1
|
Yang J, Zhu B, Zhang J, Liang SH, Shen S, Ran C. Half-Curcumin-Based Chemiluminescence Probes and Their Applications in Detecting Quasi-Stable Oxidized Proteins. Angew Chem Int Ed Engl 2024; 63:e202409896. [PMID: 38980957 PMCID: PMC11421953 DOI: 10.1002/anie.202409896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Numerous methods have been reported for detecting ROS/RNS in vitro and in vivo; however, detecting methods for the secondary products of the reactive oxygen species (ROS)/reactive nitrogen species (RNS) reactions, particularly quasi-stable oxidized products, have been much less explored. In this report, we observed that half-curcumins could generate chemiluminescence (CL). In contrast to other chemiluminescence scaffolds, the distinguishing feature of a half-curcumin is the formation of a carbanion intermediate of its acetylacetone moiety, opening unique avenues for applications. In this study, we designed a series of half-curcumins CRANAD-Xs and found that CRANAD-164 could be used to detect quasi-stable oxidized proteins (QSOP) in vivo and in patient serum samples. We illustrated that CRANAD-164 could be used to monitor the responses of taurine, an amino acid with newly reported anti-aging capacity, in an inflammatory mouse model. Remarkably, we further demonstrated that the QSOP levels were much higher in the disease serum samples, including Alzheimer's disease (AD), compared to the samples from healthy controls. Moreover, our results revealed that the sera chemiluminescence intensities were higher in aged healthy controls compared to young healthy subjects, suggesting that CRANAD-164 can be used to monitor the increase of QSOP during aging.
Collapse
Affiliation(s)
- Jun Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Jing Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Steven H Liang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, 30322, United States
| | - Shiqian Shen
- Massachusetts General Hospital Center for Translational Pain Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| |
Collapse
|
2
|
Lewandowski RB, Stępińska M, Osuchowski Ł, Kasprzycka W, Dobrzyńska M, Mierczyk Z, Trafny EA. The HOCl dry fog-is it safe for human cells? PLoS One 2024; 19:e0304602. [PMID: 38809935 PMCID: PMC11135740 DOI: 10.1371/journal.pone.0304602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
This study aims to investigate if high-concentration HOCl fogging disinfection causes cytotoxicity and genotoxicity to cultured primary human skin fibroblasts. The cells were exposed to a dry fog of HOCl produced from solutions with a concentration of 300 ppm (5.72 mM) or 500 ppm (9.53 mM). After four times when fibroblasts were exposed to aerosolized HOCl at a concentration of 500 ppm for 9 minutes, significant cytotoxicity and genotoxicity effects were observed. Significant changes in the morphology of fibroblasts and cell death due to membrane disruption were observed, independent of the number of exposures. Flow cytometry analyses performed under these experimental conditions indicated a decrease in the number of cells with an intact cell membrane in the exposed samples compared to the sham samples, dropping to 49.1% of the total cells. Additionally, under the same conditions, the neutral comet assay results demonstrated significant DNA damage in the exposed cells. However, no analogous damages were found when the cells were exposed to aerosolized HOCl generated from a 300-ppm solution for 3 minutes, whether once or four times. Therefore, we have concluded that aerosolized HOCl in dry fog, with a concentration exceeding 300 ppm, can cause cytotoxic and genotoxic effects on human skin fibroblasts.
Collapse
Affiliation(s)
- Rafał Bogdan Lewandowski
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Małgorzata Stępińska
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Łukasz Osuchowski
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Wiktoria Kasprzycka
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Monika Dobrzyńska
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Zygmunt Mierczyk
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| | - Elżbieta Anna Trafny
- Institute of Optoelectronics, Biomedical Engineering Centre, Military University of Technology, Warsaw, Poland
| |
Collapse
|
3
|
Simon F, Fábián I, Szabó M. Oxidation of branched chain amino acids by HOCl: Kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134145. [PMID: 38565013 DOI: 10.1016/j.jhazmat.2024.134145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
The kinetics of the chlorination of leucine, isoleucine, and valine (BCAAs) was studied in excess HOCl by stopped-flow and spectrophotometric methods (25 ◦C, I = 1.0 M NaClO4). The intermediates and products were identified and monitored by 1H NMR spectroscopy. It was established that these reactions are fully analogous and proceed according to distinct mechanisms under alkaline and neutral conditions. At high pH, the formation and subsequent rate determining decomposition of N-monochloroamino acid control the process. The decomposition occurs via competing pH-independent and OH--assisted reaction paths and the sequence of chlorination, dichlorination and decarboxylation steps leads to the formation of N-chloroimines and their carbanionic forms, which are in fast acid - base equilibria. The dechlorination of the carbanions yields nitriles as the main products. The hydration of the N-chloro imines produces chloramine and aldehydes which are involved in further oxidation reactions with HOCl. The formation of chloroform and chloroacetaldehyde was confirmed in each system. At pH 7.0, the N-chloro derivatives of BCAAs form immediately and are converted into the corresponding N,N-dichloro species within a few seconds after mixing the reactants. In this reaction, the reactive form of the oxidant is Cl2O. The first-order decomposition of the dichloroamino acids occurs on stopped-flow timescale (k = 0.5 - 0.7 s-1) and yields N-chloroimines which slowly decompose with a characteristic first-order rate constant on the order of a few times 10-5 s-1. The main products are the corresponding nitriles that account for about 80% and 60% of the original amounts of amino acids under neutral and alkaline (cOH- = 5.00 × 10-2 M) conditions, respectively. Aldehydes, carboxylic acids, chloroform and NCl3 were also identified as by-products. The results unequivocally confirm that harmful chlorinated species may form from amino acids long after the chlorination step in water treatment technologies that deteriorates the quality of the finished water. ENVIRONMENTAL IMPLICATION: In source waters, amino acids account for about 75% of the total dissolved nitrogen. Therefore, it is an essential issue how the reactions of these compounds with hypochlorite ion can be controlled to avoid the formation of toxic compounds. The compounds formed from BCAAs are considered to be harmful both under alkaline and neutral conditions (chloroacetaldehyde, chloroform, nitriles). However, some of the intermediates have extended lifetime in these systems and they may also react with other components of raw water during water treatment processes.
Collapse
Affiliation(s)
- Fruzsina Simon
- HUN-REN-UD Mechanisms of Complex Homogeneous and Heterogeneous Chemical, Reactions Research Group, University of Debrecen, Debrecen, Hungary
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary; HUN-REN-UD Mechanisms of Complex Homogeneous and Heterogeneous Chemical, Reactions Research Group, University of Debrecen, Debrecen, Hungary
| | - Mária Szabó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary; HUN-REN-UD Mechanisms of Complex Homogeneous and Heterogeneous Chemical, Reactions Research Group, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
4
|
Koga T, Sahara Y, Ohtani T, Yosuke K, Umehara K. Possible nonimmunological toxicological mechanisms of vesnarinone-associated agranulocytosis in HL-60 cells: role of reduced glutathione as cytotoxic defense. J Toxicol Sci 2024; 49:95-103. [PMID: 38432956 DOI: 10.2131/jts.49.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
This study was conducted as part of an investigation into the cause of vesnarinone-associated agranulocytosis. When HL-60 cells were exposed to vesnarinone for 48 hr, little cytotoxicity was observed, although reduced glutathione (GSH) content decreased in a concentration-dependent manner. Significant cytotoxicity and reactive oxygen species (ROS) production were observed when intracellular GSH content was reduced by treatment with L-buthionine-(S, R)-sulphoximine. The involvement of myeloperoxidase (MPO) metabolism was suggested, as when HL-60 cells were exposed to a reaction mixture of vesnarinone-MPO/H2O2/Cl-, cytotoxicity was also observed. In contrast, the presence of GSH (1 mM) protected against these cytotoxic effects. Liquid chromatography-mass spectrometry analysis of the MPO/H2O2/Cl- reaction mixture revealed that vesnarinone was converted into two metabolites, (4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 1: M1] and 1-chloro-4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 2: M2]). M2 was identified as the N-chloramine form, a reactive metabolite of M1. Interestingly, M2 was converted to M1, which was accompanied by the conversion of GSH to oxidized GSH (GSSG). Furthermore, when HL-60 cells were exposed to synthetic M1 and M2 for 24 hr, M2 caused dose-dependent cytotoxicity, whereas M1 did not. Cells were protected from M2-derived cytotoxicity by the presence of GSH. In conclusion, we present the first demonstration of the cytotoxic effects and ROS production resulting from the MPO/H2O2/Cl- metabolic reaction of vesnarinone and newly identified the causative metabolite, M2, as the N-chloramine metabolite of M1, which induces cytotoxicity in HL-60 cells. Moreover, a protective role of GSH against the cytotoxicity was revealed. These findings suggest a possible nonimmunological cause of vesnarinone agranulocytosis.
Collapse
Affiliation(s)
- Toshihisa Koga
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| | - Yuko Sahara
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| | - Tadaaki Ohtani
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| | - Kaneko Yosuke
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| | - Ken Umehara
- Department of Drug Metabolism and Pharmacokinetics, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd
| |
Collapse
|
5
|
Salgado-Blanco D, Flores-Saldaña DSM, Jaimes-Miranda F, López-Urías F. Electronic and magnetic properties of TATA-DNA sequence driven by chemical functionalization. J Comput Chem 2023; 44:1199-1207. [PMID: 36704941 DOI: 10.1002/jcc.27079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/06/2022] [Accepted: 01/08/2023] [Indexed: 01/28/2023]
Abstract
The TATA box is a promoter sequence able to interact directly with the components of the basal transcription initiation machinery. We investigate the changes in the electronic and magnetic properties of a TATA-DNA sequence when functionalized with different chemical groups; using the first-principles density functional theory specifically, the TATA-DNA sequences were functionalized with methyl groups (CH3 , methylation), amino groups (NH2 , amination), imine groups (NH, imination), chloroamine groups (NCl2 , chloramination), H-adatom (hydrogenation), and Cl-adatom (chlorination). The functional groups were anchored at nitrogen atoms from adenine and oxygen atoms from thymine at sites pointed as reactive regions. We demonstrated that chemical functionalization induces significant changes in charge transfer, hydrogen bond distance, and hydrogen bond energy. The hydrogenation and imination increased the hydrogen bond energy. Results also revealed that the chemical functionalization of DNA molecules exhibit a ferromagnetic ground state, reaching magnetization up to 4.665 μB and complex magnetic ordering. We further demonstrated that the functionalization could induce tautomerism (proton migration in the base pair systems). The present study provides a theoretical basis for understanding the functionalization further into DNA molecules and visualizing possible future applications.
Collapse
Affiliation(s)
- Daniel Salgado-Blanco
- Cátedra-Conacyt, Centro Nacional de Supercómputo, IPICyT, San Luis Potosí, Mexico
- División de Materiales Avanzados, IPICyT, San Luis Potosí, Mexico
| | - Diana S M Flores-Saldaña
- Engineering in Nanotechnologies and Energies, San Luis Potosí Autonomous University, San Luis Potosí, Mexico
| | | | | |
Collapse
|
6
|
Simon F, Szabó M, Fábián I. The chlorination of glycine and α-alanine at excess HOCl: Kinetics and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 447:130794. [PMID: 36669404 DOI: 10.1016/j.jhazmat.2023.130794] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The chlorination of the two simplest amino acids at HOCl excess was studied by stopped-flow, conventional spectrophotometric and time resolved 1H NMR kinetic methods at 25 °C. These reactions show distinct characteristics under neutral and alkaline conditions. At high pH, the common feature of the two systems is that the N-dichloroamino carboxylate ion does not form and the overall process is controlled by the initial decomposition of the N-monochloro derivative. Under such conditions, carbanions form in equilibrium acid - base processes and open alternative reaction paths, resulting in enhanced complexity of the corresponding mechanisms. In the case of α-alanine, the formation of acetonitrile and N-chloro acetamide as main products; acetate ion, acetaldehyde, chloroacetaldehyde, chloroform as byproducts; acetamide and N-chloro ethanimine as intermediates was confirmed. In the case of glycine, the final products are formamide and OCN-. Under neutral conditions, monochloroamino acid forms immediately upon mixing the reactants, and subsequently it is converted into dichloroamino acid by Cl2O in a fast process. In considerably slower further reaction steps, acetonitrile and acetate ion form as final products in the α-alanine system, while the chlorination of glycine proceeds to full mineralization. The detailed mechanisms suggested for these reactions postulate the formation of various imines and N-chloro imines which are involved in decarboxylation, dechlorination, hydration and hydrolytic reaction steps.
Collapse
Affiliation(s)
- Fruzsina Simon
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary; ELKH - DE Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, University of Debrecen, Debrecen, Hungary
| | - Mária Szabó
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary; ELKH - DE Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, University of Debrecen, Debrecen, Hungary.
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary; ELKH - DE Mechanisms of Complex Homogeneous and Heterogeneous Chemical Reactions Research Group, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
7
|
Hallberg LAE, Thorsen NW, Hartsema EA, Hägglund PM, Hawkins CL. Mapping the modification of histones by the myeloperoxidase-derived oxidant hypochlorous acid (HOCl). Free Radic Biol Med 2022; 192:152-164. [PMID: 36152914 DOI: 10.1016/j.freeradbiomed.2022.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/18/2022] [Accepted: 09/17/2022] [Indexed: 01/02/2023]
Abstract
Histones are critical for the packaging of nuclear DNA and chromatin assembly, which is facilitated by the high abundance of Lys and Arg residues within these proteins. These residues are also the site of a range of post-translational modifications, which influence the regulatory function of histones. Histones are also present in the extracellular environment, following release by various pathways, particularly neutrophil extracellular traps (NETs). NETs contain myeloperoxidase, which retains its enzymatic activity and produces hypochlorous acid (HOCl). This suggests that histones could be targets for HOCl under conditions where aberrant NET release is prevalent, such as chronic inflammation. In this study, we examine the reactivity of HOCl with a mixture of linker (H1) and core (H2A, H2B, H3 and H4) histones. HOCl modified the histones in a dose- and time-dependent manner, resulting in structural changes to the proteins and the formation of a range of post-translational modification products. N-Chloramines are major products following exposure of the histones to HOCl and decompose over 24 h forming Lys nitriles and carbonyls (aminoadipic semialdehydes). Chlorination and dichlorination of Tyr, but not Trp residues, is also observed. Met sulfoxide and Met sulfones are formed, though these oxidation products are also detected albeit at a lower extent, in the non-treated histones. Evidence for histone fragmentation and aggregation was also obtained. These results could have implications for the development of chronic inflammatory diseases, given the key role of Lys residues in regulating histone function.
Collapse
Affiliation(s)
- Line A E Hallberg
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Nicoline W Thorsen
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Els A Hartsema
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark
| | - Per M Hägglund
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark.
| | - Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum, Blegdamsvej 3B, Copenhagen N, DK, 2200, Denmark.
| |
Collapse
|
8
|
Muacevic A, Adler JR. The Effect of Hypochlorous Acid Disinfectant on the Reproduction of Details and Surface Hardness of Type III Dental Stone. Cureus 2022; 14:e32061. [PMID: 36600860 PMCID: PMC9800944 DOI: 10.7759/cureus.32061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/17/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Gypsum products have been used for many years in dentistry. They are used to make casts that are used in different dental laboratory procedures. It is considered a source of contamination because it comes in contact with blood and saliva that are found on dental impressions. Because it is difficult to make sure that every impression brought to the dental laboratory has been cleaned and because cleaning impressions is a complicated process that can lead to problems because of the way impression materials are made, cleaning the cast has become a key part of preventing infections. For this study, we used two ways (immersion and spray) to apply a hypochlorous acid (HOCl) disinfectant solution to type III dental stone to see how they affected the stone's surface hardness and its ability to show surface details accurately. Materials and methods A total of 100 samples of type III dental stone, 50 samples for each test, which include the reproduction of detail test and surface hardness test, were prepared and randomly divided into five groups, 10 samples for each test group, which include group A (control), group B (immersion in 200 ppm HOCl disinfectant for five minutes), group C (spraying with 200 ppm HOCl disinfectant for five minutes), group D (immersion in 0.6% sodium hypochlorite (NaOCl) disinfectant for five minutes), and group E (spraying with 0.6% NaOCl disinfectant for five minutes). Results The results showed that all the samples had met the reproduction of detail test requirement after disinfection with HOCl, while a significant reduction in the surface hardness of type III stone samples was also shown. Conclusion The less undesirable effects of HOCl disinfectant solution on the surface hardness of type III dental stone when compared to sodium hypochlorite, as well as the absence of adverse effects on detail reproduction, made the HOCl disinfectant solution a good choice for dentists and dental laboratory personnel for cast disinfection and contamination control.
Collapse
|
9
|
Lockhart JS, Sumagin R. Non-Canonical Functions of Myeloperoxidase in Immune Regulation, Tissue Inflammation and Cancer. Int J Mol Sci 2022; 23:ijms232012250. [PMID: 36293108 PMCID: PMC9603794 DOI: 10.3390/ijms232012250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundantly expressed proteins in neutrophils. It serves as a critical component of the antimicrobial defense system, facilitating microbial killing via generation of reactive oxygen species (ROS). Interestingly, emerging evidence indicates that in addition to the well-recognized canonical antimicrobial function of MPO, it can directly or indirectly impact immune cells and tissue responses in homeostatic and disease states. Here, we highlight the emerging non-canonical functions of MPO, including its impact on neutrophil longevity, activation and trafficking in inflammation, its interactions with other immune cells, and how these interactions shape disease outcomes. We further discuss MPO interactions with barrier forming endothelial and epithelial cells, specialized cells of the central nervous system (CNS) and its involvement in cancer progression. Such diverse function and the MPO association with numerous inflammatory disorders make it an attractive target for therapies aimed at resolving inflammation and limiting inflammation-associated tissue damage. However, while considering MPO inhibition as a potential therapy, one must account for the diverse impact of MPO activity on various cellular compartments both in health and disease.
Collapse
|
10
|
Das AB, Seddon AR, O'Connor KM, Hampton MB. Regulation of the epigenetic landscape by immune cell oxidants. Free Radic Biol Med 2021; 170:131-149. [PMID: 33444713 DOI: 10.1016/j.freeradbiomed.2020.12.453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022]
Abstract
Excessive production of microbicidal oxidants by neutrophils can damage host tissue. The short-term response of cells to oxidative stress is well understood, but the mechanisms behind long-term consequences require further clarification. Epigenetic pathways mediate cellular adaptation, and are therefore a potential target of oxidative stress. Indeed, there is evidence that many proteins and metabolites involved in epigenetic pathways are redox sensitive. In this review we provide an overview of the epigenetic landscape and discuss the potential for redox regulation. Using this information, we highlight specific examples where neutrophil oxidants react with epigenetic pathway components. We also use published data from redox proteomics to map out known intersections between oxidative stress and epigenetics that may signpost helpful directions for future investigation. Finally, we discuss the role neutrophils play in adaptive pathologies with a focus on tumour initiation and progression. We hope this information will stimulate further discourse on the emerging field of redox epigenomics.
Collapse
Affiliation(s)
- Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Annika R Seddon
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Karina M O'Connor
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
11
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
12
|
Bastin G, Loison P, Vernex-Loset L, Dupire F, Challant J, Majou D, Boudaud N, Krier G, Gantzer C. Structural Organizations of Qβ and MS2 Phages Affect Capsid Protein Modifications by Oxidants Hypochlorous Acid and Peroxynitrite. Front Microbiol 2020; 11:1157. [PMID: 32582098 PMCID: PMC7283501 DOI: 10.3389/fmicb.2020.01157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/06/2020] [Indexed: 12/19/2022] Open
Abstract
Pathogenic enteric viruses and bacteriophages such as Qβ and MS2 are transmitted through the fecal-oral route. However, oxidants such as peroxynitrite (ONOOH) and hypochlorous acid (HClO) can prevent new infection by inactivating infectious viruses. Their virucidal effect is well recognized, and yet predicting the effects of oxidants on viruses is currently impossible because the detailed mechanisms of viral inactivation remain unclear. Our data show that ONOOH and HClO cross-linked the capsid proteins and RNA genomes of Qβ and MS2 phages. Consistently, the capsids appeared intact by transmission electron microscopy (TEM) even when 99% of the phages were inactivated by oxidation. Moreover, a precise molecular study of the capsid proteins shows that ONOOH and HClO preferentially targeted capsid protein regions containing the oxidant-sensitive amino acid C, Y, or W. Interestingly, the interaction of these amino acids was a crucial parameter defining whether they would be modified by the addition of O, Cl, or NO2 or whether it induced the loss of the protein region detected by mass spectrometry, together suggesting potential sites for cross-link formation. Together, these data show that HClO and ONOOH consistently target oxidant-sensitive amino acids regardless of the structural organization of Qβ and MS2, even though the phenotypes change as a function of the interaction with adjacent proteins/RNA. These data also indicate a potential novel mechanism of viral inactivation in which cross-linking may impair infectivity.
Collapse
Affiliation(s)
- Guillaume Bastin
- Université de Lorraine, CNRS, LCPME, Nancy, France.,ACTALIA, Food Safety Department, Saint-Lô, France
| | | | | | | | | | | | | | - Gabriel Krier
- Université de Lorraine, LCP-A2MC, EA 4632, Metz, France
| | | |
Collapse
|
13
|
Setúbal SDS, Pontes AS, Nery NM, Rego CMA, Santana HM, de Lima AM, Boeno CN, Paloschi MV, Soares AM, Zuliani JP. Human neutrophils functionality under effect of an Asp49 phospholipase A 2 isolated from Bothrops atrox venom. Toxicon X 2020; 6:100032. [PMID: 32550587 DOI: 10.1016/j.toxcx.2020.100032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 12/23/2022] Open
Abstract
Bothrops envenomation is associated with a cellular inflammatory response, characterized by pronounced neutrophil infiltration at the site of injury. Neutrophils act as the first line of defence, owing to their ability to migrate to the infected tissue, promoting an acute inflammatory response. At the site of inflammation, neutrophils perform defence functions such as phagocytosis, release of proteolytic enzymes, generation of reactive oxygen species (ROS), and synthesis of inflammatory mediators such as cytokines and lipid mediators. Neutrophils can also form neutrophil extracellular nets (NETs), webs composed of chromatin and granule proteins. This occurs after neutrophil activation and delivers high concentrations of anti-microbial molecules to the site of injury. This study evaluated the impact of BaTX-II, an Asp49 phospholipase A2 (PLA2) isolated from Bothrops atrox snake venom on human neutrophils in vitro. At non-toxic concentrations, BaTX-II induced hydrogen peroxide production by neutrophils, and this was reduced by wortmannin, a PI3K inhibitor. BaTX-II stimulated IL-1β, IL-8, LTB4, myeloperoxidase (MPO), and DNA content release, consistent with NET formation. This is the first study to show the triggering of relevant pro-inflammatory events by PLA2 Asp49 isolated from secretory venom.
Collapse
Affiliation(s)
- Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Adriana S Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Neriane M Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Cristina M A Rego
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Hallison M Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Anderson M de Lima
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, (FIOCRUZ) Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Charles N Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Mauro V Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, (FIOCRUZ) Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
- Universidade São Lucas (UniSL), Porto Velho, RO, Brazil
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz (FIOCRUZ) Rondônia, Porto Velho, RO, Brazil
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, (FIOCRUZ) Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| |
Collapse
|
14
|
Hypochlorous acid-mediated modification of proteins and its consequences. Essays Biochem 2019; 64:75-86. [DOI: 10.1042/ebc20190045] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/03/2019] [Accepted: 12/06/2019] [Indexed: 01/06/2023]
Abstract
AbstractMyeloperoxidase (MPO) is a mammalian heme peroxidase released by activated immune cells, which forms chemical oxidants, including hypochlorous acid (HOCl), to kill bacteria and other invading pathogens. In addition to this important role in the innate immune system, there is significant evidence from numerous chronic inflammatory pathologies for the elevated production of HOCl and associated oxidative modification of proteins and damage to host tissue. Proteins are major targets for HOCl in biological systems, owing to their abundance and the high reactivity of several amino acid side-chains with this oxidant. As such, there is significant interest in understanding the molecular mechanisms involved in HOCl-mediated protein damage and defining the consequences of these reactions. Exposure of proteins to HOCl results in a wide range of oxidative modifications and the formation of chlorinated products, which alter protein structure and enzyme activity, and impact the function of biological systems. This review describes the reactivity of HOCl with proteins, including the specific pathways involved in side-chain modification, backbone fragmentation and aggregation, and outlines examples of some of the biological consequences of these reactions, particularly in relation to the development of chronic inflammatory disease.
Collapse
|
15
|
Yudhistira T, Mulay SV, Kim Y, Halle MB, Churchill DG. Imaging of Hypochlorous Acid by Fluorescence and Applications in Biological Systems. Chem Asian J 2019; 14:3048-3084. [PMID: 31347256 DOI: 10.1002/asia.201900672] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/22/2019] [Indexed: 01/06/2023]
Abstract
In recent decades, HOCl research has attracted a lot of scientists from around the world. This chemical species is well known as an important player in the biological systems of eukaryotic organisms including humans. In the human body, HOCl is produced by the myeloperoxidase enzyme from superoxide in very low concentrations (20 to 400 μm); this species is secreted by neutrophils and monocytes to help fight pathogens. However, in the condition called "oxidative stress", HOCl has the capability to attack many important biomolecules such as amino acids, proteins, nucleotides, nucleic acids, carbohydrates, and lipids; these reactions could ultimately contribute to a number of diseases such as neurodegenerative diseases (AD, PD, and ALS), cardiovascular diseases, and diabetes. In this review, we discuss recent efforts by scientists to synthesize various fluorophores which are attached to receptors to detect HOCl such as: chalcogen-based oxidation, oxidation of 4-methoxyphenol, oxime/imine, lactone ring opening, and hydrazine. These synthetic molecules, involving rational synthetic pathways, allow us to chemoselectively target HOCl and to study the level of HOCl selectivity through emission responses. Virtually all the reports here deal with well-defined and small synthetic molecular systems. A large number of published compounds have been reported over the past years; this growing field has given scientists new insights regarding the design of the chemosensors. Reversibility, for example is considered important from the stand point of chemosensor reuse within the biological system; facile regenerability using secondary analytes to obtain the initial probe is a very promising avenue. Another aspect which is also important is the energy of the emission wavelength of the sensor; near-infrared (NIR) emission is favorable to prevent autofluorescence and harmful irradiation of tissue; thus, extended applicability of such sensors can be made to the mouse model or animal model to help image internal organs. In this review, we describe several well-known types of receptors that are covalently attached to the fluorophore to detect HOCl. We also discuss the common fluorophores which are used by chemist to detect HOCl, Apart from the chemical aspects, we also discuss the capabilities of the compounds to detect HOCl in living cells as measured through confocal imaging. The growing insight from HOCl probing suggests that there is still much room for improvement regarding the available molecular designs, knowledge of interplay between analytes, biological applicability, biological targeting, and chemical switching, which can also serve to further sensor and theurapeutic agent development alike.
Collapse
Affiliation(s)
- Tesla Yudhistira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - Sandip V Mulay
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,Artificial Photosynthesis Research Group, Korea Research Institute of Chemical Technology (KRICT), 100 Jang-dong, Yuseong, Daejeon, 305 600, Republic of Korea
| | - Youngsam Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,Semiconductor Material Division, LG Chemistry, 104-1, Munji-dong, Daejeon, Republic of Korea
| | - Mahesh B Halle
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| | - David G Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 305-701, Republic of Korea.,KI for Health Science and Technology, KI Institute, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Republic of Korea
| |
Collapse
|
16
|
DNA-based surrogate indicator for sanitation verification and predict inactivation of Escherichia coli O157:H7 using vibrational spectroscopy (FTIR). Food Control 2019. [DOI: 10.1016/j.foodcont.2018.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Galano A, Reiter RJ. Melatonin and its metabolites vs oxidative stress: From individual actions to collective protection. J Pineal Res 2018; 65:e12514. [PMID: 29888508 DOI: 10.1111/jpi.12514] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
Oxidative stress (OS) represents a threat to the chemical integrity of biomolecules including lipids, proteins, and DNA. The associated molecular damage frequently results in serious health issues, which justifies our concern about this phenomenon. In addition to enzymatic defense mechanisms, there are compounds (usually referred to as antioxidants) that offer chemical protection against oxidative events. Among them, melatonin and its metabolites constitute a particularly efficient chemical family. They offer protection against OS as individual chemical entities through a wide variety of mechanisms including electron transfer, hydrogen transfer, radical adduct formation, and metal chelation, and by repairing biological targets. In fact, many of them including melatonin can be classified as multipurpose antioxidants. However, what seems to be unique to the melatonin's family is their collective effects. Because the members of this family are metabolically related, most of them are expected to be present in living organisms wherever melatonin is produced. Therefore, the protection exerted by melatonin against OS may be viewed as a result of the combined antioxidant effects of the parent molecule and its metabolites. Melatonin's family is rather exceptional in this regard, offering versatile and collective antioxidant protection against OS. It certainly seems that melatonin is one of the best nature's defenses against oxidative damage.
Collapse
Affiliation(s)
- Annia Galano
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, México City, México
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
| |
Collapse
|
18
|
Liu Q, Wu J, Lim ZY, Lai S, Lee N, Yang H. Metabolite profiling of Listeria innocua for unravelling the inactivation mechanism of electrolysed water by nuclear magnetic resonance spectroscopy. Int J Food Microbiol 2018; 271:24-32. [PMID: 29477806 DOI: 10.1016/j.ijfoodmicro.2018.02.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/06/2018] [Accepted: 02/11/2018] [Indexed: 01/23/2023]
Abstract
Bactericidal effects of low concentration electrolysed water (LcEW) on microorganisms are previously well reported; however, the inactivation mechanism of EW is not understood. The lethal and sublethal injuries of L. monocytogenes and L. innocua by EW treatments were determined and the metabolic profile changes for L. innocua were characterised using nuclear magnetic resonance (NMR). Microbial metabolomics approach combined with multivariate data analyses was used to interpret the cellular chemical fingerprints of L. innocua. The relative amount of intracellular reactive oxygen species (ROS) was assayed using 2',7-dichlorodihydrofluorescein diacetate (H2DCFDA). The results showed that the proportion of the sublethally injured microbial cells L. monocytogenes and L. innocua increased from 40% to 70% and from 35% to 65%, respectively, when the free available chlorine (FAC) of LcEW increased from 2 to 8 mg/L. Overall, 36 low-molecular-weight metabolic compounds in L. innocua extracts were characterised by NMR spectroscopy. EW perturbation resulted in a drastic and multitude disruption across a wide range of biochemical process including peptidoglycan synthesis, nucleotides biosynthesis and amino acid metabolism. Elevated levels of α-ketoglutarate and succinate implicated the enhanced glutamate decarboxylase (GAD) system and γ-aminobutyric acid (GABA) shunt for the protection against oxidative stress. These findings provided the comprehensive insights into the metabolic response of Listeria to EW oxidative stress and can serve as a basis for better utilisation for sanitisation.
Collapse
Affiliation(s)
- Qin Liu
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Ji'en Wu
- The Nuclear Magnetic Resonance Laboratory, Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhi Yang Lim
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Shaojuan Lai
- Guangzhou Pulu Medical Technology Co., Ltd, Guangzhou, Guangdong 510800, PR China
| | - Norman Lee
- Science Research Programme, Temasek Junior College, Singapore 469278, Singapore
| | - Hongshun Yang
- Food Science and Technology Programme, c/o Department of Chemistry, National University of Singapore, Singapore 117543, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
19
|
Bhattacharya P, Basak A, Campbell A, Alabugin IV. Photochemical Activation of Enediyne Warheads: A Potential Tool for Targeted Antitumor Therapy. Mol Pharm 2018; 15:768-797. [DOI: 10.1021/acs.molpharmaceut.7b00911] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Amit Basak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Adam Campbell
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
20
|
Tantry IQ, Waris S, Habib S, Khan RH, Mahmood R, Ali A. Hypochlorous acid induced structural and conformational modifications in human DNA: A multi-spectroscopic study. Int J Biol Macromol 2018; 106:551-558. [PMID: 28807688 DOI: 10.1016/j.ijbiomac.2017.08.051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023]
|
21
|
Liu Q, Wu J, Lim ZY, Aggarwal A, Yang H, Wang S. Evaluation of the metabolic response of Escherichia coli to electrolysed water by 1 H NMR spectroscopy. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.01.066] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Noyon C, Roumeguère T, Delporte C, Dufour D, Cortese M, Desmet JM, Lelubre C, Rousseau A, Poelvoorde P, Nève J, Vanhamme L, Boudjeltia KZ, Van Antwerpen P. The presence of modified nucleosides in extracellular fluids leads to the specific incorporation of 5-chlorocytidine into RNA and modulates the transcription and translation. Mol Cell Biochem 2017; 429:59-71. [PMID: 28074342 DOI: 10.1007/s11010-016-2936-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/23/2016] [Indexed: 12/13/2022]
Abstract
Myeloperoxidase (MPO) is able to promote several kinds of damage and is involved in mechanisms leading to various diseases such as atherosclerosis or cancers. An example of these damages is the chlorination of nucleic acids, which is considered as a specific marker of the MPO activity. Since 5-chlorocytidine has been recently shown in healthy donor plasmas, this study aimed at discovering if these circulating modified nucleosides could be incorporated into RNA and DNA and if their presence impacts the ability of enzymes involved in the incorporation, transcription, and translation processes. Experimentations, which were carried out in vitro with endothelial and prostatic cells, showed a large penetration of all chloronucleosides but an exclusive incorporation of 5-chlorocytidine into RNA. However, no incorporation into DNA was observed. This specific incorporation is accompanied by an important reduction of translation yield. Although, in vitro, DNA polymerase processed in the presence of chloronucleosides but more slowly than in control conditions, ribonucleotide reductase could not reduce chloronucleotides prior to the replication. This reduction seems to be a limiting step, protecting DNA from chloronucleoside incorporation. This study shows the capacity of transcription enzyme to specifically incorporate 5-chlorocytidine into RNA and the loss of capacity-complete or partial-of different enzymes, involved in replication, transcription or translation, in the presence of chloronucleosides. Questions remain about the long-term impact of such specific incorporation in the RNA and such decrease of protein production on the cell viability and function.
Collapse
Affiliation(s)
- Caroline Noyon
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Thierry Roumeguère
- Department of Urology, Erasme Hospital, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Cédric Delporte
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium.,Analytical Platform of the Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP205/5, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Damien Dufour
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Melissa Cortese
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium.,Analytical Platform of the Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP205/5, Boulevard du Triomphe, Brussels, 1050, Belgium
| | - Jean-Marc Desmet
- Unit of Dialysis, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110, Montigny-le-Tilleul, Belgium
| | - Christophe Lelubre
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110, Montigny-le-Tilleul, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110, Montigny-le-Tilleul, Belgium
| | - Philippe Poelvoorde
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Jean Nève
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium
| | - Luc Vanhamme
- Laboratory of Molecular Biology of Inflammation, IBMM, Faculty of Sciences, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | - Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, 6110, Montigny-le-Tilleul, Belgium
| | - Pierre Van Antwerpen
- Laboratory of Organic Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, 1050, Brussels, Belgium. .,Analytical Platform of the Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, Université Libre de Bruxelles, Campus Plaine CP205/5, Boulevard du Triomphe, Brussels, 1050, Belgium.
| |
Collapse
|
23
|
Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8386362. [PMID: 28090245 PMCID: PMC5206476 DOI: 10.1155/2016/8386362] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
Abstract
Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl), generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic) effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated) phospholipids and plasmalogens such as lysophospholipids, (chlorinated) free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.
Collapse
|
24
|
Validation of a sensitive LC/MSMS method for chloronucleoside analysis in biological matrixes and its applications. Talanta 2016; 154:322-8. [PMID: 27154681 DOI: 10.1016/j.talanta.2016.03.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/24/2016] [Accepted: 03/26/2016] [Indexed: 11/24/2022]
Abstract
Myeloperoxidase promotes several kinds of damage and is involved in the development of various diseases (as atherosclerosis and cancers). An example of these damage is the chlorination of nucleic acids, which is considered as a specific marker of the MPO activity on those acids. This study aimed to develop and validate a method to analyze oxidized and MPO-specific chlorinated nucleosides in biological matrixes (cells, tissues and plasma). Although a lot of methods to quantify oxidized or chlorinated nucleosides have already been established, none of them took into account all these derivatives together. The new method used a Triple Quadrupole mass spectrometer fitted with a Jet Stream electrospray ionization source. This approach has two advantages compared with existing LC/MSMS analyses: it includes MPO-induced modifications in a unique analysis and obtains a better sensitivity. Our optimized method reached LOQs of 1.50pg and 1.42pg respectively for oxoG and oxo(d)G, being 4 times more sensitive than previous methods, and LOQs of 1.39pg, 1.30pg and 63.4 fg respectively for 5-chlorocytidine, 5-chloro-2'-deoxycytidine and 8-chloroguanosine. Developed method is also 25 times more sensitive for chloroguanosine than the best existing method. Nevertheless, this method is not specific enough for 8-chloro-(2'-deoxy)adenosine analysis. Examples of applications demonstrate the interest of this validated method. Indeed analysis of plasma from healthy donors highlighted exclusively the presence of 5-chlorocytidine (1.0±0.2nM) whereas analysis of treated endothelial cells by HOCl showed chlorination of guanosine and cytidine in cytoplasmic pools and chlorination of (deoxy)cytidine in DNA and RNA. In conclusion, this study shows that 5-chloro-2'-deoxycytidine, 5-chlorocytidine and 8-chloroguanosine are good markers allowing us to detect the MPO activity in biological fluids. The robust, specific and sensitive developed method enables future studies on MPO implications in human diseases.
Collapse
|
25
|
Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. BIOCHEMISTRY (MOSCOW) 2014; 78:1466-89. [PMID: 24490735 DOI: 10.1134/s0006297913130075] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypochlorous acid (HOCl) is produced in the human body by the family of mammalian heme peroxidases, mainly by myeloperoxidase, which is secreted by neutrophils and monocytes at sites of inflammation. This review discusses the reactions that occur between HOCl and the major classes of biologically important molecules (amino acids, proteins, nucleotides, nucleic acids, carbohydrates, lipids, and inorganic substances) to form free radicals. The generation of such free radical intermediates by HOCl and other reactive halogen species is accompanied by the development of halogenative stress, which causes a number of socially important diseases, such as cardiovascular, neurodegenerative, infectious, and other diseases usually associated with inflammatory response and characterized by the appearance of biomarkers of myeloperoxidase and halogenative stress. Investigations aimed at elucidating the mechanisms regulating the activity of enzyme systems that are responsible for the production of reactive halogen species are a crucial step in opening possibilities for control of the development of the body's inflammatory response.
Collapse
Affiliation(s)
- O M Panasenko
- Research Institute of Physico-Chemical Medicine, Moscow, 119435, Russia.
| | | | | |
Collapse
|
26
|
Rayner BS, Love DT, Hawkins CL. Comparative reactivity of myeloperoxidase-derived oxidants with mammalian cells. Free Radic Biol Med 2014; 71:240-255. [PMID: 24632382 DOI: 10.1016/j.freeradbiomed.2014.03.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 03/04/2014] [Accepted: 03/05/2014] [Indexed: 12/21/2022]
Abstract
Myeloperoxidase is an important heme enzyme released by activated leukocytes that catalyzes the reaction of hydrogen peroxide with halide and pseudo-halide ions to form various hypohalous acids. Hypohalous acids are chemical oxidants that have potent antibacterial, antiviral, and antifungal properties and, as such, play key roles in the human immune system. However, increasing evidence supports an alternative role for myeloperoxidase-derived oxidants in the development of disease. Excessive production of hypohalous acids, particularly during chronic inflammation, leads to the initiation and accumulation of cellular damage that has been implicated in many human pathologies including atherosclerosis, neurodegenerative disease, lung disease, arthritis, inflammatory cancers, and kidney disease. This has sparked a significant interest in developing a greater understanding of the mechanisms involved in myeloperoxidase-derived oxidant-induced mammalian cell damage. This article reviews recent developments in our understanding of the cellular reactivity of hypochlorous acid, hypobromous acid, and hypothiocyanous acid, the major oxidants produced by myeloperoxidase under physiological conditions.
Collapse
Affiliation(s)
- Benjamin S Rayner
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic T Love
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Clare L Hawkins
- Inflammation Group, The Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Tu CY, Chen YF, Lii CK, Wang TS. Methylglyoxal induces DNA crosslinks in ECV304 cells via a reactive oxygen species-independent protein carbonylation pathway. Toxicol In Vitro 2013; 27:1211-9. [DOI: 10.1016/j.tiv.2013.02.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 01/20/2013] [Accepted: 02/18/2013] [Indexed: 11/30/2022]
|
28
|
Breiner B, Kaya K, Roy S, Yang WY, Alabugin IV. Hybrids of amino acids and acetylenic DNA-photocleavers: optimising efficiency and selectivity for cancer phototherapy. Org Biomol Chem 2012; 10:3974-87. [DOI: 10.1039/c2ob00052k] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Yang WY, Roy S, Phrathep B, Rengert Z, Kenworthy R, Zorio DAR, Alabugin IV. Engineering pH-Gated Transitions for Selective and Efficient Double-Strand DNA Photocleavage in Hypoxic Tumors. J Med Chem 2011; 54:8501-16. [DOI: 10.1021/jm2010282] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wang-Yong Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,
United States
| | - Saumya Roy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,
United States
| | - Boondaniwon Phrathep
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,
United States
| | - Zach Rengert
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,
United States
| | - Rachael Kenworthy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,
United States
| | - Diego A. R. Zorio
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,
United States
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390,
United States
| |
Collapse
|
30
|
Yang X, Fang C, Mei H, Chang T, Cao Z, Shangguan D. Characterization of G-quadruplex/hemin peroxidase: substrate specificity and inactivation kinetics. Chemistry 2011; 17:14475-84. [PMID: 22106035 DOI: 10.1002/chem.201101941] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Indexed: 02/05/2023]
Abstract
Recently, G-quadruplex/hemin (G4/hemin) complexes have been found to exhibit peroxidase activity, and this feature has been extensively exploited for colorimetric detection of various targets. To further understand and characterize this important DNAzyme, its substrate specificity, inactivation mechanism, and kinetics have been examined by comparison with horseradish peroxidase (HRP). G4/hemin DNAzyme exhibits broader substrate specificity and much higher inactivation rate than HRP because of the exposure of the catalytic hemin center. The inactivation of G4/hemin DNAzyme is mainly attributed to the degradation of hemin by H(2)O(2) rather than the destruction of G4. Both the inactivation rate and catalytic oxidation rate of G4/hemin DNAzyme depend on the concentration of H(2)O(2), which suggests that active intermediates formed by G4/hemin and H(2)O(2) are the branch point of catalysis and inactivation. Reducing substrates greatly inhibit the inactivation of G4/hemin DNAzyme by rapidly reacting with the active intermediates. A possible catalytic and inactivation process of G4/hemin has been proposed. These results imply a potential cause for the hemin-mediated cellular injury and provide insightful information for the future application of G4/hemin DNAzyme.
Collapse
Affiliation(s)
- Xiaojuan Yang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing, 100190, PR China
| | | | | | | | | | | |
Collapse
|
31
|
Curtis MP, Hicks AJ, Neidigh JW. Kinetics of 3-chlorotyrosine formation and loss due to hypochlorous acid and chloramines. Chem Res Toxicol 2011; 24:418-28. [PMID: 21319831 DOI: 10.1021/tx100380d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The persistent activation of innate immune cells in chronic inflammation is gaining recognition as a contributing factor in a number of human diseases. A distinguishing feature of activated leukocytes at sites of inflammation is their production of reactive species such as hypochlorous acid (HOCl). Investigating the role of reactive molecules such as HOCl in inflammation and human disease requires appropriate biomarkers. The preferred biomarker for HOCl, and by extension its synthesizing enzyme myeloperoxidase, is 3-chlorotyrosine. 3-Chlorotyrosine is a chemically stable product formed when HOCl, or an HOCl-generated chloramine, reacts with the tyrosine side chain and is readily measured by sensitive mass spectrometry methods. However, Whiteman and Spencer ((2008) Biochem. Biophys. Res. Commun., 371, 50 - 53.) noted that 3-chlorotyrosine is degraded by HOCl, calling into question its use as a biomarker. The kinetic rate constants for the reaction of 3-chlorotyrosine with HOCl, histidine chloramine, or lysine chloramine to form 3,5-dichlorotyrosine are reported. The kinetics of tyrosine chlorination in the context of a peptide with a nearby lysine residue was also determined and further supports the role of chloramines in the chlorination of protein-bound tyrosine residues. The likelihood of free and protein-bound 3,5-dichlorotyrosine occurring in vivo, given the reported rate constants, is discussed.
Collapse
Affiliation(s)
- Matthew P Curtis
- Department of Basic Sciences, Biochemistry Division, Loma Linda University, School of Medicine, Loma Linda, California 92350, USA
| | | | | |
Collapse
|
32
|
Haywood R, Andrady C, Kassouf N, Sheppard N. Intensity-dependent Direct Solar Radiation- and UVA-induced Radical Damage to Human Skin and DNA, Lipids and Proteins. Photochem Photobiol 2010; 87:117-30. [DOI: 10.1111/j.1751-1097.2010.00850.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Stanley NR, Pattison DI, Hawkins CL. Ability of hypochlorous acid and N-chloramines to chlorinate DNA and its constituents. Chem Res Toxicol 2010; 23:1293-302. [PMID: 20593802 DOI: 10.1021/tx100188b] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Myeloperoxidase is a heme enzyme released by activated phagocytes that is responsible for the generation of the strong oxidant hypochlorous acid (HOCl). Although HOCl has potent bactericidal properties and plays an important role in the human immune system, this oxidant also causes damage to tissues, particularly under inflammatory conditions. There is a strong link between chronic inflammation and the incidence of many cancers, which may be associated with the ability of HOCl and related oxidants such as N-chloramines to damage DNA. However, in contrast to HOCl, little is known about the reactivity of N-chloramines with DNA and its constituents. In this study, we examine the ability of HOCl and various N-chloramines to form chlorinated base products on nucleosides, nucleotides, DNA, and in cellular systems. Experiments were performed with N-chloramines formed on Nalpha-acetyl-histidine (His-C), Nalpha-acetyl-lysine (Lys-C), glycine (Gly-C), taurine (Tau-C), and ammonia (Mono-C). Treatment of DNA and related materials with HOCl and His-C resulted in the formation of 5-chloro-2'-deoxycytidine (5CldC), 8-chloro-2'-deoxyadenosine (8CldA) and 8-chloro-2'-deoxyguanosine (8CldG). With the nucleosides, 8CldG was the favored product in each case, and HOCl was the most efficient chlorinating agent. 5Cl(d)C was the most abundant product on exposure of the nucleotides and DNA to HOCl and His-C, with only low levels of chlorinated products observed with Lys-C, Gly-C, Tau-C, and Mono-C. 5CldC was also formed on exposure of smooth muscle cells to either HOCl or His-C. Cellular RNA was also a target for HOCl and His-C, with evidence for the formation of 5-chloro-cytidine (5ClC). This study shows that HOCl and the model N-chloramine, His-C, are able to chlorinate cellular genetic material, which may play a role in the development of various inflammatory cancers.
Collapse
Affiliation(s)
- Naomi R Stanley
- The Heart Research Institute, 7 Eliza Street, Newtown, Sydney, NSW 2042, Australia
| | | | | |
Collapse
|
34
|
Kuttappan-Nair V, Samson-Thibault F, Wagner JR. Generation of 2'-deoxyadenosine N6-aminyl radicals from the photolysis of phenylhydrazone derivatives. Chem Res Toxicol 2010; 23:48-54. [PMID: 20000474 DOI: 10.1021/tx900268r] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Nitrogen-centered radicals are major species generated by the addition of hydroxyl radicals and the one-electron oxidation of adenine derivatives. Aminyl radicals are also generated in the decomposition of adenine chloramines upon reaction of hypochlorite. Here, we report the photochemistry of modified 2'-deoxyadenosine (dAdo) containing photoactive hydrazone substituents as a model to investigate the chemistry of dAdo N(6)-aminyl radicals. Derivatives of dAdo containing a phenylhydrazone moiety at N6 displayed UV absorption between 300 and 400 nm. Upon UV photolysis in the presence of a H-donor, that is, glutathione, two major products were formed, dAdo and benzaldehyde, indicating efficient homolytic cleavage to dAdo N(6)-aminyl radicals and benzylidene iminyl radicals. dAdo N(6)-phenylhydrazone was photolyzed in the presence of a molar excess of nonmodified dAdo to mimic the reactions taking place in DNA, and the major photoproducts were identified by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance. The formation of 2-(benzylideneamino)-2'-deoxyadenosine as well as a more extensive oxidation product may be explained by the recombination of initial dAdo N(6)-aminyl and benzylidene iminyl radicals. The formation of 2'-deoxyinosine may be explained by hydrolytic deamination of dAdo N(6)-aminyl radicals. Interestingly, a dimeric product containing two dAdo moieties was identified in the photolysis mixture. The present studies demonstrate the ability of dAdo N(6)-aminyl radicals to undergo H-abstraction to give dAdo, deamination to give 2'-deoxyinosine, and addition to the adenine moiety to give dimers.
Collapse
Affiliation(s)
- Vandana Kuttappan-Nair
- Departement de Medecine Nucleaire et Radiobiologie, Faculte de Medecine, 3001 12e Avenue Nord, Universite de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | |
Collapse
|
35
|
Page MA, Shisler JL, Mariñas BJ. Kinetics of adenovirus type 2 inactivation with free chlorine. WATER RESEARCH 2009; 43:2916-2926. [PMID: 19439336 DOI: 10.1016/j.watres.2009.03.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/28/2009] [Accepted: 03/31/2009] [Indexed: 05/27/2023]
Abstract
The objective of this study was to elucidate the effects of pH, temperature, and other relevant water quality parameters on the kinetics of adenovirus serotype 2 inactivation with free chlorine. Over a pH range of 6.5-10, a temperature range of 1-30 degrees C, and in a variety of water types, free chlorine was highly effective against adenovirus type 2. Its disinfection efficacy decreased with increasing pH and decreasing temperature, yet was unaffected by hardness and buffering species. Under the most challenging conditions investigated in this study (pH 10, 1 degrees C), a four-log reduction of adenovirus viability would be achieved at a CT value of 2.6mgCl(2)min/L. The inactivation kinetics was characterized by three phases of inactivation under most conditions. The first phase resulted from a reaction involving primarily the hypochlorous acid species and was characterized by rapid inactivation of viruses to a limit that increased with decreasing pH and increasing temperature. After reaching this limit, adenovirus exhibited two subsequent phases of inactivation at lesser rates that were not affected by temperature or pH. As with the first phase of kinetics, a limit of inactivation was approached in the second phase that decreased with increasing pH, and after which the kinetics was characterized by a third and final phase. An inactivation model consistent with these observations was found to provide adequate representation for the free chlorine inactivation of adenovirus serotype 2 as well as that reported in the literature for other adenovirus serotypes.
Collapse
Affiliation(s)
- Martin A Page
- Dept. of Civil and Environmental Engineering, Univ. of Illinois at Urbana-Champaign, 205 N. Mathews Ave., Urbana, IL 61801, USA; Ctr. of Advanced Materials for the Purification of Water with Systems (WaterCAMPWS), 1206 W. Green St., Urbana, IL 61801, USA
| | | | | |
Collapse
|
36
|
Carbon- and nitrogen-centered radicals produced from l-lysine by radiation-induced oxidation: A pulse radiolysis study. Chem Phys Lett 2008. [DOI: 10.1016/j.cplett.2008.07.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Robaszkiewicz A, Bartosz G, Soszyński M. N-chloroamino acids cause oxidative protein modifications in the erythrocyte membrane. Mech Ageing Dev 2008; 129:572-9. [PMID: 18586303 DOI: 10.1016/j.mad.2008.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2008] [Revised: 04/22/2008] [Accepted: 05/22/2008] [Indexed: 11/26/2022]
Abstract
The increase in the amount of oxidatively modified proteins is a hallmark of ageing and age-related disorders. This paper is aimed at a verification of the hypothesis that N-chloroamino acids, products of reaction between hypochlorite generated in vivo under pathological conditions and free amino acids, may induce oxidative modifications of erythrocyte membrane proteins. The effects of N-chloroalanine, N-chloroaspartate, N-chloroserine, N-chlorolysine and N-chlorophenylalanine were compared with that of HOCl/OCl(-). All the chlorocompounds studied (except for AspCl) induced the loss of tryptophan and formylkynurenine formation accompanied by decrease of acetylcholinesterase activity and V(max) of the enzyme, without change of K(m). Only HOCl/OCl(-) induced dityrosine formation being also the most effective in the induction of carbonyl groups formation. Protein thiol oxidation studied was observed for all chlorocompounds studied but with different efficiency. The destruction of amine groups content was evident for AlaCl, LysCl and SerCl. The formation of protein aggregates was observed, due mainly but not exclusively to the formation of disulphide bonds.
Collapse
|
38
|
Kang JI, Neidigh JW. Hypochlorous acid damages histone proteins forming 3-chlorotyrosine and 3,5-dichlorotyrosine. Chem Res Toxicol 2008; 21:1028-38. [PMID: 18452314 DOI: 10.1021/tx7003486] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
While the last 30 years chronicles an extensive effort to understand the damage to DNA caused by reactive oxygen species (ROS), little research has examined the chemical damage to the histone proteins found in chromatin. Hypochlorous acid (HOCl), the primary product of activated neutrophils, is known to damage both DNA and proteins. This article describes the use of mass spectrometry to quantitate the formation of 3-chlorotyrosine and 3,5-dichlorotyrosine, stable and unique markers of protein damage caused by HOCl, in the core histone proteins. Our results indicate that up to 25% of the tyrosine in histone proteins become chlorinated by excess HOCl. We also observe significant formation of 3-chlorotyrosine and 3,5-dichlorotyrosine at low HOCl concentrations and short reaction times. We use mass spectrometry to identify the tyrosine residues on each histone protein that are chlorinated based on the observation of chlorine-containing peptides following protease digestion of histone proteins exposed to HOCl. The tyrosine residues preferentially chlorinated by HOCl are generally within three residues of a lysine or histidine residue, further implicating the initial formation of chloramines in the efficient chlorination of tyrosine residues. The methods and results described here should further our understanding of how HOCl produced at sites of inflammation might damage chromatin.
Collapse
Affiliation(s)
- Joseph I Kang
- Department of Basic Sciences, Biochemistry Division, Loma Linda University, School of Medicine, Loma Linda, California 92350, USA.
| | | |
Collapse
|
39
|
Minko IG, Kozekov ID, Kozekova A, Harris TM, Rizzo CJ, Lloyd RS. Mutagenic potential of DNA-peptide crosslinks mediated by acrolein-derived DNA adducts. Mutat Res 2008; 637:161-72. [PMID: 17868748 PMCID: PMC3181171 DOI: 10.1016/j.mrfmmm.2007.08.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 07/27/2007] [Accepted: 08/01/2007] [Indexed: 04/09/2023]
Abstract
Current data suggest that DNA-peptide crosslinks are formed in cellular DNA as likely intermediates in the repair of DNA-protein crosslinks. In addition, a number of naturally occurring peptides are known to efficiently conjugate with DNA, particularly through the formation of Schiff-base complexes at aldehydic DNA adducts and abasic DNA sites. Since the potential role of DNA-peptide crosslinks in promoting mutagenesis is not well elucidated, here we report on the mutagenic properties of Schiff-base-mediated DNA-peptide crosslinks in mammalian cells. Site-specific DNA-peptide crosslinks were generated by covalently trapping a lysine-tryptophan-lysine-lysine peptide to the N(6) position of deoxyadenosine (dA) or the N(2) position of deoxyguanosine (dG) via the aldehydic forms of acrolein-derived DNA adducts (gamma-hydroxypropano-dA or gamma-hydroxypropano-dG, respectively). In order to evaluate the potential of DNA-peptide crosslinks to promote mutagenesis, we inserted the modified oligodeoxynucleotides into a single-stranded pMS2 shuttle vector, replicated these vectors in simian kidney (COS-7) cells and tested the progeny DNAs for mutations. Mutagenic analyses revealed that at the site of modification, the gamma-hydroxypropano-dA-mediated crosslink induced mutations at only approximately 0.4%. In contrast, replication bypass of the gamma-hydroxypropano-dG-mediated crosslink resulted in mutations at the site of modification at an overall frequency of approximately 8.4%. Among the types of mutations observed, single base substitutions were most common, with a prevalence of G to T transversions. Interestingly, while covalent attachment of lysine-tryptophan-lysine-lysine at gamma-hydroxypropano-dG caused an increase in mutation frequencies relative to gamma-hydroxypropano-dG, similar modification of gamma-hydroxypropano-dA resulted in decreased levels of mutations. Thus, certain DNA-peptide crosslinks can be mutagenic, and their potential to cause mutations depends on the site of peptide attachment. We propose that in order to avoid error-prone replication, proteolytic degradation of proteins covalently attached to DNA and subsequent steps of DNA repair should be tightly coordinated.
Collapse
Affiliation(s)
- Irina G. Minko
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
| | - Ivan D. Kozekov
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Albena Kozekova
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Thomas M. Harris
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - Carmelo J. Rizzo
- Department of Chemistry, Center in Molecular Toxicology, UV Station B, 351822, Vanderbilt University, Nashville, TN 37235, United States
| | - R. Stephen Lloyd
- Center for Research on Occupational and Environmental Toxicology, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, United States
- Corresponding author. Tel.: +1 503 494 9957; fax: +1 503 494 6831.,
| |
Collapse
|
40
|
Xu X, Muller JG, Ye Y, Burrows CJ. DNA−Protein Cross-links between Guanine and Lysine Depend on the Mechanism of Oxidation for Formation of C5 Vs C8 Guanosine Adducts. J Am Chem Soc 2007; 130:703-9. [DOI: 10.1021/ja077102a] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xiaoyun Xu
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850
| | - James G. Muller
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850
| | - Yu Ye
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850
| |
Collapse
|
41
|
Hochberg M, Kohen R, Enk CD. Role of antioxidants in prevention of pyrimidine dimer formation in UVB irradiated human HaCaT keratinocytes. Biomed Pharmacother 2006; 60:233-7. [PMID: 16765564 DOI: 10.1016/j.biopha.2006.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 04/11/2006] [Indexed: 11/20/2022] Open
Abstract
The objective of the present study was to study the role of reactive oxygen species (ROS) in UVB induced cyclobutane pyrimidine dimer (CPD) formation in human keratinocytes, and to examine the modulating activity of low molecular weight antioxidants. To demonstrate the involvement of ROS, we examined the protective capacity of alpha-tocopherol, tempamine, and diethyldithiocarbamate (DDC) on CPD formation in intact cells and naked DNA. HaCaT cells and naked DNA in water solution were irradiated with UVB in the presence of the antioxidants and CPD was determined by ELISA. We found that all three antioxidants provided protection against UVB induced CPD formation. The protection was observed in intact cells only and not in naked DNA. Since some of the tested antioxidants do not possess UV absorbing qualities, our findings suggest that in a cellular environment ROS play a role in CPD formation.
Collapse
Affiliation(s)
- Malka Hochberg
- Department of Dermatology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | | | | |
Collapse
|
42
|
Hawkins CL, Davies MJ. The role of reactive N-bromo species and radical intermediates in hypobromous acid-induced protein oxidation. Free Radic Biol Med 2005; 39:900-12. [PMID: 16140210 DOI: 10.1016/j.freeradbiomed.2005.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/09/2005] [Indexed: 11/15/2022]
Abstract
Activated eosinophils, and hypobromous acid (HOBr) generated by these cells, have been implicated in the tissue injury in asthma, allergic reactions, and some infections. Proteins are major targets for this oxidant, but limited information is available on the mechanisms of damage and intermediates formed. Reaction of HOBr with proteins is shown to result in the formation of bromamines and bromamides, from side-chain and backbone amines and amides, and 3-bromo- and 3,5-dibromo-Tyr, from Tyr residues; these materials account for ca. 70% of the oxidant consumed. Protein carbonyls, dityrosine, and 3,4-dihydroxyphenylalanine are also formed, though these are minor products (<5% of HOBr added). With BSA, extensive (selective and nonspecific) protein fragmentation and limited aggregation are also observed. The bromamines/bromamides are unstable and induce further oxidation and free radical formation as detected by EPR spin trapping. Evidence was obtained for the generation of nitrogen-centered radicals on side-chain and backbone amide groups of amino acids, peptides, and proteins. These radicals readily undergo rearrangement reactions to give carbon-centered radicals. With proteins, alpha-carbon (backbone) radicals are detected, which may play a role in protein fragmentation. A novel damage transfer pathway from Gln side-chain amide groups to backbone sites was also observed.
Collapse
Affiliation(s)
- Clare L Hawkins
- The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW 2050, Australia
| | | |
Collapse
|
43
|
Johansen ME, Muller JG, Xu X, Burrows CJ. Oxidatively induced DNA-protein cross-linking between single-stranded binding protein and oligodeoxynucleotides containing 8-oxo-7,8-dihydro-2'-deoxyguanosine. Biochemistry 2005; 44:5660-71. [PMID: 15823024 DOI: 10.1021/bi047580n] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The formation of covalent cross-links between amino acid side chains and DNA bases in DNA-protein complexes is a significant pathway in oxidative damage to the genome, yet much remains to be learned about their chemical structures and mechanisms of formation. In the present study, DNA-protein cross-links (DPCs) were formed between synthetic oligodeoxynucleotides containing an 8-oxo-7,8-dihydro-2'deoxyguanosine (OG) or an 8-oxo-7,8-dihydro-2'-deoxyadenosine (OA) nucleotide and Escherichia coli singled-stranded binding protein (SSB) under oxidative conditions. Studies with various sequences indicated that DNA homopolymers and those lacking 8-oxopurines were less reactive toward DPC formation. DPCs were formed in the presence of HOCl, peroxynitrite, and the one-electron oxidants Na(2)IrCl(6), Na(2)IrBr(6), and Na(3)Fe(CN)(6). Protein-protein cross-linking was also observed, particularly for oxidants of high reduction potential such as Na(2)IrCl(6). The adducted oligodeoxynucleotides were sensitive to hot piperidine treatment leading to strand scission at the site of cross-linking. In addition, the covalent cross-links were somewhat heat and acid labile, which may be related to the difficulties encountered in obtaining complete characterization of trypsin digests of the DPCs. However, model reactions involving the single amino acids lysine, arginine, and tyrosine, residues known to be involved in base contacts in the DNA:SSB complex, could be studied, and the adduct formed between N(alpha)-acetyllysine methyl ester and an 18-mer containing OG was tentatively characterized by electrospray ionization mass spectrometry as analogues of spiroiminodihydantoin and guanidinohydantoin. A mechanism involving nucleophilic attack of an amino acid side chain (e.g. the epsilon-amino group of lysine) at C5 of a 2-electron oxidized form of OG is proposed.
Collapse
Affiliation(s)
- Mark E Johansen
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, Utah 84112-0850, USA
| | | | | | | |
Collapse
|
44
|
Pattison DI, Davies MJ. Kinetic analysis of the reactions of hypobromous acid with protein components: implications for cellular damage and use of 3-bromotyrosine as a marker of oxidative stress. Biochemistry 2004; 43:4799-809. [PMID: 15096049 DOI: 10.1021/bi035946a] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hypohalous acids (HOX, X = Cl, Br) are produced by activated neutrophils, monocytes, eosinophils, and possibly macrophages. These oxidants react readily with biological molecules, with amino acids and proteins being major targets. Elevated levels of halogenated Tyr residues have been detected in proteins isolated from patients with atherosclerosis, asthma, and cystic fibrosis, implicating the production of HOX in these diseases. The quantitative significance of these findings requires knowledge of the kinetics of reaction of HOX with protein targets, and such data have not been previously available for HOBr. In this study, rate constants for reaction of HOBr with protein components have been determined. The second-order rate constants (22 degrees C, pH 7.4) for reaction with protein sites vary by 8 orders of magnitude and decrease in the order Cys > Trp approximately Met approximately His approximately alpha-amino > disulfide > Lys approximately Tyr >> Arg > backbone amides > Gln/Asn. For most residues HOBr reacts 30-100 fold faster than HOCl, though Cys and Met residues are approximately 10-fold less reactive, and ring halogenation of Tyr is approximately 5000-fold faster. Thus, Tyr residues are more, and Cys and Met much less, important targets for HOBr than HOCl. Kinetic models have been developed to predict the targets of HOX attack on proteins and free amino acids. Overall, these results shed light on the mechanisms of cell damage induced by HOX and indicate, for example, that the 3-chloro-Tyr:3-bromo-Tyr ratio does not reflect the relative roles of HOCl and HOBr in disease processes.
Collapse
Affiliation(s)
- David I Pattison
- The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW 2050, Australia.
| | | |
Collapse
|
45
|
Pattison DI, Hawkins CL, Davies MJ. Hypochlorous acid-mediated oxidation of lipid components and antioxidants present in low-density lipoproteins: absolute rate constants, product analysis, and computational modeling. Chem Res Toxicol 2003; 16:439-49. [PMID: 12703960 DOI: 10.1021/tx025670s] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxidation of low-density lipoproteins (LDL) is believed to contribute to the increased uptake of LDL by macrophages, which is an early event in atherosclerosis. Hypochlorous acid (HOCl) has been implicated as one of the major oxidants involved in these processes. In a previous study, the rates of reaction of HOCl with the reactive sites in proteins were investigated (Pattison, D. I., and Davies, M. J. (2001) Chem. Res. Toxicol. 14, 1453-1464). The work presented here expands on those studies to determine absolute second-order rate constants for the reactions of HOCl with various lipid components and antioxidants in aqueous solution (pH 7.4). The reactions of HOCl with phosphoryl-serine and phosphoryl-ethanolamine are rapid (k approximately 10(5) M(-)(1) s(-)(1)) and of comparable reactivity to many of the protein sites. The major products formed in these reactions are chloramines, which decay to give both nitrogen- and carbon-centered radicals. Subsequent reactions of these species may induce oxidation of the LDL lipid component. In contrast, phosphoryl-choline reacted much more slowly (k < 10(-)(2) M(-)(1) s(-)(1)). Reaction of HOCl with 3-pentenoic acid was used as a model of lipid double bonds and yielded k = 9 M(-)(1) s(-)(1). The reactions of the lipid-soluble antioxidants, alpha-tocopherol and ubiquinol-10, with HOCl were investigated with model compounds. For the reactions of HOCl with both Trolox and ubiquinol-0, k = 1.3 x 10(3) M(-)(1) s(-)(1); thus, these lipid soluble antioxidants are relatively ineffective as direct scavengers for HOCl as compared to water soluble antioxidants (e.g., ascorbate, k ca. 10(6) M(-)(1) s(-)(1)). The reaction of HOCl with hydroquinone (a simple model for ubiquinol-10) was also investigated both in aqueous solution (k = 45 M(-)(1) s(-)(1)) and in a less polar environment (k approximately 0.5 M(-)(1) s(-)(1) in THF). A computational model was developed using these kinetic parameters to predict which LDL targets are oxidized with varying molar excesses of HOCl, in both the absence and the presence of added ascorbate. The results from these models compare well with experimental data and can be used to predict the effects of HOCl-mediated oxidation on LDL composition.
Collapse
Affiliation(s)
- David I Pattison
- The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, NSW 2050, Australia.
| | | | | |
Collapse
|