1
|
Consitt LA, Saxena G, Saneda A, Houmard JA. Age-related impairments in skeletal muscle PDH phosphorylation and plasma lactate are indicative of metabolic inflexibility and the effects of exercise training. Am J Physiol Endocrinol Metab 2016; 311:E145-56. [PMID: 27221120 PMCID: PMC4967149 DOI: 10.1152/ajpendo.00452.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/19/2016] [Indexed: 01/12/2023]
Abstract
The purpose of this study was to determine whether plasma lactate and skeletal muscle glucose regulatory pathways, specifically PDH dephosphorylation, are impaired during hyperinsulinemic conditions in middle- to older-aged individuals and determine whether exercise training could improve key variables responsible for skeletal muscle PDH regulation. Eighteen young (19-29 yr; n = 9 males and 9 females) and 20 middle- to older-aged (57-82 yr; n = 10 males and 10 females) individuals underwent a 2-h euglycemic hyperinsulinemic clamp. Plasma samples were obtained at baseline and at 30, 50, 90, and 120 min for analysis of lactate, and skeletal muscle biopsies were performed at 60 min for analysis of protein associated with glucose metabolism. In response to insulin, plasma lactate was elevated in aged individuals when normalized to insulin action. Insulin-stimulated phosphorylation of skeletal muscle PDH on serine sites 232, 293, and 300 decreased in young individuals only. Changes in insulin-stimulated PDH phosphorylation were positively related to changes in plasma lactate. No age-related differences were observed in skeletal muscle phosphorylation of LDH, GSK-3α, or GSK-3β in response to insulin or PDP1, PDP2, PDK2, PDK4, or MPC1 total protein. Twelve weeks of endurance- or strength-oriented exercise training improved insulin-stimulated PDH dephosphorylation, which was related to a reduced lactate response. These findings suggest that impairments in insulin-induced PDH regulation in a sedentary aging population contribute to impaired glucose metabolism and that exercise training is an effective intervention for treating metabolic inflexibility.
Collapse
Affiliation(s)
- Leslie A Consitt
- Department of Biomedical Sciences, Ohio University, Athens, Ohio; Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio; Diabetes Institute, Ohio University, Athens, Ohio;
| | - Gunjan Saxena
- Department of Biomedical Sciences, Ohio University, Athens, Ohio
| | - Alicson Saneda
- Department of Biological Sciences, Ohio University, Athens, Ohio
| | - Joseph A Houmard
- Department of Kinesiology, Human Performance Laboratory, East Carolina University, Greenville, North Carolina; and East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
2
|
McDaniel HG, Rogers WJ, Russell RO, Rackley CE. Improved myocardial contractility with glucose-insulin-potassium infusion during pacing in coronary artery disease. Am J Cardiol 1985; 55:932-6. [PMID: 3885708 DOI: 10.1016/0002-9149(85)90720-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The metabolic and mechanical effects of a solution of glucose-insulin-potassium (G-I-K) were investigated in 18 patients who underwent diagnostic cardiac catheterization for coronary artery disease. All patients were paced at a rate of approximately 140 beats/min before and after infusion of G-I-K. Basal and paced left ventricular (LV) end-diastolic pressure, dP/dt, arterial substrate levels and osmolarity were measured in all 18 patients. In 13 patients cardiac index was also measured. In 5 patients arterial-coronary sinus measurements of oxygen, carbon dioxide, glucose, free fatty acids, lactate, alanine, glutamate, glutamine, ammonia and urea were made, in addition to coronary sinus blood flow. G-I-K increased the blood sugar level to approximately 200 mg/dl and raised the serum osmolarity 9 mosmol. Pacing alone raised the cardiac index 4% and pacing with G-I-K increased the cardiac index 6% (p less than 0.05). Pacing before G-I-K augmented dP/dt (21%) and pacing with G-I-K increased it (30%) (p less than 0.01). The metabolic changes noted included a shift in the respiratory quotient from 0.77 to 0.96 with G-I-K infusion (p less than 0.05). During G-I-K infusion the myocardial oxygen consumption at rest increased from 17.1 to 21.8 ml/min (23%, p less than 0.05). Myocardial oxygen consumption during pacing was similar before and after G-I-K infusion. Before G-I-K infusion nitrogen balance was slightly positive; after G-I-K infusion it was negative with regard to the nitrogen-containing compounds measured.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
3
|
Chapter 9 The uptake and the release of calcium by mitochondria. ACTA ACUST UNITED AC 1984. [DOI: 10.1016/s0167-7306(08)60319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
4
|
Fraser DR, Trayhurn P. Mitochondrial Ca2+ transport in lean and genetically obese (ob/ob) mice. Biochem J 1983; 214:163-70. [PMID: 6615461 PMCID: PMC1152221 DOI: 10.1042/bj2140163] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isolated mitochondria from liver or brown adipose tissue of obese ob/ob mice demonstrated increased rates of Ca2+ uptake and release compared with those of lean mice. This enhanced transport activity was not found in mitochondria from kidney or skeletal muscle. Respiration-induced membrane potential was the same in mitochondria from lean and ob/ob mice. It is therefore concluded that the increased Ca2+ uptake rates reflect an activation of the Ca2+ uniporter rather than a change in the electrophoretic driving force. As mitochondria from pre-obese ob/ob mice did not show elevated rates of Ca2+ transport, the activated transport in the obese animals was thus a consequence of the state of obesity rather than being a direct effect of the ob/ob genotype. It is suggested that the enhanced activity of the Ca2+-transport pathways in liver and brown adipose tissue may alter metabolic functions in these tissues by modifying cytoplasmic or intramitochondrial Ca2+ concentrations.
Collapse
|
5
|
|
6
|
Kondrashova MN, Gogvadze VG, Medvedev BI, Babsky AM. Succinic acid oxidation as the only energy support of intensive Ca2+ uptake by mitochondria. Biochem Biophys Res Commun 1982; 109:376-81. [PMID: 7181923 DOI: 10.1016/0006-291x(82)91731-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
|
8
|
Carafoli E. The regulation of intracellular calcium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1982; 151:461-72. [PMID: 6217728 DOI: 10.1007/978-1-4684-4259-5_51] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Andia-Waltenbaugh AM, Tate CA, Friedmann NK. The effect of glucagon on the kinetics of hepatic mitochondrial calcium uptake. Mol Cell Biochem 1981; 36:177-84. [PMID: 7254203 DOI: 10.1007/bf02357035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Previous work by this and other laboratories has shown that glucagon administration stimulates calcium uptake by subsequently isolated hepatic mitochondria. This stimulation of hepatic mitochondrial Ca2+ uptake by in vivo administration of glucagon was further characterized in the present report. Maximal stimulation of mitochondrial Ca2+ accumulation was achieved between 6-10 min after the intravenous injection of glucagon into intact rats. Under control conditions, Ca2+ uptake was inhibited by the presence of Mg2+ in the incubation medium. Glucagon treatment, however, appeared to obliterate the observed inhibition by Mg2+ of mitochondrial Ca2+ uptake. Kinetic experiments revealed the usual sigmoidicity associated with initial velocity curves for mitochondrial calcium uptake. Glucagon treatment did not alter this sigmoidal relationship. Glucagon treatment significantly increased the V max for Ca2+ uptake from 292 +/- 22 to 377 +/- 34 nmoles Ca2+/min per mg protein (n = 8) but did not affect the K 0.5, (6.5-8.6 microM). Since the major kinetic change in mitochondrial Ca2+ uptake evoked by glucagon is an increase in V max, the enhancement mechanism is likely to be an increase either in the number of active transport sites available to Ca2+ or in the rate of Ca2+ carrier movement across the mitochondrial membranes.
Collapse
|
10
|
Prpić V, Bygrave FL. Maturation in liver mitochondria of Ruthenium Red-sensitive calcium-ion-transport activity and the influence of glucagon administration in vivo and in utero. Biochem J 1981; 196:207-16. [PMID: 6171266 PMCID: PMC1162984 DOI: 10.1042/bj1960207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The maturation of Ca(2+) transport in mitochondria isolated from rat liver was examined, from 5 days before birth. The mitochondria used were isolated from liver homogenates by centrifugation at 22000g-min. Ca(2+) transport by mitochondria isolated from foetal liver is energy-dependent and Ruthenium Red-sensitive. The transmembrane pH gradient in these mitochondria is higher by about 7mV and the membrane potential lower by about 20mV than in adult mitochondria. The inclusion of 2mm-P(i) in the incubation medium enhances the protonmotive force by approx. 30mV. The rate of Ca(2+) influx in foetal mitochondria measured in buffered KCl plus succinate is low until about 2-3h after birth, when it increases to about 60% of adult values; approx. 24h later it has reached near-adult values. Higher rates of Ca(2+) influx are observed in the presence of 2mm-P(i); 3-5 days before birth the rates are about one-third of adult values and decline slightly as birth approaches. By 2-3h post partum they have reached adult values. The inclusion of 12.5mum-MgATP with the P(i) stimulates further the initial rate of Ca(2+) influx in foetal mitochondria. The rates observed are constant over the prenatal period examined and are 50-60% of those observed in adult mitochondria. Mitochondria isolated from foetal livers 4-5 days before birth retain the accumulated Ca(2+) for about 50min in the presence of 2mm-P(i). In the period 2 days before birth to birth, this ability is largely lost, but by 2-3h after birth Ca(2+) retention is similar to that of adult mitochondria. The presence of 12.5mum-MgATP progressively enhances the Ca(2+) retention time as development proceeds until 2-3h after birth, when it becomes less sensitive to added MgATP. Glucagon administration to older foetuses in utero enhances both the rate of mitochondrial Ca(2+) influx assayed in the presence of 2mm-P(i) and the time for which mitochondria retain accumulated Ca(2+) in the presence of 12.5mum-MgATP and 2mm-P(i). Its administration to neonatal animals leads to an increase in mitochondrial Ca(2+) retention similar to that seen in adult mitochondria. The data provide evidence that the Ruthenium Red-sensitive Ca(2+) transporter is potentially as active in foetal mitochondria 5 days before birth as it is in adult mitochondria. They also show that foetal mitochondria have an ability to retain accumulated Ca(2+) reminiscent of mitochondria from tumour cells and from hormone-challenged rat liver.
Collapse
|
11
|
Shears SB, Bronk JR. The effects of thyroxine treatment, in vivo and in vitro, on Ca2+ efflux from rat liver mitochondria. FEBS Lett 1981; 126:9-12. [PMID: 6165615 DOI: 10.1016/0014-5793(81)81020-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
|
13
|
Lawlis VB, Roche TE. Effect of micromolar Ca2+ on NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex and possible role of Ca2+ in signal amplification. Mol Cell Biochem 1980; 32:147-52. [PMID: 7464825 DOI: 10.1007/bf00227441] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex was compared at 10 microM free Ca2+ or in the absence of Ca2+ (i.e., less than 1.0 nM free Ca2+). In the presence of Ca2+, NADH inhibition was appreciably decreased for a wide range of NADH:NAD+ ratios. A half-maximal decrease in NADH inhibition occurred at slightly less than 1 microM free Ca/+ (as determined with EGTA-Ca buffers). Of necessity this was observed on top of an effect of Ca2+ on the S0.5 for alpha-ketoglutarate which was decreased by Ca2+ with a half-maximal effect at a similar concentration. The effect of Ca2+ on NADH inhibition was not observed in assays of the dihydrolipoyl dehydrogenase component (using dihydrolipoamide as a substrate) or in assays of bovine kidney pyruvate dehydrogenase complex. This indicates that the overall reaction catalyzed by the alpha-ketoglutarate dehydrogenase complex is required to elicit the effect of Ca2+ on NADH inhibition. At a fixed alpha-ketoglutarate concentration (50 microM), removal of Ca2+ reduced the activity of the alpha-ketoglutarate dehydrogenase complex by 8.5-fold (due to an increase in S0.5 for alpha-ketoglutarate) and, in the presence of different NADH:NAD+ ratios, decreased the activity of the complex by 50 to 100-fold. Effects of the phosphate potential (ATP/ADPxPi) or a combination of the phosphate potential and NADH:NAD+ ratio are also described. The possibility that the level of intramitochondrial free Ca/+ serves as a signal amplifier normally coupled to the energy state of mitochondria is discussed.
Collapse
|
14
|
Prpić V, Bygrave F. On the inter-relationship between glucagon action, the oxidation-reduction state of pyridine nucleotides, and calcium retention by rat liver mitochondria. J Biol Chem 1980. [DOI: 10.1016/s0021-9258(18)43721-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
15
|
Taylor WM, Prpić V, Exton JH, Bygrave FL. Stable changes to calcium fluxes in mitochondria isolated from rat livers perfused with alpha-adrenergic agonists and with glucagon. Biochem J 1980; 188:443-50. [PMID: 7396872 PMCID: PMC1161887 DOI: 10.1042/bj1880443] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Mitochondria isolated from rat liver after a short-term perfusion with the alpha-adrenergic agonist phenylephrine or with glucagon exhibited enhanced rates of uptake of Ca2+ and prolonged retention of Ca2+ in the presence of 4mm-P(i). The effect of Ca2+ retention was apparent after perfusion with phenylephrine for only 1min and was maximal after 7min of treatment. The changes induced by glucagon, although similar, were less rapid. Adrenaline caused similar changes to phenylephrine and its effects were blocked by the alpha-adrenergic antagonist phenoxybenzamine, but not by the beta-antagonist propranolol. The Ca2+ content of the isolated mitochondria decreased by 30% 1min after the onset of perfusion with phenylephrine; by 6min it had begun to return to the original value which was reached at 10min. A similar loss in calcium content was induced by glucagon but the changes were not as great and occurred more slowly. Mitochondria from phenylephrine-treated livers exhibited decreased rates of Ca2+ efflux induced by addition of 2mm-EGTA, a 50% increase in the contents of ADP and total adenine nucleotides, a small increase in the transmembrane pH gradient, and a reduced rate of oxaloacetate-induced NADPH oxidation. This study thus shows that stimulation of liver by alpha-adrenergic agonists, like that by glucagon, induces within minutes a stable modification of mitochondria leading to alterations in the Ca2+-translocation cycle (increased Ca2+ uptake and retention) and alterations in mitochondrial energy-linked reactions.
Collapse
|
16
|
Barritt GJ. Effects of elevated plasma cholesterol concentrations in the rat on the cholesterol content and retention of calcium ions by isolated heart and liver mitochondria. BIOCHEMICAL MEDICINE 1979; 22:50-8. [PMID: 496930 DOI: 10.1016/0006-2944(79)90036-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Hughes BP, Barritt GJ. Interaction between glucocorticoids and glucagon in the hormonal modification of calcium retention by isolated rat liver mitochondria. Biochem J 1979; 180:291-5. [PMID: 486111 PMCID: PMC1161052 DOI: 10.1042/bj1800291] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
1. The administration of dexamethasone to intact fed rats by intraperitoneal injection for 3h was associated with a 6-fold increase in the time for which mitochondria subsequently isolated from the liver retain a given load of exogenous Ca2+. This effect was blocked by the co-administration of cycloheximide with dexamethasone, and partially blocked by the co-administration of puromycin. Daily administration of dexamethasone for periods of 4--7 days resulted in liver mitochondria that exhibited a decreased ability to retain exogenous Ca2+. 2. When glucagon was administered to fed adrenalectomized rats, the increase in mitochondrial Ca2+-retention time that results from the action of this hormone was reduced by 50% when compared with its effect on intact animals. The administration of dexamethasone to adrenalectomized rats partially restored the full effect of glucagon. 3. Dexamethasone did not enhance the effect of glucagon on mitochondrial Ca2+-retention time when administered to intact fed rats. 4. It is concluded that these data support the hypothesis that the hormone-induced modification of liver mitochondria, which results in an increase in the time for which exogenous Ca2+ is retained, involves a step in which new protein is synthesized.
Collapse
|
18
|
Prpić V, Spencer TL, Bygrave FL. Stable enhancement of calcium retention in mitochondria isolated from rat liver after the administration of glucagon to the intact animal. Biochem J 1978; 176:705-14. [PMID: 747647 PMCID: PMC1186292 DOI: 10.1042/bj1760705] [Citation(s) in RCA: 85] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. Mitochondria isolated from rat liver by centrifugation of the homogenate in buffered iso-osmotic sucrose at between 4000 and 8000g-min, 1h after the administration in vivo of 30mug of glucagon/100g body wt., retain Ca(2+) for over 45min after its addition at 100nmol/mg of mitochondrial protein in the presence of 2mm-P(i). In similar experiments, but after the administration of saline (0.9% NaCl) in place of glucagon, Ca(2+) is retained for 6-8min. The ability of glucagon to enhance Ca(2+) retention is completely prevented by co-administration of 4.2mg of puromycin/100g body wt. 2. The resting rate of respiration after Ca(2+) accumulation by mitochondria from glucagon-treated rats remains low by contrast with that from saline-treated rats. Respiration in the latter mitochondria increased markedly after the Ca(2+) accumulation, reflecting the uncoupling action of the ion. 3. Concomitant with the enhanced retention of Ca(2+) and low rates of resting respiration by mitochondria from glucagon-treated rats was an increased ability to retain endogenous adenine nucleotides. 4. An investigation of properties of mitochondria known to influence Ca(2+) transport revealed a significantly higher concentration of adenine nucleotides but not of P(i) in those from glucagon-treated rats. The membrane potential remained unchanged, but the transmembrane pH gradient increased by approx. 10mV, indicating increased alkalinity of the matrix space. 5. Depletion of endogenous adenine nucleotides by P(i) treatment in mitochondria from both glucagon-treated and saline-treated rats led to a marked diminution in ability to retain Ca(2+). The activity of the adenine nucleotide translocase was unaffected by glucagon treatment of rats in vivo. 6. Although the data are consistent with the argument that the Ca(2+)-translocation cycle in rat liver mitochondria is a target for glucagon action in vivo, they do not permit conclusions to be drawn about the molecular mechanisms involved in the glucagon-induced alteration to this cycle.
Collapse
|
19
|
Andia-Waltenbaugh AM, Kimura S, Wood J, Divakaran P, Friedmann N. Effects of glucagon, insulin and cyclic-AMP on mitochondrial calcium uptake in the liver. Life Sci 1978; 23:2437-43. [PMID: 218064 DOI: 10.1016/0024-3205(78)90303-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Hughes BP, Barritt GJ. Effects of glucagon and N6O2'-dibutyryladenosine 3':5'-cyclic monophosphate on calcium transport in isolated rat liver mitochondria. Biochem J 1978; 176:295-304. [PMID: 215132 PMCID: PMC1186228 DOI: 10.1042/bj1760295] [Citation(s) in RCA: 81] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The administration of glucagon to fed rats by intraperitoneal injection, or the perfusion of livers from fed rats with glucagon by the method of Mortimore [Mortimore (1963) Am.J. Physiol. 204, 699--704] was associated with increases of 15- and 5-fold respectively, in the time for which a given load of exogenous Ca2+ is retained by mitochondria subsequently isolated from the liver. This effect of glucagon was (a) also induced by N6O2'-dibutyryl cyclic AMP, (b) completely blocked by cycloheximide, (c) relatively slow in onset (15--60 min) and (d) associated with a stimulation of about 20% in the rates of ADP-stimulated oxygen utilization and Ca2+ transport measured in the presence of succinate. 2. Perfusion of livers with glucagon resulted in the isolation of mitochandria which showed a 50% increase, no significant change and a 40% increase in the concentrations of endogenous Ca, Mg and Pi respectively, when compared with mitochondria isolated from control perfused livers. 3. The administration of insulin or adrenaline to fed rats induced increases of 10- and 8-fold respectively, in the time for which Ca2+ is retained by isolated liver mitochondria. Perfusion of livers with insulin had no effect on mitochondrial Ca2+ retention time. 4. The perfusion of livers from starved rats with glucagon, or the administration of either glucagon or insulin to starved rats, increased by about 2.5- and 15-fold respectively, the time for which isolated mitochondria retain Ca2+. 5. Mechanisms which may be responsible for the observed alterations in Ca2+-retention time are discussed.
Collapse
|
21
|
Bygrave FL, Tranter CJ. The subcellular location, maturation and response to increased plasma glucagon of ruthenium red-insensitive calcium-ion transport in rat liver. Biochem J 1978; 174:1021-30. [PMID: 215118 PMCID: PMC1186008 DOI: 10.1042/bj1741021] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The subcellular distribution and maturation of Ruthenium Red-insensitive Ca(2+) transport activity were determined in livers of rats ranging in age from 3 days pre-term to 10 weeks of adult life and compared with those of glucose 6-phosphatase, 5'-nucleotidase and Ruthenium Red-sensitive Ca(2+) transport. Initial rates of Ruthenium Red-insensitive Ca(2+) transport were highest in those fractions enriched in glucose 6-phosphatase, i.e. the microsomal fraction; this fraction was devoid of Ruthenium Red-sensitive Ca(2+) transport activity. Although the heaviest fraction (nuclear) contained significant amounts of 5'-nucleotidase activity it was devoid of Ruthenium Red-insensitive Ca(2+) transport activity. 2. Foetal rat liver contain minimal amounts of Ruthenium Red-insensitive Ca(2+) transport activity, glucose 6-phosphatase and 5'-nucleotidase activities. These begin to be expressed concomitantly soon after birth; Ruthenium Red-insensitive Ca(2+) transport is maximal by 3 to 4 days and remains so for up to at least 10 weeks of adult life. Glucose 6-phosphatase also reaches a peak at 3-4 days, but then rapidly decreases to approach adult values. Maximal activity of 5'-nucleotidase in the microsomal and nuclear fractions is seen about 4-6 days after birth; this enzyme activity remains increased for up to about 10 days and then falls, but not as rapidly as glucose 6-phosphatase. It is tentatively suggested that the bulk of the Ruthenium Red-insensitive Ca(2+) transport is attributable to the system derived from the endoplasmic reticulum. 3. Administration of glucagon to adult rats enhances by 2-3-fold the initial rate of Ruthenium Red-insensitive Ca(2+) transport in the intermediate but not the microsomal fraction. The hormone-induced effect is fully suppressed by co-administration of puromycin, is dose-dependent with half-maximal response at approx. 1mug of glucagon/100g body wt. and time-dependent exhibiting a half-maximal response about 1h after administration of the hormone. 4. Ruthenium Red-insensitive Ca(2+) transport in the post-mitochondrial fraction of foetal liver also responds to the administration in situ of glucagon. The response, which also is prevented by co-administration of puromycin, is maximal in those foetuses nearing term. The suggestion is made that these effects of the hormone on Ruthenium Red-insensitive Ca(2+) transport are an integral part of the physiological network in the liver cell.
Collapse
|
22
|
Bygrave FL, Heaney TP, Ramachandran C. Submitochondrial location of ruthenium red-sensitive calcium-ion transport and evidence for its enrichment in a specific population of rat liver mitochondria. Biochem J 1978; 174:1011-9. [PMID: 728072 PMCID: PMC1186007 DOI: 10.1042/bj1741011] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
1. Seven fractions sedimenting at between 3000 and 120000g-min were prepared from a rat liver homogenate by differential centrifugation in buffered iso-osmotic sucrose. The following measurements were carried out on each of these fractions: Ruthenium Red-sensitive Ca(2+) transport in the absence and in the presence of P(i) as well as in the presence of N-ethylmaleimide to prevent P(i) cycling, succinate-supported respiration in the absence and in the presence of ADP, the DeltaE and -59 DeltapH components of the protonmotive force, cytochrome oxidase, uncoupler-stimulated adenosine triphosphatase, alpha-glycerophosphate dehydrogenase, P(i) content and the effect on the ;resting' rate of respiration of repeated additions of a fixed Ca(2+) concentration. 2. Ca(2+) transport either in the presence or in the absence of added P(i) and in the presence of N-ethylmaleimide exhibits significantly higher rates in the fraction sedimenting at 8000g-min. By contrast, respiration in the presence or in the absence of added ADP and the values for DeltaE and -59 DeltapH were similar in those fractions sedimenting between 4000 and 20000g-min, indicating that the driving force for Ca(2+) transport was similar in each of these fractions. 3. Experiments designed to determine the capacity of the individual fractions for Ca(2+), as measured by the effect of repeated additions of Ca(2+) on the resting rate of respiration, showed that fraction 2, i.e. that sedimenting at 8000g-min, also exhibited the greatest tolerance towards the uncoupling action of the ion. 4. Of the three enzyme activity profiles, only that of alpha-glycerophosphate dehydrogenase was similar to that of Ca(2+) transport. Because previous workers have assigned this enzyme to loci in the inner peripheral membrane [Werner & Neupert (1972) Eur. J. Biochem.25, 379-396], it is concluded that the Ruthenium Red-sensitive Ca(2+)- transport system also is located in this domain of the inner membrane. The relation of these findings to the mechanisms of mitochondrial Ca(2+) transport and the biogenesis of mitochondria is discussed.
Collapse
|
23
|
Abstract
1. Addition of N-ethylmaleimide to rat liver mitochondria respiring with succinate as substrate decreases both the initial rate of Ca(2+) transport and the ability of mitochondria to retain Ca(2+). As a result, Ca(2+) begins to leave the mitochondria soon after it has entered. Half-maximal effects occur at an N-ethylmaleimide concentration of about 100nmol/mg of protein. 2. The efflux of Ca(2+) induced by N-ethylmaleimide is not prevented by Mg(2+) or by Ruthenium Red at concentrations known to prevent Ca(2+) efflux when exogenous phosphate also is present. Swelling of mitochondria does not accompany N-ethylmaleimide-induced Ca(2+) efflux. 3. Addition of Ca(2+) to rat liver mitochondria in the presence of N-ethylmaleimide produces an immediate decrease in DeltaE (membrane potential), which decreases further to only a slight extent over the next 8min. Concomitant with this is an immediate increase and then levelling off of the -59DeltapH (transmembrane pH gradient). 4. Preincubation of rat liver mitochondria with p-chloromercuribenzenesulphonate, which by contrast with N-ethylmaleimide is unable to penetrate the inner mitochondrial membrane, also prevents Ca(2+) retention. The DeltaE and -59DeltapH respond to Ca(2+) addition in a manner similar to that which occurs when N-ethylmaleimide is present. Subsequent addition of mercaptoethanol produces an immediate increase in both DeltaE and -59DeltapH. At the same time Ca(2+) is rapidly accumulated by the organelles. 5. The above data are interpreted as indicating that under the conditions of Ca(2+) efflux seen here, the mitochondria retain their functional integrity. This contrasts with the uncoupling effect of Ca(2+) seen in the presence of P(i), which generally leads to a loss of mitochondrial integrity. We suggest that a unique mechanism of Ca(2+) cycling is able to take place when mitochondria have been treated with N-ethylmaleimide.
Collapse
|
24
|
Barritt GJ, Thorne RF, Hughes BP. Effects of hormones and N6O2'-dibutyryl-adenosine 3' :5'-cyclic monophosphate, administered in vivo, on phosphate transport and metabolism in isolated rat liver mitochondria. Biochem J 1978; 172:577-85. [PMID: 210763 PMCID: PMC1185733 DOI: 10.1042/bj1720577] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. The administration of glucagon or N6O2'-dibutyryl cyclic AMP to fed rats by intraperitoneal injection was associated with a 2-fold increase in the amounts of endogenous Pi and ATP, and an increase in the rate and extent of transport of exogenous Pi (measured in either the presence or the absence of Ca2+) in mitochondria subsequently isolated from the liver. No change was observed in either the maximum rate of transport of exogenous Pi or in the rate of 32Pi exchange. 2. The changes induced by glucagon and dibutyryl cyclic AMP were markedly decreased by the co-administration of cycloheximide. 3. The administration of insulin to rats resulted in an increase of about 1.3-fold in the concentration of endogenous mitochondrial Pi 4. The amounts of endogenous Pi in mitochondrial isolated from the livers of starved rats were 3 times those in mitochondria isolated from fed animals. 5. It is concluded that the liver mitochondrial phosphatetransport system may be an important site of hormone action. 6. In the course of these experiments, it was shown that Ca2+ markedly stimulates mitochondrial phosphate transports.
Collapse
|
25
|
|
26
|
Otto D, Ontko J. Activation of mitochondrial fatty acid oxidation by calcium. Conversion to the energized state. J Biol Chem 1978. [DOI: 10.1016/s0021-9258(17)38172-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
27
|
Greenway DC, Himms-Hagen J. Increased calcium uptake by muscle mitochondria of cold-acclimated rats. Am J Physiol Cell Physiol 1978; 234:C7-13. [PMID: 203194 DOI: 10.1152/ajpcell.1978.234.1.c7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Skeletal muscle mitochondria of cold-acclimated rats have an altered morphology that is related to the occurrence of nonshivering thermogenesis. The transport of calcium by these mitochondria was studied in a search for an alteration in an energy-dissipating mechanism which might be related to the altered morphology and to the altered mode of thermogenesis in the cold-acclimated animal. The rates of calcium uptake, of calcium-stimulated respiration, and of state 4 respiration after calcium uptake were increased in the altered mitochondria. The capacity to accumulate calcium without phosphate was increased, whereas with phosphate all the calcium was removed from the medium and no difference in total uptake was seen. Spontaneous release of calcium was greater but sodium-induced release was unchanged. No effect of cyclic AMP or prostaglandin E1 on release of calcium was seen. The increase in rate of calcium uptake occurred gradually during the first 3-5 wk of acclimation to cold. The results are considered to give some support to the hypothesis that adaptive changes in the mitochondrial calcium transport cycle in skeletal muscle occur during acclimation to cold.
Collapse
|
28
|
Bygrave FL, Smith RL. Dietary-induced modification of calcium transport in mitochondria isolated from flight-muscle of developing sheep blowfly Lucilia cuprina. Biochem Biophys Res Commun 1977; 79:154-8. [PMID: 921793 DOI: 10.1016/0006-291x(77)90073-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
|
30
|
Regulation by calcium ions of pyruvate carboxylation, pyruvate transport, and adenine nucleotide transport in isolated rat liver mitochondria. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(19)63358-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
van de Werve G, Hue L, Hers HG. Hormonal and ionic control of the glycogenolytic cascade in rat liver. Biochem J 1977; 162:135-42. [PMID: 192206 PMCID: PMC1164576 DOI: 10.1042/bj1620135] [Citation(s) in RCA: 179] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. A parallel dose-dependent activation of histone kinase, phosphorylase kinase and phosphorylase was observed in isolated hepatocytes incubated in the presence of glucagon; the effect of suboptimal concentrations of glucagon was antagonized by insulin. 2. An activation of phosphorylase which was not accompanied by a stable change in the activity of phosphorylase kinase was observed in hepatocytes incubated with phenylephrine, isoproterenol or vasopressin as well as on decapitation of unanesthetized animals. A dissociation of the two enzymic activities was also observed in hepatocytes incubated in the presence of a high concentration of glucose, in which phosphorylase was strongly inactivated with no change in the activity of phosphorylase kinase. 3. The activation of phosphorylase by phenylephrine in isolated hepatocytes was counteracted by insulin, greatly decreased by the absence of Ca2+ from the incubation medium, and completely suppressed by the replacement of Na+ by K+. 4. In a liver extract, phosphorylase kinase could also be activated by trypsin. Control, glucagon-activated or trypsin-activated phosphorylase kinase was inhibited by about 70% by EGTA and the activity was restored by the addition of Ca2+. 5. The mechanisms that control the activity of phosphorylase kinase and of phosphorylase are discussed.
Collapse
|
32
|
|
33
|
Pfeiffer DR, Kuo TH, Tchen TT. Some effects of Ca2+, Mg2+ , and Mn2+ on the ultrastructure, light-scattering properties, and malic enzyme activity of adrenal cortex mitochondria. Arch Biochem Biophys 1976; 176:556-63. [PMID: 984848 DOI: 10.1016/0003-9861(76)90199-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Titheradge MA, Coore HG. The mitochondrial pyruvate carrier, its exchange properties and its regulation by glucagon. FEBS Lett 1976; 63:45-50. [PMID: 1261688 DOI: 10.1016/0014-5793(76)80191-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|