1
|
Jaramillo-Martinez V, Sennoune SR, Tikhonova EB, Karamyshev AL, Ganapathy V, Urbatsch IL. Molecular Phenotypes Segregate Missense Mutations in SLC13A5 Epilepsy. J Mol Biol 2024; 436:168820. [PMID: 39442909 DOI: 10.1016/j.jmb.2024.168820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na+ gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons and astrocytes. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive. Here we mechanistically classify six frequent SLC13A5 mutations by phenotyping their protein cell surface expression and citrate transport functions. Mutants C50R, T142M, and T227M exhibit impaired citrate transport despite normal expression at the cell surface. In contrast, mutations G219R, S427L, and L488P show low total protein expression levels, absence of mature, glycosylated proteins at the cell surface, retention of the proteins in the endoplasmic reticulum, and diminished transport activity. This mechanistic classification divides SLC13A5 mutants into two groups, Class I (C50R, T142M, and T227M) and Class II (G219R, S427L, and L488P). Importantly, mutants' mRNA levels resemble wildtype, suggesting post-translational defects. Class II mutations display immature core-glycosylation and shortened half-lives, indicating protein folding defects. Together, these experiments provide a comprehensive understanding of the disease-causing mutation's defects in SLC13A5 Epilepsy at the biochemical and molecular level and shed light into the trafficking pathway(s) of NaCT. The two classes of mutations will require fundamentally different approaches for treatment to either restore transport function of the mutant protein that is capable of reaching the cell surface (Class I), or therapies that enable the correction of protein folding defects to enable escape to the cell surface where it may restore transport function (Class II).
Collapse
Affiliation(s)
- Valeria Jaramillo-Martinez
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Souad R Sennoune
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Elena B Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Andrey L Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ina L Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Adams RM, Ozlu C, Bailey LE, Solidum RM, Cooper S, Best CR, Elacio J, Kavanaugh BC, Brown TL, Nye K, Liu J, Porter BE, Goodspeed K, Bailey RM. Sleep Abnormalities in SLC13A5 Citrate Transporter Disorder. Genes (Basel) 2024; 15:1338. [PMID: 39457462 PMCID: PMC11507356 DOI: 10.3390/genes15101338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND SLC13A5 Citrate Transporter Disorder is a rare pediatric neurodevelopmental disorder. Patients have epilepsy, developmental disability, and impaired mobility. While sleep disorders are common in children with neurodevelopmental disorders, sleep abnormalities have not been reported in SLC13A5 patients. METHODS Here, we assessed sleep disturbances in patients through caregiver reported surveys and in a transgenic mouse model of SLC13A5 deficiency. A total of 26 patients were evaluated with the Sleep Disturbance Scale for Children three times over a one-year span. Sleep and wake activities were assessed in the SLC13A5 knock-out (KO) mice using wireless telemetry devices. RESULTS A high burden of clinically significant sleep disturbances were reported in the patients, with heterogeneous symptoms that remained stable across time. While sleep disturbances were common, less than 30% of patients were prescribed medications for sleep. Comparatively, in SLC13A5 KO mice using EEG recordings, significant alterations were found during light cycles, when rodents typically sleep. During the sleep period, SLC13A5 mice had increased activity, decreased paradoxical sleep, and changes in absolute power spectral density, indicating altered sleep architecture in the mouse model. CONCLUSIONS Our results demonstrate a significant component of sleep disturbances in SLC13A5 patients and mice, highlighting a potential gap in patient care. Further investigation of sleep dysfunction and the underlying etiologies of sleep disturbances in SLC13A5 citrate transporter disorder is warranted.
Collapse
Affiliation(s)
- Raegan M. Adams
- Center for Alzheimer’s and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; (R.M.A.)
| | - Can Ozlu
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lauren E. Bailey
- Center for Alzheimer’s and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; (R.M.A.)
| | - Rayann M. Solidum
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Sydney Cooper
- Perot Neuroscience Translational Research Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Carrie R. Best
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Psychiatry & Human Behavior, Brown University, Providence, RI 02912, USA
| | - Jennifer Elacio
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA
| | - Brian C. Kavanaugh
- Department of Psychiatry & Human Behavior, Brown University, Providence, RI 02912, USA
| | | | - Kimberly Nye
- TESS Research Foundation, Menlo Park, CA 94026, USA
| | - Judy Liu
- Department of Neurology, Brown University, Providence, RI 02912, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA 94304, USA
| | - Kimberly Goodspeed
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rachel M. Bailey
- Center for Alzheimer’s and Neurodegenerative Diseases, UT Southwestern Medical Center, Dallas, TX 75390, USA; (R.M.A.)
- Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Jaramillo-Martinez V, Sennoune SR, Tikhonova EB, Karamyshev AL, Ganapathy V, Urbatsch IL. Molecular phenotypes segregate missense mutations in SLC13A5 Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.23.594637. [PMID: 38826402 PMCID: PMC11142175 DOI: 10.1101/2024.05.23.594637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The sodium-coupled citrate transporter (NaCT, SLC13A5) mediates citrate uptake across the plasma membrane via an inward Na + gradient. Mutations in SLC13A5 cause early infantile epileptic encephalopathy type-25 (EIEE25, SLC13A5 Epilepsy) due to impaired citrate uptake in neurons. Despite clinical identification of disease-causing mutations, underlying mechanisms and cures remain elusive. We mechanistically classify the molecular phenotypes of six mutations. C50R, T142M, and T227M exhibit impaired citrate transport despite normal expression at the cell surface. G219R, S427L, and L488P are hampered by low protein expression, ER retention, and reduced transport. Mutants' mRNA levels resemble wildtype, suggesting post-translational defects. Class II mutations display immature core-glycosylation and shortened half-lives, indicating protein folding defects. These experiments provide a comprehensive understanding of the mutation's defects in SLC13A5 Epilepsy at the biochemical and molecular level and shed light into the trafficking pathway(s) of NaCT. The two classes of mutations will require fundamentally different treatment approaches to either restore transport function, or enable correction of protein folding defects. Summary Loss-of-function mutations in the SLC13A5 causes SLC13A5-Epilepsy, a devastating disease characterized by neonatal epilepsy. Currently no cure is available. We clarify the molecular-level defects to guide future developments for phenotype-specific treatment of disease-causing mutations.
Collapse
|
4
|
Beltran AS. Novel Approaches to Studying SLC13A5 Disease. Metabolites 2024; 14:84. [PMID: 38392976 PMCID: PMC10890222 DOI: 10.3390/metabo14020084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The role of the sodium citrate transporter (NaCT) SLC13A5 is multifaceted and context-dependent. While aberrant dysfunction leads to neonatal epilepsy, its therapeutic inhibition protects against metabolic disease. Notably, insights regarding the cellular and molecular mechanisms underlying these phenomena are limited due to the intricacy and complexity of the latent human physiology, which is poorly captured by existing animal models. This review explores innovative technologies aimed at bridging such a knowledge gap. First, I provide an overview of SLC13A5 variants in the context of human disease and the specific cell types where the expression of the transporter has been observed. Next, I discuss current technologies for generating patient-specific induced pluripotent stem cells (iPSCs) and their inherent advantages and limitations, followed by a summary of the methods for differentiating iPSCs into neurons, hepatocytes, and organoids. Finally, I explore the relevance of these cellular models as platforms for delving into the intricate molecular and cellular mechanisms underlying SLC13A5-related disorders.
Collapse
Affiliation(s)
- Adriana S Beltran
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
5
|
Brown TL, Bainbridge MN, Zahn G, Nye KL, Porter BE. The growing research toolbox for SLC13A5 citrate transporter disorder: a rare disease with animal models, cell lines, an ongoing Natural History Study and an engaged patient advocacy organization. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241263972. [PMID: 39091896 PMCID: PMC11292725 DOI: 10.1177/26330040241263972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024]
Abstract
TESS Research Foundation (TESS) is a patient-led nonprofit organization seeking to understand the basic biology and clinical impact of pathogenic variants in the SLC13A5 gene. TESS aims to improve the fundamental understanding of citrate's role in the brain, and ultimately identify treatments and cures for the associated disease. TESS identifies, organizes, and develops collaboration between researchers, patients, clinicians, and the pharmaceutical industry to improve the lives of those suffering from SLC13A5 citrate transport disorder. TESS and its partners have developed multiple molecular tools, cellular and animal models, and taken the first steps toward drug discovery and development for this disease. However, much remains to be done to improve our understanding of the disorder associated with SLC13A5 variants and identify effective treatments for this devastating disease. Here, we describe the available SLC13A5 resources from the community of experts, to foundational tools, to in vivo and in vitro tools, and discuss unanswered research questions needed to move closer to a cure.
Collapse
Affiliation(s)
| | | | | | - Kim L. Nye
- TESS Research Foundation, Menlo Park, CA, USA
| | - Brenda E. Porter
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Gill D, Zagkos L, Gill R, Benzing T, Jordan J, Birkenfeld AL, Burgess S, Zahn G. The citrate transporter SLC13A5 as a therapeutic target for kidney disease: evidence from Mendelian randomization to inform drug development. BMC Med 2023; 21:504. [PMID: 38110950 PMCID: PMC10729503 DOI: 10.1186/s12916-023-03227-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Solute carrier family 13 member 5 (SLC13A5) is a Na+-coupled citrate co-transporter that mediates entry of extracellular citrate into the cytosol. SLC13A5 inhibition has been proposed as a target for reducing progression of kidney disease. The aim of this study was to leverage the Mendelian randomization paradigm to gain insight into the effects of SLC13A5 inhibition in humans, towards prioritizing and informing clinical development efforts. METHODS The primary Mendelian randomization analyses investigated the effect of SLC13A5 inhibition on measures of kidney function, including creatinine and cystatin C-based measures of estimated glomerular filtration rate (creatinine-eGFR and cystatin C-eGFR), blood urea nitrogen (BUN), urine albumin-creatinine ratio (uACR), and risk of chronic kidney disease and microalbuminuria. Secondary analyses included a paired plasma and urine metabolome-wide association study, investigation of secondary traits related to SLC13A5 biology, a phenome-wide association study (PheWAS), and a proteome-wide association study. All analyses were compared to the effect of genetically predicted plasma citrate levels using variants selected from across the genome, and statistical sensitivity analyses robust to the inclusion of pleiotropic variants were also performed. Data were obtained from large-scale genetic consortia and biobanks, with sample sizes ranging from 5023 to 1,320,016 individuals. RESULTS We found evidence of associations between genetically proxied SLC13A5 inhibition and higher creatinine-eGFR (p = 0.002), cystatin C-eGFR (p = 0.005), and lower BUN (p = 3 × 10-4). Statistical sensitivity analyses robust to the inclusion of pleiotropic variants suggested that these effects may be a consequence of higher plasma citrate levels. There was no strong evidence of associations of genetically proxied SLC13A5 inhibition with uACR or risk of CKD or microalbuminuria. Secondary analyses identified evidence of associations with higher plasma calcium levels (p = 6 × 10-13) and lower fasting glucose (p = 0.02). PheWAS did not identify any safety concerns. CONCLUSIONS This Mendelian randomization analysis provides human-centric insight to guide clinical development of an SLC13A5 inhibitor. We identify plasma calcium and citrate as biologically plausible biomarkers of target engagement, and plasma citrate as a potential biomarker of mechanism of action. Our human genetic evidence corroborates evidence from various animal models to support effects of SLC13A5 inhibition on improving kidney function.
Collapse
Affiliation(s)
- Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Primula Group Ltd, London, UK.
| | - Loukas Zagkos
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jens Jordan
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas L Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
- Division of Translational Diabetology, Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK
| | - Stephen Burgess
- Medical Research Council Biostatistics Unit at the University of Cambridge, Cambridge, UK
| | | |
Collapse
|
7
|
Zahn G, Baukmann HA, Wu J, Jordan J, Birkenfeld AL, Dirckx N, Schmidt MF. Targeting Longevity Gene SLC13A5: A Novel Approach to Prevent Age-Related Bone Fragility and Osteoporosis. Metabolites 2023; 13:1186. [PMID: 38132868 PMCID: PMC10744747 DOI: 10.3390/metabo13121186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Reduced expression of the plasma membrane citrate transporter SLC13A5, also known as INDY, has been linked to increased longevity and mitigated age-related cardiovascular and metabolic diseases. Citrate, a vital component of the tricarboxylic acid cycle, constitutes 1-5% of bone weight, binding to mineral apatite surfaces. Our previous research highlighted osteoblasts' specialized metabolic pathway facilitated by SLC13A5 regulating citrate uptake, production, and deposition within bones. Disrupting this pathway impairs bone mineralization in young mice. New Mendelian randomization analysis using UK Biobank data indicated that SNPs linked to reduced SLC13A5 function lowered osteoporosis risk. Comparative studies of young (10 weeks) and middle-aged (52 weeks) osteocalcin-cre-driven osteoblast-specific Slc13a5 knockout mice (Slc13a5cKO) showed a sexual dimorphism: while middle-aged females exhibited improved elasticity, middle-aged males demonstrated enhanced bone strength due to reduced SLC13A5 function. These findings suggest reduced SLC13A5 function could attenuate age-related bone fragility, advocating for SLC13A5 inhibition as a potential osteoporosis treatment.
Collapse
Affiliation(s)
- Grit Zahn
- Eternygen GmbH, Westhafenstrasse 1, 13353 Berlin, Germany
| | | | - Jasmine Wu
- Department of Orthopaedics, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Jens Jordan
- German Aerospace Center (DLR), Institute of Aerospace Medicine, 51147 Cologne, Germany;
| | - Andreas L. Birkenfeld
- Department of Diabetology Endocrinology and Nephrology, Internal Medicine IV, University Hospital Tübingen, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- German Center for Diabetes Research (DZD), Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
- Department of Diabetes, Life Sciences and Medicine, Cardiovascular Medicine and Sciences, Kings College London, London WC2R 2LS, UK
| | - Naomi Dirckx
- Department of Orthopaedics, School of Medicine, University of Maryland-Baltimore, Baltimore, MD 21201, USA
| | - Marco F. Schmidt
- biotx.ai GmbH, Am Mühlenberg 11, 14476 Potsdam, Germany (M.F.S.)
| |
Collapse
|
8
|
Ölmez TT, Moreno DF, Liu P, Johnson ZM, McGinnis MM, Tu BP, Hochstrasser M, Acar M. Sis2 regulates yeast replicative lifespan in a dose-dependent manner. Nat Commun 2023; 14:7719. [PMID: 38012152 PMCID: PMC10682402 DOI: 10.1038/s41467-023-43233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/01/2023] [Indexed: 11/29/2023] Open
Abstract
Application of microfluidic platforms facilitated high-precision measurements of yeast replicative lifespan (RLS); however, comparative quantification of lifespan across strain libraries has been missing. Here we microfluidically measure the RLS of 307 yeast strains, each deleted for a single gene. Despite previous reports of extended lifespan in these strains, we found that 56% of them did not actually live longer than the wild-type; while the remaining 44% showed extended lifespans, the degree of extension was often different from what was previously reported. Deletion of SIS2 gene led to the largest RLS increase observed. Sis2 regulated yeast lifespan in a dose-dependent manner, implying a role for the coenzyme A biosynthesis pathway in lifespan regulation. Introduction of the human PPCDC gene in the sis2Δ background neutralized the lifespan extension. RNA-seq experiments revealed transcriptional increases in cell-cycle machinery components in sis2Δ background. High-precision lifespan measurement will be essential to elucidate the gene network governing lifespan.
Collapse
Affiliation(s)
- Tolga T Ölmez
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Koç University Research Center for Translational Medicine, Koç University, Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey
| | - David F Moreno
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, 67400, France
| | - Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Zane M Johnson
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Madeline M McGinnis
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Benjamin P Tu
- Department of Biochemistry, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Hochstrasser
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT, 06520, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA.
- Department of Basic Medical Sciences, Koc University Rumelifeneri Yolu, Sarıyer, İstanbul, 34450, Turkey.
| |
Collapse
|
9
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
10
|
Mapping the Metabolic Niche of Citrate Metabolism and SLC13A5. Metabolites 2023; 13:metabo13030331. [PMID: 36984771 PMCID: PMC10054676 DOI: 10.3390/metabo13030331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
The small molecule citrate is a key molecule that is synthesized de novo and involved in diverse biochemical pathways influencing cell metabolism and function. Citrate is highly abundant in the circulation, and cells take up extracellular citrate via the sodium-dependent plasma membrane transporter NaCT encoded by the SLC13A5 gene. Citrate is critical to maintaining metabolic homeostasis and impaired NaCT activity is implicated in metabolic disorders. Though citrate is one of the best known and most studied metabolites in humans, little is known about the consequences of altered citrate uptake and metabolism. Here, we review recent findings on SLC13A5, NaCT, and citrate metabolism and discuss the effects on metabolic homeostasis and SLC13A5-dependent phenotypes. We discuss the “multiple-hit theory” and how stress factors induce metabolic reprogramming that may synergize with impaired NaCT activity to alter cell fate and function. Furthermore, we underline how citrate metabolism and compartmentalization can be quantified by combining mass spectrometry and tracing approaches. We also discuss species-specific differences and potential therapeutic implications of SLC13A5 and NaCT. Understanding the synergistic impact of multiple stress factors on citrate metabolism may help to decipher the disease mechanisms associated with SLC13A5 citrate transport disorders.
Collapse
|
11
|
Dirckx N, Zhang Q, Chu EY, Tower RJ, Li Z, Guo S, Yuan S, Khare PA, Zhang C, Verardo A, Alejandro LO, Park A, Faugere MC, Helfand SL, Somerman MJ, Riddle RC, de Cabo R, Le A, Schmidt-Rohr K, Clemens TL. A specialized metabolic pathway partitions citrate in hydroxyapatite to impact mineralization of bones and teeth. Proc Natl Acad Sci U S A 2022; 119:e2212178119. [PMID: 36322718 PMCID: PMC9659386 DOI: 10.1073/pnas.2212178119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/17/2022] [Indexed: 11/06/2022] Open
Abstract
Citrate is a critical metabolic substrate and key regulator of energy metabolism in mammalian cells. It has been known for decades that the skeleton contains most (>85%) of the body's citrate, but the question of why and how this metabolite should be partitioned in bone has received singularly little attention. Here, we show that osteoblasts use a specialized metabolic pathway to regulate uptake, endogenous production, and the deposition of citrate into bone. Osteoblasts express high levels of the membranous Na+-dependent citrate transporter solute carrier family 13 member 5 (Slc13a5) gene. Inhibition or genetic disruption of Slc13a5 reduced osteogenic citrate uptake and disrupted mineral nodule formation. Bones from mice lacking Slc13a5 globally, or selectively in osteoblasts, showed equivalent reductions in cortical thickness, with similarly compromised mechanical strength. Surprisingly, citrate content in mineral from Slc13a5-/- osteoblasts was increased fourfold relative to controls, suggesting the engagement of compensatory mechanisms to augment endogenous citrate production. Indeed, through the coordinated functioning of the apical membrane citrate transporter SLC13A5 and a mitochondrial zinc transporter protein (ZIP1; encoded by Slc39a1), a mediator of citrate efflux from the tricarboxylic acid cycle, SLC13A5 mediates citrate entry from blood and its activity exerts homeostatic control of cytoplasmic citrate. Intriguingly, Slc13a5-deficient mice also exhibited defective tooth enamel and dentin formation, a clinical feature, which we show is recapitulated in primary teeth from children with SLC13A5 mutations. Together, our results reveal the components of an osteoblast metabolic pathway, which affects bone strength by regulating citrate deposition into mineral hydroxyapatite.
Collapse
Affiliation(s)
- Naomi Dirckx
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Qian Zhang
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Emily Y. Chu
- Department of General Dentistry, Operative Division, University of Maryland School of Dentistry, Baltimore, MD 21201
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Robert J. Tower
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Zhu Li
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218
| | - Shichen Yuan
- Department of Chemistry, Brandeis University, Waltham, MA 02453
| | - Pratik A. Khare
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Angela Verardo
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Lucy O. Alejandro
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Angelina Park
- Department of General Dentistry, Operative Division, University of Maryland School of Dentistry, Baltimore, MD 21201
| | | | - Stephen L. Helfand
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02906
| | - Martha J. Somerman
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892
| | - Ryan C. Riddle
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
- Research and Development Service, The Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224
| | - Anne Le
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231
| | | | - Thomas L. Clemens
- Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201
- Research and Development Service, The Baltimore Veterans Administration Medical Center, Baltimore, MD 21201
| |
Collapse
|
12
|
Goodspeed K, Liu JS, Nye KL, Prasad S, Sadhu C, Tavakkoli F, Bilder DA, Minassian BA, Bailey RM. SLC13A5 Deficiency Disorder: From Genetics to Gene Therapy. Genes (Basel) 2022; 13:1655. [PMID: 36140822 PMCID: PMC9498415 DOI: 10.3390/genes13091655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
Epileptic encephalopathies may arise from single gene variants. In recent years, next-generation sequencing technologies have enabled an explosion of gene identification in monogenic epilepsies. One such example is the epileptic encephalopathy SLC13A5 deficiency disorder, which is caused by loss of function pathogenic variants to the gene SLC13A5 that results in deficiency of the sodium/citrate cotransporter. Patients typically experience seizure onset within the first week of life and have developmental delay and intellectual disability. Current antiseizure medications may reduce seizure frequency, yet more targeted treatments are needed to address the epileptic and non-epileptic features of SLC13A5 deficiency disorder. Gene therapy may offer hope to these patients and better clinical outcomes than current available treatments. Here, we discuss SLC13A5 genetics, natural history, available treatments, potential outcomes and assessments, and considerations for translational medical research for an AAV9-based gene replacement therapy.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Judy S. Liu
- Warren Alpert School of Medicine, Brown University, Providence, RI 02903, USA
| | | | - Suyash Prasad
- Department of Research & Development, Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Chanchal Sadhu
- Department of Research & Development, Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Fatemeh Tavakkoli
- Department of Research & Development, Taysha Gene Therapies, Dallas, TX 75247, USA
| | - Deborah A. Bilder
- Division of Child & Adolescent Psychiatry, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA
| | - Berge A. Minassian
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Rachel M. Bailey
- Division of Child Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX 75390, USA
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern, Dallas, TX 75390, USA
| |
Collapse
|
13
|
A Novel and Cross-Species Active Mammalian INDY (NaCT) Inhibitor Ameliorates Hepatic Steatosis in Mice with Diet-Induced Obesity. Metabolites 2022; 12:metabo12080732. [PMID: 36005604 PMCID: PMC9413491 DOI: 10.3390/metabo12080732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian INDY (mINDY, NaCT, gene symbol SLC13A5) is a potential target for the treatment of metabolically associated fatty liver disease (MAFLD). This study evaluated the effects of a selective, cross-species active, non-competitive, non-substrate-like inhibitor of NaCT. First, the small molecule inhibitor ETG-5773 was evaluated for citrate and succinate uptake and fatty acid synthesis in cell lines expressing both human NaCT and mouse Nact. Once its suitability was established, the inhibitor was evaluated in a diet-induced obesity (DIO) mouse model. DIO mice treated with 15 mg/kg compound ETG-5773 twice daily for 28 days had reduced body weight, fasting blood glucose, and insulin, and improved glucose tolerance. Liver triglycerides were significantly reduced, and body composition was improved by reducing fat mass, supported by a significant reduction in the expression of genes for lipogenesis such as SREBF1 and SCD1. Most of these effects were also evident after a seven-day treatment with the same dose. Further mechanistic investigation in the seven-day study showed increased plasma β-hydroxybutyrate and activated hepatic adenosine monophosphate-activated protein kinase (AMPK), reflecting findings from Indy (−/−) knockout mice. These results suggest that the inhibitor ETG-5773 blocked citrate uptake mediated by mouse and human NaCT to reduce liver steatosis and body fat and improve glucose regulation, proving the concept of NaCT inhibition as a future liver treatment for MAFLD.
Collapse
|
14
|
Mishra D, Kannan K, Meadows K, Macro J, Li M, Frankel S, Rogina B. INDY-From Flies to Worms, Mice, Rats, Non-Human Primates, and Humans. FRONTIERS IN AGING 2022; 2:782162. [PMID: 35822025 PMCID: PMC9261455 DOI: 10.3389/fragi.2021.782162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/24/2021] [Indexed: 01/17/2023]
Abstract
I’m Not Dead Yet (Indy) is a fly homologue of the mammalian SLC13A5 (mSLC13A5) plasma membrane citrate transporter, a key metabolic regulator and energy sensor involved in health, longevity, and disease. Reduction of Indy gene activity in flies, and its homologs in worms, modulates metabolism and extends longevity. The metabolic changes are similar to what is obtained with caloric restriction (dietary restriction). Similar effects on metabolism have been observed in mice and rats. As a citrate transporter, INDY regulates cytoplasmic citrate levels. Indy flies heterozygous for a P-element insertion have increased spontaneous physical activity, increased fecundity, reduced insulin signaling, increased mitochondrial biogenesis, preserved intestinal stem cell homeostasis, lower lipid levels, and increased stress resistance. Mammalian Indy knockout (mIndy-KO) mice have higher sensitivity to insulin signaling, lower blood pressure and heart rate, preserved memory and are protected from the negative effects of a high-fat diet and some of the negative effects of aging. Reducing mIndy expression in human hepatocarcinoma cells has recently been shown to inhibit cell proliferation. Reduced Indy expression in the fly intestine affects intestinal stem cell proliferation, and has recently been shown to also inhibit germ cell proliferation in males with delayed sperm maturation and decreased spermatocyte numbers. These results highlight a new connection between energy metabolism and cell proliferation. The overrall picture in a variety of species points to a conserved role of INDY for metabolism and health. This is illustrated by an association of high mIndy gene expression with non-alcoholic fatty liver disease in obese humans. mIndy (mSLC13A5) coding region mutations (e.g., loss-of-function) are also associated with adverse effects in humans, such as autosomal recessive early infantile epileptic encephalopathy and Kohlschütter−Tönz syndrome. The recent findings illustrate the importance of mIndy gene for human health and disease. Furthermore, recent work on small-molecule regulators of INDY highlights the promise of INDY-based treatments for ameliorating disease and promoting healthy aging.
Collapse
Affiliation(s)
- Dushyant Mishra
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kavitha Kannan
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Kali Meadows
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Jacob Macro
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Michael Li
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| | - Stewart Frankel
- Department of Biology, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Department of Genetics and Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States.,Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
15
|
Milosavljevic S, Glinton KE, Li X, Medeiros C, Gillespie P, Seavitt JR, Graham BH, Elsea SH. Untargeted Metabolomics of Slc13a5 Deficiency Reveal Critical Liver-Brain Axis for Lipid Homeostasis. Metabolites 2022; 12:metabo12040351. [PMID: 35448538 PMCID: PMC9032242 DOI: 10.3390/metabo12040351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/29/2022] [Accepted: 04/03/2022] [Indexed: 01/17/2023] Open
Abstract
Though biallelic variants in SLC13A5 are known to cause severe encephalopathy, the mechanism of this disease is poorly understood. SLC13A5 protein deficiency reduces citrate transport into the cell. Downstream abnormalities in fatty acid synthesis and energy generation have been described, though biochemical signs of these perturbations are inconsistent across SLC13A5 deficiency patients. To investigate SLC13A5-related disorders, we performed untargeted metabolic analyses on the liver, brain, and serum from a Slc13a5-deficient mouse model. Metabolomic data were analyzed using the connect-the-dots (CTD) methodology and were compared to plasma and CSF metabolomics from SLC13A5-deficient patients. Mice homozygous for the Slc13a5tm1b/tm1b null allele had perturbations in fatty acids, bile acids, and energy metabolites in all tissues examined. Further analyses demonstrated that for several of these molecules, the ratio of their relative tissue concentrations differed widely in the knockout mouse, suggesting that deficiency of Slc13a5 impacts the biosynthesis and flux of metabolites between tissues. Similar findings were observed in patient biofluids, indicating altered transport and/or flux of molecules involved in energy, fatty acid, nucleotide, and bile acid metabolism. Deficiency of SLC13A5 likely causes a broader state of metabolic dysregulation than previously recognized, particularly regarding lipid synthesis, storage, and metabolism, supporting SLC13A5 deficiency as a lipid disorder.
Collapse
Affiliation(s)
- Sofia Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
- Harvard Medical School, Boston, MA 02215, USA
| | - Kevin E. Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Xiqi Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Cláudia Medeiros
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - Patrick Gillespie
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - John R. Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
| | - Brett H. Graham
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (C.M.); (P.G.); (B.H.G.)
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; (S.M.); (K.E.G.); (X.L.); (J.R.S.)
- Correspondence: ; Tel.: +1-713-798-5484
| |
Collapse
|
16
|
Metabolic Alterations in Cellular Senescence: The Role of Citrate in Ageing and Age-Related Disease. Int J Mol Sci 2022; 23:ijms23073652. [PMID: 35409012 PMCID: PMC8998297 DOI: 10.3390/ijms23073652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 01/27/2023] Open
Abstract
Recent mouse model experiments support an instrumental role for senescent cells in age-related diseases and senescent cells may be causal to certain age-related pathologies. A strongly supported hypothesis is that extranuclear chromatin is recognized by the cyclic GMP–AMP synthase-stimulator of interferon genes pathway, which in turn leads to the induction of several inflammatory cytokines as part of the senescence-associated secretory phenotype. This sterile inflammation increases with chronological age and age-associated disease. More recently, several intracellular and extracellular metabolic changes have been described in senescent cells but it is not clear whether any of them have functional significance. In this review, we highlight the potential effect of dietary and age-related metabolites in the modulation of the senescent phenotype in addition to discussing how experimental conditions may influence senescent cell metabolism, especially that of energy regulation. Finally, as extracellular citrate accumulates following certain types of senescence, we focus on the recently reported role of extracellular citrate in aging and age-related pathologies. We propose that citrate may be an active component of the senescence-associated secretory phenotype and via its intake through the diet may even contribute to the cause of age-related disease.
Collapse
|
17
|
Rigby MJ, Orefice NS, Lawton AJ, Ma M, Shapiro SL, Yi SY, Dieterich IA, Frelka A, Miles HN, Pearce RA, Yu JPJ, Li L, Denu JM, Puglielli L. SLC13A5/sodium-citrate co-transporter overexpression causes disrupted white matter integrity and an autistic-like phenotype. Brain Commun 2022; 4:fcac002. [PMID: 35146426 PMCID: PMC8823335 DOI: 10.1093/braincomms/fcac002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/19/2021] [Accepted: 01/03/2022] [Indexed: 09/11/2023] Open
Abstract
Endoplasmic reticulum-based N ɛ-lysine acetylation serves as an important protein quality control system for the secretory pathway. Dysfunctional endoplasmic reticulum-based acetylation, as caused by overexpression of the acetyl coenzyme A transporter AT-1 in the mouse, results in altered glycoprotein flux through the secretory pathway and an autistic-like phenotype. AT-1 works in concert with SLC25A1, the citrate/malate antiporter in the mitochondria, SLC13A5, the plasma membrane sodium/citrate symporter and ATP citrate lyase, the cytosolic enzyme that converts citrate into acetyl coenzyme A. Here, we report that mice with neuron-specific overexpression of SLC13A5 exhibit autistic-like behaviours with a jumping stereotypy. The mice displayed disrupted white matter integrity and altered synaptic structure and function. Analysis of both the proteome and acetyl-proteome revealed unique adaptations in the hippocampus and cortex, highlighting a metabolic response that likely plays an important role in the SLC13A5 neuron transgenic phenotype. Overall, our results support a mechanistic link between aberrant intracellular citrate/acetyl coenzyme A flux and the development of an autistic-like phenotype.
Collapse
Affiliation(s)
- Michael J. Rigby
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Nicola Salvatore Orefice
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alexis J. Lawton
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Min Ma
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Samantha L. Shapiro
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sue Y. Yi
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Inca A. Dieterich
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alyssa Frelka
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Hannah N. Miles
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Robert A. Pearce
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Paul J. Yu
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John M. Denu
- Department of Biomolecular Chemistry and the Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Luigi Puglielli
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Geriatric Research Education Clinical Center, Veterans Affairs Medical Center, Madison, WI 53705, USA
| |
Collapse
|
18
|
Li Z, Li L, Heyward S, Men S, Xu M, Sueyoshi T, Wang H. Phenobarbital Induces SLC13A5 Expression through Activation of PXR but Not CAR in Human Primary Hepatocytes. Cells 2021; 10:cells10123381. [PMID: 34943889 PMCID: PMC8699749 DOI: 10.3390/cells10123381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/05/2023] Open
Abstract
Phenobarbital (PB), a widely used antiepileptic drug, is known to upregulate the expression of numerous drug-metabolizing enzymes and transporters in the liver primarily via activation of the constitutive androstane receptor (CAR, NR1I3). The solute carrier family 13 member 5 (SLC13A5), a sodium-coupled citrate transporter, plays an important role in intracellular citrate homeostasis that is associated with a number of metabolic syndromes and neurological disorders. Here, we show that PB markedly elevates the expression of SLC13A5 through a pregnane X receptor (PXR)-dependent but CAR-independent signaling pathway. In human primary hepatocytes, the mRNA and protein expression of SLC13A5 was robustly induced by PB treatment, while genetic knockdown or pharmacological inhibition of PXR significantly attenuated this induction. Utilizing genetically modified HepaRG cells, we found that PB induces SLC13A5 expression in both wild type and CAR-knockout HepaRG cells, whereas such induction was fully abolished in the PXR-knockout HepaRG cells. Mechanistically, we identified and functionally characterized three enhancer modules located upstream from the transcription start site or introns of the SLC13A5 gene that are associated with the regulation of PXR-mediated SLC13A5 induction. Moreover, metformin, a deactivator of PXR, dramatically suppressed PB-mediated induction of hepatic SLC13A5 as well as its activation of the SLC13A5 luciferase reporter activity via PXR. Collectively, these data reveal PB as a potent inducer of SLC13A5 through the activation of PXR but not CAR in human primary hepatocytes.
Collapse
Affiliation(s)
- Zhihui Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Scott Heyward
- BioIVT, 1450 S Rolling Road, Halethorpe, MD 21227, USA;
| | - Shuaiqian Men
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
| | - Meishu Xu
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA;
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, USA; (Z.L.); (L.L.); (S.M.)
- Correspondence: ; Tel.: +1-410-706-1280
| |
Collapse
|
19
|
Kannan K, Rogina B. The Role of Citrate Transporter INDY in Metabolism and Stem Cell Homeostasis. Metabolites 2021; 11:705. [PMID: 34677421 PMCID: PMC8540898 DOI: 10.3390/metabo11100705] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
I'm Not Dead Yet (Indy) is a fly gene that encodes a homologue of mammalian SLC13A5 plasma membrane citrate transporter. Reducing expression of Indy gene in flies, and its homologues in worms, extends longevity. Indy reduction in flies, worms, mice and rats affects metabolism by regulating the levels of cytoplasmic citrate, inducing a state similar to calorie restriction. Changes include lower lipid levels, increased insulin sensitivity, increased mitochondrial biogenesis, and prevention of weight gain, among others. The INDY protein is predominantly expressed in fly metabolic tissues: the midgut, fat body and oenocytes. Changes in fly midgut metabolism associated with reduced Indy gene activity lead to preserved mitochondrial function and reduced production of reactive oxygen species. All these changes lead to preserved intestinal stem cell homeostasis, which has a key role in maintaining intestinal epithelium function and enhancing fly healthspan and lifespan. Indy gene expression levels change in response to caloric content of the diet, inflammation and aging, suggesting that INDY regulates metabolic adaptation to nutrition or energetic requirements by controlling citrate levels.
Collapse
Affiliation(s)
- Kavitha Kannan
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Blanka Rogina
- Department of Genetics & Genome Sciences, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA;
- Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
20
|
Jaramillo-Martinez V, Sivaprakasam S, Ganapathy V, Urbatsch IL. Drosophila INDY and Mammalian INDY: Major Differences in Transport Mechanism and Structural Features despite Mostly Similar Biological Functions. Metabolites 2021; 11:metabo11100669. [PMID: 34677384 PMCID: PMC8537002 DOI: 10.3390/metabo11100669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
INDY (I’m Not Dead Yet) is a plasma membrane transporter for citrate, first identified in Drosophila. Partial deficiency of INDY extends lifespan in this organism in a manner similar to that of caloric restriction. The mammalian counterpart (NaCT/SLC13A5) also transports citrate. In mice, it is the total, not partial, absence of the transporter that leads to a metabolic phenotype similar to that caloric restriction; however, there is evidence for subtle neurological dysfunction. Loss-of-function mutations in SLC13A5 (solute carrier gene family 13, member A5) occur in humans, causing a recessive disease, with severe clinical symptoms manifested by neonatal seizures and marked disruption in neurological development. Though both Drosophila INDY and mammalian INDY transport citrate, the translocation mechanism differs, the former being a dicarboxylate exchanger for the influx of citrate2− in exchange for other dicarboxylates, and the latter being a Na+-coupled uniporter for citrate2−. Their structures also differ as evident from only ~35% identity in amino acid sequence and from theoretically modeled 3D structures. The varied biological consequences of INDY deficiency across species, with the beneficial effects predominating in lower organisms and detrimental effects overwhelming in higher organisms, are probably reflective of species-specific differences in tissue expression and also in relative contribution of extracellular citrate to metabolic pathways in different tissues
Collapse
Affiliation(s)
- Valeria Jaramillo-Martinez
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (S.S.); (V.G.)
- Correspondence:
| |
Collapse
|
21
|
Branco JR, Esteves AM, Leandro JGB, Demaria TM, Godoi V, Marette A, Valença HDM, Lanzetti M, Peyot ML, Farfari S, Prentki M, Zancan P, Sola-Penna M. Dietary citrate acutely induces insulin resistance and markers of liver inflammation in mice. J Nutr Biochem 2021; 98:108834. [PMID: 34371126 DOI: 10.1016/j.jnutbio.2021.108834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 10/20/2022]
Abstract
Citrate is widely used as a food additive being part of virtually all processed foods. Although considered inert by most of the regulatory agencies in the world, plasma citrate has been proposed to play immunometabolic functions in multiple tissues through altering a plethora of cellular pathways. Here, we used a short-term alimentary intervention (24 hours) with standard chow supplemented with citrate in amount corresponding to that found in processed foods to evaluate its effects on glucose homeostasis and liver physiology in C57BL/6J mice. Animals supplemented with dietary citrate showed glucose intolerance and insulin resistance as revealed by glucose and insulin tolerance tests. Moreover, animals supplemented with citrate in their food displayed fed and fasted hyperinsulinemia and enhanced insulin secretion during an oral glucose tolerance test. Citrate treatment also amplified glucose-induced insulin secretion in vitro in INS1-E cells. Citrate supplemented animals had increased liver PKCα activity and altered phosphorylation at serine or threonine residues of components of insulin signaling including IRS-1, Akt, GSK-3 and FoxO1. Furthermore, citrate supplementation enhanced the hepatic expression of lipogenic genes suggesting increased de novo lipogenesis, a finding that was reproduced after citrate treatment of hepatic FAO cells. Finally, liver inflammation markers were higher in citrate supplemented animals. Overall, the results demonstrate that dietary citrate supplementation in mice causes hyperinsulinemia and insulin resistance both in vivo and in vitro, and therefore call for a note of caution on the use of citrate as a food additive given its potential role in metabolic dysregulation.
Collapse
Affiliation(s)
- Jessica Ristow Branco
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Amanda Moreira Esteves
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - João Gabriel Bernardo Leandro
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thainá M Demaria
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Vilma Godoi
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Departamento de Ciências Morfológicas, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - André Marette
- Department of Medicine, Quebec Heart and Lung Institute, Hôpital Laval, Pavillon Marguerite d'Youville, Québec, Canada
| | - Helber da Maia Valença
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Manuella Lanzetti
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marie-Line Peyot
- Molecular Nutrition Unit, Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), department of Nutrition, Université de Montréal, Montréal, Canada
| | - Salah Farfari
- Molecular Nutrition Unit, Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), department of Nutrition, Université de Montréal, Montréal, Canada
| | - Marc Prentki
- Molecular Nutrition Unit, Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), department of Nutrition, Université de Montréal, Montréal, Canada
| | - Patricia Zancan
- Laboratório de Oncobiologia Molecular (LabOMol), Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo (LabECoM) Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
22
|
A home run for human NaCT/SLC13A5/INDY: cryo-EM structure and homology model to predict transport mechanisms, inhibitor interactions and mutational defects. Biochem J 2021; 478:2051-2057. [PMID: 34101804 PMCID: PMC8203205 DOI: 10.1042/bcj20210211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 11/26/2022]
Abstract
NaCT (SLC13A5) is a Na+-coupled transporter for citrate, which is expressed in the liver, brain, testes, and bone. It is the mammalian homolog of Drosophila INDY, a cation-independent transporter for citrate, whose partial loss extends lifespan in the organism. In humans, loss-of-function mutations in NaCT cause a disease with severe neurological dysfunction, characterized by neonatal epilepsy and delayed brain development. In contrast with humans, deletion of NaCT in mice results in a beneficial metabolic phenotype with protection against diet-induced obesity and metabolic syndrome; the brain dysfunction is not readily noticeable. The disease-causing mutations are located in different regions of human NaCT protein, suggesting that different mutations might have different mechanisms for the loss of function. The beneficial effects of NaCT loss in the liver versus the detrimental effects of NaCT loss in the brain provide an opportunity to design high-affinity inhibitors for the transporter that do not cross the blood-brain barrier so that only the beneficial effects could be harnessed. To realize these goals, we need a detailed knowledge of the 3D structure of human NaCT. The recent report by Sauer et al. in Nature describing the cryo-EM structure of human NaCT represents such a milestone, paving the way for a better understanding of the structure-function relationship for this interesting and clinically important transporter.
Collapse
|