmi.14856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/23/2021] [Accepted: 12/02/2021] [Indexed: 11/27/2022]
Abstract
Members of the Actinobacteria, including mycobacteria and streptomycetes, exhibit a distinctive mode of polar growth, with cell wall synthesis occurring in zones at cell poles and directed by the essential cell polarity determinant DivIVA. Streptomyces coelicolor modulates polar growth via the Ser/Thr protein kinase AfsK, which phosphorylates DivIVA. Here, we show that the phosphoprotein phosphatase SppA has strong effects on polar growth and cell shape and that it reverses the AfsK-mediated phosphorylation of DivIVA. SppA affects hyphal branching and the rate of tip extension. The sppA mutant hyphae also exhibit a high frequency of spontaneous growth arrests, indicating problems with maintenance of tip extension. The phenotypic effects are partially suppressed in an afsK sppA double mutant, indicating that AfsK and SppA to some extent share target proteins. Strains with a nonphosphorylatable mutant DivIVA confirm that the effect of afsK on hyphal branching during normal growth is mediated by DivIVA phosphorylation. However, the phenotypic effects of sppA deletion are independent of DivIVA phosphorylation and must be mediated via other substrates. This study adds a PPP-family protein phosphatase to the proteins involved in the control of polar growth and cell shape determination in S. coelicolor.
Collapse
Affiliation(s)
| | | | - Klas Flärdh
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
23
|
Hodgson G, Andreeva A, Bertolotti A. Substrate recognition determinants of human eIF2α phosphatases. Open Biol 2021; 11:210205. [PMID: 34847777 PMCID: PMC8633803 DOI: 10.1098/rsob.210205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/21/2021] [Indexed: 01/09/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital cellular defence against many forms of stress. In mammals, the levels of eIF2α phosphorylation are set through the antagonistic action of four protein kinases and two heterodimeric protein phosphatases. The phosphatases are composed of the catalytic subunit PP1 and one of two related non-catalytic subunits, PPP1R15A or PPP1R15B (R15A or R15B). Here, we generated a series of R15 truncation mutants and tested their properties in mammalian cells. We show that substrate recruitment is encoded by an evolutionary conserved region in R15s, R15A325-554 and R15B340-639. G-actin, which has been proposed to confer selectivity to R15 phosphatases, does not bind these regions, indicating that it is not required for substrate binding. Fragments containing the substrate-binding regions but lacking the PP1-binding motif trapped the phospho-substrate and caused accumulation of phosphorylated eIF2α in unstressed cells. Activity assays in cells showed that R15A325-674 and R15B340-713, encompassing the substrate-binding region and the PP1-binding region, exhibit wild-type activity. This work identifies the substrate-binding region in R15s, that functions as a phospho-substrate trapping mutant, thereby defining a key region of R15s for follow up studies.
Collapse
Affiliation(s)
- George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
24
|
Zhou Y, Gao X, Yuan M, Yang B, He Q, Cao J. Targeting Myc Interacting Proteins as a Winding Path in Cancer Therapy. Front Pharmacol 2021; 12:748852. [PMID: 34658888 PMCID: PMC8511624 DOI: 10.3389/fphar.2021.748852] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022] Open
Abstract
MYC, as a well-known oncogene, plays essential roles in promoting tumor occurrence, development, invasion and metastasis in many kinds of solid tumors and hematologic neoplasms. In tumors, the low expression and the short half-life of Myc are reversed, cause tumorigenesis. And proteins that directly interact with different Myc domains have exerted a significant impact in the process of Myc-driven carcinogenesis. Apart from affecting the transcription of Myc target genes, Myc interaction proteins also regulate the stability of Myc through acetylation, methylation, phosphorylation and other post-translational modifications, as well as competitive combination with Myc. In this review, we summarize a series of Myc interacting proteins and recent advances in the related inhibitors, hoping that can provide new opportunities for Myc-driven cancer treatment.
Collapse
Affiliation(s)
- Yihui Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaomeng Gao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meng Yuan
- Cancer Center of Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Cancer Center of Zhejiang University, Hangzhou, China.,The Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Huang Z, Ba Z, Huang N, Li Y, Luo Y. Aberrant TDP-43 phosphorylation: a key wind gap from TDP-43 to TDP-43 proteinopathy. IBRAIN 2021; 7:119-131. [PMID: 37786905 PMCID: PMC10528777 DOI: 10.1002/j.2769-2795.2021.tb00074.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 03/24/2021] [Indexed: 10/04/2023]
Abstract
TDP-43 proteinopathy is a kind of neurodegenerative diseases related to the TAR DNA-binding protein of 43-kDa molecular weight (TDP-43). The typical neurodegenerative diseases include amyotrophic lateral sclerosis (ALS), frontotemporal lobar degeneration (FTLD), Alzheimer's disease (AD), Parkinson's disease (PD) and so on. As the disease process cannot be blocked or slowed down, these patients have poor quality of life and poor prognosis, and bring a huge burden to the family and society. So far, the specific pathogenesis of TDP-43 proteinopathy is not clear, and there is no effective preventive measure and treatment program for this kind of disease. TDP-43 plays an important role in triggering or promoting the occurrence and progression of TDP-43 proteinopathy. The hyperphosphorylation of TDP-43 is undoubtedly an important factor in triggering or promoting the process of TDP-43 proteinopathy. Hyperphosphorylation of TDP-43 can inhibit the degradation of TDP-43, aggravate the aggregation of TDP-43 protein, increase the wrong localization of TDP-43 in cells, and enhance the cytotoxicity of TDP-43. More and more evidences show that the hyperphosphorylation of TDP-43 plays an important role in the pathogenesis of TDP-43 proteinopathy. Inhibition of TDP-43 hyperphosphorylation may be one of the important strategies for the treatment of TDP-43 proteinopathy. Therefore, this article reviews the role of TDP-43 phosphorylation in TDP-43 proteinopathy and the related mechanisms.
Collapse
Affiliation(s)
- Zi‐Qi Huang
- Department of NeurologyThird Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| | - Zhi‐Sheng Ba
- Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| | - Nan‐Qu Huang
- Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| | - Yuan‐Yuan Li
- Drug Clinical Trial Institution, Third Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| | - Yong Luo
- Department of NeurologyThird Affiliated Hospital of Zunyi Medical University & First People’s Hospital of ZunyiZunyiGuizhouChina
| |
Collapse
|
26
|
Licheva M, Raman B, Kraft C, Reggiori F. Phosphoregulation of the autophagy machinery by kinases and phosphatases. Autophagy 2021; 18:104-123. [PMID: 33970777 PMCID: PMC8865292 DOI: 10.1080/15548627.2021.1909407] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells use post-translational modifications to diversify and dynamically coordinate the function and properties of protein networks within various cellular processes. For example, the process of autophagy strongly depends on the balanced action of kinases and phosphatases. Highly conserved from the budding yeast Saccharomyces cerevisiae to humans, autophagy is a tightly regulated self-degradation process that is crucial for survival, stress adaptation, maintenance of cellular and organismal homeostasis, and cell differentiation and development. Many studies have emphasized the importance of kinases and phosphatases in the regulation of autophagy and identified many of the core autophagy proteins as their direct targets. In this review, we summarize the current knowledge on kinases and phosphatases acting on the core autophagy machinery and discuss the relevance of phosphoregulation for the overall process of autophagy.
Collapse
Affiliation(s)
- Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Babu Raman
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Fulvio Reggiori
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, AV Groningen, The Netherlands
| |
Collapse
|
27
|
Cossa G, Parua PK, Eilers M, Fisher RP. Protein phosphatases in the RNAPII transcription cycle: erasers, sculptors, gatekeepers, and potential drug targets. Genes Dev 2021; 35:658-676. [PMID: 33888562 PMCID: PMC8091971 DOI: 10.1101/gad.348315.121] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, Cossa et al. discuss the current knowledge and outstanding questions about phosphatases in the context of the RNAPII transcription cycle. The transcription cycle of RNA polymerase II (RNAPII) is governed at multiple points by opposing actions of cyclin-dependent kinases (CDKs) and protein phosphatases, in a process with similarities to the cell division cycle. While important roles of the kinases have been established, phosphatases have emerged more slowly as key players in transcription, and large gaps remain in understanding of their precise functions and targets. Much of the earlier work focused on the roles and regulation of sui generis and often atypical phosphatases—FCP1, Rtr1/RPAP2, and SSU72—with seemingly dedicated functions in RNAPII transcription. Decisive roles in the transcription cycle have now been uncovered for members of the major phosphoprotein phosphatase (PPP) family, including PP1, PP2A, and PP4—abundant enzymes with pleiotropic roles in cellular signaling pathways. These phosphatases appear to act principally at the transitions between transcription cycle phases, ensuring fine control of elongation and termination. Much is still unknown, however, about the division of labor among the PPP family members, and their possible regulation by or of the transcriptional kinases. CDKs active in transcription have recently drawn attention as potential therapeutic targets in cancer and other diseases, raising the prospect that the phosphatases might also present opportunities for new drug development. Here we review the current knowledge and outstanding questions about phosphatases in the context of the RNAPII transcription cycle.
Collapse
Affiliation(s)
- Giacomo Cossa
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Pabitra K Parua
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Martin Eilers
- Department of Biochemistry and Molecular Biology, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Robert P Fisher
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
28
|
May EA, Sroka TJ, Mick DU. Phosphorylation and Ubiquitylation Regulate Protein Trafficking, Signaling, and the Biogenesis of Primary Cilia. Front Cell Dev Biol 2021; 9:664279. [PMID: 33912570 PMCID: PMC8075051 DOI: 10.3389/fcell.2021.664279] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022] Open
Abstract
The primary cilium is a solitary, microtubule-based membrane protrusion extending from the surface of quiescent cells that senses the cellular environment and triggers specific cellular responses. The functions of primary cilia require not only numerous different components but also their regulated interplay. The cilium performs highly dynamic processes, such as cell cycle-dependent assembly and disassembly as well as delivery, modification, and removal of signaling components to perceive and process external signals. On a molecular level, these processes often rely on a stringent control of key modulatory proteins, of which the activity, localization, and stability are regulated by post-translational modifications (PTMs). While an increasing number of PTMs on ciliary components are being revealed, our knowledge on the identity of the modifying enzymes and their modulation is still limited. Here, we highlight recent findings on cilia-specific phosphorylation and ubiquitylation events. Shedding new light onto the molecular mechanisms that regulate the sensitive equilibrium required to maintain and remodel primary cilia functions, we discuss their implications for cilia biogenesis, protein trafficking, and cilia signaling processes.
Collapse
Affiliation(s)
- Elena A May
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - Tommy J Sroka
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| | - David U Mick
- Center of Human and Molecular Biology (ZHMB), Saarland University School of Medicine, Homburg, Germany.,Center for Molecular Signaling (PZMS), Department of Medical Biochemistry and Molecular Biology, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
29
|
Endoplasmic reticulum stress and unfolded protein response in cardiovascular diseases. Nat Rev Cardiol 2021; 18:499-521. [PMID: 33619348 DOI: 10.1038/s41569-021-00511-w] [Citation(s) in RCA: 312] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases (CVDs), such as ischaemic heart disease, cardiomyopathy, atherosclerosis, hypertension, stroke and heart failure, are among the leading causes of morbidity and mortality worldwide. Although specific CVDs and the associated cardiometabolic abnormalities have distinct pathophysiological and clinical manifestations, they often share common traits, including disruption of proteostasis resulting in accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER proteostasis is governed by the unfolded protein response (UPR), a signalling pathway that adjusts the protein-folding capacity of the cell to sustain the cell's secretory function. When the adaptive UPR fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis. ER stress functions as a double-edged sword, with long-term ER stress resulting in cellular defects causing disturbed cardiovascular function. In this Review, we discuss the distinct roles of the UPR and ER stress response as both causes and consequences of CVD. We also summarize the latest advances in our understanding of the importance of the UPR and ER stress in the pathogenesis of CVD and discuss potential therapeutic strategies aimed at restoring ER proteostasis in CVDs.
Collapse
|
30
|
Ong JY, Bradley MC, Torres JZ. Phospho-regulation of mitotic spindle assembly. Cytoskeleton (Hoboken) 2020; 77:558-578. [PMID: 33280275 PMCID: PMC7898546 DOI: 10.1002/cm.21649] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/08/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022]
Abstract
The assembly of the bipolar mitotic spindle requires the careful orchestration of a myriad of enzyme activities like protein posttranslational modifications. Among these, phosphorylation has arisen as the principle mode for spatially and temporally activating the proteins involved in early mitotic spindle assembly processes. Here, we review key kinases, phosphatases, and phosphorylation events that regulate critical aspects of these processes. We highlight key phosphorylation substrates that are important for ensuring the fidelity of centriole duplication, centrosome maturation, and the establishment of the bipolar spindle. We also highlight techniques used to understand kinase-substrate relationships and to study phosphorylation events. We conclude with perspectives on the field of posttranslational modifications in early mitotic spindle assembly.
Collapse
Affiliation(s)
- Joseph Y Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Michelle C Bradley
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA.,Molecular Biology Institute, University of California, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| |
Collapse
|
31
|
Schneider K, Nelson GM, Watson JL, Morf J, Dalglish M, Luh LM, Weber A, Bertolotti A. Protein Stability Buffers the Cost of Translation Attenuation following eIF2α Phosphorylation. Cell Rep 2020; 32:108154. [PMID: 32937139 PMCID: PMC7495045 DOI: 10.1016/j.celrep.2020.108154] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 01/28/2023] Open
Abstract
Phosphorylation of the translation initiation factor eIF2α is a rapid and vital response to many forms of stress, including protein-misfolding stress in the endoplasmic reticulum (ER stress). It is believed to cause a general reduction in protein synthesis while enabling translation of few transcripts. Such a reduction of protein synthesis comes with the threat of depleting essential proteins, a risk thought to be mitigated by its transient nature. Here, we find that translation attenuation is not uniform, with cytosolic and mitochondrial ribosomal subunits being prominently downregulated. Translation attenuation of these targets persists after translation recovery. Surprisingly, this occurs without a measurable decrease in ribosomal proteins. Explaining this conundrum, translation attenuation preferentially targets long-lived proteins, a finding not only demonstrated by ribosomal proteins but also observed at a global level. This shows that protein stability buffers the cost of translational attenuation, establishing an evolutionary principle of cellular robustness.
Collapse
Affiliation(s)
- Kim Schneider
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| | - Geoffrey Michael Nelson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Joseph Luke Watson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Jörg Morf
- Wellcome - MRC Cambridge Stem Cell Institute, Puddicombe Way, Cambridge CB2 0AW, United Kingdom
| | - Maximillian Dalglish
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Laura Martina Luh
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Annika Weber
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
32
|
Sarmasti Emami S, Zhang D, Yang X. Interaction of the Hippo Pathway and Phosphatases in Tumorigenesis. Cancers (Basel) 2020; 12:E2438. [PMID: 32867200 PMCID: PMC7564220 DOI: 10.3390/cancers12092438] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 01/05/2023] Open
Abstract
The Hippo pathway is an emerging tumor suppressor signaling pathway involved in a wide range of cellular processes. Dysregulation of different components of the Hippo signaling pathway is associated with a number of diseases including cancer. Therefore, identification of the Hippo pathway regulators and the underlying mechanism of its regulation may be useful to uncover new therapeutics for cancer therapy. The Hippo signaling pathway includes a set of kinases that phosphorylate different proteins in order to phosphorylate and inactivate its main downstream effectors, YAP and TAZ. Thus, modulating phosphorylation and dephosphorylation of the Hippo components by kinases and phosphatases play critical roles in the regulation of the signaling pathway. While information regarding kinase regulation of the Hippo pathway is abundant, the role of phosphatases in regulating this pathway is just beginning to be understood. In this review, we summarize the most recent reports on the interaction of phosphatases and the Hippo pathway in tumorigenesis. We have also introduced challenges in clarifying the role of phosphatases in the Hippo pathway and future direction of crosstalk between phosphatases and the Hippo pathway.
Collapse
Affiliation(s)
| | | | - Xiaolong Yang
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, ON K7L 3N6, Canada; (S.S.E.); (D.Z.)
| |
Collapse
|
33
|
Lang I, Virk G, Zheng DC, Young J, Nguyen MJ, Amiri R, Fong M, Arata A, Chadaideh KS, Walsh S, Weiser DC. The Evolution of Duplicated Genes of the Cpi-17/Phi-1 ( ppp1r14) Family of Protein Phosphatase 1 Inhibitors in Teleosts. Int J Mol Sci 2020; 21:ijms21165709. [PMID: 32784920 PMCID: PMC7460850 DOI: 10.3390/ijms21165709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022] Open
Abstract
The Cpi-17 (ppp1r14) gene family is an evolutionarily conserved, vertebrate specific group of protein phosphatase 1 (PP1) inhibitors. When phosphorylated, Cpi-17 is a potent inhibitor of myosin phosphatase (MP), a holoenzyme complex of the regulatory subunit Mypt1 and the catalytic subunit PP1. Myosin phosphatase dephosphorylates the regulatory myosin light chain (Mlc2) and promotes actomyosin relaxation, which in turn, regulates numerous cellular processes including smooth muscle contraction, cytokinesis, cell motility, and tumor cell invasion. We analyzed zebrafish homologs of the Cpi-17 family, to better understand the mechanisms of myosin phosphatase regulation. We found single homologs of both Kepi (ppp1r14c) and Gbpi (ppp1r14d) in silico, but we detected no expression of these genes during early embryonic development. Cpi-17 (ppp1r14a) and Phi-1 (ppp1r14b) each had two duplicate paralogs, (ppp1r14aa and ppp1r14ab) and (ppp1r14ba and ppp1r14bb), which were each expressed during early development. The spatial expression pattern of these genes has diverged, with ppp1r14aa and ppp1r14bb expressed primarily in smooth muscle and skeletal muscle, respectively, while ppp1r14ab and ppp1r14ba are primarily expressed in neural tissue. We observed that, in in vitro and heterologous cellular systems, the Cpi-17 paralogs both acted as potent myosin phosphatase inhibitors, and were indistinguishable from one another. In contrast, the two Phi-1 paralogs displayed weak myosin phosphatase inhibitory activity in vitro, and did not alter myosin phosphorylation in cells. Through deletion and chimeric analysis, we identified that the difference in specificity for myosin phosphatase between Cpi-17 and Phi-1 was encoded by the highly conserved PHIN (phosphatase holoenzyme inhibitory) domain, and not the more divergent N- and C- termini. We also showed that either Cpi-17 paralog can rescue the knockdown phenotype, but neither Phi-1 paralog could do so. Thus, we provide new evidence about the biochemical and developmental distinctions of the zebrafish Cpi-17 protein family.
Collapse
Affiliation(s)
- Irene Lang
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Guneet Virk
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Dale C. Zheng
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Jason Young
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Michael J. Nguyen
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Rojin Amiri
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Michelle Fong
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Alisa Arata
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
| | - Katia S. Chadaideh
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Susan Walsh
- Life Sciences, Soka University of America, Aliso Viejo, CA 92656, USA;
| | - Douglas C. Weiser
- Department of Biological Sciences, University of the Pacific, Stockton, CA 98211, USA; (I.L.); (G.V.); (D.C.Z.); (J.Y.); (M.J.N.); (R.A.); (M.F.); (A.A.); (K.S.C.)
- Correspondence: ; Tel.: +1-209-946-2955
| |
Collapse
|
34
|
Casamayor A, Ariño J. Controlling Ser/Thr protein phosphatase PP1 activity and function through interaction with regulatory subunits. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:231-288. [PMID: 32951813 DOI: 10.1016/bs.apcsb.2020.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein phosphatase 1 is a major Ser/Thr protein phosphatase activity in eukaryotic cells. It is composed of a catalytic polypeptide (PP1C), with little substrate specificity, that interacts with a large variety of proteins of diverse structure (regulatory subunits). The diversity of holoenzymes that can be formed explain the multiplicity of cellular functions under the control of this phosphatase. In quite a few cases, regulatory subunits have an inhibitory role, downregulating the activity of the phosphatase. In this chapter we shall introduce PP1C and review the most relevant families of PP1C regulatory subunits, with particular emphasis in describing the structural basis for their interaction.
Collapse
Affiliation(s)
- Antonio Casamayor
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina & Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola, del Vallès, Spain
| |
Collapse
|
35
|
Hu Z, Ban H, Zheng H, Liu M, Chang J, Guo JT. Protein phosphatase 1 catalyzes HBV core protein dephosphorylation and is co-packaged with viral pregenomic RNA into nucleocapsids. PLoS Pathog 2020; 16:e1008669. [PMID: 32702076 PMCID: PMC7402523 DOI: 10.1371/journal.ppat.1008669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/04/2020] [Accepted: 05/30/2020] [Indexed: 01/01/2023] Open
Abstract
Hepatitis B virus (HBV) replicates its genomic DNA via viral DNA polymerase self-primed reverse transcription of a RNA pre-genome in the nucleocapsid assembled by 120 core protein (Cp) dimers. The arginine-rich carboxyl-terminal domain (CTD) of Cp plays an important role in the selective packaging of viral DNA polymerase-pregenomic (pg) RNA complex into nucleocapsid. Previous studies suggested that the CTD is initially phosphorylated at multiple sites to facilitate viral RNA packaging and subsequently dephosphorylated in association with viral DNA synthesis and secretion of DNA-containing virions. However, our recent studies suggested that Cp is hyper-phosphorylated as free dimers and its dephosphorylation is associated with pgRNA encapsidation. Herein, we provide further genetic and biochemical evidence supporting that extensive Cp dephosphorylation does take place during the assembly of pgRNA-containing nucleocapsids, but not empty capsids. Moreover, we found that cellular protein phosphatase 1 (PP1) is required for Cp dephosphorylation and pgRNA packaging. Interestingly, the PP1 catalytic subunits α and β were packaged into pgRNA-containing nucleocapsids, but not empty capsids, and treatment of HBV replicating cells with core protein allosteric modulators (CpAMs) promoted empty capsid assembly and abrogated the encapsidation of PP1 α and β. Our study thus identified PP1 as a host cellular factor that is co-packaged into HBV nucleocapsids, and plays an essential role in selective packaging of the viral DNA-polymerase-pgRNA complex through catalyzing Cp dephosphorylation. Selective packaging of pregenomic RNA by core protein dimers into nucleocapsid is a key step of HBV replication and is subjected for the regulation by multiple viral and host cellular factors. HBV core protein phosphorylation and dephosphorylation play an essential role in HBV genome replication. However, the cellular kinases and phosphatases responsible for the biochemical events remain elusive. Identification of cellular protein phosphatase 1 as a host cellular factor catalyzing core protein dephosphorylation and facilitating viral pregenomic RNA packaging into nucleocapsids sheds new light on the molecular mechanism of HBV replication and development of therapeutics to cure chronic HBV infection.
Collapse
Affiliation(s)
- Zhanying Hu
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Haiqun Ban
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Haiyan Zheng
- Biological mass spectrometry facility, Robert Wood Johnson Medical School and Rutgers, The State University of New Jersey. Piscataway, New Jersey, United States of America
| | - Mingliang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tian-Tan Xi-Li, Beijing, China
| | - Jinhong Chang
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
| | - Ju-Tao Guo
- Department of Experimental Therapeutics, Baruch S. Blumberg Institute, Doylestown, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
36
|
A new regulatory mechanism of protein phosphatase 2A activity via SET in acute myeloid leukemia. Blood Cancer J 2020; 10:3. [PMID: 31913266 PMCID: PMC6949222 DOI: 10.1038/s41408-019-0270-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/11/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy. Although novel emerging drugs are available, the overall prognosis remains poor and new therapeutic approaches are required. PP2A phosphatase is a key regulator of cell homeostasis and is recurrently inactivated in AML. The anticancer activity of several PP2A-activating drugs (e.g., FTY720) depends on their interaction with the SET oncoprotein, an endogenous PP2A inhibitor that is overexpressed in 30% of AML cases. Elucidation of SET regulatory mechanisms may therefore provide novel targeted therapies for SET-overexpressing AMLs. Here, we show that upregulation of protein kinase p38β is a common event in AML. We provide evidence that p38β potentiates SET-mediated PP2A inactivation by two mechanisms: facilitating SET cytoplasmic translocation through CK2 phosphorylation, and directly binding to and stabilizing the SET protein. We demonstrate the importance of this new regulatory mechanism in primary AML cells from patients and in zebrafish xenograft models. Accordingly, combination of the CK2 inhibitor CX-4945, which retains SET in the nucleus, and FTY720, which disrupts the SET-PP2A binding in the cytoplasm, significantly reduces the viability and migration of AML cells. In conclusion, we show that the p38β/CK2/SET axis represents a new potential therapeutic pathway in AML patients with SET-dependent PP2A inactivation.
Collapse
|
37
|
Barik S. Molecular Interactions between Pathogens and the Circadian Clock. Int J Mol Sci 2019; 20:ijms20235824. [PMID: 31756974 PMCID: PMC6928883 DOI: 10.3390/ijms20235824] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/17/2019] [Accepted: 11/17/2019] [Indexed: 12/12/2022] Open
Abstract
The daily periodicity of the Earth's rotation around the Sun, referred to as circadian (Latin "circa" = about, and "diem" = day), is also mirrored in the behavior and metabolism of living beings. The discovery that dedicated cellular genes control various aspects of this periodicity has led to studies of the molecular mechanism of the circadian response at the cellular level. It is now established that the circadian genes impact on a large network of hormonal, metabolic, and immunological pathways, affecting multiple aspects of biology. Recent studies have extended the role of the circadian system to the regulation of infection, host-pathogen interaction, and the resultant disease outcome. This critical review summarizes our current knowledge of circadian-pathogen interaction at both systemic and cellular levels, but with emphasis on the molecular aspects of the regulation. Wherever applicable, the potential of a direct interaction between circadian factors and pathogenic macromolecules is also explored. Finally, this review offers new directions and guidelines for future research in this area, which should facilitate progress.
Collapse
|
38
|
Cellular Gene Expression during Hepatitis C Virus Replication as Revealed by Ribosome Profiling. Int J Mol Sci 2019; 20:ijms20061321. [PMID: 30875926 PMCID: PMC6470931 DOI: 10.3390/ijms20061321] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatitis C virus (HCV) infects human liver hepatocytes, often leading to liver cirrhosis and hepatocellular carcinoma (HCC). It is believed that chronic infection alters host gene expression and favors HCC development. In particular, HCV replication in Endoplasmic Reticulum (ER) derived membranes induces chronic ER stress. How HCV replication affects host mRNA translation and transcription at a genome wide level is not yet known. Methods: We used Riboseq (Ribosome Profiling) to analyze transcriptome and translatome changes in the Huh-7.5 hepatocarcinoma cell line replicating HCV for 6 days. Results: Established viral replication does not cause global changes in host gene expression—only around 30 genes are significantly differentially expressed. Upregulated genes are related to ER stress and HCV replication, and several regulated genes are known to be involved in HCC development. Some mRNAs (PPP1R15A/GADD34, DDIT3/CHOP, and TRIB3) may be subject to upstream open reading frame (uORF) mediated translation control. Transcriptional downregulation mainly affects mitochondrial respiratory chain complex core subunit genes. Conclusion: After establishing HCV replication, the lack of global changes in cellular gene expression indicates an adaptation to chronic infection, while the downregulation of mitochondrial respiratory chain genes indicates how a virus may further contribute to cancer cell-like metabolic reprogramming (“Warburg effect”) even in the hepatocellular carcinoma cells used here.
Collapse
|
39
|
Zhang Q, Xiao K, Paredes JM, Mamonova T, Sneddon WB, Liu H, Wang D, Li S, McGarvey JC, Uehling D, Al-Awar R, Joseph B, Jean-Alphonse F, Orte A, Friedman PA. Parathyroid hormone initiates dynamic NHERF1 phosphorylation cycling and conformational changes that regulate NPT2A-dependent phosphate transport. J Biol Chem 2019; 294:4546-4571. [PMID: 30696771 PMCID: PMC6433080 DOI: 10.1074/jbc.ra119.007421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/25/2019] [Indexed: 12/30/2022] Open
Abstract
Na+-H+ exchanger regulatory factor-1 (NHERF1) is a PDZ protein that scaffolds membrane proteins, including sodium-phosphate co-transport protein 2A (NPT2A) at the plasma membrane. NHERF1 is a phosphoprotein with 40 Ser and Thr residues. Here, using tandem MS analysis, we characterized the sites of parathyroid hormone (PTH)-induced NHERF1 phosphorylation and identified 10 high-confidence phosphorylation sites. Ala replacement at Ser46, Ser162, Ser181, Ser269, Ser280, Ser291, Thr293, Ser299, and Ser302 did not affect phosphate uptake, but S290A substitution abolished PTH-dependent phosphate transport. Unexpectedly, Ser290 was rapidly dephosphorylated and rephosphorylated after PTH stimulation, and we found that protein phosphatase 1α (PP1α), which binds NHERF1 through a conserved VxF/W PP1 motif, dephosphorylates Ser290 Mutating 257VPF259 eliminated PP1 binding and blunted dephosphorylation. Tautomycetin blocked PP1 activity and abrogated PTH-sensitive phosphate transport. Using fluorescence lifetime imaging (FLIM), we observed that PTH paradoxically and transiently elevates intracellular phosphate. Added phosphate blocked PP1α-mediated Ser290 dephosphorylation of recombinant NHERF1. Hydrogen-deuterium exchange MS revealed that β-sheets in NHERF1's PDZ2 domain display lower deuterium uptake than those in the structurally similar PDZ1, implying that PDZ1 is more cloistered. Dephosphorylated NHERF1 exhibited faster exchange at C-terminal residues suggesting that NHERF1 dephosphorylation precedes Ser290 rephosphorylation. Our results show that PP1α and NHERF1 form a holoenzyme and that a multiprotein kinase cascade involving G protein-coupled receptor kinase 6A controls the Ser290 phosphorylation status of NHERF1 and regulates PTH-sensitive, NPT2A-mediated phosphate uptake. These findings reveal how reversible phosphorylation modifies protein conformation and function and the biochemical mechanisms underlying PTH control of phosphate transport.
Collapse
Affiliation(s)
- Qiangmin Zhang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Kunhong Xiao
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology.,Vascular Medicine Institute, and.,Biomedical Mass Spectrometry Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261
| | - José M Paredes
- the Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18071-Granada, Spain
| | - Tatyana Mamonova
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - W Bruce Sneddon
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Hongda Liu
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Dawei Wang
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - Sheng Li
- the Department of Medicine, University of California San Diego, La Jolla, California 92093, and
| | - Jennifer C McGarvey
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology
| | - David Uehling
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Rima Al-Awar
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | - Babu Joseph
- the Department of Drug Discovery, Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada
| | | | - Angel Orte
- the Department of Physical Chemistry, Faculty of Pharmacy, University of Granada, 18071-Granada, Spain
| | - Peter A Friedman
- From the Laboratory for GPCR Biology, Department of Pharmacology and Chemical Biology, .,Department of Structural Biology
| |
Collapse
|