1
|
Shi H, Liu L, Larsen PF, Ding Y, Zhang T, Zhang H, Liu Z. Genomic Regions Associated with Growth and Reproduction Traits in Pink-Eyed White Mink. Genes (Basel) 2024; 15:1142. [PMID: 39336733 PMCID: PMC11431770 DOI: 10.3390/genes15091142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
In mink breeding, balanced selection for growth and reproductive features is essential because these traits are contradictory. The variables of total number born (TNB), number born alive (NBA), and body weight (BW) are highly valuable in terms of their importance in mink production. A comprehensive understanding of the molecular mechanisms that drive these features could offer vital insights into their genetic compositions. In the present study, the single-nucleotide polymorphism (SNP) genotypes of 219 minks were obtained via double digest restriction-site associated DNA sequencing (ddRAD-seq). Following several rounds of screening, about 2,415,121 high-quality SNPs were selected for a genome-wide association study (GWAS). The GWAS was used to determine BW and reproductive traits in pink-eyed white mink. It was suggested that SLC26A36, STXBP5L, and RPS 29 serve as potential genes for the total number of kits born (TNB), while FSCB, PDPN, NKX 2-1, NFKB 1, NFKBIA, and GABBR1 are key genes for the number born alive (NBA). Moreover, RTTN, PRPF31, MACROD1, and KYAT1 are possible BW genes based on association results and available functional data from gene and mammalian phenotype databases. These results offer essential information about the variety of mink and theoretical principles for applying mink breeds.
Collapse
Affiliation(s)
- Hongyu Shi
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China; (H.S.); (L.L.); (P.F.L.); (T.Z.)
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Linling Liu
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China; (H.S.); (L.L.); (P.F.L.); (T.Z.)
| | - Peter Foged Larsen
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China; (H.S.); (L.L.); (P.F.L.); (T.Z.)
| | - Yu Ding
- College of Animal Science, Jilin University, Changchun 130062, China;
| | - Tietao Zhang
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China; (H.S.); (L.L.); (P.F.L.); (T.Z.)
| | - Haihua Zhang
- Colleges of Animal Science, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Zongyue Liu
- Jilin Provincial Key Laboratory for Molecular Biology of Special Economic Animals, Key Laboratory of Special Economic Animal Genetic Breeding and Reproduction, Ministry of Agriculture, Institute of Special Economic Animal and Plant Sciences, The Chinese Academy of Agricultural Sciences, Changchun 130112, China; (H.S.); (L.L.); (P.F.L.); (T.Z.)
| |
Collapse
|
2
|
Wang D, Jiang J, Wang M, Li K, Liang H, Wang N, Liu W, Wang M, Zhou S, Zhang M, Xiao Y, Shen X, Li Z, Wu W, Lin X, Xiang X, Xie Q, Liu W, Zhou X, Tang Q, Zhou W, Yang L, Chuong CM, Lei M. Mitophagy Promotes Hair Regeneration by Activating Glutathione Metabolism. RESEARCH (WASHINGTON, D.C.) 2024; 7:0433. [PMID: 39091635 PMCID: PMC11292124 DOI: 10.34133/research.0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 06/30/2024] [Indexed: 08/04/2024]
Abstract
Mitophagy maintains tissue homeostasis by self-eliminating defective mitochondria through autophagy. How mitophagy regulates stem cell activity during hair regeneration remains unclear. Here, we found that mitophagy promotes the proliferation of hair germ (HG) cells by regulating glutathione (GSH) metabolism. First, single-cell RNA sequencing, mitochondrial probe, transmission electron microscopy, and immunofluorescence staining showed stronger mitochondrial activity and increased mitophagy-related gene especially Prohibitin 2 (Phb2) expression at early-anagen HG compared to the telogen HG. Mitochondrial inner membrane receptor protein PHB2 binds to LC3 to initiate mitophagy. Second, molecular docking and functional studies revealed that PHB2-LC3 activates mitophagy to eliminate the damaged mitochondria in HG. RNA-seq, single-cell metabolism, immunofluorescence staining, and functional validation discovered that LC3 promotes GSH metabolism to supply energy for promoting HG proliferation. Third, transcriptomics analysis and immunofluorescence staining indicated that mitophagy was down-regulated in the aged compared to young-mouse HG. Activating mitophagy and GSH pathways through small-molecule administration can reactivate HG cell proliferation followed by hair regeneration in aged hair follicles. Our findings open up a new avenue for exploring autophagy that promotes hair regeneration and emphasizes the role of the self-elimination effect of mitophagy in controlling the proliferation of HG cells by regulating GSH metabolism.
Collapse
Affiliation(s)
- Dehuan Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Jingwei Jiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Mengyue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Ke Li
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Huan Liang
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Nian’ou Wang
- Shenzhen Accompany Technology Cooperation, Ltd, Shenzhen 518000, China
| | - Weiwei Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Miaomiao Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Siyi Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Man Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Yang Xiao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Xinyu Shen
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Zeming Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Wang Wu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Xia Lin
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Xiao Xiang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Qiaoli Xie
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Wanqian Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Xun Zhou
- Department of Dermatology and Cosmetology,
The First Affiliated Hospital of Chongqing College of Traditional Chinese Medicine, Chongqing 400021, China
| | - Qu Tang
- Three Gorges Hospital,
Chongqing University, Chongqing 404000, China
| | - Wei Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment,
Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Li Yang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| | - Cheng-Ming Chuong
- Department of Pathology, Keck School of Medicine,
University of Southern California, Los Angeles, CA 90033, USA
| | - Mingxing Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education and 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering,
Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Amiri M, Kiniry SJ, Possemato AP, Mahmood N, Basiri T, Dufour CR, Tabatabaei N, Deng Q, Bellucci MA, Harwalkar K, Stokes MP, Giguère V, Kaufman RJ, Yamanaka Y, Baranov PV, Tahmasebi S, Sonenberg N. Impact of eIF2α phosphorylation on the translational landscape of mouse embryonic stem cells. Cell Rep 2024; 43:113615. [PMID: 38159280 PMCID: PMC10962698 DOI: 10.1016/j.celrep.2023.113615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
The integrated stress response (ISR) is critical for cell survival under stress. In response to diverse environmental cues, eIF2α becomes phosphorylated, engendering a dramatic change in mRNA translation. The activation of ISR plays a pivotal role in the early embryogenesis, but the eIF2-dependent translational landscape in pluripotent embryonic stem cells (ESCs) is largely unexplored. We employ a multi-omics approach consisting of ribosome profiling, proteomics, and metabolomics in wild-type (eIF2α+/+) and phosphorylation-deficient mutant eIF2α (eIF2αA/A) mouse ESCs (mESCs) to investigate phosphorylated (p)-eIF2α-dependent translational control of naive pluripotency. We show a transient increase in p-eIF2α in the naive epiblast layer of E4.5 embryos. Absence of eIF2α phosphorylation engenders an exit from naive pluripotency following 2i (two chemical inhibitors of MEK1/2 and GSK3α/β) withdrawal. p-eIF2α controls translation of mRNAs encoding proteins that govern pluripotency, chromatin organization, and glutathione synthesis. Thus, p-eIF2α acts as a key regulator of the naive pluripotency gene regulatory network.
Collapse
Affiliation(s)
- Mehdi Amiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Stephen J Kiniry
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | | | - Niaz Mahmood
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Tayebeh Basiri
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Catherine R Dufour
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Negar Tabatabaei
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Qiyun Deng
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Michael A Bellucci
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Keerthana Harwalkar
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Matthew P Stokes
- Cell Signaling Technology, Inc., 3 Trask Lane, Danvers, MA 01923, USA
| | - Vincent Giguère
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - Randal J Kaufman
- Degenerative Diseases Program, Center for Genetic Disorders and Aging Research, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Yojiro Yamanaka
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, T12 XF62 Cork, Ireland
| | - Soroush Tahmasebi
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, QC H3A 1A3, Canada; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|
4
|
Safran A, Proskorovski-Ohayon R, Eskin-Schwartz M, Yogev Y, Drabkin M, Eremenko E, Aharoni S, Freund O, Jean MM, Agam N, Hadar N, Loewenthal N, Staretz-Chacham O, Birk OS. Hyperinsulinism/hyperammonemia syndrome caused by biallelic SLC25A36 mutation. J Inherit Metab Dis 2023; 46:744-755. [PMID: 36695547 DOI: 10.1002/jimd.12594] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/06/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023]
Abstract
Hyperinsulinism/hyperammonemia (HI/HA) syndrome has been known to be caused by dominant gain-of-function mutations in GLUD1, encoding the mitochondrial enzyme glutamate dehydrogenase. Pathogenic GLUD1 mutations enhance enzymatic activity by reducing its sensitivity to allosteric inhibition by GTP. Two recent independent studies showed that a similar HI/HA phenotype can be caused by biallelic mutations in SLC25A36, encoding pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine and guanine nucleotides across the inner mitochondrial membrane: one study reported a single case caused by a homozygous truncating mutation in SLC25A36 resulting in lack of expression of SLC25A36 in patients' fibroblasts. A second study described two siblings with a splice site mutation in SLC25A36, causing reduction of mitochondrial GTP content, putatively leading to hyperactivation of glutamate dehydrogenase. In an independent study, through combined linkage analysis and exome sequencing, we demonstrate in four individuals of two Bedouin Israeli related families the same disease-causing SLC25A36 (NM_018155.3) c.284 + 3A > T homozygous splice-site mutation found in the two siblings. We demonstrate that the mutation, while causing skipping of exon 3, does not abrogate expression of mRNA and protein of the mutant SLC25A36 in patients' blood and fibroblasts. Affected individuals had hyperinsulinism, hyperammonemia, borderline low birth weight, tonic-clonic seizures commencing around 6 months of age, yet normal intellect and no significant other morbidities. Chronic constipation, hypothyroidism, and developmental delay previously described in a single patient were not found. We thus verify that biallelic SLC25A36 mutations indeed cause HI/HA syndrome and clearly delineate the disease phenotype.
Collapse
Affiliation(s)
- Amit Safran
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Regina Proskorovski-Ohayon
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Marina Eskin-Schwartz
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
- Genetics Institute, Soroka Medical Center, Beer Sheva, Israel
| | - Yuval Yogev
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Max Drabkin
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Ekaterina Eremenko
- Department of Life Sciences and Shraga Segal Department of Microbiology, Immunology and Genetics, National Institute of Biotechnology in the Negev, Zlotowski Neuroscience Center and the Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University, Beer Sheva, Israel
| | - Sarit Aharoni
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Ofek Freund
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Matan M Jean
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Nadav Agam
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Noam Hadar
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Pediatric Division, Soroka Medical Center, Beer Sheva, Israel
- Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Orna Staretz-Chacham
- Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
- Pediatric Metabolic Clinic, Pediatric Division, Soroka Medical Center, Ben-Gurion University, Beer Sheva, Israel
| | - Ohad S Birk
- Morris Kahn Laboratory of Human Genetics at the Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences and National Institute for Biotechnology in the Negev, Ben Gurion University, Beer Sheva, Israel
- Genetics Institute, Soroka Medical Center, Beer Sheva, Israel
| |
Collapse
|
5
|
Aydin S, Pham DT, Zhang T, Keele GR, Skelly DA, Paulo JA, Pankratz M, Choi T, Gygi SP, Reinholdt LG, Baker CL, Churchill GA, Munger SC. Genetic dissection of the pluripotent proteome through multi-omics data integration. CELL GENOMICS 2023; 3:100283. [PMID: 37082146 PMCID: PMC10112288 DOI: 10.1016/j.xgen.2023.100283] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/12/2022] [Accepted: 02/27/2023] [Indexed: 04/22/2023]
Abstract
Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies.
Collapse
Affiliation(s)
- Selcan Aydin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Duy T. Pham
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Tian Zhang
- Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | - Ted Choi
- Predictive Biology, Inc., Carlsbad, CA 92010, USA
| | | | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Christopher L. Baker
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Graduate School of Biomedical Sciences, Tufts University, Boston, MA 02111, USA
| |
Collapse
|
6
|
Jiang G, Zhang L, Zhao J, Li L, Huang Z, Wang Z. Dynamic Autophagy Map in Mouse Female Germ Cells Throughout the Fetal to Postnatal Life. Reprod Sci 2023; 30:169-180. [PMID: 35501593 DOI: 10.1007/s43032-022-00940-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/08/2022] [Indexed: 01/06/2023]
Abstract
Autophagy plays vital roles in mouse female germ cells, but the potential mechanism is largely unknown. In this study, by interrogating single-cell RNA-seq dataset, we investigated the dynamic expression of autophagy-related genes in seven types of germ cells (mitosis, pre-leptotene, leptotene, zygotene, pachytene, diplotene, and dictyate) and discovered stage-specific autophagy-related genes. Using immunofluorescence (IF) and transmission electron microscopy (TEM), autophagy activity and autophagosome numbers were revealed from mitosis to follicular assembly (E12.5 (embryonic day 12.5) to P5 (postnatal day 5)). Furthermore, single-sample gene set enrichment analysis (ssGSEA) was performed to validate the autophagy kinetics from E12.5 to P5. Our study proved that the mitosis, diplotene, and dictyate female germ cells had relatively higher autophagy activity among the seven subtypes. In summary, our work provided an autophagy map, suggesting that autophagy was complicated in mouse female germ cell development from the fetal to postnatal life, which paved a new insight for deciphering the autophagy regulatory networks for cell-fate transition and female infertility issues like primary ovarian insufficiency (POI).
Collapse
Affiliation(s)
- Gurong Jiang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Zhang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, 510515, China
| | - Jiexiang Zhao
- Dongguan People's Hospital, Southern Medical University, Dongguan, 523059, China.,Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Li
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, 510515, China
| | - Zhenqin Huang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
7
|
Solomon CU, McVey DG, Andreadi C, Gong P, Turner L, Stanczyk PJ, Khemiri S, Chamberlain JC, Yang W, Webb TR, Nelson CP, Samani NJ, Ye S. Effects of Coronary Artery Disease-Associated Variants on Vascular Smooth Muscle Cells. Circulation 2022; 146:917-929. [PMID: 35735005 PMCID: PMC9484647 DOI: 10.1161/circulationaha.121.058389] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 05/24/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Genome-wide association studies have identified many genetic loci that are robustly associated with coronary artery disease (CAD). However, the underlying biological mechanisms are still unknown for most of these loci, hindering the progress to medical translation. Evidence suggests that the genetic influence on CAD susceptibility may act partly through vascular smooth muscle cells (VSMCs). METHODS We undertook genotyping, RNA sequencing, and cell behavior assays on a large bank of VSMCs (n>1499). Expression quantitative trait locus and splicing quantitative trait locus analyses were performed to identify genes with an expression that was influenced by CAD-associated variants. To identify candidate causal genes for CAD, we ascertained colocalizations of VSMC expression quantitative trait locus signals with CAD association signals by performing causal variants identification in associated regions analysis and the summary data-based mendelian randomization test. Druggability analysis was then performed on the candidate causal genes. CAD risk variants were tested for associations with VSMC proliferation, migration, and apoptosis. Collective effects of multiple CAD-associated variants on VSMC behavior were estimated by polygenic scores. RESULTS Approximately 60% of the known CAD-associated variants showed statistically significant expression quantitative trait locus or splicing quantitative trait locus effects in VSMCs. Colocalization analyses identified 84 genes with expression quantitative trait locus signals that significantly colocalized with CAD association signals, identifying them as candidate causal genes. Druggability analysis indicated that 38 of the candidate causal genes were druggable, and 13 had evidence of drug-gene interactions. Of the CAD-associated variants tested, 139 showed suggestive associations with VSMC proliferation, migration, or apoptosis. A polygenic score model explained up to 5.94% of variation in several VSMC behavior parameters, consistent with polygenic influences on VSMC behavior. CONCLUSIONS This comprehensive analysis shows that a large percentage of CAD loci can modulate gene expression in VSMCs and influence VSMC behavior. Several candidate causal genes identified are likely to be druggable and thus represent potential therapeutic targets.
Collapse
Affiliation(s)
- Charles U. Solomon
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - David G. McVey
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Catherine Andreadi
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Peng Gong
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Lenka Turner
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Paulina J. Stanczyk
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Sonja Khemiri
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Julie C. Chamberlain
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Wei Yang
- Shantou University Medical College, China (W.Y., S.Y.)
| | - Tom R. Webb
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Christopher P. Nelson
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Nilesh J. Samani
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, and National Institute for Health Research Leicester Biomedical Research Centre, UK (C.U.S., D.G.M., C.A., P.G., L.T., P.J.S., S.K., J.C.C., T.R.W., C.P.N., J.N.S., S.Y.)
- Shantou University Medical College, China (W.Y., S.Y.)
- Cardiovascular Disease Translational Research Programme, Department of Medicine, National University of Singapore (S.Y.)
| |
Collapse
|
8
|
Shahroor MA, Lasorsa FM, Porcelli V, Dweikat I, Di Noia MA, Gur M, Agostino G, Shaag A, Rinaldi T, Gasparre G, Guerra F, Castegna A, Todisco S, Abu-Libdeh B, Elpeleg O, Palmieri L. PNC2 (SLC25A36) Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome. J Clin Endocrinol Metab 2022; 107:1346-1356. [PMID: 34971397 DOI: 10.1210/clinem/dgab932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP. OBJECTIVE To identify the underlying genetic etiology in 2 siblings who presented with the biochemical features of HI/HA syndrome but did not carry pathogenic variants in GLUD1, and to determine the functional impact of the newly identified mutation. METHODS The patients were investigated by whole exome sequencing. Yeast complementation studies and biochemical assays on the recombinant mutated protein were performed. The consequences of stable slc25a36 silencing in HeLa cells were also investigated. RESULTS A homozygous splice site variant was identified in solute carrier family 25, member 36 (SLC25A36), encoding the pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine as well as guanine nucleotides across the inner mitochondrial membrane. The mutation leads to a 26-aa in-frame deletion in the first repeat domain of the protein, which abolishes transport activity. Furthermore, knockdown of slc25a36 expression in HeLa cells caused a marked reduction in the mitochondrial GTP content, which likely leads to a hyperactivation of glutamate dehydrogenase in our patients. CONCLUSION We report for the first time a mutation in PNC2/SLC25A36 leading to HI/HA and provide functional evidence of the molecular mechanism responsible for this phenotype. Our findings underscore the importance of mitochondrial nucleotide metabolism and expand the role of mitochondrial transporters in insulin secretion.
Collapse
Affiliation(s)
- Maher A Shahroor
- Department of Pediatrics and Genetics, Al Makassed Hospital and Al-Quds University, 95908 Jerusalem, Palestine
- Department of Neonatology, Sunnybrook Health Sciences Center, University of Toronto, M4N 3M5 Toronto, Canada
| | - Francesco M Lasorsa
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70125 Bari, Italy
| | - Vito Porcelli
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Imad Dweikat
- Metabolic Unit, An-Najah National University, P467 Nablus, Palestine
| | - Maria Antonietta Di Noia
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Michal Gur
- Department of Genetics, Hadassah, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Giulia Agostino
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Avraham Shaag
- Department of Genetics, Hadassah, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Teresa Rinaldi
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology "Charles Darwin", University of Rome La Sapienza, 00185 Rome, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Unit of Medical Genetics and Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Flora Guerra
- Department of Medical and Surgical Sciences (DIMEC), Unit of Medical Genetics and Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Alessandra Castegna
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70125 Bari, Italy
| | - Simona Todisco
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Bassam Abu-Libdeh
- Department of Pediatrics and Genetics, Al Makassed Hospital and Al-Quds University, 95908 Jerusalem, Palestine
| | - Orly Elpeleg
- Department of Genetics, Hadassah, Hebrew University Medical Center, 91120 Jerusalem, Israel
| | - Luigi Palmieri
- Laboratory of Biochemistry and Molecular Biology, Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, 70125 Bari, Italy
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, 70125 Bari, Italy
| |
Collapse
|
9
|
Umer N, Arévalo L, Phadke S, Lohanadan K, Kirfel G, Sons D, Sofia D, Witke W, Schorle H. Loss of Profilin3 Impairs Spermiogenesis by Affecting Acrosome Biogenesis, Autophagy, Manchette Development and Mitochondrial Organization. Front Cell Dev Biol 2021; 9:749559. [PMID: 34869336 PMCID: PMC8632698 DOI: 10.3389/fcell.2021.749559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/28/2022] Open
Abstract
Profilins (PFNs) are key regulatory proteins for the actin polymerization in cells and are encoded in mouse and humans by four Pfn genes. PFNs are involved in cell mobility, cell growth, neurogenesis, and metastasis of tumor cells. The testes-specific PFN3 is localized in the acroplaxome-manchette complex of developing spermatozoa. We demonstrate that PFN3 further localizes in the Golgi complex and proacrosomal vesicles during spermiogenesis, suggesting a role in vesicle transport for acrosome formation. Using CRISPR/Cas9 genome editing, we generated mice deficient for Pfn3. Pfn3-/- males are subfertile, displaying a type II globozoospermia. We revealed that Pfn3-/- sperm display abnormal manchette development leading to an amorphous sperm head shape. Additionally, Pfn3-/- sperm showed reduced sperm motility resulting from flagellum deformities. We show that acrosome biogenesis is impaired starting from the Golgi phase, and mature sperm seems to suffer from a cytoplasm removal defect. An RNA-seq analysis revealed an upregulation of Trim27 and downregulation of Atg2a. As a consequence, mTOR was activated and AMPK was suppressed, resulting in the inhibition of autophagy. This dysregulation of AMPK/mTOR affected the autophagic flux, which is hallmarked by LC3B accumulation and increased SQSTM1 protein levels. Autophagy is involved in proacrosomal vesicle fusion and transport to form the acrosome. We conclude that this disruption leads to the observed malformation of the acrosome. TRIM27 is associated with PFN3 as determined by co-immunoprecipitation from testis extracts. Further, actin-related protein ARPM1 was absent in the nuclear fraction of Pfn3-/- testes and sperm. This suggests that lack of PFN3 leads to destabilization of the PFN3-ARPM1 complex, resulting in the degradation of ARPM1. Interestingly, in the Pfn3-/- testes, we detected increased protein levels of essential actin regulatory proteins, cofilin-1 (CFL1), cofilin-2 (CFL2), and actin depolymerizing factor (ADF). Taken together, our results reveal the importance for PFN3 in male fertility and implicate this protein as a candidate for male factor infertility in humans.
Collapse
Affiliation(s)
- Naila Umer
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Lena Arévalo
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Sharang Phadke
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | | | - Gregor Kirfel
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Dominik Sons
- Department of Membrane Biochemistry, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Denise Sofia
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Walter Witke
- Institute of Genetics, University of Bonn, Bonn, Germany
| | - Hubert Schorle
- Department of Developmental Pathology, Institute of Pathology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
10
|
Jasper L, Scarcia P, Rust S, Reunert J, Palmieri F, Marquardt T. Uridine Treatment of the First Known Case of SLC25A36 Deficiency. Int J Mol Sci 2021; 22:ijms22189929. [PMID: 34576089 PMCID: PMC8470663 DOI: 10.3390/ijms22189929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
SLC25A36 is a pyrimidine nucleotide carrier playing an important role in maintaining mitochondrial biogenesis. Deficiencies in SLC25A36 in mouse embryonic stem cells have been associated with mtDNA depletion as well as mitochondrial dysfunction. In human beings, diseases triggered by SLC25A36 mutations have not been described yet. We report the first known case of SLC25A36 deficiency in a 12-year-old patient with hypothyroidism, hyperinsulinism, hyperammonemia, chronical obstipation, short stature, along with language and general developmental delay. Whole exome analysis identified the homozygous mutation c.803dupT, p.Ser269llefs*35 in the SLC25A36 gene. Functional analysis of mutant SLC25A36 protein in proteoliposomes showed a virtually abolished transport activity. Immunoblotting results suggest that the mutant SLC25A36 protein in the patient undergoes fast degradation. Supplementation with oral uridine led to an improvement of thyroid function and obstipation, increase of growth and developmental progress. Our findings suggest an important role of SLC25A36 in hormonal regulations and oral uridine as a safe and effective treatment.
Collapse
Affiliation(s)
- Luisa Jasper
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Pasquale Scarcia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy;
| | - Stephan Rust
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Janine Reunert
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
| | - Ferdinando Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona 4, 70125 Bari, Italy;
- Correspondence: (F.P.); (T.M.)
| | - Thorsten Marquardt
- Department of Pediatrics, University Hospital of Münster, Albert-Schweitzer-Campus 1, Gebäude A13, 48149 Münster, Germany; (L.J.); (S.R.); (J.R.)
- Correspondence: (F.P.); (T.M.)
| |
Collapse
|
11
|
Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020; 21:ijms21176052. [PMID: 32842667 PMCID: PMC7504413 DOI: 10.3390/ijms21176052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial carriers are a family of structurally related proteins responsible for the exchange of metabolites, cofactors and nucleotides between the cytoplasm and mitochondrial matrix. The in silico analysis of the Drosophila melanogaster genome has highlighted the presence of 48 genes encoding putative mitochondrial carriers, but only 20 have been functionally characterized. Despite most Drosophila mitochondrial carrier genes having human homologs and sharing with them 50% or higher sequence identity, D. melanogaster genes display peculiar differences from their human counterparts: (1) in the fruit fly, many genes encode more transcript isoforms or are duplicated, resulting in the presence of numerous subfamilies in the genome; (2) the expression of the energy-producing genes in D. melanogaster is coordinated from a motif known as Nuclear Respiratory Gene (NRG), a palindromic 8-bp sequence; (3) fruit-fly duplicated genes encoding mitochondrial carriers show a testis-biased expression pattern, probably in order to keep a duplicate copy in the genome. Here, we review the main features, biological activities and role in the metabolism of the D. melanogaster mitochondrial carriers characterized to date, highlighting similarities and differences with their human counterparts. Such knowledge is very important for obtaining an integrated view of mitochondrial function in D. melanogaster metabolism.
Collapse
|