1
|
Sági-Kazár M, Sárvári É, Cseh B, Illés L, May Z, Hegedűs C, Barócsi A, Lenk S, Solymosi K, Solti Á. Iron uptake of etioplasts is independent from photosynthesis but applies the reduction-based strategy. FRONTIERS IN PLANT SCIENCE 2023; 14:1227811. [PMID: 37636109 PMCID: PMC10457162 DOI: 10.3389/fpls.2023.1227811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Introduction Iron (Fe) is one of themost important cofactors in the photosynthetic apparatus, and its uptake by chloroplasts has also been associated with the operation of the photosynthetic electron transport chain during reduction-based plastidial Fe uptake. Therefore, plastidial Fe uptake was considered not to be operational in the absence of the photosynthetic activity. Nevertheless, Fe is also required for enzymatic functions unrelated to photosynthesis, highlighting the importance of Fe acquisition by non-photosynthetic plastids. Yet, it remains unclear how these plastids acquire Fe in the absence of photosynthetic function. Furthermore, plastids of etiolated tissues should already possess the ability to acquire Fe, since the biosynthesis of thylakoid membrane complexes requires a massive amount of readily available Fe. Thus, we aimed to investigate whether the reduction-based plastidial Fe uptake solely relies on the functioning photosynthetic apparatus. Methods In our combined structure, iron content and transcript amount analysis studies, we used Savoy cabbage plant as a model, which develops natural etiolation in the inner leaves of the heads due to the shading of the outer leaf layers. Results Foliar and plastidial Fe content of Savoy cabbage leaves decreased towards the inner leaf layers. The leaves of the innermost leaf layers proved to be etiolated, containing etioplasts that lacked the photosynthetic machinery and thus were photosynthetically inactive. However, we discovered that these etioplasts contained, and were able to take up, Fe. Although the relative transcript abundance of genes associated with plastidial Fe uptake and homeostasis decreased towards the inner leaf layers, both ferric chelate reductase FRO7 transcripts and activity were detected in the innermost leaf layer. Additionally, a significant NADP(H) pool and NAD(P)H dehydrogenase activity was detected in the etioplasts of the innermost leaf layer, indicating the presence of the reducing capacity that likely supports the reduction-based Fe uptake of etioplasts. Discussion Based on these findings, the reduction-based plastidial Fe acquisition should not be considered exclusively dependent on the photosynthetic functions.
Collapse
Affiliation(s)
- Máté Sági-Kazár
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Sárvári
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barnabás Cseh
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Levente Illés
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Zoltán May
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Eötvös Loránd Research Network, Budapest, Hungary
| | - Csaba Hegedűs
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Barócsi
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Sándor Lenk
- Department of Atomic Physics, Budapest University of Technology and Economics, Budapest, Hungary
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Solti
- Department of Plant Physiology and Molecular Plant Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Wang P, Grimm B. Organization of chlorophyll biosynthesis and insertion of chlorophyll into the chlorophyll-binding proteins in chloroplasts. PHOTOSYNTHESIS RESEARCH 2015; 126:189-202. [PMID: 25957270 DOI: 10.1007/s11120-015-0154-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/30/2015] [Indexed: 05/23/2023]
Abstract
Oxygenic photosynthesis requires chlorophyll (Chl) for the absorption of light energy, and charge separation in the reaction center of photosystem I and II, to feed electrons into the photosynthetic electron transfer chain. Chl is bound to different Chl-binding proteins assembled in the core complexes of the two photosystems and their peripheral light-harvesting antenna complexes. The structure of the photosynthetic protein complexes has been elucidated, but mechanisms of their biogenesis are in most instances unknown. These processes involve not only the assembly of interacting proteins, but also the functional integration of pigments and other cofactors. As a precondition for the association of Chl with the Chl-binding proteins in both photosystems, the synthesis of the apoproteins is synchronized with Chl biosynthesis. This review aims to summarize the present knowledge on the posttranslational organization of Chl biosynthesis and current attempts to envision the proceedings of the successive synthesis and integration of Chl into Chl-binding proteins in the thylakoid membrane. Potential auxiliary factors, contributing to the control and organization of Chl biosynthesis and the association of Chl with the Chl-binding proteins during their integration into photosynthetic complexes, are discussed in this review.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-University Berlin, Philippstraße 13, 10115, Berlin, Germany.
| |
Collapse
|
3
|
Regulation and function of tetrapyrrole biosynthesis in plants and algae. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:968-85. [PMID: 25979235 DOI: 10.1016/j.bbabio.2015.05.007] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/21/2015] [Accepted: 05/07/2015] [Indexed: 12/20/2022]
Abstract
Tetrapyrroles are macrocyclic molecules with various structural variants and multiple functions in Prokaryotes and Eukaryotes. Present knowledge about the metabolism of tetrapyrroles reflects the complex evolution of the pathway in different kingdoms of organisms, the complexity of structural and enzymatic variations of enzymatic steps, as well as a wide range of regulatory mechanisms, which ensure adequate synthesis of tetrapyrrole end-products at any time of development and environmental condition. This review intends to highlight new findings of research on tetrapyrrole biosynthesis in plants and algae. In the course of the heme and chlorophyll synthesis in these photosynthetic organisms, glutamate, one of the central and abundant metabolites, is converted into highly photoreactive tetrapyrrole intermediates. Thereby, several mechanisms of posttranslational control are thought to be essential for a tight regulation of each enzymatic step. Finally, we wish to discuss the potential role of tetrapyrroles in retrograde signaling and point out perspectives of the formation of macromolecular protein complexes in tetrapyrrole biosynthesis as an efficient mechanism to ensure a fine-tuned metabolic flow in the pathway. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
4
|
Nagahatenna DSK, Langridge P, Whitford R. Tetrapyrrole-based drought stress signalling. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:447-59. [PMID: 25756609 PMCID: PMC5054908 DOI: 10.1111/pbi.12356] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 01/05/2015] [Accepted: 01/31/2015] [Indexed: 05/07/2023]
Abstract
Tetrapyrroles such as chlorophyll and heme play a vital role in primary plant metabolic processes such as photosynthesis and respiration. Over the past decades, extensive genetic and molecular analyses have provided valuable insights into the complex regulatory network of the tetrapyrrole biosynthesis. However, tetrapyrroles are also implicated in abiotic stress tolerance, although the mechanisms are largely unknown. With recent reports demonstrating that modified tetrapyrrole biosynthesis in plants confers wilting avoidance, a component physiological trait to drought tolerance, it is now timely that this pathway be reviewed in the context of drought stress signalling. In this review, the significance of tetrapyrrole biosynthesis under drought stress is addressed, with particular emphasis on the inter-relationships with major stress signalling cascades driven by reactive oxygen species (ROS) and organellar retrograde signalling. We propose that unlike the chlorophyll branch, the heme branch of the pathway plays a key role in mediating intracellular drought stress signalling and stimulating ROS detoxification under drought stress. Determining how the tetrapyrrole biosynthetic pathway is involved in stress signalling provides an opportunity to identify gene targets for engineering drought-tolerant crops.
Collapse
Affiliation(s)
- Dilrukshi S. K. Nagahatenna
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Peter Langridge
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| | - Ryan Whitford
- Australian Centre for Plant Functional GenomicsSchool of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSAAustralia
| |
Collapse
|
5
|
Watanabe S, Hanaoka M, Ohba Y, Ono T, Ohnuma M, Yoshikawa H, Taketani S, Tanaka K. Mitochondrial localization of ferrochelatase in a red alga Cyanidioschyzon merolae. PLANT & CELL PHYSIOLOGY 2013; 54:1289-95. [PMID: 23700350 DOI: 10.1093/pcp/pct077] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ferrochelatase (FECH) is an essential enzyme for the final step of heme biosynthesis. In green plants, its activity has been reported in both plastids and mitochondria. However, the precise subcellular localization of FECH remains uncertain. In this study, we analyzed the localization of FECH in the unicellular red alga, Cyanidioschyzon merolae. Immunoblot and enzyme activity analyses of subcellular fractions localized little FECH in the plastid. In addition, immunofluorescence microscopy identified that both intrinsic and hemagglutinin (HA)-tagged FECH are localized in the mitochondrion. We therefore conclude that FECH is localized in the mitochondrion in C. merolae.
Collapse
Affiliation(s)
- Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Granick S, Beale SI. Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 46:33-203. [PMID: 345768 DOI: 10.1002/9780470122914.ch2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Masuda T, Suzuki T, Shimada H, Ohta H, Takamiya K. Subcellular localization of two types of ferrochelatase in cucumber. PLANTA 2003; 217:602-9. [PMID: 12905021 DOI: 10.1007/s00425-003-1019-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2002] [Accepted: 02/12/2003] [Indexed: 05/20/2023]
Abstract
It is widely believed that ferrochelatase (protoheme ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous ion into protoporphyrin IX to form protoheme, exists in both plastids and mitochondria of higher plants. By in vitro import assay with isolated pea (Pisum sativum L.) organelles, it has been proposed that one of two isoforms of ferrochelatase (type 1) is dual-targeted into both plastids and mitochondria, and functions for heme biosynthesis in the both organelles. Recently, however, mitochondrial targeting of ferrochelatase is being disputed since pea mitochondria appeared to accept a variety of chloroplast proteins including the type-1 ferrochelatase of Arabidopsis thaliana (L.) Heynh. To clarify the precise subcellular localization of ferrochelatase in higher plants, here we investigated the subcellular localization of two types of ferrochelatase (CsFeC1 and CsFeC2) in cucumber (Cucumis sativus L.). In cotyledons, a significant level of specific ferrochelatase activity was detected in thylakoid membranes, but only a trace level of activity was detectable in mitochondria. Western blot analysis with specific antibodies showed that anti-CsFeC2 antiserum cross-reacted with plastids in photosynthetic and non-photosynthetic tissues. Anti-CsFeC1 did not cross-react with mitochondria, but CsFeC1 was clearly detectable in plastids from non-photosynthetic tissues. In situ transient-expression assays using green fluorescent protein demonstrated that, as well as CsFeC2, the N-terminal transit peptide of CsFeC1 targeted the fusion protein solely into plastids, but not into mitochondria. These results demonstrated that in cucumber both CsFeC1 and CsFeC2 are solely targeted into plastids, but not into mitochondria. Screening of a cucumber genomic or cDNA library did not allow any other ferrochelatase homologous gene to be isolated. The data presented here imply the reconsideration of mitochondrial heme biosynthesis in higher plants.
Collapse
Affiliation(s)
- T Masuda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, 226-8501 Yokohama, Japan.
| | | | | | | | | |
Collapse
|
8
|
Yaronskaya E, Ziemann V, Walter G, Averina N, Börner T, Grimm B. Metabolic control of the tetrapyrrole biosynthetic pathway for porphyrin distribution in the barley mutant albostrians. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2003; 35:512-522. [PMID: 12904213 DOI: 10.1046/j.1365-313x.2003.01825.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The barley line albostrians exhibits a severe block in chloroplast development as a result of a mutationally induced lack of plastid ribosomes. White leaves of this mutant contain undifferentiated plastids, possess only traces of chlorophyll (Chl), and are photosynthetically inactive. Chl deficiency, combined with a continuous heme requirement, should lead to drastic changes in the tetrapyrrole metabolism in white versus green leaves. We analyzed the extent to which the synthesis rate of the pathway and the porphyrin distribution toward the Chl- and heme-synthesizing bifurcation is altered in the white tissue of albostrians. Expression and activity of several distinctively regulated enzymes, such as glutamyl-tRNAglu reductase, glutamate 1-semialdehyde aminotransferase, Mg- and Fe-chelatase, and Chl synthetase, were altered in white mutant leaves in comparison to control leaves. A drastic loss in the rate-limiting formation of 5-aminolevulinate and in the Mg-chelatase and Mg-protoporphyrin IX methyltransferase activity, as well as an increase in Fe-chelatase activity, accounts for a decrease in the metabolic flux and the re-direction of metabolites. It is proposed that the tightly balanced control of activities in the pathway functions by different metabolic feedback loops and in response to developmental state and physiological requirements. This data supports the idea that the initial steps of Mg-porphyrin synthesis contribute to plastid-derived signaling toward the nucleus. The barley mutant albostrians proved to be a valuable system for studying regulation of tetrapyrrole biosynthesis and their involvement in the bi-directional communication between plastids and nucleus.
Collapse
Affiliation(s)
- Elena Yaronskaya
- Institut für Biologie/Pflanzenphysiologie, Humboldt Universität, 10155 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Cornah JE, Roper JM, Pal Singh D, Smith AG. Measurement of ferrochelatase activity using a novel assay suggests that plastids are the major site of haem biosynthesis in both photosynthetic and non-photosynthetic cells of pea (Pisum sativum L.). Biochem J 2002; 362:423-32. [PMID: 11853551 PMCID: PMC1222403 DOI: 10.1042/0264-6021:3620423] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Ferrochelatase is the terminal enzyme of haem biosynthesis, catalysing the insertion of ferrous iron into the macrocycle of protoporphyrin IX, the last common intermediate of haem and chlorophyll synthesis. Its activity has been reported in both plastids and mitochondria of higher plants, but the relative amounts of the enzyme in the two organelles are unknown. Ferrochelatase is difficult to assay since ferrous iron requires strict anaerobic conditions to prevent oxidation, and in photosynthetic tissues chlorophyll interferes with the quantification of the product. Accordingly, we developed a sensitive fluorimetric assay for ferrochelatase that employs Co(2+) and deuteroporphyrin in place of the natural substrates, and measures the decrease in deuteroporphyrin fluorescence. A hexane-extraction step to remove chlorophyll is included for green tissue. The assay is linear over a range of chloroplast protein concentrations, with an average specific activity of 0.68 nmol x min(-1) x mg of protein(-1), the highest yet reported. The corresponding value for mitochondria is 0.19 nmol x min(-1) x mg of protein(-1). The enzyme is inhibited by N-methylprotoporphyrin, with an estimated IC(50) value of approximately 1 nM. Using this assay we have quantified ferrochelatase activity in plastids and mitochondria from green pea leaves, etiolated pea leaves and pea roots to determine the relative amounts in the two organelles. We found that, in all three tissues, greater than 90% of the activity was associated with plastids, but ferrochelatase was reproducibly detected in mitochondria, at levels greater than the contaminating plastid marker enzyme, and was latent. Our results indicate that plastids are the major site of haem biosynthesis in higher plant cells, but that mitochondria also have the capacity for haem production.
Collapse
Affiliation(s)
- Johanna E Cornah
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | | | | | |
Collapse
|
10
|
Suzuki T, Masuda T, Singh DP, Tan FC, Tsuchiya T, Shimada H, Ohta H, Smith AG, Takamiya KI. Two types of ferrochelatase in photosynthetic and nonphotosynthetic tissues of cucumber: their difference in phylogeny, gene expression, and localization. J Biol Chem 2002; 277:4731-7. [PMID: 11675381 DOI: 10.1074/jbc.m105613200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ferrochelatase catalyzes the insertion of Fe(2+) into protoporphyrin IX to generate protoheme. In higher plants, there is evidence for two isoforms of this enzyme that fulfill different roles. Here, we describe the isolation of a second ferrochelatase cDNA from cucumber (CsFeC2) that was less similar to a previously isolated isoform (CsFeC1) than it was to some ferrochelatases from other higher plants. In in vitro import experiments, the two cucumber isoforms showed characteristics similar to their respective ferrochelatase counterparts of Arabidopsis thaliana. The C-terminal region of CsFeC2 but not CsFeC1 contained a conserved motif found in light-harvesting chlorophyll proteins, and CsFeC2 belonged to a phylogenetic group of plant ferrochelatases containing this conserved motif. We demonstrate that CsFeC2 was localized predominantly in thylakoid membranes as an intrinsic protein, and forming complexes probably with the C-terminal conserved motif, but a minor portion was also detected in envelope membranes. CsFeC2 mRNA was detected in all tissues and was light-responsive in cotyledons, whereas CsFeC1 mRNA was detected in nonphotosynthetic tissues and was not light-responsive. Interestingly, tissue-, light-, and cycloheximide-dependent expressions of the two isoforms of ferrochelatase were similar to those of two glutamyl-tRNA reductase isoforms involved in the early step of tetrapyrrole biosynthesis, suggesting the existence of distinctly controlled tetrapyrrole biosynthetic pathways in photosynthetic and nonphotosynthetic tissues.
Collapse
Affiliation(s)
- Takuo Suzuki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Cleary SP, Tan FC, Nakrieko KA, Thompson SJ, Mullineaux PM, Creissen GP, von Stedingk E, Glaser E, Smith AG, Robinson C. Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplasts. J Biol Chem 2002; 277:5562-9. [PMID: 11733507 DOI: 10.1074/jbc.m106532200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most chloroplast and mitochondrial proteins are synthesized with N-terminal presequences that direct their import into the appropriate organelle. In this report we have analyzed the specificity of standard in vitro assays for import into isolated pea chloroplasts and mitochondria. We find that chloroplast protein import is highly specific because mitochondrial proteins are not imported to any detectable levels. Surprisingly, however, pea mitochondria import a range of chloroplast protein precursors with the same efficiency as chloroplasts, including those of plastocyanin, the 33-kDa photosystem II protein, Hcf136, and coproporphyrinogen III oxidase. These import reactions are dependent on the Deltaphi across the inner mitochondrial membrane, and furthermore, marker enzyme assays and Western blotting studies exclude any import by contaminating chloroplasts in the preparation. The pea mitochondria specifically recognize information in the chloroplast-targeting presequences, because they also import a fusion comprising the presequence of coproporphyrinogen III oxidase linked to green fluorescent protein. However, the same construct is targeted exclusively into chloroplasts in vivo indicating that the in vitro mitochondrial import reactions are unphysiological, possibly because essential specificity factors are absent in these assays. Finally, we show that disruption of potential amphipathic helices in one presequence does not block import into pea mitochondria, indicating that other features are recognized.
Collapse
Affiliation(s)
- Suzanne P Cleary
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Lister R, Chew O, Rudhe C, Lee MN, Whelan J. Arabidopsis thaliana ferrochelatase-I and -II are not imported into Arabidopsis mitochondria. FEBS Lett 2001; 506:291-5. [PMID: 11602264 DOI: 10.1016/s0014-5793(01)02925-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Using in vitro import assays into purified mitochondria and chloroplasts we found that Arabidopsis ferrochelatase-I and ferrochelatase-II were not imported into mitochondria purified from Arabidopsis (or several other plants) but were imported into pea leaf chloroplasts. Other dual targeted proteins could be imported into purified mitochondria from Arabidopsis. As only two ferrochelatase genes are present in the completed Arabidopsis genome, the presence of ferrochelatase activity in plant mitochondria needs to be re-evaluated. Previous reports of Arabidopsis ferrochelatase-I import into pea mitochondria are due to the fact that pea leaf (and root) mitochondria appear to import a variety, but not all chloroplast proteins. Thus pea mitochondria are not a suitable system to either study dual targeting, or to distinguish between isozymes present in mitochondria and chloroplasts.
Collapse
Affiliation(s)
- R Lister
- Department of Biochemistry, University of Western Australia, Crawley, Australia
| | | | | | | | | |
Collapse
|
13
|
Papenbrock J, Mishra S, Mock HP, Kruse E, Schmidt EK, Petersmann A, Braun HP, Grimm B. Impaired expression of the plastidic ferrochelatase by antisense RNA synthesis leads to a necrotic phenotype of transformed tobacco plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:41-50. [PMID: 11696185 DOI: 10.1046/j.1365-313x.2001.01126.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Protoporphyrin IX is the last common intermediate of tetrapyrrole biosynthesis. The chelation of a Mg2+ ion by magnesium chelatase and of a ferrous ion by ferrochelatase directs protoporphyrin IX towards the formation of chlorophyll and heme, respectively. A full length cDNA clone encoding a ferrochelatase was identified from a Nicotiana tabacum cDNA library. The encoded protein consists of 497 amino acid residues with a molecular weight of 55.4 kDa. In vitro import of the protein into chloroplasts and its location in stroma and thylakoids confirm its close relationship to the previously described Arabidopsis thaliana plastid-located ferrochelatase (FeChII). A 1700-bp tobacco FeCh cDNA sequence was expressed in Nicotiana tabacum cv. Samsun NN under the control of the CaMV 35S promoter in antisense orientation allowing investigation into the consequences of selective reduction of the plastidic ferrochelatase activity for protoporphyrin IX channeling in chloroplasts and for interactions between plastidic and mitochondrial heme synthesis. Leaves of several transformants showed a reduced chlorophyll content and, during development, a light intensity-dependent formation of necrotic leaf lesions. In comparison with wild-type plants the total ferrochelatase activity was decreased in transgenic lines leading to an accumulation of photosensitizing protoporphyrin IX. Ferrochelatase activity was reduced only in plastids but not in mitochondria of transgenic plants. By means of the specifically diminished ferrochelatase activity consequences of the selective inhibition of protoheme formation for the intracellular supply of heme can be investigated in the future.
Collapse
MESH Headings
- Cloning, Molecular
- Ferrochelatase/biosynthesis
- Ferrochelatase/genetics
- Ferrochelatase/metabolism
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Plant
- Heme/metabolism
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Light
- Mitochondria/enzymology
- Necrosis
- Phenotype
- Phylogeny
- Plants, Genetically Modified
- Plastids/enzymology
- Plastids/genetics
- Plastids/metabolism
- Plastids/radiation effects
- Protoporphyrins/metabolism
- RNA, Antisense/biosynthesis
- RNA, Antisense/genetics
- RNA, Antisense/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Nicotiana/cytology
- Nicotiana/enzymology
- Nicotiana/genetics
- Nicotiana/metabolism
Collapse
Affiliation(s)
- J Papenbrock
- Institut fur Pflanzengenetik und Kulturpflanzenforschung, Corrensstrasse 3, 06466 Gatersleben, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Watanabe, Che, Iwano, Takayama, Nakano, Yoshida, Isogai. Molecular characterization of photomixotrophic tobacco cells resistant to protoporphyrinogen oxidase-inhibiting herbicides. PLANT PHYSIOLOGY 1998; 118:751-8. [PMID: 9808719 PMCID: PMC34785 DOI: 10.1104/pp.118.3.751] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 08/06/1998] [Indexed: 05/22/2023]
Abstract
Peroxidizing herbicides inhibit protoporphyrinogen oxidase (Protox), the last enzyme of the common branch of the chlorophyll- and heme-synthesis pathways. There are two isoenzymes of Protox, one of which is located in the plastid and the other in the mitochondria. Sequence analysis of the cloned Protox cDNAs showed that the deduced amino acid sequences of plastidial and mitochondrial Protox in wild-type cells and in herbicide-resistant YZI-1S cells are the same. The level of plastidial Protox mRNA was the same in both wild-type and YZI-1S cells, whereas the level of mitochondrial Protox mRNA YZI-1S cells was up to 10 times the level of wild-type cells. Wild-type cells were observed by fluorescence microscopy to emit strong autofluorescence from chlorophyll. Only a weak fluorescence signal was observed from chlorophyll in YZI-1S cells grown in the Protox inhibitor N-(4-chloro-2-fluoro-5-propagyloxy)-phenyl-3,4,5, 6-tetrahydrophthalimide. Staining with DiOC6 showed no visible difference in the number or strength of fluorescence between wild-type and YZI-1S mitochondria. Electron micrography of YZI-1S cells showed that, in contrast to wild-type cells, the chloroplasts of YZI-1S cells grown in the presence of N-(4-chloro-2-fluoro-5-propagyloxy)-phenyl-3,4,5, 6-tetrahydrophthalimide exhibited no grana stacking. These results suggest that the herbicide resistance of YZI-1S cells is due to the overproduction of mitochondrial Protox.
Collapse
Affiliation(s)
- Watanabe
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama Ikoma, Nara 630-0101, Japan (N.W., F.-S.C., M.I., S.T., A.I.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Chow KS, Singh DP, Walker AR, Smith AG. Two different genes encode ferrochelatase in Arabidopsis: mapping, expression and subcellular targeting of the precursor proteins. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 15:531-41. [PMID: 9753778 DOI: 10.1046/j.1365-313x.1998.00235.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Ferrochelatase is the last enzyme of haem biosynthesis. We have isolated 27 independent ferrochelatase cDNAs from Arabidopsis thaliana by functional complementation of a yeast mutant. Twenty-two of these cDNAs were similar to a previously isolated clone, AF3, and although they varied in length at the 5' and 3' ends, their nucleotide sequences were identical, indicating that they were derived from the same gene (ferrochelatase-I). The remaining five cDNAs all encoded a separate ferrochelatase isoform (ferrochelatase-II), which was 69% identical at the amino acid level to ferrochelatase-I. Using RFLP analysis in recombinant inbred lines, the ferrochelatase-I gene was mapped to chromosome V and that for ferrochelatase-II to chromosome II. Northern analysis showed that both ferrochelatase genes are expressed in leaves, stems and flowers, and expression in the leaves is higher in the light than in the dark. However, in roots only ferrochelatase-I transcripts were detected. High levels of sucrose stimulated expression of ferrochelatase-I, but had no effect, or repressed slightly, the expression of the ferrochelatase-II isoform. Import experiments into isolated chloroplasts and mitochondria showed that the ferrochelatase-II gene encodes a precursor which is imported solely into the chloroplast, in contrast to ferrochelatase-I which is targeted to both organelles. The significance of these results for haem biosynthesis and the production of haemoproteins, both within the plant cell and in different plant tissues, is discussed.
Collapse
Affiliation(s)
- K S Chow
- Department of Plant Sciences, University of Cambridge, UK
| | | | | | | |
Collapse
|
16
|
Chow KS, Singh DP, Roper JM, Smith AG. A single precursor protein for ferrochelatase-I from Arabidopsis is imported in vitro into both chloroplasts and mitochondria. J Biol Chem 1997; 272:27565-71. [PMID: 9346891 DOI: 10.1074/jbc.272.44.27565] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ferrochelatase is the last enzyme of heme biosynthesis and in higher plants is found in both chloroplasts and mitochondria. We have isolated cDNAs for two isoforms of ferrochelatase from Arabidopsis thaliana, both of which are imported into isolated chloroplasts. In this paper we show that ferrochelatase-I is also imported into isolated pea mitochondria with approximately the same efficiency as into chloroplasts. Processing of the precursor was observed with both chloroplast stroma and mitochondrial matrix extracts. This was inhibited by EDTA, indicating it was due to the specific processing proteases. The specificity of import was verified by the fact that the mitochondrial preparation did not import the precursor of the light-harvesting chlorophyll a/b protein precursor or the precursor of porphobilinogen deaminase, an earlier enzyme of tetrapyrrole biosynthesis, both of which are exclusively chloroplast-located. Furthermore, import of ferrochelatase-I precursor into mitochondria was inhibited by valinomycin, but this had no effect on its import into chloroplasts. Thus a single precursor molecule is recognized by the import machinery of the two organelles. The implications for the targeting of ferrochelatase in a possible protective role against photooxidative stress are discussed.
Collapse
Affiliation(s)
- K S Chow
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | | | | | | |
Collapse
|
17
|
Roper JM, Smith AG. Molecular localisation of ferrochelatase in higher plant chloroplasts. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:32-7. [PMID: 9210462 DOI: 10.1111/j.1432-1033.1997.t01-1-00032.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Within the chloroplast of higher plants, a crucial branchpoint of the tetrapyrrole synthesis pathway is the chelation of either Fe2+ to make haem, or Mg2+ for chlorophyll, catalysed by ferrochelatase or magnesium chelatase, respectively. One model that has been proposed for the control of this branchpoint, based on biochemical studies, is that the two enzymes are spatially separated within the chloroplast, ferrochelatase being exclusively in the thylakoids, while magnesium chelatase is associated with the envelope [Matringe, M., Camadro, J.-M., Joyard, J. & Douce, R. (1994) J. Biol. Chem. 269, 15010-15015]. We have used a sensitive molecular method to investigate this possibility. Radiolabelled precursor proteins for ferrochelatase from Arabidopsis have been imported into isolated chloroplasts. Their distribution in the different subchloroplastic fractions have then been determined, and compared with that for light-harvesting chlorophyll protein, which is exclusively thylakoidal, and the envelope-located phosphate translocator. Clear evidence for the specific association of ferrochelatase protein with both thylakoid and envelope membranes has been obtained, thus suggesting strongly that the control of the branchpoint cannot be by spatial separation of the two chelatases.
Collapse
Affiliation(s)
- J M Roper
- Department of Plant Sciences, University of Cambridge, England, UK
| | | |
Collapse
|
18
|
Avissar YJ, Moberg PA. The common origins of the pigments of life-early steps of chlorophyll biosynthesis. PHOTOSYNTHESIS RESEARCH 1995; 44:221-242. [PMID: 24307093 DOI: 10.1007/bf00048596] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/1994] [Accepted: 03/30/1995] [Indexed: 06/02/2023]
Abstract
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.
Collapse
Affiliation(s)
- Y J Avissar
- Department of Biology, Rhode Island College, 02908, Providence, RI, USA
| | | |
Collapse
|
19
|
Matringe M, Camadro J, Joyard J, Douce R. Localization of ferrochelatase activity within mature pea chloroplasts. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36567-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
20
|
Smith A, Santana M, Wallace-Cook A, Roper J, Labbe-Bois R. Isolation of a cDNA encoding chloroplast ferrochelatase from Arabidopsis thaliana by functional complementation of a yeast mutant. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36847-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
21
|
Walker CJ, Weinstein JD. The magnesium-insertion step of chlorophyll biosynthesis is a two-stage reaction. Biochem J 1994; 299 ( Pt 1):277-84. [PMID: 8166650 PMCID: PMC1138051 DOI: 10.1042/bj2990277] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mg(2+)-chelatase catalyses the first step unique to chlorophyll synthesis, namely the insertion of Mg2+ into protoporphyrin IX. When pea (Pisum sativum L., cv. Spring) chloroplasts are lysed in a buffer lacking Mg2+ and the thylakoids removed by centrifugation, the remaining mixture of light membranes and soluble proteins (LM/S) has high Mg(2+)-chelatase activity. Several lines of evidence are presented to show that the Mg2+ insertion catalysed by this preparation is a two-step reaction consisting of activation followed by Mg2+ chelation. An activated state of Mg(2+)-chelatase is achieved by preincubating LM/S with ATP. The activated state is observed as the elimination of the approx. 6 min lag in the rate of Mg2+ chelation on addition of the porphyrin substrate. The activity of LM/S assayed at low protein concentrations can be greatly enhanced by preincubating at high protein concentrations (12 mg/ml is optimal). This activation effect requires the presence of both LM and S fractions, as well as ATP. Both steps require ATP, but at different concentrations; the first step is optimal at > 0.5 mM (EC50 = 0.3 mM) and the second step is optimal at 0.3 mM (EC50 < 0.2 mM). ATP in the first step could be replaced by ATP[S]; this analogue could not sustain activity in the second step. This activated state was stable for at least 30 min at room temperature, but chilling of preincubated LM/S on ice for 30 min caused an almost complete loss of the activated state.
Collapse
Affiliation(s)
- C J Walker
- Department of Biological Sciences, Clemson University, SC 29634-1903
| | | |
Collapse
|
22
|
Thomsen B, Oelze-Karow H, Schuster C, Mohr H. STIMULATION OF APPEARANCE OF EXTRAPLASTIDIC TETRAPYRROLES BY A PHOTOOXIDATIVE TREATMENT OF THE PLASTIDS. Photochem Photobiol 1993. [DOI: 10.1111/j.1751-1097.1993.tb04957.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Smith AG, Marsh O, Elder GH. Investigation of the subcellular location of the tetrapyrrole-biosynthesis enzyme coproporphyrinogen oxidase in higher plants. Biochem J 1993; 292 ( Pt 2):503-8. [PMID: 8503883 PMCID: PMC1134238 DOI: 10.1042/bj2920503] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The subcellular location of two enzymes in the biosynthetic pathway for protoporphyrin IX, coproporphyrinogen (coprogen) oxidase (EC 1.3.3.3) and protoporphyrinogen (protogen) oxidase (EC 1.3.3.4) has been investigated in etiolated pea (Pisum sativum) leaves and spadices of cuckoo-pint (Arum maculatum). Plant tissue homogenized in isotonic buffer was subjected to subcellular fractionation to prepare mitochondria and plastids essentially free of contamination by other cellular organelles, as determined by marker enzymes. Protogen oxidase activity measured fluorimetrically was reproducibly found in both mitochondria and etioplasts. In contrast, coprogen oxidase could be detected only in etioplasts, using either a coupled fluorimetric assay or a sensitive radiochemical method. The implications of these results for the synthesis of mitochondrial haem in plants is discussed.
Collapse
Affiliation(s)
- A G Smith
- Department of Plant Sciences, University of Cambridge, U.K
| | | | | |
Collapse
|
24
|
Jacobs JM, Jacobs NJ, Sherman TD, Duke SO. Effect of diphenyl ether herbicides on oxidation of protoporphyrinogen to protoporphyrin in organellar and plasma membrane enriched fractions of barley. PLANT PHYSIOLOGY 1991; 97:197-203. [PMID: 16668371 PMCID: PMC1080984 DOI: 10.1104/pp.97.1.197] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In barley (Hordeum vulgare L.) root cells, activity for oxidizing protoporphyrinogen to protoporphyrin (protoporphyrinogen oxidase), a step in chlorophyll and heme synthesis, was found both in the crude mitochondrial fraction and in a plasma membrane enriched fraction separated by a sucrose gradient technique utilized for preparing plasma membranes. The specific activity (expressed as nanomoles of protoporphyrin formed per hour per milligram protein) in the mitochondrial fraction was 8 and in the plasma membrane enriched fraction was 4 to 6. The plasma membrane enriched fraction exhibited minimal cytochrome oxidase activity and no carotenoid content, indicating little contamination with mitochondrial or plastid membranes. Etioplasts from etiolated barley leaves exhibited a protoporphyrinogen oxidase specific activity of 7 to 12. Protoporphyrinogen oxidase activity in the barley root mitochondrial fraction and etioplast extracts was more than 90% inhibited by assay in the presence of the diphenyl ether herbicide acifluorfen methyl, but the activity in the plasma membrane enriched fraction exhibited much less inhibition by this herbicide (12 to 38% inhibition) under the same assay conditions. Acifluorfen-methyl inhibition of the organellar (mitochondrial or plastid) enzyme was maximal upon preincubation of the enzyme with 4 mm dithiothreitol, although a lesser degree of inhibition was noted if the organellar enzyme was preincubated in the presence of other reductants such as glutathione or ascorbate. Acifluorfen-methyl caused only 20% inhibition if the enzyme was preincubated in buffer without reductants. Incubation of barley etioplast extracts with the earlier tetrapyrrole precursor coproporphyrinogen and acifluorfen-methyl resulted in the accumulation of protoporphyrinogen, which could be converted to protoporphyrin even in the presence of the herbicide by the addition of the plasma membrane enriched fraction from barley roots. These findings have implications for the toxicity of diphenyl ether herbicides, whose light induced tissue damage is apparently caused by accumulation of the photoreactive porphyrin intermediate, protoporphyrin, when the organellar protoporphyrinogen oxidase enzyme is inhibited by herbicides. Our results suggest that the protoporphyrinogen that accumulates as a result of herbicide inhibition of the organellar enzyme can be oxidized to protoporphyrin by a protoporphyrinogen oxidizing activity that is located at sites such as the plasma membrane, which is much less sensitive to inhibition by diphenylether herbicides.
Collapse
Affiliation(s)
- J M Jacobs
- Department of Microbiology, Dartmouth Medical School, Hanover, New Hampshire 03756
| | | | | | | |
Collapse
|
25
|
Spano AJ, Timko MP. Isolation, characterization and partial amino acid sequence of a chloroplast-localized porphobilinogen deaminase from pea (Pisum sativum L.). BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1076:29-36. [PMID: 1986793 DOI: 10.1016/0167-4838(91)90216-m] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Porphobilinogen deaminase catalyzes the condensation of four porphobilinogen monopyrrole units into hydroxymethylbilane, a linear tetrapyrrole necessary for the formation of chlorophyll and heme in higher plant cells. We report the purification to homogeneity of a chloroplast-localized form of the enzyme from pea (Pisum sativum L.) by a novel purification scheme involving dye-ligand affinity chromatography. The purified chloroplast porphobilinogen deaminase consists of a single polypeptide with a relative molecular mass of 36-45 kDa as determined by size-exclusion chromatography and sodium dodecyl sulfate polyacrylamide gel electrophoresis. The isoelectric point of the protein is acidic. The activity of the enzyme shows different levels of sensitivity to divalent cations and is most sensitive to FE2+. The amino terminus of pea enzyme has been obtained by microsequencing and determined to bear little similarity to the amino acid sequences of porphobilinogen deaminases purified from other organisms. Polyclonal antisera elicited against the purified protein has been used to examine the abundance and cellular distribution of the enzyme.
Collapse
Affiliation(s)
- A J Spano
- Department of Biology, University of Virginia, Charlottesville 22901
| | | |
Collapse
|
26
|
Beale SI, Weinstein JD. Chapter 5 Biochemistry and regulation of photosynthetic pigment formation in plants and algae. BIOSYNTHESIS OF TETRAPYRROLES 1991. [DOI: 10.1016/s0167-7306(08)60112-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Smith AG. Subcellular localization of two porphyrin-synthesis enzymes in Pisum sativum (pea) and Arum (cuckoo-pint) species. Biochem J 1988; 249:423-8. [PMID: 3277625 PMCID: PMC1148720 DOI: 10.1042/bj2490423] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The subcellular location of the two porphyrin-synthesis enzymes 5-aminolaevulinate dehydratase (ALAD) and porphobilinogen deaminase (PBGD) was investigated in Pisum sativum (pea) leaves and spadices of Arum (cuckoo-pint). Throughout the tissue-fractionation procedures the distribution of the two enzymes paralleled that of the plastid marker enzyme (ADP-glucose pyrophosphorylase), even in Arum, a tissue where the synthesis of non-plastid haem is predominant. The distribution of cytosolic marker enzyme (lactate dehydrogenase) was significantly different from that of ALAD and PBGD and, although purified mitochondria from both species had some residual activity, this was always less than contaminating plastid marker enzyme. The results suggest that ALAD and PBGD are exclusively plastid enzymes. The significance of this for the role of plastids in cellular porphyrin synthesis is discussed.
Collapse
Affiliation(s)
- A G Smith
- Department of Botany, University of Cambridge, U.K
| |
Collapse
|
28
|
Jacobs JM, Jacobs NJ. Oxidation of protoporphyrinogen to protoporphyrin, a step in chlorophyll and haem biosynthesis. Purification and partial characterization of the enzyme from barley organelles. Biochem J 1987; 244:219-24. [PMID: 3663113 PMCID: PMC1147974 DOI: 10.1042/bj2440219] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The protoporphyrinogen-oxidizing enzyme from Triton X-100 extracts of the mitochondrial and etioplast fractions of etiolated barley was purified by using ion-exchange and hydroxyapatite chromatography. The purified enzyme from both organelle fractions exhibited a Km of 5 microM and was labile to mild heat and acidification. The pH optimum (5-6) and the substrate-specificity (mesoporphyrinogen was oxidized as rapidly as protoporphyrinogen) revealed properties very different from the protoporphyrinogen-oxidizing enzyme of rat liver or yeast mitochondria, which is specific for protoporphyrinogen as substrate. The purest fractions showed a polypeptide band corresponding to an Mr of approx. 36,000 on SDS/polyacrylamide-gel electrophoresis. This is the first purification and characterization of the enzyme from a plant, and indicates no readily detectable differences between the enzyme isolated from mitochondrial or etioplast fractions, although only the latter organelle has the capacity for both haem and chlorophyll synthesis.
Collapse
Affiliation(s)
- J M Jacobs
- Department of Microbiology, Dartmouth Medical School, Hanover, NH 03756
| | | |
Collapse
|
29
|
Abstract
The final step in heme synthesis is catalyzed by the mitochondrial enzyme, ferrochelatase. Characterization of this enzyme has been complicated by a number of factors including the dependence of enzyme activity on lipids. Purification of ferrochelatase from rat and bovine sources has been achieved only relatively recently using blue Sepharose CL-6B chromatography. When 3,5-diethoxycarbonyl-1,4-dihydro-2,4,6-trimethylpyridine (DDC) is given to animals, it produces a hepatic porphyria resembling human variegate porphyria thus providing an experimental system in which to study this disease. DDC has been found to cause the accumulation of a green pigment, identified as N-methyl protoporphyrin IX (N-MePP), which is a potent inhibitor of ferrochelatase. The source of the N-methyl substituent of N-MePP was found to be the 4-methyl group of DDC. Considerable evidence indicates that the protoporphyrin IX moiety of N-MePP originates from the heme moiety of cytochrome P-450 and that DDC is a suicide substrate for this hemoprotein. Some studies suggest that cytochrome P-450 isozymes differ in their susceptibility to destruction by DDC and its 4-alkyl analogues. Griseofulvin has also been reported to inhibit hepatic ferrochelatase in rodents but not in the 17-day old chick embryo nor in hepatocyte culture systems. Thus, the mechanism by which griseofulvin produces an experimental porphyria in chick embryo liver cell culture is different from that for rodents.
Collapse
|
30
|
Jacobs JM, Jacobs NJ. Protoporphyrinogen oxidation, an enzymatic step in heme and chlorophyll synthesis: partial characterization of the reaction in plant organelles and comparison with mammalian and bacterial systems. Arch Biochem Biophys 1984; 229:312-9. [PMID: 6703698 DOI: 10.1016/0003-9861(84)90157-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High rates of oxidation of protoporphyrinogen to protoporphyrin were demonstrable in etioplasts, chloroplasts, and mitochondria from young barley shoots. Much lower rates were observed in chloroplasts from older barley or mature spinach, in mitochondria from potatoes or rat liver, and in membranes from the bacteria Escherichia coli and Rhodopseudomonas spheroides. The presence of high activity in cells capable of rapid synthesis of large amounts of chlorophyll suggests a role for this activity in chlorophyll synthesis. Characteristics of the plant protoporphyrinogen-oxidizing activity were compared to the activity in rat liver mitochondria. The activity in spinach chloroplasts exhibited a pH optimum of 7, which was lower than that of the mammalian enzyme. The plant activity was more sensitive to inhibition by glutathione or excess detergent, and was more readily inactivated at room temperature. The plant activity exhibited less specificity toward porphyrinogen substrates, oxidizing mesoporphyrinogen as rapidly as protoporphyrinogen. The mammalian enzyme oxidized mesoporphyrinogen slowly, and neither system oxidized coproporphyrinogen or uroporphyrinogen. Both the plant and the mammalian activity were bound to organelle membranes, but could be extracted with detergents. In contrast, activity from membranes of the bacteria E. coli and R. spheroides was inactivated by detergent treatment. The plant extracts could be fractionated with ammonium sulfate and retained activity after dialysis or Sephadex G-25 treatment, suggesting no readily dissociable cofactor. The activity extracted from spinach chloroplasts was mostly inactivated by trypsin digestion, which was additional evidence for the protein nature of the plant activity.
Collapse
|
31
|
Jacobs JM, Jacobs NJ, De Maggio AE. Protoporphyrinogen oxidation in chloroplasts and plant mitochondria, a step in heme and chlorophyll synthesis. Arch Biochem Biophys 1982; 218:233-9. [PMID: 7149731 DOI: 10.1016/0003-9861(82)90341-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Chereskin BM, Castelfranco PA. Effects of Iron and Oxygen on Chlorophyll Biosynthesis : II. OBSERVATIONS ON THE BIOSYNTHETIC PATHWAY IN ISOLATED ETIOCHLOROPLASTS. PLANT PHYSIOLOGY 1982; 69:112-6. [PMID: 16662140 PMCID: PMC426156 DOI: 10.1104/pp.69.1.112] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The conversion of l-glutamate to delta-aminolevulinate, in preparations of cucumber etiochloroplasts incubated in vitro, was inhibited by protoheme IX and Mg-protoporphyrin IX. Mg-protoporphyrin IX was destroyed in the presence of air and plastids; this breakdown was accelerated by S-adenosyl methionine. Mg-protoporphyrin IX was also converted to protochlorophyllide in vitro. This conversion exhibited an absolute requirement for atmospheric oxygen and was strongly stimulated by S-adenosyl methionine and by darkness.Based on these results, and on the results of the preceding paper (Spiller, Castelfranco, Castelfranco 1981 Plant Physiol 68: 107-111), a comprehensive hypothesis for the role of O(2) and Fe in chlorophyll biosynthesis is formulated.
Collapse
Affiliation(s)
- B M Chereskin
- Department of Botany, University of California, Davis, California 95616
| | | |
Collapse
|
33
|
Nedergaard J, Cannon B. Overview--preparation and properties of mitochondria from different sources. Methods Enzymol 1979; 55:3-28. [PMID: 459848 DOI: 10.1016/0076-6879(79)55003-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|