1
|
Association of AGTR1 A1166C and CYP2C9∗3 Gene Polymorphisms with the Antihypertensive Effect of Valsartan. Int J Hypertens 2022; 2022:7677252. [PMID: 35345577 PMCID: PMC8957473 DOI: 10.1155/2022/7677252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 11/20/2022] Open
Abstract
Background The differences in the antihypertensive treatment with angiotensin type II receptor blockers (ARBs) may be attributed to polymorphisms in genes involving drug-targeted receptor and drug metabolism. The present study aimed to investigate whether the antihypertensive effect of the ARB drug valsartan was associated with angiotensin II type 1 receptor (AGTR1) gene polymorphism (A1166 C) and cytochrome P450 enzyme 2C9 (CYP2C9) gene polymorphism (CYP2C9∗3). Methods 281 patients with hypertension who received valsartan monotherapy in the past month were included in this retrospective study. Polymerase chain reaction-melting curve analysis was performed to genotype the AGTR1 and CYP2C9 gene polymorphisms. Based on the systolic blood pressure (SBP) and diastolic blood pressure (DBP) at the time of visit, the patients were divided into well-controlled group (n = 144, SBP/DBP <140/90 mmHg) and poorly controlled group (n = 137, SBP/DBP ≥140/90 mmHg). Results Older age, decreased history of drinking, a higher proportion of mild-to-moderate hypertension, lower alanine aminotransferase levels, and higher high-density lipoprotein cholesterol levels were observed in the well-controlled group than the poorly controlled group. Higher frequencies of the C allele and AC + CC genotype of AGTR1 A1166C were detected in the well-controlled than the poorly controlled patients (P = 0.005 and P = 0.006). After adjustment for demographic and environmental factors, the CC + AC genotype of AGTR1 A1166C was markedly linked to better hypertension control with valsartan treatment compared to the AA genotype (odds ratio: 2.836, 95% confidence interval: 1.199–6.705, P = 0.018). No significant difference was observed in the allele or genotype distribution of CYP2C9∗3 polymorphism between well-controlled and poorly controlled patients. Conclusions The current data suggested that the AGTR1 A1166 C polymorphism may be associated with the antihypertensive effect of valsartan, and carriers with AC and CC genotypes may have a better antihypertensive efficacy response to valsartan treatment.
Collapse
|
2
|
Chen K, Xiao P, Li G, Wang C, Yang C. Distributive characteristics of the CYP2C9 and AGTR1 genetic polymorphisms in Han Chinese hypertensive patients: a retrospective study. BMC Cardiovasc Disord 2021; 21:73. [PMID: 33541272 PMCID: PMC7863246 DOI: 10.1186/s12872-021-01895-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Background There is an individual variation in response to antihypertensive effect of the angiotensin II receptor antagonist. This study aimed to determine the allele and genotype frequencies of CYP2C9 and AGTR1 genetic polymorphisms and explore the potential role of these polymorphisms in guiding the selection of angiotensinIIreceptor antagonist in Han Chinese hypertensive patients. Methods Totally 2419 Han Chinese hypertensive patients and 126 normotensive controls were recruited in this study. Venous blood samples were collected from each patient, and the genetic polymorphisms of CYP2C9 and AGTR1 were assessed using a gene chip platform. The allele and genotype frequency of each gene and the combined genotypes in this study were analyzed respectively. Results The gene chip analysis identified an allelic frequency of 96.51% for CYP2C9*1 and 3.49% for CYP2C9*3 in the cohort of Han Chinese hypertensive patients. Statistical analysis showed that the frequency of wild-type homozygous for CYP2C9*1/*1 was 93.30%, while the frequency of heterozygous for *1/*3 or mutant homozygous for *3/*3 was 6.41% or 0.29%. Meanwhile, we detected allelic frequencies of 95.06% and 4.94% for the A and C allele of AGTR1, respectively. While the genotype frequency of wild-type homozygous for AA was 90.41%, the frequency of heterozygous for AC or mutant homozygous for CC was 9.30% or 0.29%. Notably, we observed that 84.66% (2048/2419) of the subjects exhibited a combined genotype of CYP2C9 and AGTR1 as *1/*1 + AA, while the combined genotypes *3/*3 + AC or *3/*3 + CC were not detected in hypertension patients. Besides, no significant association was found between normotensive controls and hypertensive patients, or among the three grades of hypertensive patients. Conclusions These data revealed the polymorphisms characteristics of CYP2C9 and AGTR1 in Han Chinese hypertensive patients, providing valuable information for genotype-based antihypertension therapy in prospective clinical studies in the future.
Collapse
Affiliation(s)
- Keping Chen
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao Road 87, Nanjing, 210009, China.
| | - Peng Xiao
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao Road 87, Nanjing, 210009, China
| | - Guochun Li
- Nanjing Central Hospital, Nanjing Municipal Government Hospital, Nanjing, 210009, China
| | - Chunling Wang
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao Road 87, Nanjing, 210009, China
| | - Chuankun Yang
- Clinical Laboratory, Zhongda Hospital, School of Medicine, Southeast University, Dingjiaqiao Road 87, Nanjing, 210009, China
| |
Collapse
|
3
|
Abdel Ghafar MT. An overview of the classical and tissue-derived renin-angiotensin-aldosterone system and its genetic polymorphisms in essential hypertension. Steroids 2020; 163:108701. [PMID: 32717198 DOI: 10.1016/j.steroids.2020.108701] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/05/2020] [Accepted: 07/19/2020] [Indexed: 01/25/2023]
Abstract
The renin-angiotensin-aldosterone system (RAAS) is a specific hormonal cascade implicated in the blood pressure control and sodium balance regulation. Several components of this pathway have been identified including renin, angiotensinogen, angiotensin-converting enzyme, angiotensins with a wide range of distinct subtypes and receptors, and aldosterone. The RAAS is not only confined to the systemic circulation but also exists locally in specific tissues such as the heart, brain, and blood vessels with a particular paracrine action. Alteration of RAAS function can contribute to the development of hypertension and the emergence of its associated end-organ damage. Genotypic variations of the different genes of RAAS cascade have been linked to the susceptibility to essential hypertension. Accordingly, to understand the pathogenesis of essential hypertension and its related complications, deep insight into the physiological and genetic aspects of RAAS with its different components and pathways is necessary. In this review, we aimed to illustrate the physiological and genetic aspects of RAAS and the underlying mechanisms which link this system to the predisposition to essential hypertension.
Collapse
|
4
|
Analysis of Association of Angiotensin II Type 1 Receptor Gene A1166C Gene Polymorphism with Essential Hypertension. Indian J Clin Biochem 2017; 33:53-60. [PMID: 29371770 DOI: 10.1007/s12291-017-0644-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 03/03/2017] [Indexed: 10/20/2022]
Abstract
The A/C transversion at 1166 of the angiotensin II Type 1 Receptor (AT1R) gene per se does not characterize any functional diversity but has been associated with expression of the AT1R, consequently molecular variants of the gene may modulate the possible risk of essential hypertension. The present study was performed to determine the genotypic frequency of the A1166C polymorphism of the AT1R gene in essential hypertensive patients with the aim to assess the effect of variants of this polymorphism in hypertension. AT1R gene amplification was performed by PCR and A1166C polymorphism was determined by enzyme digestion methodologies in 224 consecutively enrolled essential hypertensive patients and 257 controls. Suitable descriptive statistics was used for different variables. Results revealed that genotype and allele distribution of the A1166C variant differed significantly in hypertensives and normotensives. Allele frequency at the A1166C position was 61%A and 39%C for control and 52%A and 48%C for patients. Observed frequencies were compatible with HWE expected frequencies in cases as well as in controls. rs5186 was found to be associated with hypertension (95% CI 1.1453-2.7932, p: 0.0106). The difference remained statistically significant after the multivariate adjustment (p < 0.05), with C/C variant conferring a risk of 1.74-fold of essential hypertension. This association was confirmed by inter-genotypic variations in the mean systolic and diastolic blood pressure in patients. In conclusion, genetic variation at the AT1R gene influences the risk of hypertension stratification and might serve as a predictive marker for the susceptibility to hypertension among affected families.
Collapse
|
5
|
Alenina N, Böhme I, Bader M, Walther T. Multiple non-coding exons and alternative splicing in the mouse Mas protooncogene. Gene 2015; 568:155-64. [PMID: 26003294 DOI: 10.1016/j.gene.2015.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/23/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022]
Abstract
The Mas protooncogene encodes a G protein-coupled receptor with the common seven transmembrane domains, expressed mainly in the testis and brain. We provided evidence that Mas is a functional angiotensin-(1-7) receptor and can interact with the angiotensin II type 1 (AT1) receptor. The gene is transcriptionally regulated during development in the brain and testis, but its structure was unresolved. In this study we used 5'- and 3'-RACE, RT-PCR, and RNase-protection assays to elucidate the complete Mas gene structure and organization. We identified 12 exons in the mouse Mas gene with 11 in the 5' untranslated mRNA, which can be alternatively spliced. We also showed that Mas transcription can start from 4 tissue-specific promoters, whereby testis-specific Mas mRNA is transcribed from two upstream promoters, and the expression of Mas in the brain starts from two downstream promoters. Alternative splicing and multiple promoter usage result in at least 12 Mas transcripts in which different 5' untranslated regions are fused to a common coding sequence. Moreover, termination of Mas mRNA is regulated by two different polyadenylation signals. The gene spans approximately 27 kb, and the longest detected mRNA contains 2,451 bp. Thus, our results characterize the Mas protooncogene as the gene with the most complex gene structure of all described members of the gene family coding for G protein-coupled receptors.
Collapse
Affiliation(s)
- Natalia Alenina
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13092 Berlin-Buch, Germany; Federal University of Minas Gerais (UFMG), ICB, 6627 Belo Horizonte, MG, Brasil
| | - Ilka Böhme
- Centre for Perinatal Medicine, University Medical Centre Leipzig, Liebigstraße 20a, 04103 Leipzig, Germany
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13092 Berlin-Buch, Germany; Federal University of Minas Gerais (UFMG), ICB, 6627 Belo Horizonte, MG, Brasil; Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thomas Walther
- Centre for Perinatal Medicine, University Medical Centre Leipzig, Liebigstraße 20a, 04103 Leipzig, Germany; Department of Pharmacology and Therapeutics, 2nd Floor, Western Road, University College Cork, Cork, Ireland.
| |
Collapse
|
6
|
Pacholczyk M, Ferenc T, Kowalski J, Adamczyk P, Chojnowski J, Ponikowska I. Association of angiotensin-converting enzyme and angiotensin II type I receptor gene polymorphisms with extreme obesity in Polish individuals. DNA Cell Biol 2013; 32:435-42. [PMID: 23745680 DOI: 10.1089/dna.2013.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
There is strong evidence for the presence of a functional renin-angiotensin system in human adipose tissue. The aim of our study was to investigate the association of polymorphic variants of angiotensin-converting enzyme gene (ACE I/D) and angiotensin II type I receptor gene (AGTR1 A1166C) with extreme obesity and obesity-associated type 2 diabetes mellitus (T2DM) and to examine their combined effect on extremely obese patients. Overall, no significant associations were detected between ACE and AGTR1 gene polymorphisms and extreme obesity. However, extremely obese patients with T2DM showed an increased frequency of ACE II genotype compared with controls (p<0.05) and with non-diabetic extremely obese patients (p<0.01). The results suggest that II genotype of ACE was a significant contributor to extreme obesity in AA homozygotes of AGTR1 gene, regardless of the presence of T2DM. Moreover, the analysis of genetic polymorphisms demonstrated that ACE II and AGTR1 AC genotypes were most frequently observed in patients with extreme obesity and T2DM. On the basis of our results, we suggest that ACE II homozygosity may be a significant predictor of extreme obesity and T2DM and that the interaction between ACE and AGTR1 genes may be considered a predisposing factor for extreme obesity and extreme obesity-associated T2DM development.
Collapse
MESH Headings
- Adult
- Aged
- Case-Control Studies
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Epistasis, Genetic/physiology
- Female
- Genetic Association Studies
- Genetic Predisposition to Disease
- Genotype
- Humans
- Male
- Middle Aged
- Obesity, Morbid/complications
- Obesity, Morbid/epidemiology
- Obesity, Morbid/genetics
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/physiology
- Poland/epidemiology
- Polymorphism, Genetic/physiology
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/physiology
Collapse
Affiliation(s)
- Marta Pacholczyk
- Department of Biology and Medical Genetics, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|
7
|
The CXCL12 G801A polymorphism and cancer risk: evidence from 17 case-control studies. Gene 2012; 509:228-31. [PMID: 22939870 DOI: 10.1016/j.gene.2012.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/06/2012] [Accepted: 08/16/2012] [Indexed: 11/20/2022]
Abstract
CXCL12 has been implicated in human carcinogenesis, but the association between the most-studied G801A polymorphism (rs1801157) and the risk of various cancers was reported with inconclusive results. The aim of this study was to assess the association between the CXCL12 G801A polymorphism and cancer risk. A meta-analysis of 17 studies with 3048 cancer patients and 4522 controls was conducted to evaluate the strength of the association using odds ratio (OR) with its 95% confidence interval (CI). The overall results showed that the variant genotypes were associated with a significantly increased risk of all cancer types (OR=1.38, 95%CI=1.18-1.61 for GA versus GG, and OR=1.36, 95%CI=1.17-1.59 for GA/AA versus GG). In the stratified analyses, there was a significantly increased risk for the studies of breast cancer (OR=1.64, 95% CI=1.16-2.33 for AA versus GG, OR=1.42, 95%CI=1.18-1.71 for GA versus GG, and OR=1.44, 95%CI=1.21-1.72 for GA/AA versus GG) and lung cancer (OR=2.86, 95% CI=1.75-4.69 for AA versus GG, OR=1.62, 95% CI=1.20-2.18 for GA vs. GG, OR=1.80, 95% CI=1.36-2.39 for GA/AA versus GG, and OR=2.24, 95%CI=1.41-3.57 for AA versus GA/GG), which remained for the studies of Asian populations and hospital-based control sources. Although some modest bias could not be eliminated, this meta-analysis indicates that the CXCL12 G801A polymorphism is a low-penetrance risk factor for cancer development.
Collapse
|
8
|
Contributions of renin-angiotensin system-related gene interactions to obesity in a Chinese population. PLoS One 2012; 7:e42881. [PMID: 22880127 PMCID: PMC3412812 DOI: 10.1371/journal.pone.0042881] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 07/13/2012] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Gene-gene interactions may be partly responsible for complex traits such as obesity. Increasing evidence suggests that the renin-angiotensin system (RAS) contributes to the etiology of obesity. How the epistasis of genes in the RAS contributes to obesity is still under research. We aim to evaluate the contribution of RAS-related gene interactions to a predisposition of obesity in a Chinese population. METHODOLOGY AND PRINCIPAL FINDINGS We selected six single nucleotide polymorphisms (SNPs) located in angiotensin (AGT), angiotensin converting enzyme (ACE), angiotensin type 1 receptor (AGTR1), MAS1, nitric oxide synthase 3 (NOS3) and the bradykinin B2 receptor gene (BDKRB2), and genotyped them in 324 unrelated individuals with obesity (BMI ≥ 28 kg/m(2)) and 373 non-obese controls (BMI 18.5 to <24 kg/m(2)) from a large scale population-based cohort. We analyzed gene-gene interactions among 6 polymorphic loci using the Generalized Multifactor Dimensionality Reduction (GMDR) method, which has been shown to be effective for detecting gene-gene interactions in case-control studies with relatively small samples. Then we used logistic regression models to confirm the best combination of loci identified in the GMDR. It showed a significant gene-gene interaction between the rs220721 polymorphism in the MAS1 gene and the rs1799722 polymorphism in the gene BDKB2R. The best two-locus combination scored 9 for cross-validation consistency and 9 for sign test (p = 0.0107). This interaction showed the maximum consistency and minimum prediction error among all gene-gene interaction models evaluated. Moreover, the combination of the MAS1 rs220721 and the BDKRB2 rs1799722 was associated with a significantly increased risk of obesity (OR 1.82, CI 95%: 1.15-2.88, p = 0.0103). CONCLUSIONS AND SIGNIFICANCE These results suggest that the SNPs from the RAS-related genes may contribute to the risk of obesity in an interactive manner in a Chinese population. The gene-gene interaction may serve as a novel area for obesity research.
Collapse
|
9
|
Snyder R, Thekkumkara T. 13-cis-Retinoic acid specific down-regulation of angiotensin type 1 receptor in rat liver epithelial and aortic smooth muscle cells. J Mol Endocrinol 2012; 48:99-114. [PMID: 22180636 DOI: 10.1530/jme-11-0095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transcriptional repression through cis- and trans-acting factors enabling an alternate approach to control angiotensin type 1 receptor (AT1 or AGTR1 as listed in the MGI database) expression has not been studied. In previous investigations, treatment with retinoic acid was found to be associated with enhanced insulin sensitivity. In our previous study, expression of AT1 was found to be inversely correlated with intracellular glucose concentrations. Therefore, we hypothesized that 13-cis-retinoic acid (13cRA), an antioxidant, enhances insulin-sensitive glucose-mediated down-regulation of the AT1. In this study, we used continuously passaged rat liver epithelial cells. Our study shows that cells exposed to 13cRA specifically down-regulated the AT1 protein in a dose- and time-dependent manner, independently of any change in receptor affinity. Down-regulation of the AT1 expression leads to reduced AngII-mediated intracellular calcium release, a hallmark of receptor-mediated intracellular signaling. Similarly with receptor down-regulation, we observed a significant reduction in AT1 mRNA; however, the AT1 down-regulation was independent of insulin-sensitive glucose uptake and retinoic acid receptor activation (RAR/RXR). Treatment with 13cRA resulted in phosphorylation of p42/p44 MAP kinases in these cells. Subsequent studies using MEK inhibitor PD98059 prevented 13cRA-mediated AT1 down-regulation and restored AngII-mediated intracellular calcium response. Furthermore, 13cRA-mediated inhibitory effects on AT1 were validated in primary rat aortic smooth muscle cells. In summary, our results demonstrate for the first time that 13cRA has a glucose- and RAR/RXR-independent mechanism for transcriptional inhibition of AT1, suggesting its therapeutic potential in systems in which AT1 expression is deregulated in insulin-sensitive and -insensitive tissues.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Animals
- Antioxidants/pharmacology
- Aorta/cytology
- Cells, Cultured
- Down-Regulation/drug effects
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Flavonoids/pharmacology
- Gene Expression Regulation/drug effects
- Glucose/metabolism
- Insulin/metabolism
- Isotretinoin/pharmacology
- Liver/cytology
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- Muscle, Smooth, Vascular/cytology
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Retinoid X Receptors/genetics
- Retinoid X Receptors/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Russell Snyder
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA
| | | |
Collapse
|
10
|
Xu Y, Bao Q, He B, Pan Y, Zhang R, Mao X, Tang Z, Qu L, Zhu C, Tian F, Wang S. Association of angiotensin I converting enzyme, angiotensin II type 1 receptor and angiotensin I converting enzyme 2 gene polymorphisms with the dyslipidemia in type 2 diabetic patients of Chinese Han origin. J Endocrinol Invest 2012; 35:378-83. [PMID: 21670585 DOI: 10.3275/7797] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE To investigate whether the genetic polymorphisms in the angiotensin I converting enzyme (ACE) (insertion/ deletion, or I/D), angiotensin II type 1 receptor (AT1R) (rs5186), and ACE2 (rs2285666) could be associated with dyslipidemia in Type 2 diabetic (T2D) patients of Chinese Han origin. DESIGN AND METHODS The above 3 polymorphisms were genotyped in a total of 282 patients with T2D and dyslipidemia (Group A), 182 patients with T2D but without dyslipidemia (Group B), and 324 healthy controls. The association between a certain polymorphism and each group was assessed by an odds ratio (OR). RESULTS The D allele of the ACE (I/D) was significantly associated with the risk of T2D accompanying dyslipidemia between group A and controls [OR=1.37, 95% confidence interval (CI)=1.08-1.74; p=0.010], and significant association of the D allele with dyslipidemia was also observed in diabetic patients (OR=1.88, 95% CI=1.40-2.54; p<0.001). Furthermore, the ID genotype had a decreased risk of developing T2D without dyslipidemia as compared with controls (OR=0.52, 95% CI=0.32-0.82; p=0.0060). The distributions of the AT1R (rs5186) and ACE2 (rs2285666) genotypes and alleles did not differ between T2D patients with or without dyslipidemia and the controls. CONCLUSIONS This study demonstrates that the ACE (I/D) polymorphism is associated with T2D, regardless of the absence or presence of dyslipidemia. The polymorphisms in the AT1R (rs5186) and ACE2 (rs2285666) seem to play lesser roles in the development of T2D.
Collapse
Affiliation(s)
- Y Xu
- Department of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Koganti S, Snyder R, Thekkumkara T. Pharmacologic effects of 2-methoxyestradiol on angiotensin type 1 receptor down-regulation in rat liver epithelial and aortic smooth muscle cells. ACTA ACUST UNITED AC 2012; 9:76-93. [PMID: 22366193 DOI: 10.1016/j.genm.2012.01.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/04/2012] [Accepted: 01/20/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Delayed onset of cardiovascular disease (CVD) in female patients is not well understood, but could be due in part to the protective effect of estrogen before menopause. Experimental studies have identified the angiotensin type 1 receptor (AT1R) as a key factor in the progression of CVD. OBJECTIVE We examined the effects of the estrogen metabolite 2-methoxyestradiol (2ME2) on AT1R expression. METHODS Rat liver cells were exposed to 2ME2 for 24 hours, and angiotensin II (AngII) binding and AT1R mRNA expressions were assessed. RESULTS In the presence of 2ME2, cells exhibited significant down-regulation of AngII binding that was both dose and time dependent, independent of estrogen receptors (ERα/ERβ). Down-regulation of AngII binding was AT1R specific, with no change in receptor affinity. Under similar conditions, we observed lower expression of AT1R mRNA, significant inhibition of AngII-mediated increase in intracellular Ca(2+), and increased phosphorylation of ERK1/2. Pretreatment of cells with the MEK inhibitor PD98059 prevented 2ME2-induced ERK1/2 phosphorylation and down-regulation of AT1R expression, which suggests that the observed inhibitory effect is mediated through ERK1/2 signaling intermediates. Similar analyses in stably transfected CHO (Chinese hamster ovary) cell lines with a constitutively active cytomegalovirus promoter showed no change in AT1R expression, which suggests that 2ME2-mediated effects are through transcriptional regulation. The effects of 2ME2 on AT1R down-regulation through ERK1/2 were consistently reproduced in primary rat aortic smooth muscle cells. CONCLUSIONS Because AT1R has a critical role in the control of CVD, 2ME2-induced changes in receptor expression may provide beneficial effects to the cardiovascular and other systems.
Collapse
MESH Headings
- 2-Methoxyestradiol
- Angiotensin II/drug effects
- Angiotensin II/genetics
- Angiotensin II/metabolism
- Animals
- Aorta/drug effects
- Cricetinae
- Down-Regulation
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Female
- Gene Expression Regulation/drug effects
- Humans
- Liver/drug effects
- Male
- Microscopy, Fluorescence
- Myocytes, Smooth Muscle/drug effects
- RNA, Messenger/metabolism
- Rats
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 2/drug effects
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Sivaramakrishna Koganti
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | | | | |
Collapse
|
12
|
Yesudas R, Gumaste U, Snyder R, Thekkumkara T. Tannic acid down-regulates the angiotensin type 1 receptor through a MAPK-dependent mechanism. Mol Endocrinol 2012; 26:458-70. [PMID: 22322600 DOI: 10.1210/me.2011-1224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In the present study, we investigated the effects of tannic acid (TA), a hydrolysable polyphenol, on angiotensin type 1 receptor (AT1R) expression in continuously passaged rat liver epithelial cells. Under normal conditions, exposure of cells to TA resulted in the down-regulation of AT1R-specific binding in concentrations ranging from 12.5-100 μg/ml (7.34-58.78 μm) over a time period of 2-24 h with no change in receptor affinity to angiotensin II (AngII). The inhibitory effect of TA on AT1R was specific and reversible. In TA-treated cells, we observed a significant reduction in AngII-mediated intracellular calcium signaling, a finding consistent with receptor down-regulation. Under similar conditions, TA down-regulated AT1R mRNA expression without changing the rate of mRNA degradation, suggesting that TA's effect is mediated through transcriptional inhibition. Cells expressing recombinant AT1R without the native promoter show no change in receptor expression, whereas a pCAT reporter construct possessing the rat AT1R promoter was significantly reduced in activity. Furthermore, TA induced the phosphorylation of MAPK p42/p44. Pretreatment of the cells with a MAPK kinase (MEK)-specific inhibitor PD98059 prevented TA-induced MAPK phosphorylation and down-regulation of the AT1R. Moreover, there was no reduction in AngII-mediated intracellular calcium release upon MEK inhibition, suggesting that TA's observed inhibitory effect is mediated through MEK/MAPK signaling. Our findings demonstrate, for the first time, that TA inhibits AT1R gene expression and cellular response, suggesting the observed protective effects of dietary polyphenols on cardiovascular conditions may be, in part, through inhibition of AT1R expression.
Collapse
Affiliation(s)
- Rekha Yesudas
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | |
Collapse
|
13
|
Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, Speth RC, Karamyan VT. Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site. J Biol Chem 2011; 287:114-122. [PMID: 22039052 DOI: 10.1074/jbc.m111.273052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we discovered a novel non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site in rodent and human brain membranes, which is distinctly different from angiotensin receptors and key proteases processing angiotensins. It is hypothesized to be a new member of the renin-angiotensin system. This study was designed to isolate and identify this novel angiotensin binding site. An angiotensin analog, photoaffinity probe 125I-SBpa-Ang II, was used to specifically label the non-AT1, non-AT2 angiotensin binding site in mouse forebrain membranes, followed by a two-step purification procedure based on the molecular size and isoelectric point of the photoradiolabeled binding protein. Purified samples were subjected to two-dimensional gel electrophoresis followed by mass spectrometry identification of proteins in the two-dimensional gel sections containing radioactivity. LC-MS/MS analysis revealed eight protein candidates, of which the four most abundant were immunoprecipitated after photoradiolabeling. Immunoprecipitation studies indicated that the angiotensin binding site might be the membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16). To verify these observations, radioligand binding and photoradiolabeling experiments were conducted in membrane preparations of HEK293 cells overexpressing mouse neurolysin or thimet oligopeptidase (EC 3.4.24.15), a closely related metalloendopeptidase of the same family. These experiments also identified neurolysin as the non-AT1, non-AT2 angiotensin binding site. Finally, brain membranes of mice lacking neurolysin were nearly devoid of the non-AT1, non-AT2 angiotensin binding site, further establishing membrane-bound neurolysin as the binding site. Future studies will focus on the functional significance of this highly specific, high affinity interaction between neurolysin and angiotensins.
Collapse
Affiliation(s)
- Naomi J Wangler
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | - Kira L Santos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328
| | - Ines Schadock
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Fred K Hagen
- Proteomics Center, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Emanuel Escher
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida 32611
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Vascular Drug Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106.
| |
Collapse
|
14
|
Renin-angiotensin system polymorphisms in relation to hypertension status and obesity in a Tunisian population. Mol Biol Rep 2011; 39:4059-65. [PMID: 21779803 DOI: 10.1007/s11033-011-1187-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 07/11/2011] [Indexed: 10/18/2022]
Abstract
Essential hypertension (HTA) is the clinical expression of a disordered interaction between the genetic, physiological, and biochemical systems that under usual conditions maintain cardiovascular homeostasis. We studied the effects of the angiotensinogen M235T, angiotensin converting enzyme insertion/deletion (ACE I/D), and angiotensin II receptor 1 (AT1R) A1166C gene polymorphisms on the risk of HTA and to evaluate the relationship between these polymorphisms and obesity. We performed AGT, ACE and AGTR genotyping in 142 hypertensive patients and 191 control subjects using PCR-RFLP methods and PCR, respectively. The three polymorphisms were significantly associated with HTA. Individuals carrying the mutated TT of AGT, DD of ACE and CC of AT1R genotypes had an 1.67 (P = 0.032), 3.09 (P < 0.001) and 3.45 (P < 0.001)-fold increased risk of HTA. After adjustment for sex, smoking, diabetes, dyslipidemia, BMI, triglycerides and DD, TT and CC genotypes, BMI was independent risk factor of HTA (OR = 3.14; P < 0.001). An association of BMI with ACE gene polymorphism (P = 0.035), whereas no association with AGT and AT1R gene polymorphisms was obtained. The proportion of hypertensives is as high as 21.8 and 13.4% in the overweight and the obese DD group. The present study implies that the genotyping for the variants of RAS gene could in the future become an important part of the clinical process of risk identification for HTA.
Collapse
|
15
|
Mendizábal-Ruiz AP, Morales J, Castro Martinez X, Gutierrez Rubio SA, Valdez L, Vásquez-Camacho JG, Sanchez Corona J, Moran Moguel MC. RAS polymorphisms in cancerous and benign breast tissue. J Renin Angiotensin Aldosterone Syst 2010; 12:85-92. [PMID: 21109584 DOI: 10.1177/1470320310383735] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Recent information has revealed new roles in the angiogenic processes linked to the rennin-angiotensin system. To date few studies have been done on the association between RAS genes and cancer and the majority focus mainly on angiotensin I-converting enzyme (ACE). For breast cancer there are three reports that include the angiotensin II receptor, subtype 1 (AGTR1), only one for angiotensinogen (AGT) and none for renin gene (REN). In the present study we investigate whether REN (Bgll), AGT (M235T), ACE (A245T, Indel), and AGTR1 (A1166C) are associated with breast cancer. Polymorphisms were analysed by PCR and RFPLs or sequence specific assay in three groups: breast cancer, benign breast disease (BBD) and general population. REN polymorphism shows that homozygous for A allele have an increased risk for BBD. Differences in M235T genotype frequencies were significant with less heterozygous in breast cancer. With different risk values ACE indel was associated with BBD and breast cancer. Association of AGTR1 was observed only in the breast cancer group, where C allele carriers present a reduced risk. Results of this work supports previous observations on the possible involvement of this system in breast cancer but it also suggests a role in benign disease.
Collapse
|
16
|
Mehri S, Koubaa N, Hammami S, Mahjoub S, Chaaba R, Nakbi A, Zouari B, Abid M, Ben Arab S, Baudin B, Hammami M. Genotypic interactions of renin-angiotensin system genes with diabetes type 2 in a Tunisian population. Life Sci 2010; 87:49-54. [PMID: 20580725 DOI: 10.1016/j.lfs.2010.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/07/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
AIMS To explore the role of genetic variants of angiotensinogen (AGT M235T), angiotensin-converting enzyme (ACE I/D), and angiotensin type 1 receptor (AT1R A1166C) as predictors of diabetes risk and to examine their combined effects on type 2 diabetes mellitus (T2DM) patients. MAIN METHODS One hundred and fourteen T2DM patients were compared to 175 healthy controls with similar age and sex. KEY FINDINGS The genotypic frequencies for all three genes alone were significantly associated with increased risk of developing diabetes. Logistic regression analysis of classic coronary risk factors and the genetic polymorphisms demonstrated that hypertension and ACE DD genotype were the most significant contributors to T2DM. For the renin-angiotensin system (RAS) genes, the risk of T2DM in individuals with one risk genotype was 1.9 (95%CI: 1.1-3.0, p=0.017) higher than those with zero risk genotype. Individuals who carried two risk genotypes had a 4.0 (95%CI 1.7-9.4, p=0.001) times higher risk of T2DM than those who did not carry any risk genotypes of the RAS genes. Most interestingly, the risk of T2DM for individuals with three risk genotypes was 26.2 (95%CI: 5.8-117.9, p<0.001) higher than those with zero risk genotype. SIGNIFICANCE The results of the present study imply that genotyping of renin-angiotensin system genes could become an important part of the clinical process of risk identification for T2DM in Tunisian population.
Collapse
Affiliation(s)
- Sounira Mehri
- Laboratory of Biochemistry, UR Human Nutrition and Metabolic Disorders, Faculty of Medicine, Avicenne St., 5019 Monastir, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chung WK, Deng L, Carroll JS, Mallory N, Diamond B, Rosenzweig EB, Barst RJ, Morse JH. Polymorphism in the angiotensin II type 1 receptor (AGTR1) is associated with age at diagnosis in pulmonary arterial hypertension. J Heart Lung Transplant 2009; 28:373-9. [PMID: 19332265 DOI: 10.1016/j.healun.2009.01.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 10/05/2008] [Accepted: 01/20/2009] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare, lethal disease associated with single gene disorders, connective tissue disease, exposures to anorexigens, and often, idiopathic etiology. Genes can modify the risk of PAH: (1) monogenic disorders associated with PAH are incompletely penetrant, and (2) not all patients with associated conditions at increased risk for PAH develop the disease. The renin angiotensin aldosterone system (RAAS) provides a set of candidate genes that could modulate pulmonary vascular disease similar to its effects on renal and peripheral vasculature. METHODS We studied 247 patients with PAH, comprising 177 with idiopathic PAH (IPAH), 63 with PAH/connective tissue disease (CTD), and 7 with PAH associated with anorexigens. Patients were genotyped for 5 common polymorphisms in angiotensinogen (AGT), angiotensin-converting enzyme (ACE), cardiac chymase A (CMA1), angiotensin II type 1 receptor (AGTR1), and aldosterone synthase (CYP11B2). Genotypes were tested for associations with age at diagnosis, hemodynamic parameters at diagnosis, and/or response to acute pulmonary vasodilator testing at diagnosis. RESULTS Associations were demonstrated for AGTR1 and age at diagnosis in IPAH (p = 0.005). Homozygotes for the 1166C allele (n = 13) were associated with an age at diagnosis 26 years later than those with A/A (n = 139) or A/C (n = 90) genotypes. No associations were demonstrated for AGT, ACE, CMA1, or CYP11B2. CONCLUSIONS The 1166C polymorphism in AGTR1 appears to be associated with a later age at diagnosis in IPAH, suggesting that this pathway could be involved in the biologic variability that is known to occur in PAH.
Collapse
Affiliation(s)
- Wendy K Chung
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pende A, Contini L, Sallo R, Passalacqua M, Tanveer R, Port JD, Lotti G. Characterization of RNA-binding proteins possibly involved in modulating human AT1 receptor mRNA stability. Cell Biochem Funct 2008; 26:493-501. [DOI: 10.1002/cbf.1472] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Kretowski A, McFann K, Hokanson JE, Maahs D, Kinney G, Snell-Bergeon JK, Wadwa RP, Eckel RH, Ogden L, Garg S, Li J, Cheng S, Erlich HA, Rewers M. Polymorphisms of the renin-angiotensin system genes predict progression of subclinical coronary atherosclerosis. Diabetes 2007; 56:863-71. [PMID: 17327458 DOI: 10.2337/db06-1321] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Premature coronary artery disease (CAD) in subjects with type 1 diabetes dramatically affects quality of life and morbidity and leads to premature death, but there is still little known about the mechanisms and predictors of this complication. In the present study, we explored the role of genetic variants of angiotensinogen (AGT, M235T), ACE (I/D), and angiotensin type 1 receptor (ATR1, A1166C) as predictors of rapid progression of subclinical coronary atherosclerosis. Five-hundred eighty-five type 1 diabetic patients and 592 similar age and sex control subjects were evaluated for progression of coronary artery calcification (CAC), a marker of subclinical CAD, before and after a 2.5-year follow-up. In logistic regression analysis, CAC progression was dramatically more likely in type 1 diabetic subjects not treated with ACE inhibitor/angiotensin receptor blocker who had the TT-ID-AA/AC genotype combination than in those with other genotypes (odds ratio 11.6 [95%CI 4.5-29.6], P < 0.0001) and was even stronger when adjusted for cardiovascular disease risk factors and the mean A1C (37.5 [3.6-388], P = 0.002). In conclusion, a combination of genotype variants of the renin-angiotensin system genes is a powerful determinant of subclinical progression of coronary artery atherosclerosis in type 1 diabetic patients and may partially explain accelerated CAD in type 1 diabetes.
Collapse
Affiliation(s)
- Adam Kretowski
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver and Health Sciences Center, Mail Stop A140, P.O. Box 6511, Aurora, CO 80045-6511, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Rosskopf D, Schürks M, Rimmbach C, Schäfers R. Genetics of arterial hypertension and hypotension. Naunyn Schmiedebergs Arch Pharmacol 2007; 374:429-69. [PMID: 17262198 DOI: 10.1007/s00210-007-0133-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 12/22/2006] [Indexed: 01/13/2023]
Abstract
Human hypertension affects affects more than 20% of the adult population in industrialized countries, and it is implicated in millions of deaths worldwide each year from stroke, heart failure and ischemic heart disease. Available evidence suggests a major genetic impact on blood pressure regulation. Studies in monogenic hypertension revealed that renal salt and volume regulation systems are predominantly involved in the genesis of these disorders. Mutations here affect the synthesis of mineralocorticoids, the function of the mineralocorticoid receptor, epithelial sodium channels and their regulation by a new class of kinases, termed WNK kinases. It has been learned from monogenic hypotension that almost all ion transporters involved in the renal uptake of Na(+) have a major impact on blood pressure regulation. For essential hypertension as a complex disease, many candidate genes have been analysed. These include components of the renin-angiotensin-aldosterone system, adducin, beta-adrenoceptors, G protein subunits, regulators of G protein signalling (RGS) proteins, Rho kinases and G protein receptor kinases. At present, the individual impact of common polymorphisms in these genes on the observed blood pressure variation, on risk for stroke and as predictors of antihypertensive responses remains small and clinically irrelevant. Nevertheless, these studies have greatly augmented our knowledge on the regulation of renal functions, cellular signal transduction and the integration of both. Together, this provides the basis for the identification of novel drug targets and, hopefully, innovative antihypertensive drugs.
Collapse
Affiliation(s)
- Dieter Rosskopf
- Department Pharmacology, Research Center for Pharmacology and Experimental Therapeutics, Ernst-Moritz-Arndt-University Greifswald, Friedrich Loeffler Str. 23d, 17487 Greifswald, Germany.
| | | | | | | |
Collapse
|
21
|
de Oliveira CEC, de Oliveira Cavassin GG, de Lourdes Perim A, Nasser TF, de Oliveira KB, Fungaro MHP, do Val Carneiro JL, Watanabe MAE. Stromal cell-derived factor-1 chemokine gene variant in blood donors and chronic myelogenous leukemia patients. J Clin Lab Anal 2007; 21:49-54. [PMID: 17245764 PMCID: PMC6649230 DOI: 10.1002/jcla.20142] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 10/19/2006] [Indexed: 11/11/2022] Open
Abstract
Chronic myelogenous leukemia (CML) is a malignant myeloproliferative disorder that originates from a pluripotent stem cell expressing the bcr-abl oncogene. It is characterized by an abnormal release of the expanded, malignant stem cell clone from the bone marrow into the circulation. The stromal cell derived factor-1 (SDF-1) gene contains a common polymorphism, termed SDF1-3'A, in an evolutionarily conserved segment of the 3' untranslated region (UTR). In this work the SDF-1 genotypes of 25 patients (9-82 years old) who had been clinically and hematologically diagnosed with CML were compared with those of 60 healthy donors. In addition, the nature of bcr-abl hybrid mRNA and the association between demographic and hematological parameters were analyzed in cells from 12 CML patients (five women and seven men). All patients underwent blood collection during the chronic phase of disease after they received chemotherapy. b3a2 mRNA was detected in samples from eight of the CML patients and b2a2 mRNA was observed in four cases. An association between basophils and hemoglobin parameters was observed in that hemoglobin levels were higher in b2a2-expressing patients, and mean basophil levels were higher in patients expressing b3a2. Four of the CML patients (16%) were homozygous for 3'A allele. Of the patients who showed the presence of bcr-abl transcripts (N = 12), three presented the wt/wt genotype and nine were SDF1-3'A carriers. Three of the latter were homozygous for this mutation. It is possible that the bcr-abl fusion gene and the SDF1 genotype for 3'A allele have important implications for the pathogenesis of CML.
Collapse
Affiliation(s)
| | | | - Aparecida de Lourdes Perim
- Department of Pathology, Clinical Analysis and Toxicology, Health Sciences Center, Londrina State University, Londrina, Brazil
| | - Thiago Franco Nasser
- Department of Pathological Sciences‐Immunology‐Genome, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Karen Brajão de Oliveira
- Department of Pathological Sciences‐Immunology‐Genome, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | | | - Juliana Laino do Val Carneiro
- Department of Pathological Sciences‐Immunology‐Genome, Biological Sciences Center, Londrina State University, Londrina, Brazil
| | - Maria Angelica Ehara Watanabe
- Department of Pathological Sciences‐Immunology‐Genome, Biological Sciences Center, Londrina State University, Londrina, Brazil
| |
Collapse
|
22
|
Krishna SB, Alfonso LF, Thekkumkara TJ, Abbruscato TJ, Bhat GJ. Angiotensin II induces phosphorylation of glucose-regulated protein-75 in WB rat liver cells. Arch Biochem Biophys 2006; 457:16-28. [PMID: 17109810 PMCID: PMC2577571 DOI: 10.1016/j.abb.2006.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 10/06/2006] [Accepted: 10/12/2006] [Indexed: 01/19/2023]
Abstract
Studies in vascular smooth muscle cells suggest that, angiotensin II (Ang II)-mediated cellular response requires transactivation of epidermal growth factor receptor (EGF-R), and involves tyrosine phosphorylation of caveolin-1. Here we demonstrate that, exposure of WB rat liver cells to Ang II does not cause transactivation of EGF-R, but did rapidly activate p42/p44 mitogen-activated protein (MAP) kinases suggesting that it activates MAP kinases independent of EGF-R transactivation. We observed that the phospho-specific anti-caveolin-1 antibody detected a tyrosine phosphorylated, 75kDa protein in Ang II-treated cells which we identified as glucose regulated protein-75 (GRP-75). Phosphoamino acid analysis showed that Ang II induced its phosphorylation at tyrosine, serine and threonine residues and was localized to the cytoplasm. The ability of Ang-II to induce GRP-75 phosphorylation suggests that it may play a role in the protection of cytoplasmic proteins from the damaging effect of oxidative stress known to be produced during Ang-II induced signaling.
Collapse
Affiliation(s)
| | | | | | | | - G. Jayarama Bhat
- * To whom correspondence should be addressed. G. Jayarama Bhat, Ph.D., Associate Professor, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, Tel: (806) 356-4015 ext 249, Fax: (806) 356-4034, E-mail:
| |
Collapse
|
23
|
Misquitta CM, Chen T, Grover AK. Control of protein expression through mRNA stability in calcium signalling. Cell Calcium 2006; 40:329-46. [PMID: 16765440 DOI: 10.1016/j.ceca.2006.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2006] [Revised: 03/22/2006] [Accepted: 04/12/2006] [Indexed: 01/14/2023]
Abstract
Specific sequences (cis-acting elements) in the 3'-untranslated region (UTR) of RNA, together with stabilizing and destabilizing proteins (trans-acting factors), determine the mRNA stability, and consequently, the level of expression of several proteins. Such interactions were discovered initially for short-lived mRNAs encoding cytokines and early genes like c-jun and c-myc. However, they may also determine the fate of more stable mRNAs in a tissue and disease-dependent manner. The interactions between the cis-acting elements and the trans-acting factors may also be modulated by Ca(2+) either directly or via a control of the phosphorylation status of the trans-acting factors. We focus initially on the basic concepts in mRNA stability with the trans-acting factors AUF1 (destabilizing) and HuR (stabilizing). Sarco/endoplasmic reticulum Ca(2+) pumps, SERCA2a (cardiac and slow twitch muscles) and SERCA2b (most cells including smooth muscle cells), are pivotal in Ca(2+) mobilization during signal transduction. SERCA2a and SERCA2b proteins are encoded by relatively stable mRNAs that contain cis-acting stability determinants in their 3'-regions. We present several pathways where 3'-UTR mediated mRNA decay is key to Ca(2+) signalling: SERCA2a and beta-adrenergic receptors in heart failure, renin-angiotensin system, and parathyroid hormones. Other examples discussed include cytokines vascular endothelial growth factor, endothelin and endothelial nitric oxide synthase. Roles of Ca(2+) and Ca(2+)-binding proteins in mRNA stability are also discussed. We anticipate that these novel modes of control of protein expression will form an emerging area of research that may explore the central role of Ca(2+) in cell function during development and in disease.
Collapse
Affiliation(s)
- Christine M Misquitta
- Banting and Best Department of Medical Research, 10th floor Donnelly CCBR, University of Toronto, 160 College Street, Toronto, Ont., Canada M5S 3E1
| | | | | |
Collapse
|
24
|
Sartor A, Kossoris JB, Wilcox R, Shearer R, Zeneberg AE, Zhao P, Lazdins I, Burnatowska-Hledin MA. Truncated form of VACM-1/cul-5 with an extended 3' untranslated region stimulates cell growth via a MAPK-dependent pathway. Biochem Biophys Res Commun 2006; 343:1086-93. [PMID: 16581022 DOI: 10.1016/j.bbrc.2006.02.197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 02/26/2006] [Indexed: 10/24/2022]
Abstract
We have sequenced a 4.9kb clone (KLB22) which shares 99% sequence homology with the rabbit vasopressin-activated calcium mobilizing (VACM-1) protein. The 5' terminus sequence of KLB22 cDNA (nucleotides 1-1961) is continuous and overlapping with nucleotides 1226-3186 of the VACM-1 cDNA sequence. The 3'UTR of KLB22 cDNA extends beyond the 3'UTR of VACM-1 by 2999nt. KLB22 cDNA encodes a 497 amino acid protein, which putatively begins at Met 284 of the 780 amino acid VACM-1 protein. The in vitro translation of KLB22 cDNA yields a 59kDa protein. When expressed in cos-1 cells, the truncated VACM-1 protein localizes to the nucleus. KLB22 cDNA transfected cells show increased growth rates and increased levels of phosphorylated MAPK when compared to the vector or to VACM-1 cDNA transfected cells. Finally, in vivo, KLB22 protein expression is tissue specific and can be detected in kidney and in heart atrium. These results suggest that truncated VACM-1 cDNA (KLB22) increases cell proliferation through a MAPK pathway.
Collapse
Affiliation(s)
- Ashleigh Sartor
- Departments of Biology and Chemistry, Hope College, Holland, MI 49423, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Correa SAA, Pacheco NAS, Costa-Neto CM, Oliveira L, Pesquero JB, Han SW, Paiva ACM, Shimuta SI. Angiotensin II AT1 receptor mutants expressed in CHO cells caused morphological change and inhibition of cell growth. ACTA ACUST UNITED AC 2005; 131:18-22. [PMID: 15967516 DOI: 10.1016/j.regpep.2005.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 10/25/2022]
Abstract
To assess the importance of the leucine residues in positions 262 and 265 of the angiotensin AT(1) receptor for signaling pathways and receptor expression and regulation, we compared the properties of CHO cells transfected with the wild type or the L262D or L265D receptor point mutants. It was found that the two mutants significantly increased the basal intracellular cyclic AMP (cAMP) formation in an agonist-independent mode. The morphology transformation of CHO cells was correlated with the increased cAMP formation, since forskolin, a direct activator of adenylate cyclase mimicked this effect on WT-expressing CHO cells. DNA synthesis was found to be inhibited in these cell lines, indicating that cAMP may also have determined the inhibitory effect on cell growth, in addition to the cell transformation from a tumorigenic to a non-tumorigenic phenotype. However a role for an increased Ca2+ influx induced by the mutants in non-stimulated cells cannot be ruled out since this ion also was shown to cause transformed cells to regain the morphology and growth regulation.
Collapse
Affiliation(s)
- Silvana A A Correa
- Department of Biophysics, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Botucatu 862, 04023-062, São Paulo, S.P., Brazil
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Seres I, Fóris G, Páll D, Kosztáczky B, Paragh G, Varga Z, Paragh G. Angiotensin II-induced oxidative burst is fluvastatin sensitive in neutrophils of patients with hypercholesterolemia. Metabolism 2005; 54:1147-54. [PMID: 16125525 DOI: 10.1016/j.metabol.2005.03.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 03/18/2005] [Accepted: 03/29/2005] [Indexed: 11/18/2022]
Abstract
The aim of this study was to investigate the effect of the 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor fluvastatin (Flu) on angiotensin II (AII)-stimulated neutrophils of patients with hypercholesterolemia. Results suggest that a 6-week-long Flu administration completely counteracted the AII-induced increase in superoxide anion and leukotriene C4 production of the neutrophils of patients with hypercholesterolemia. However, the failure of signal processing through pertussis toxin-sensitive G protein, the increase in [Ca2+]i in membrane-bound protein kinase C activity, and the increase in neutrophil-bound cholesterol content were only partially restored by Flu. In addition, Flu had no effect on the increased membrane rigidity of the neutrophils of patients with hypercholesterolemia. To sum it up, Flu administration had a beneficial effect on AII-triggered reactive oxygen species generation; it resulted in partial restoration of signaling processes and of membrane composition, but membrane fluidity remained unchanged.
Collapse
Affiliation(s)
- Ildiko Seres
- First Department of Medicine, Medical and Health Science Center, University of Debrecen, H-4012 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
de Oliveira Cavassin GG, De Lucca FL, Delgado André N, Covas DT, Pelegrinelli Fungaro MH, Voltarelli JC, Watanabe MAE. Molecular investigation of the stromal cell-derived factor-1 chemokine in lymphoid leukemia and lymphoma patients from Brazil. Blood Cells Mol Dis 2005; 33:90-3. [PMID: 15223017 DOI: 10.1016/j.bcmd.2004.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 04/21/2004] [Indexed: 11/30/2022]
Abstract
The stromal cell-derived factor-1 (SDF-1) gene contains a common polymorphism, termed SDF1-3'A, in an evolutionarily conserved segment of the 3'-untranslated region (3'-UTR). We compared SDF-1 genotypes in patients diagnosed with lymphoid leukemias and lymphomas. Since the SDF1-3'A variant deletes the MspI restriction site, PCR-restriction fragment length polymorphism (RFLP) analysis was used for identification of genotypes. We identified the heterozygous genotype (3'A/wt) in 38.8% (24/62) of lymphoma patients and in 26.2% (11/42) of lymphoid leukemias. The percentage of 3'A carriers was significantly higher in lymphomas (43.5%) than in lymphoid leukemias (26.2%; P < 0.05). Our study indicates that lymphoma patients from Brazil are more likely to carry the 3'A gene than patients with lymphoid leukemias, suggesting that this polymorphism may be a differential determinant of lymphomas and lymphoid leukemia.
Collapse
|
29
|
França LP, Pacheco NAS, Correa SAA, Han SW, Nakaie CR, Paiva ACM, Shimuta SI. Angiotensin II-mediated cellular responses: a role for the 3'-untranslated region of the angiotensin AT1 receptor. Eur J Pharmacol 2003; 476:25-30. [PMID: 12969745 DOI: 10.1016/s0014-2999(03)02172-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have previously demonstrated that Chinese hamster ovary (CHO) cells transfected with the angiotensin II AT1 receptor gene containing only the coding region, presented tachyphylaxis to the total inositol phosphate (InsPs) and Ca2+ responses mediated by angiotensin II and [2-lysine]angiotensin II ([Lys2]angiotensin II). Now we have evaluated the possible role of the 3'-untranslated region of the angiotensin AT1 receptor mRNA in modulating the angiotensin AT1 receptor-mediated cellular responses. The binding parameters, as well as the Ca2+ and InsPs responses induced by angiotensin II and [Lys2]angiotensin II were similar in cells transfected with the angiotensin AT1 receptor with or without the 3'-untranslated region sequence. In cells transfected with the receptor containing the 3'-untranslated region sequence, angiotensin II-induced Ca2+ and InsPs responses were desensitized by repeated stimulations, whereas [Lys2]angiotensin II caused desensitization of InsPs production but not of Ca2+ uptake in these cells. Our results suggest that the 3'-untranslated region plays a role in modulating cell signalling involved in the tachyphylaxis of angiotensin AT1 receptor-mediated Ca2+ responses.
Collapse
Affiliation(s)
- Lucimar P França
- Department of Biophysics, Universidade Federal de São Paulo-Escola Paulista de Medicina, Rua Botucatu 862, 04023-060, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|