1
|
Wang Y, Wang A, Alkhalidy H, Luo J, Moomaw E, Neilson AP, Liu D. Flavone Hispidulin Stimulates Glucagon-Like Peptide-1 Secretion and Ameliorates Hyperglycemia in Streptozotocin-Induced Diabetic Mice. Mol Nutr Food Res 2020; 64:e1900978. [PMID: 31967385 DOI: 10.1002/mnfr.201900978] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 12/24/2019] [Indexed: 12/17/2022]
Abstract
SCOPE Loss of functional β-cell mass is central for the deterioration of glycemic control in diabetes. The incretin hormone glucagon-like peptide-1 (GLP-1) plays a critical role in maintaining glycemic homeostasis via potentiating glucose-stimulated insulin secretion and promoting β-cell mass. Agents that can directly promote GLP-1 secretion, thereby increasing insulin secretion and preserving β-cell mass, hold great potential for the treatment of T2D. METHODS AND RESULTS GluTag L-cells, INS832/13 cells, and mouse ileum crypts and islets are cultured for examining the effects of flavone hispidulin on GLP-1 and insulin secretion. Mouse livers and isolated hepatocytes are used for gluconeogenesis. Streptozotocin-induced diabetic mice are treated with hispidulin (20 mg kg-1 day-1 , oral gavage) for 6 weeks to evaluate its anti-diabetic potential. Hispidulin stimulates GLP-1 secretion from the L-cell line, ileum crypts, and in vivo. This hispidulin action is mediated via activation of cyclic adenosine monophosphate/protein kinase A signaling. Hispidulin significantly improves glycemic control in diabetic mice, concomitant with improved insulin release, and β-cell survival. Additionally, hispidulin decreases hepatic pyruvate carboxylase expression in diabetic mice and suppresses gluconeogenesis in hepatocytes. Furthermore, hispidulin stimulates insulin secretion from β-cells. CONCLUSION These findings suggest that Hispidulin may be a novel dual-action anti-diabetic compound via stimulating GLP-1 secretion and suppressing hepatic glucose production.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Jing Luo
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Elizabeth Moomaw
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Andrew P Neilson
- Plants for Human Health Institution, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, 24060, USA
| |
Collapse
|
2
|
Kahancová A, Sklenář F, Ježek P, Dlasková A. Overexpression of native IF1 downregulates glucose-stimulated insulin secretion by pancreatic INS-1E cells. Sci Rep 2020; 10:1551. [PMID: 32005857 PMCID: PMC6994519 DOI: 10.1038/s41598-020-58411-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/15/2020] [Indexed: 01/08/2023] Open
Abstract
We have previously reported that transient knock-down of ATPase inhibitory factor 1 (IF1) by siRNA upregulates ATP levels and subsequently augments insulin secretion in model pancreatic β-cells INS-1E. Here we investigated how long-term IF1-overexpression impacts pancreatic β-cell bioenergetics and insulin secretion. We generated INS-1E cell line stably overexpressing native IF1. We revealed that IF1 overexpression leads to a substantial decrease in ATP levels and reduced glucose-stimulated insulin secretion. A decrease in total cellular ATP content was also reflected in decreased free ATP cytosolic and mitochondrial levels, as monitored with ATeam biosensor. Consistently, cellular respiration of IF1-overexpressing cells was decreased. 3D structured illumination microscopy (SIM) revealed a higher amount of insulin granules with higher volume in IF1-overexpressing cells. Similar effects occurred when cells were incubated at low glucose concentrations. Noteworthy, activation of PKA by dibutyryl cAMP entirely abolished the inhibitory effect of IF1 overexpression on ATP production and insulin secretion. Mitochondrial network morphology and cristae ultrastructure in INS-1E overexpressing IF1 remained mostly unchanged. Finally, we show that INS-1E cells decrease their IF1 protein levels relative to ATP synthase α-subunit in response to increased glucose. In conclusion, IF1 actively downregulates INS-1E cellular metabolism and reduces their ability to secrete insulin.
Collapse
Affiliation(s)
- Anežka Kahancová
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Filip Sklenář
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Ježek
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Dlasková
- Department of Mitochondrial Physiology, No. 75, Institute of Physiology, The Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Arpón A, Milagro FI, Ramos-Lopez O, Mansego ML, Santos JL, Riezu-Boj JI, Martínez JA. Epigenome-wide association study in peripheral white blood cells involving insulin resistance. Sci Rep 2019; 9:2445. [PMID: 30792424 PMCID: PMC6385280 DOI: 10.1038/s41598-019-38980-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/11/2019] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance (IR) is a hallmark of type 2 diabetes, metabolic syndrome and cardiometabolic risk. An epigenetic phenomena such as DNA methylation might be involved in the onset and development of systemic IR. The aim of this study was to explore the genetic DNA methylation levels in peripheral white blood cells with the objective of identifying epigenetic signatures associated with IR measured by the Homeostatic Model Assessment of IR (HOMA-IR) following an epigenome-wide association study approach. DNA methylation levels were assessed using Infinium Methylation Assay (Illumina), and were associated with HOMA-IR values of participants from the Methyl Epigenome Network Association (MENA) project, finding statistical associations for at least 798 CpGs. A stringent statistical analysis revealed that 478 of them showed a differential methylation pattern between individuals with HOMA-IR ≤ 3 and > 3. ROC curves of top four CpGs out of 478 allowed differentiating individuals between both groups (AUC≈0.88). This study demonstrated the association between DNA methylation in some specific CpGs and HOMA-IR values that will help to the understanding and in the development of new strategies for personalized approaches to predict and prevent IR-associated diseases.
Collapse
Affiliation(s)
- Ana Arpón
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain
| | - Fermín I Milagro
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain
| | - Omar Ramos-Lopez
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain
| | - M Luisa Mansego
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain
| | - José Luis Santos
- Department of Nutrition, Diabetes and Metabolism, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José-Ignacio Riezu-Boj
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain. .,Navarra Institute for Health Research (IdiSNa), Pamplona, Spain.
| | - J Alfredo Martínez
- University of Navarra, Department of Nutrition, Food Sciences and Physiology & Centre for Nutrition Research, Pamplona, Spain.,Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain.,Navarra Institute for Health Research (IdiSNa), Pamplona, Spain.,Madrid Institute for Advanced Studies (IMDEA), IMDEA Food, Madrid, Spain
| |
Collapse
|
4
|
Castro AJG, Cazarolli LH, da Luz G, Altenhofen D, da Silva HB, de Carvalho FK, Pizzolatti MG, Silva FRMB. Fern-9(11)-ene-2α,3β-diol Action on Insulin Secretion under Hyperglycemic Conditions. Biochemistry 2018; 57:3894-3902. [PMID: 29792023 DOI: 10.1021/acs.biochem.8b00302] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The objective of this study was to investigate the effect and the mechanism of action of fernenediol as an insulin secretagogue. Wistar rats were treated with 0.1, 1, and 10 mg/kg fernenediol before inducing hyperglycemia by oral glucose. The glycaemia, insulin, LDH, calcium, and hepatic glycogen were analyzed. Considering the intestine and pancreas as targets for the triterpene action, the duodenum was used to verify the influence of fernenediol on intestinal glycosidases. Additionally, pancreatic islets were used for studies of 14C-deoxyglucose uptake and the influx of 45Ca2+ in hyperglycemic media with/without fernenediol in the presence/absence of an inhibitor/activator of KATP channels, glibenclamide, diazoxide, nifedipine, calcium chelator (BAPTA-AM), and H-89 and ST, the inhibitors of the PKA and PKC enzymes. Fernenediol significantly reduced glycaemia, potentiated glucose-induced insulin secretion, and stimulated liver glycogen deposition in hyperglycemic rats after an in vivo treatment without changing intestinal disaccharidases activities and showing no influence on intestinal glucose absorption. Also, it stimulated the glucose uptake and calcium influx in pancreatic islets. The involvement of voltage-dependent L-type calcium channels and ATP-dependent potassium channels and the release of calcium from intracellular stores are mandatory for the stimulatory effect of fernenediol on calcium influx. Fernenediol did not change PKA and PKC activities or modify calcium levels. This triterpene is a potent antihyperglycemic agent with a strong insulin secretagogue effect on glycogen accumulation as well. As a whole, this compound presents significant perspectives as a future new drug for the treatment of insulin resistance and/or diabetes.
Collapse
Affiliation(s)
- Allisson Jhonatan Gomes Castro
- Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | | | - Gabrielle da Luz
- Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Delsi Altenhofen
- Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Hemily Batista da Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Francieli Kanumfre de Carvalho
- Departamento de Química , Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Moacir Geraldo Pizzolatti
- Departamento de Química , Centro de Ciências Físicas e Matemáticas, Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| | - Fátima Regina Mena Barreto Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , SC 88040-900 , Brazil
| |
Collapse
|
5
|
Komai AM, Brännmark C, Musovic S, Olofsson CS. PKA-independent cAMP stimulation of white adipocyte exocytosis and adipokine secretion: modulations by Ca2+ and ATP. J Physiol 2014; 592:5169-86. [PMID: 25194045 DOI: 10.1113/jphysiol.2014.280388] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We examined the effects of cAMP, Ca(2+) and ATP on exocytosis and adipokine release in white adipocytes by a combination of membrane capacitance patch-clamp recordings and biochemical measurements of adipokine secretion. 3T3-L1 adipocyte exocytosis proceeded even in the complete absence of intracellular Ca(2+) ([Ca(2+)]i; buffered with BAPTA) provided cAMP (0.1 mm) was included in the intracellular (pipette-filling) solution. Exocytosis typically plateaued within ∼10 min, probably signifying depletion of a releasable vesicle pool. Inclusion of 3 mm ATP in combination with elevation of [Ca(2+)]i to ≥700 nm augmented the rate of cAMP-evoked exocytosis ∼2-fold and exocytosis proceeded for longer periods (≥20 min) than with cAMP alone. Exocytosis was stimulated to a similar extent upon substitution of cAMP by the Epac (exchange proteins activated by cAMP) agonist 8-Br-2'-O-Me-cAMP (1 mm included in the pipette solution). Inhibition of protein kinase A (PKA) by addition of Rp-cAMPS (0.5 mm) to the cAMP-containing pipette solution was without effect. A combination of the adenylate cyclase activator forskolin (10 μm) and the phosphodiesterase inhibitor IBMX (200 μm; forsk-IBMX) augmented adiponectin secretion measured over 30 min 3-fold and 2-fold in 3T3-L1 and human subcutaneous adipocytes, respectively. This effect was unaltered by pre-loading of cells with the Ca(2+) chelator BAPTA-AM and 2-fold amplified upon inclusion of the Ca(2+) ionophore ionomycin (1 μm) in the extracellular solution. Adiponectin release was also stimulated by the membrane-permeable Epac agonist 8-Br-2'-O-Me-cAMP-AM but unaffected by inclusion of the membrane-permeable PKA inhibitor Rp-8-Br-cAMPS (200 μm). The adipokines leptin, resistin and apelin were present in low amounts in the incubation medium (1-6% of measured adiponectin). Adipsin was secreted in substantial quantities (50% of adiponectin concentration) but release of this adipokine was unaffected by forsk-IBMX. We propose that white adipocyte exocytosis is stimulated by cAMP/Epac-dependent but Ca(2+)- and PKA-independent release of vesicles residing in a readily releasable pool and that the release is augmented by a combination of Ca(2+) and ATP. We further suggest that secreted vesicles chiefly contain adiponectin.
Collapse
Affiliation(s)
- Ali M Komai
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Cecilia Brännmark
- Discovery Sciences, AstraZeneca R&D, Pepparedsleden 1, SE43153, Mölndal, Sweden
| | - Saliha Musovic
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| | - Charlotta S Olofsson
- Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg, Medicinaregatan 11, SE-405 30, Göteborg, Sweden
| |
Collapse
|
6
|
Specific actions of GLP-1 receptor agonists and DPP4 inhibitors for the treatment of pancreatic β-cell impairments in type 2 diabetes. Cell Signal 2013; 25:570-9. [DOI: 10.1016/j.cellsig.2012.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 11/08/2012] [Indexed: 01/09/2023]
|
7
|
Turban S, Liu X, Ramage L, Webster SP, Walker BR, Dunbar DR, Mullins JJ, Seckl JR, Morton NM. Optimal elevation of β-cell 11β-hydroxysteroid dehydrogenase type 1 is a compensatory mechanism that prevents high-fat diet-induced β-cell failure. Diabetes 2012; 61:642-52. [PMID: 22315313 PMCID: PMC3282808 DOI: 10.2337/db11-1054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Type 2 diabetes ultimately results from pancreatic β-cell failure. Abnormally elevated intracellular regeneration of glucocorticoids by the enzyme 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) in fat or liver may underlie pathophysiological aspects of the metabolic syndrome. Elevated 11β-HSD1 is also found in pancreatic islets of obese/diabetic rodents and is hypothesized to suppress insulin secretion and promote diabetes. To define the direct impact of elevated pancreatic β-cell 11β-HSD1 on insulin secretion, we generated β-cell-specific, 11β-HSD1-overexpressing (MIP-HSD1) mice on a strain background prone to β-cell failure. Unexpectedly, MIP-HSD1(tg/+) mice exhibited a reversal of high fat-induced β-cell failure through augmentation of the number and intrinsic function of small islets in association with induction of heat shock, protein kinase A, and extracellular signal-related kinase and p21 signaling pathways. 11β-HSD1(-/-) mice showed mild β-cell impairment that was offset by improved glucose tolerance. The benefit of higher β-cell 11β-HSD1 exhibited a threshold because homozygous MIP-HSD1(tg/tg) mice and diabetic Lep(db/db) mice with markedly elevated β-cell 11β-HSD1 levels had impaired basal β-cell function. Optimal elevation of β-cell 11β-HSD1 represents a novel biological mechanism supporting compensatory insulin hypersecretion rather than exacerbating metabolic disease. These findings have immediate significance for current therapeutic strategies for type 2 diabetes.
Collapse
Affiliation(s)
- Sophie Turban
- Molecular Metabolism Group, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Xiaoxia Liu
- Molecular Metabolism Group, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Lynne Ramage
- Molecular Metabolism Group, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Scott P. Webster
- Endocrinology Unit, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Brian R. Walker
- Endocrinology Unit, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Donald R. Dunbar
- Bioinformatics Core, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - John J. Mullins
- Molecular Physiology, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Jonathan R. Seckl
- Endocrinology Unit, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
| | - Nicholas M. Morton
- Molecular Metabolism Group, University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, U.K
- Corresponding author: Nicholas M. Morton,
| |
Collapse
|
8
|
AKAP 18 alpha and gamma have opposing effects on insulin release in INS-1E cells. FEBS Lett 2010; 584:81-5. [PMID: 19896945 DOI: 10.1016/j.febslet.2009.10.086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 10/28/2009] [Accepted: 10/31/2009] [Indexed: 11/23/2022]
Abstract
A-kinase anchoring proteins (AKAPs) are known to compartmentalise protein kinase(s) to discrete cellular locations. Here we show that silencing of AKAP 18 alpha or gamma expression results in decreased or increased glucose-stimulated insulin secretion in INS-1E cells. Glucose stimulates AKAP 18 alpha and inhibits AKAP 18 gamma mRNA expressions while palmitate markedly reduces AKAP 18 alpha expression. Human growth hormone (GH) stimulates AKAP 18 alpha expression and attenuates palmitate-induced suppression of AKAP 18 alpha mRNA level. The roles of AKAP 18 alpha and gamma in mediating insulin release are consistent with their respective regulations by glucose.
Collapse
|
9
|
Martín C, Gómez-Bilbao G, Ostolaza H. Bordetella adenylate cyclase toxin promotes calcium entry into both CD11b+ and CD11b- cells through cAMP-dependent L-type-like calcium channels. J Biol Chem 2009; 285:357-64. [PMID: 19875442 DOI: 10.1074/jbc.m109.003491] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Adenylate cyclase toxin (ACT), a 200 kDa protein, is an essential virulence factor for Bordetella pertussis, the bacterium that causes whooping cough. ACT is a member of the pore-forming RTX (repeats-in-toxin) family of proteins that share a characteristic calcium-binding motif of Gly- and Asp-rich nonapeptide repeats and a marked cytolytic or cytotoxic activity. In addition, ACT exhibits a distinctive feature: it has an N-terminal calmodulin-dependent adenylate cyclase domain. Translocation of this domain into the host cytoplasm results in uncontrolled production of cAMP, and it has classically been assumed that this surge in cAMP is the basis for the toxin-mediated killing. Several members of the RTX family of toxins, including ACT, have been shown to induce intracellular calcium increases, through different mechanisms. We show here that ACT stimulates a raft-mediated calcium influx, through its cAMP production activity, that activates PKA, which in turn activates calcium channels with L-type properties. This process is shown to occur both in CD11b(+) and CD11b(-) cells, suggesting a common mechanism, independent of the toxin receptor. We also show that this ACT-induced calcium influx does not correlate with the toxin-induced cytotoxicity.
Collapse
Affiliation(s)
- César Martín
- Unidad de Biofísica, Departamento de Bioquímica, Universidad del País Vasco, Centro Mixto CSIC-UPV/EHU, 48080 Bilbao, Spain
| | | | | |
Collapse
|
10
|
Dov A, Abramovitch E, Warwar N, Nesher R. Diminished phosphodiesterase-8B potentiates biphasic insulin response to glucose. Endocrinology 2008; 149:741-8. [PMID: 17991719 DOI: 10.1210/en.2007-0968] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
cAMP activates multiple signal pathways, crucial for the pancreatic beta-cells function and survival and is a major potentiator of insulin release. A family of phosphodiesterases (PDEs) terminate the cAMP signals. We examined the expression of PDEs in rat beta-cells and their role in the regulation of insulin response. Using RT-PCR and Western blot analyses, we identified PDE3A, PDE3B, PDE4B, PDE4D, and PDE8B in rat islets and in INS-1E cells and several possible splice variants of these PDEs. Specific depletion of PDE3A with small interfering (si) RNA (siPDE3A) led to a small (67%) increase in the insulin response to glucose in INS-1E cells but not rat islets. siPDE3A had no effect on the glucagon-like peptide-1 (10 nmol/liter) potentiated insulin response in rat islets. Depletion in PDE8B levels in rat islets using similar technology (siPDE8B) increased insulin response to glucose by 70%, the potentiation being of similar magnitude during the first and second phase insulin release. The siPDE8B-potentiated insulin response was further increased by 23% when glucagon-like peptide-1 was included during the glucose stimulus. In conclusion, PDE8B is expressed in a small number of tissues unrelated to glucose or fat metabolism. We propose that PDE8B, an 3-isobutyl-1-methylxanthine-insensitive cAMP-specific phosphodiesterase, could prove a novel target for enhanced insulin response, affecting a specific pool of cAMP involved in the control of insulin granule trafficking and exocytosis. Finally, we discuss evidence for functional compartmentation of cAMP in pancreatic beta-cells.
Collapse
MESH Headings
- 3',5'-Cyclic-AMP Phosphodiesterases/genetics
- 3',5'-Cyclic-AMP Phosphodiesterases/metabolism
- Animals
- Cell Line, Tumor
- Cyclic Nucleotide Phosphodiesterases, Type 3/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Gene Expression Regulation, Enzymologic/drug effects
- Gene Expression Regulation, Enzymologic/physiology
- Glucagon-Like Peptide 1/metabolism
- Glucagon-Like Peptide 1/pharmacology
- Glucose/metabolism
- Glucose/pharmacology
- Insulin/metabolism
- Insulin Secretion
- Insulin-Secreting Cells/cytology
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/metabolism
- Insulinoma
- Male
- Pancreatic Neoplasms
- Rats
- Rats, Wistar
Collapse
Affiliation(s)
- Avital Dov
- Endocrinology and Metabolism Service, Department of Medicine, Hadassah, The Hebrew University Medical Center, 91120, Jerusalem, Israel
| | | | | | | |
Collapse
|
11
|
Doyle ME, Egan JM. Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 2007; 113:546-93. [PMID: 17306374 PMCID: PMC1934514 DOI: 10.1016/j.pharmthera.2006.11.007] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 11/27/2006] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a hormone that is encoded in the proglucagon gene. It is mainly produced in enteroendocrine L cells of the gut and is secreted into the blood stream when food containing fat, protein hydrolysate, and/or glucose enters the duodenum. Its particular effects on insulin and glucagon secretion have generated a flurry of research activity over the past 20 years culminating in a naturally occurring GLP-1 receptor (GLP-1R) agonist, exendin 4 (Ex-4), now being used to treat type 2 diabetes mellitus (T2DM). GLP-1 engages a specific guanine nucleotide-binding protein (G-protein) coupled receptor (GPCR) that is present in tissues other than the pancreas (brain, kidney, lung, heart, and major blood vessels). The most widely studied cell activated by GLP-1 is the insulin-secreting beta cell where its defining action is augmentation of glucose-induced insulin secretion. Upon GLP-1R activation, adenylyl cyclase (AC) is activated and cAMP is generated, leading, in turn, to cAMP-dependent activation of second messenger pathways, such as the protein kinase A (PKA) and Epac pathways. As well as short-term effects of enhancing glucose-induced insulin secretion, continuous GLP-1R activation also increases insulin synthesis, beta cell proliferation, and neogenesis. Although these latter effects cannot be currently monitored in humans, there are substantial improvements in glucose tolerance and increases in both first phase and plateau phase insulin secretory responses in T2DM patients treated with Ex-4. This review will focus on the effects resulting from GLP-1R activation in the pancreas.
Collapse
Affiliation(s)
- Máire E Doyle
- Department of Pathology, Immunology & Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
12
|
Fiser R, Masín J, Basler M, Krusek J, Spuláková V, Konopásek I, Sebo P. Third activity of Bordetella adenylate cyclase (AC) toxin-hemolysin. Membrane translocation of AC domain polypeptide promotes calcium influx into CD11b+ monocytes independently of the catalytic and hemolytic activities. J Biol Chem 2006; 282:2808-20. [PMID: 17148436 DOI: 10.1074/jbc.m609979200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Bordetella adenylate cyclase toxin-hemolysin (CyaA) targets phagocytes expressing the alpha(M)beta2 integrin (CD11b/CD18), permeabilizes their membranes by forming small cation-selective pores, and delivers into cells a calmodulin-activated adenylate cyclase (AC) enzyme that dissipates cytosolic ATP into cAMP. We describe here a third activity of CyaA that yields elevation of cytosolic calcium concentration ([Ca2+]i) in target cells. The CyaA-mediated [Ca2+]i increase in CD11b+ J774A.1 monocytes was inhibited by extracellular La3+ ions but not by nifedipine, SK&F 96365, flunarizine, 2-aminoethyl diphenylborinate, or thapsigargin, suggesting that influx of Ca2+ into cells was not because of receptor signaling or opening of conventional calcium channels by cAMP. Compared with intact CyaA, a CyaA-AC- toxoid unable to generate cAMP promoted a faster, albeit transient, elevation of [Ca2+]i. This was not because of cell permeabilization by the CyaA hemolysin pores, because a mutant exhibiting a strongly enhanced pore-forming activity (CyaA-E509K/E516K), but unable to deliver the AC domain into cells, was also unable to elicit a [Ca2+]i increase. Further mutations interfering with AC translocation into cells, such as proline substitutions of glutamate residues 509 or 570 or deletion of the AC domain as such, reduced or ablated the [Ca2+]i-elevating capacity of CyaA. Moreover, structural alterations within the AC domain, because of insertion of various oligopeptides, differently modulated the kinetics and extent of Ca2+ influx elicited by the respective AC- toxoids. Hence, the translocating AC polypeptide itself appears to participate in formation of a novel type of membrane path for calcium ions, contributing to action of CyaA in an unexpected manner.
Collapse
Affiliation(s)
- Radovan Fiser
- Department of Genetics and Microbiology, Faculty of Science, Charles University, CZ-128 44, Prague 2
| | | | | | | | | | | | | |
Collapse
|
13
|
Yang SN, Berggren PO. The role of voltage-gated calcium channels in pancreatic beta-cell physiology and pathophysiology. Endocr Rev 2006; 27:621-76. [PMID: 16868246 DOI: 10.1210/er.2005-0888] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Voltage-gated calcium (CaV) channels are ubiquitously expressed in various cell types throughout the body. In principle, the molecular identity, biophysical profile, and pharmacological property of CaV channels are independent of the cell type where they reside, whereas these channels execute unique functions in different cell types, such as muscle contraction, neurotransmitter release, and hormone secretion. At least six CaValpha1 subunits, including CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1, have been identified in pancreatic beta-cells. These pore-forming subunits complex with certain auxiliary subunits to conduct L-, P/Q-, N-, R-, and T-type CaV currents, respectively. beta-Cell CaV channels take center stage in insulin secretion and play an important role in beta-cell physiology and pathophysiology. CaV3 channels become expressed in diabetes-prone mouse beta-cells. Point mutation in the human CaV1.2 gene results in excessive insulin secretion. Trinucleotide expansion in the human CaV1.3 and CaV2.1 gene is revealed in a subgroup of patients with type 2 diabetes. beta-Cell CaV channels are regulated by a wide range of mechanisms, either shared by other cell types or specific to beta-cells, to always guarantee a satisfactory concentration of Ca2+. Inappropriate regulation of beta-cell CaV channels causes beta-cell dysfunction and even death manifested in both type 1 and type 2 diabetes. This review summarizes current knowledge of CaV channels in beta-cell physiology and pathophysiology.
Collapse
Affiliation(s)
- Shao-Nian Yang
- The Rolf Luft Research Center for Diabetes and Endocrinology L1:03, Karolinska University Hospital Solna, SE-171 76 Stockholm, Sweden.
| | | |
Collapse
|
14
|
Liu D, Zhen W, Yang Z, Carter JD, Si H, Reynolds KA. Genistein acutely stimulates insulin secretion in pancreatic beta-cells through a cAMP-dependent protein kinase pathway. Diabetes 2006; 55:1043-50. [PMID: 16567527 DOI: 10.2337/diabetes.55.04.06.db05-1089] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although genistein, a soy isoflavone, has beneficial effects on various tissues, it is unclear whether it plays a role in physiological insulin secretion. Here, we present evidence that genistein increases rapid glucose-stimulated insulin secretion (GSIS) in both insulin-secreting cell lines (INS-1 and MIN6) and mouse pancreatic islets. Genistein elicited a significant effect at a concentration as low as 10 nmol/l with a maximal effect at 5 micromol/l. The effect of genistein on GSIS was not dependent on estrogen receptor and also not related to an inhibition of protein tyrosine kinase (PTK). Consistent with its effect on GSIS, genistein increases intracellular cAMP and activates protein kinase A (PKA) in both cell lines and the islets by a mechanism that does not involve estrogen receptor or PTK. The induced cAMP by genistein, at physiological concentrations, may result primarily from enhanced adenylate cyclase activity. Pharmacological or molecular intervention of PKA activation indicated that the insulinotropic effect of genistein is primarily mediated through PKA. These findings demonstrated that genistein directly acts on pancreatic beta-cells, leading to activation of the cAMP/PKA signaling cascade to exert an insulinotropic effect, thereby providing a novel role of soy isoflavones in the regulation of insulin secretion.
Collapse
Affiliation(s)
- Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Hashiguchi H, Nakazaki M, Koriyama N, Fukudome M, Aso K, Tei C. Cyclic AMP/cAMP-GEF pathway amplifies insulin exocytosis induced by Ca2+ and ATP in rat islet beta-cells. Diabetes Metab Res Rev 2006; 22:64-71. [PMID: 16028217 DOI: 10.1002/dmrr.580] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Cyclic AMP (cAMP) plays a pivotal role in insulin secretion induced by incretins. The effects of the second messenger extend to many sites and there has been much controversy on the mechanisms. The aim of this study was to examine how cAMP amplified insulin exocytosis. METHODS Rat islets were permeabilized with alpha-toxin to measure insulin exocytosis in the fixed conditions of Ca(2+) and ATP. The effects of several agents on insulin exocytosis were observed in perifusion experiments. RESULTS Cyclic AMP enhanced the Ca(2+)-induced insulin release by around 30%, independent of Ca(2+) concentrations between 10 and 3000 nmol/L. A cAMP-GEF selective cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, also amplified insulin release. The effect disappeared in the absence of ATP. Conversely, cAMP-independent gradual increase in insulin release was observed with ATP. These results suggested that the site of action of cAMP-GEF existed proximal to that of ATP. An analogue selective to PKA, N(6)-Benzoyladenosine-3',5'-cyclic monophosphate, had little effect. Also, a PKA-selective inhibitor, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide, reduced insulin releases induced by 1000 nmol/L Ca(2+), but did not influence the relative increase produced by Ca(2+) and cAMP. CONCLUSION Cyclic AMP potentiated Ca(2+) and ATP-induced exocytosis to a similar relative extent independent of Ca(2+) concentrations. The process appeared to be mainly mediated by cAMP-GEF. In addition, the cAMP/cAMP-GEF pathway may enhance insulin release by replenishing the readily releasable pool.
Collapse
Affiliation(s)
- Hiroshi Hashiguchi
- Department of Cardiovascular, Respiratory and Metabolic Medicine, Kagoshima University, Kagoshima, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Meyer A, Seidler FJ, Slotkin TA. Developmental effects of chlorpyrifos extend beyond neurotoxicity: critical periods for immediate and delayed-onset effects on cardiac and hepatic cell signaling. ENVIRONMENTAL HEALTH PERSPECTIVES 2004; 112:170-8. [PMID: 14754571 PMCID: PMC1241826 DOI: 10.1289/ehp.6690] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The fetal and neonatal neurotoxicity of chlorpyrifos (CPF) and related insecticides is a major concern. Developmental effects of CPF involve mechanisms over and above cholinesterase inhibition, notably events in cell signaling that are shared by nonneural targets. In the present study, we evaluated the immediate and long-term effects of CPF exposure of rats during different developmental windows [gestational days (GD) 9-12 or 17-20, postnatal days (PN) 1-4 or 11-14] on the adenylyl cyclase (AC) signaling cascade in the heart and liver. In addition to basal AC activity, we assessed the responses to direct AC stimulants (forskolin, Mn2+); to isoproterenol and glucagon, which activate signaling through specific membrane receptors; and to sodium fluoride, which activates the G-proteins that couple the receptors to AC. Few immediate effects on AC were apparent when CPF doses remained below the threshold for systemic toxicity. Nevertheless, CPF exposures on GD9-12, GD17-20, or PN1-4 elicited sex-selective effects that emerged by adulthood (PN60), whereas later exposure (PN11-14) elicited smaller, nonsignificant effects, indicative of closure of the window of vulnerability. Most of the effects were heterologous, involving signaling elements downstream from the receptors, and thus were shared by multiple inputs; superimposed on this basic pattern, there were also selective alterations in receptor-mediated responses. These results suggest that the developmental toxicity of CPF extends beyond the nervous system, to include cell signaling cascades that are vital to cardiac and hepatic homeostasis. Future work needs to address the potential implications of these effects for cardiovascular and metabolic disorders that may emerge long after the end of CPF exposure.
Collapse
Affiliation(s)
- Armando Meyer
- Centro de Estudos da Saúde do Trabalhador e Ecologia Humana, Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | |
Collapse
|
17
|
Holz GG. Epac: A new cAMP-binding protein in support of glucagon-like peptide-1 receptor-mediated signal transduction in the pancreatic beta-cell. Diabetes 2004; 53:5-13. [PMID: 14693691 PMCID: PMC3012130 DOI: 10.2337/diabetes.53.1.5] [Citation(s) in RCA: 278] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Recently published studies of islet cell function reveal unexpected features of glucagon-like peptide-1 (GLP-1) receptor-mediated signal transduction in the pancreatic beta-cell. Although GLP-1 is established to be a cAMP-elevating agent, these studies demonstrate that protein kinase A (PKA) is not the only cAMP-binding protein by which GLP-1 acts. Instead, an alternative cAMP signaling mechanism has been described, one in which GLP-1 activates cAMP-binding proteins designated as cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs, also known as Epac). Two variants of Epac (Epac1 and Epac2) are expressed in beta-cells, and downregulation of Epac function diminishes stimulatory effects of GLP-1 on beta-cell Ca(2+) signaling and insulin secretion. Of particular note are new reports demonstrating that Epac couples beta-cell cAMP production to the stimulation of fast Ca(2+)-dependent exocytosis. It is also reported that Epac mediates the cAMP-dependent mobilization of Ca(2+) from intracellular Ca(2+) stores. This is a process of Ca(2+)-induced Ca(2+) release (CICR), and it generates an increase of [Ca(2+)](i) that may serve as a direct stimulus for mitochondrial ATP production and secretory granule exocytosis. This article summarizes new findings concerning GLP-1 receptor-mediated signal transduction and seeks to define the relative importance of Epac and PKA to beta-cell stimulus-secretion coupling.
Collapse
Affiliation(s)
- George G Holz
- Department of Physiology and Neuroscience, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|