1
|
Bakalakou VA, Mavroidi B, Kalampaliki AD, Josselin B, Bach S, Skaltsounis AL, Marakos P, Pouli N, Pelecanou M, Myrianthopoulos V, Ruchaud S, Kostakis IK. The pyrazolo[4,3-c]pyrazole core as a novel and versatile scaffold for developing dual DYRK1A-CLK1 inhibitors targeting key processes of Alzheimer's disease pathology. EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY REPORTS 2024; 12:100193. [DOI: 10.1016/j.ejmcr.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Devaiah BN, Singh AK, Mu J, Chen Q, Meerzaman D, Singer DS. Phosphorylation by JNK switches BRD4 functions. Mol Cell 2024; 84:4282-4296.e7. [PMID: 39454579 PMCID: PMC11585421 DOI: 10.1016/j.molcel.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024]
Abstract
Bromodomain 4 (BRD4), a key regulator with pleiotropic functions, plays crucial roles in cancers and cellular stress responses. It exhibits dual functionality: chromatin-bound BRD4 regulates remodeling through its histone acetyltransferase (HAT) activity, while promoter-associated BRD4 regulates transcription through its kinase activity. Notably, chromatin-bound BRD4 lacks kinase activity, and RNA polymerase II (RNA Pol II)-bound BRD4 exhibits no HAT activity. This study unveils one mechanism underlying BRD4's functional switch. In response to diverse stimuli, c-Jun N-terminal kinase (JNK)-mediated phosphorylation of human BRD4 at Thr1186 and Thr1212 triggers its transient release from chromatin, disrupting its HAT activity and potentiating its kinase activity. Released BRD4 directly interacts with and phosphorylates RNA Pol II, PTEFb, and c-Myc, thereby promoting transcription of target genes involved in immune and inflammatory responses. JNK-mediated BRD4 functional switching induces CD8 expression in thymocytes and epithelial-to-mesenchymal transition (EMT) in prostate cancer cells. These findings elucidate the mechanism by which BRD4 transitions from a chromatin regulator to a transcriptional activator.
Collapse
Affiliation(s)
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Jie Mu
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Qingrong Chen
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Daoud Meerzaman
- Center for Biomedical Informatics and Information Technology, NCI, NIH, Bethesda, MD 20892, USA
| | - Dinah S Singer
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Choi MY, Jo MG, Min KY, Kim B, Kim Y, Choi WS. Antimicrobial Peptide Pro10-1D Exhibits Anti-Allergic Activity: A Promising Therapeutic Candidate. Int J Mol Sci 2024; 25:12138. [PMID: 39596204 PMCID: PMC11594534 DOI: 10.3390/ijms252212138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Although antimicrobial peptides (AMPs) exhibit a range of biological functions, reports on AMPs with therapeutic effects in allergic disorders are limited. In this study, we investigated the anti-allergic effects of Pro10-1D, a 10-meric AMP derived from insect defensin protaetiamycine. Our findings demonstrate that Pro10-1D effectively inhibits antigen-induced degranulation of mast cells (MCs) with IC50 values of approximately 11.6 μM for RBL-2H3 cells and 2.7 μM for bone marrow-derived MCs. Furthermore, Pro10-1D suppressed the secretion of cytokines with IC50 values of approximately 2.8 μM for IL-4 and approximately 8.6 μM for TNF-α. Mechanistically, Pro10-1D inhibited the Syk-LAT-PLCγ1 signaling pathway in MCs and decreased the activation of mitogen-activated protein kinases (MAPKs). Pro10-1D demonstrated a dose-dependent reduction in IgE-mediated passive cutaneous anaphylaxis in mice with an ED50 value of approximately 7.6 mg/kg. Further investigation revealed that Pro10-1D significantly reduced the activity of key kinases Fyn and Lyn, which are critical in the initial phase of the FcεRI-mediated signaling pathway, with IC50 values of approximately 22.6 μM for Fyn and approximately 1.5 μM for Lyn. Collectively, these findings suggest that Pro10-1D represents a novel therapeutic candidate for the treatment of IgE-mediated allergic disorders by targeting the Lyn/Fyn Src family kinases in MCs.
Collapse
Affiliation(s)
- Min Yeong Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Min Geun Jo
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Keun Young Min
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
| | - Byeongkwon Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea
- Institute of Biomedical Sciences & Technology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Houles T, Yoon SO, Roux PP. The expanding landscape of canonical and non-canonical protein phosphorylation. Trends Biochem Sci 2024; 49:986-999. [PMID: 39266329 DOI: 10.1016/j.tibs.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 09/14/2024]
Abstract
Protein phosphorylation is a crucial regulatory mechanism in cell signaling, acting as a molecular switch that modulates protein function. Catalyzed by protein kinases and reversed by phosphoprotein phosphatases, it is essential in both normal physiological and pathological states. Recent advances have uncovered a vast and intricate landscape of protein phosphorylation that include histidine phosphorylation and more unconventional events, such as pyrophosphorylation and polyphosphorylation. Many questions remain about the true size of the phosphoproteome and, more importantly, its site-specific functional relevance. The involvement of unconventional actors such as pseudokinases and pseudophosphatases adds further complexity to be resolved. This review explores recent discoveries and ongoing challenges, highlighting the need for continued research to fully elucidate the roles and regulation of protein phosphorylation.
Collapse
Affiliation(s)
- Thibault Houles
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Institute of Molecular Genetics of Montpellier (IGMM), Université de Montpellier, CNRS, Montpellier, France.
| | - Sang-Oh Yoon
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec, Canada; Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec, Canada.
| |
Collapse
|
5
|
Veronesi C, Billard E, Delavault P, Simier P. (±)-Catechins inhibit prehaustorium formation in the parasitic weed Phelipanche ramosa and reduce tomato infestation. PEST MANAGEMENT SCIENCE 2024. [PMID: 39367679 DOI: 10.1002/ps.8472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Phelipanche ramosa L. (Pomel) is a noxious parasitic weed in field and vegetable crops in Mediterranean countries. Control of this pest is complex and far from being achieved, and new environmentally-friendly strategies are being sought. The present study evaluates the possibility of using (±)-catechins as a natural herbicide against broomrapes. RESULTS The results show that (±)-catechins have no effect on GR24-induced germination over a wide concentration range (10-4 to 10-10 m), nor on radicle elongation after germination, but strongly inhibit, at 10-4 and 10-5 m, prehaustorium formation in response to the haustorium-inducing factor, cis/trans-zeatin. Accordingly, pot experiments involving the supplies of 10-5 m of (±)-catechins to tomato plants infested or not with P. ramosa demonstrate that (±)-catechins do not influence growth of non-parasitized tomato plants and prevent heavy infestation by strongly reducing parasite attachments and inducing parasite necrosis once they are attached. CONCLUSION This study points the potential use of (±)-catechins for parasitic weed control. It raises also the question of the mechanisms involved in the inhibition of prehaustorium formation and the necrosis of parasite attachments in response to (±)-catechins application. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
|
6
|
Walker NM, Ibuki Y, McLinden AP, Misumi K, Mitchell DC, Kleer GG, Lock AM, Vittal R, Sonenberg N, Garner AL, Lama VN. MNK-driven eIF4E phosphorylation regulates the fibrogenic transformation of mesenchymal cells and chronic lung allograft dysfunction. J Clin Invest 2024; 134:e168393. [PMID: 39145446 PMCID: PMC11324311 DOI: 10.1172/jci168393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/25/2024] [Indexed: 08/16/2024] Open
Abstract
Tissue fibrosis remains unamenable to meaningful therapeutic interventions and is the primary cause of chronic graft failure after organ transplantation. Eukaryotic translation initiation factor (eIF4E), a key translational regulator, serves as convergent target of multiple upstream profibrotic signaling pathways that contribute to mesenchymal cell (MC) activation. Here, we investigate the role of MAP kinase-interacting serine/threonine kinase-induced (MNK-induced) direct phosphorylation of eIF4E at serine 209 (Ser209) in maintaining fibrotic transformation of MCs and determine the contribution of the MNK/eIF4E pathway to the pathogenesis of chronic lung allograft dysfunction (CLAD). MCs from patients with CLAD demonstrated constitutively higher eIF4E phosphorylation at Ser209, and eIF4E phospho-Ser209 was found to be critical in regulating key fibrogenic protein autotaxin, leading to sustained β-catenin activation and profibrotic functions of CLAD MCs. MNK1 signaling was upregulated in CLAD MCs, and genetic or pharmacologic targeting of MNK1 activity inhibited eIF4E phospho-Ser209 and profibrotic functions of CLAD MCs in vitro. Treatment with an MNK1/2 inhibitor (eFT-508) abrogated allograft fibrosis in an orthotopic murine lung-transplant model. Together these studies identify what we believe is a previously unrecognized MNK/eIF4E/ATX/β-catenin signaling pathway of fibrotic transformation of MCs and present the first evidence, to our knowledge, for the utility of MNK inhibitors in fibrosis.
Collapse
Affiliation(s)
- Natalie M. Walker
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yuta Ibuki
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - A. Patrick McLinden
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Keizo Misumi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Dylan C. Mitchell
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Gabriel G. Kleer
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison M. Lock
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ragini Vittal
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nahum Sonenberg
- Department of Biochemistry and McGill Cancer Center, McGill University, Montreal, Quebec, Canada
| | - Amanda L. Garner
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Vibha N. Lama
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Mostafa N, Chen PJ, Darwish SS, Su YC, Shiao MH, Piazza GA, Abadi AH, Engel M, Abdel-Halim M. N-Benzylated 5-Hydroxybenzothiophene-2-carboxamides as Multi-Targeted Clk/Dyrk Inhibitors and Potential Anticancer Agents. Cancers (Basel) 2024; 16:2033. [PMID: 38893153 PMCID: PMC11171218 DOI: 10.3390/cancers16112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Numerous studies have reported that Dyrk1A, Dyrk1B, and Clk1 are overexpressed in multiple cancers, suggesting a role in malignant disease. Here, we introduce a novel class of group-selective kinase inhibitors targeting Dyrk1A, Dyrk1B, and Clk1. This was achieved by modifying our earlier selective Clk1 inhibitors, which were based on the 5-methoxybenzothiophene-2-carboxamide scaffold. By incorporating a 5-hydroxy group, we increased the potential for additional hydrogen bond interactions that broadened the inhibitory effect to include Dyrk1A and Dyrk1B kinases. Within this series, compounds 12 and 17 emerged as the most potent multi-kinase inhibitors against Dyrk1A, Dyrk1B, and Clk1. Furthermore, when assessed against the most closely related kinases also implicated in cancer, the frontrunner compounds revealed additional inhibitory activity against Haspin and Clk2. Compounds 12 and 17 displayed high potency across various cancer cell lines with minimal effect on non-tumor cells. By examining the effect of these inhibitors on cell cycle distribution, compound 17 retained cells in the G2/M phase and induced apoptosis. Compounds 12 and 17 could also increase levels of cleaved caspase-3 and Bax, while decreasing the expression of the antiapoptotic Bcl-2 protein. These findings support the further study and development of these compounds as novel anticancer therapeutics.
Collapse
Affiliation(s)
- Noha Mostafa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
- Department of Pharmaceutical Chemistry, School of Pharmacy, Newgiza University, Cairo 12256, Egypt
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan;
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan;
| | - Sarah S. Darwish
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
- School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo 11578, Egypt
| | - Yu-Chieh Su
- Graduate Institute of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824410, Taiwan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 824410, Taiwan
| | - Ming-Hua Shiao
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300092, Taiwan;
| | - Gary A. Piazza
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36832, USA;
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, D-66123 Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt; (N.M.); (S.S.D.); (A.H.A.)
| |
Collapse
|
8
|
Abd El-Rahman YA, Chen PJ, ElHady AK, Chen SH, Lin HC, El-Gamil DS, Aboushady Y, Abadi AH, Engel M, Abdel-Halim M. Development of 5-hydroxybenzothiophene derivatives as multi-kinase inhibitors with potential anti-cancer activity. Future Med Chem 2024; 16:1239-1254. [PMID: 38989990 PMCID: PMC11249150 DOI: 10.1080/17568919.2024.2342708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/09/2024] [Indexed: 07/12/2024] Open
Abstract
Aim: Chemoresistance in cancer challenges the classical therapeutic strategy of 'one molecule-one target'. To combat this, multi-target therapies that inhibit various cancer-relevant targets simultaneously are proposed. Methods & results: We introduce 5-hydroxybenzothiophene derivatives as effective multi-target kinase inhibitors, showing notable growth inhibitory activity across different cancer cell lines. Specifically, compound 16b, featuring a 5-hydroxybenzothiophene hydrazide scaffold, emerged as a potent inhibitor, displaying low IC50 values against key kinases and demonstrating significant anti-cancer effects, particularly against U87MG glioblastoma cells. It induced G2/M cell cycle arrest, apoptosis and inhibited cell migration by modulating apoptotic markers. Conclusion: 16b represents a promising lead for developing new anti-cancer agents targeting multiple kinases with affinity to the hydroxybenzothiophene core.
Collapse
Affiliation(s)
- Yara A Abd El-Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Po-Jen Chen
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, 824410, Taiwan
- Graduate Institute of Medicine, I-Shou University, Kaohsiung, 824410, Taiwan
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
- School of Life & Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Shun-Hua Chen
- School of Nursing, Fooyin University, Kaohsiung, 831301, Taiwan
| | - Hsin-Chieh Lin
- Department of Chinese Medicine, E-Da Cancer Hospital, Kaohsiung, 824410, Taiwan
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
- Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, 12451, Egypt
| | - Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| | - Matthias Engel
- Pharmaceutical & Medicinal Chemistry, Saarland University, Campus C2.3, D-66123, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy & Biotechnology, German University in Cairo, Cairo, 11835, Egypt
| |
Collapse
|
9
|
Hose L, Langenhagen AK, Kefalakes E, Schweitzer T, Kubinski S, Barak S, Pich A, Grothe C. A dual-omics approach on the effects of fibroblast growth factor-2 (FGF-2) on ventral tegmental area dopaminergic neurons in response to alcohol consumption in mice. Eur J Neurosci 2024; 59:1519-1535. [PMID: 38185886 DOI: 10.1111/ejn.16234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/25/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
Harmful alcohol consumption is a major socioeconomic burden to the health system, as it can be the cause of mortality of heavy alcohol drinkers. The dopaminergic (DAergic) system is thought to play an important role in the pathogenesis of alcohol drinking behaviour; however, its exact role remains elusive. Fibroblast growth factor 2 (FGF-2), a neurotrophic factor, associated with both the DAergic system and alcohol consumption, may play an important role in DAergic neuroadaptations during alcohol abuse. Within this study, we aimed to clarify the role of endogenous FGF-2 on the DAergic system and whether there is a possible link to alcohol consumption. We found that lack of FGF-2 reduces the alcohol intake of mice. Transcriptome analysis of DAergic neurons revealed that FGF-2 knockout (FGF-2 KO) shifts the molecular fingerprint of midbrain dopaminergic (mDA) neurons to DA subtypes of the ventral tegmental area (VTA). In line with this, proteomic changes predominantly appear also in the VTA. Interestingly, these changes led to an altered regulation of the FGF-2 signalling cascades and DAergic pathways in a region-specific manner, which was only marginally affected by voluntary alcohol consumption. Thus, lack of FGF-2 not only affects the gene expression but also the proteome of specific brain regions of mDA neurons. Our study provides new insights into the neuroadaptations of the DAergic system during alcohol abuse and, therefore, comprises novel targets for future pharmacological interventions.
Collapse
Affiliation(s)
- Leonie Hose
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Alina Katharina Langenhagen
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
- Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Ekaterini Kefalakes
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Theresa Schweitzer
- Institute of Toxicology, Hannover, Germany
- Core Facility Proteomics, Institute of Toxicology, Hannover, Germany
| | - Sabrina Kubinski
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
| | - Segev Barak
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Pich
- Institute of Toxicology, Hannover, Germany
- Core Facility Proteomics, Institute of Toxicology, Hannover, Germany
| | - Claudia Grothe
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
10
|
Delabar JM, Gomes MAGB, Fructuoso M, Sarrazin N, George N, Fleary-Roberts N, Sun H, Bui LC, Rodrigues-Lima F, Janel N, Dairou J, Maria EJ, Dodd RH, Cariou K, Potier MC. EGCG-like non-competitive inhibitor of DYRK1A rescues cognitive defect in a down syndrome model. Eur J Med Chem 2024; 265:116098. [PMID: 38171148 DOI: 10.1016/j.ejmech.2023.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/23/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Overexpression of the chromosome 21 DYRK1A gene induces morphological defects and cognitive impairments in individuals with Down syndrome (DS) and in DS mice models. Aging neurons of specific brain regions of patients with Alzheimer's disease, DS and Pick's disease have increased DYRK1A immunoreactivity suggesting a possible association of DYRK1A with neurofibrillary tangle pathology. Epigallocatechin-3-gallate (EGCG) displays appreciable inhibition of DYRK1A activity and, contrary to all other published inhibitors, EGCG is a non-competitive inhibitor of DYRK1A. Prenatal exposure to green tea polyphenols containing EGCG protects from brain defects induced by overexpression of DYRK1A. In order to produce more robust and possibly more active analogues of the natural compound EGCG, here we synthetized new EGCG-like molecules with several structural modifications to the EGCG skeleton. We replaced the ester boun of EGCG with a more resistant amide bond. We also replaced the oxygen ring by a methylene group. And finally, we positioned a nitrogen atom within this ring. The selected compound was shown to maintain the non-competitive property of EGCG and to correct biochemical and behavioral defects present in a DS mouse model. In addition it showed high stability and specificity.
Collapse
Affiliation(s)
- Jean M Delabar
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| | - Marco Antônio G B Gomes
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Marta Fructuoso
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Nadège Sarrazin
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France
| | - Nicolas George
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Nadia Fleary-Roberts
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Hua Sun
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Linh Chi Bui
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Fernando Rodrigues-Lima
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Nathalie Janel
- Team Degenerative Process, Stress and Aging, Unité de Biologie Fonctionnelle et Adaptative, CNRS, Université Paris Cité, F-75013 Paris, France
| | - Julien Dairou
- Université Paris cité, CNRS, Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, 45 rue des Saints Pères, F-75006 Paris, France
| | - Edmilson J Maria
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, Universidade Estadual do Norte Fluminense-Darcy Ribeiro, Av. Alberto Lamego, 2000-Parque Califórnia, 28013-602, Campos dos Goytacazes/RJ, Brazil
| | - Robert H Dodd
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France
| | - Kevin Cariou
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Gif-sur-Yvette, France; current address: Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Marie-Claude Potier
- Paris Brain Institute (ICM), Centre National de la Recherche Scientifique (CNRS) UMR 7225, INSERM U1127, Sorbonne Université, Hôpital de la Pitié-Salpêtrière, Paris, 75013, France.
| |
Collapse
|
11
|
Giacomarra M, La Torre M, Montana G. Effects of Inhibition of IKK Kinase Phosphorylation On the Cellular Defence System and HSP90 Activity. Inflammation 2024; 47:74-83. [PMID: 37640833 PMCID: PMC10799094 DOI: 10.1007/s10753-023-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The present study was conceived to examine the effects of inhibition of BMS-345541 mediated IKK kinase phosphorylation on the cellular defence system as well as on anti-inflammatory response and HSP90 activity. The analysis was conducted in A549 cell line, since such cells carry a homozygous Keap1 mutation (G333C) that alters its interaction with Nrf2. Recent data have highlighted that Keap1, HSP90 protein and IKK kinase interact reciprocally and particularly Keap1 protein is involved in HSP90 and anti-oxidative pathway regulation. The activities of COX2 and HO1 were investigated by real time and immunoblot analysis along with the synthesis and activity of inducible forms of heat shock protein HSP90. Pre-treatment with IKK kinase inhibitor proved to be a protective means to lower the activity of inflammatory cascade, so preventing the formation of excessive amounts of pro-inflammatory molecules. The inhibitor of IKK kinase BMS-345541 was added to cultured A549 cells before the Escherichia coli lipopolysaccharide (LPS) addition. The viability of the cells was determined after 1-24 h incubation with BMS-345541 at concentrations ranging from 1,25-5 µM. It was found that 1 µM concentration does not significantly affected cell viability (data not shown). As a result, the treatment with 1 μM of BMS-345541 induces the inhibition of IKK phosphorylation. In the A549 cells treated with BMS-345541 and LPS, COX2 activity is not induced: mRNA and protein levels have not increased, while there is an increase in the level of HSP90, HO1 proteins and mRNA. The results suggest that the IKK inhibition is effective in the reduction of the inflammatory response thanks to mechanisms involving both the heat shock cellular defense system and the antioxidative pathway.
Collapse
Affiliation(s)
- Miriam Giacomarra
- Istituto di Ricerca e Innovazione Biomedica, Consiglio Nazionale delle Ricerche (CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Martina La Torre
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Rome, Italy
| | - Giovanna Montana
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Farmacologia Traslazionale, 00133, Rome, Italy.
| |
Collapse
|
12
|
Stephenson EH, Higgins JMG. Pharmacological approaches to understanding protein kinase signaling networks. Front Pharmacol 2023; 14:1310135. [PMID: 38164473 PMCID: PMC10757940 DOI: 10.3389/fphar.2023.1310135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024] Open
Abstract
Protein kinases play vital roles in controlling cell behavior, and an array of kinase inhibitors are used successfully for treatment of disease. Typical drug development pipelines involve biological studies to validate a protein kinase target, followed by the identification of small molecules that effectively inhibit this target in cells, animal models, and patients. However, it is clear that protein kinases operate within complex signaling networks. These networks increase the resilience of signaling pathways, which can render cells relatively insensitive to inhibition of a single kinase, and provide the potential for pathway rewiring, which can result in resistance to therapy. It is therefore vital to understand the properties of kinase signaling networks in health and disease so that we can design effective multi-targeted drugs or combinations of drugs. Here, we outline how pharmacological and chemo-genetic approaches can contribute to such knowledge, despite the known low selectivity of many kinase inhibitors. We discuss how detailed profiling of target engagement by kinase inhibitors can underpin these studies; how chemical probes can be used to uncover kinase-substrate relationships, and how these tools can be used to gain insight into the configuration and function of kinase signaling networks.
Collapse
Affiliation(s)
| | - Jonathan M. G. Higgins
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Newcastle uponTyne, United Kingdom
| |
Collapse
|
13
|
Brown KC, Light RS, Modi KJ, Conely KB, Sugrue AM, Cox AJ, Miles SL, Valentovic MA, Dasgupta P. An Improved Protocol for the Matrigel Duplex Assay: A Method to Measure Retinal Angiogenesis. Bio Protoc 2023; 13:e4899. [PMID: 38094254 PMCID: PMC10716016 DOI: 10.21769/bioprotoc.4899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 02/01/2024] Open
Abstract
Neovascular diseases of the retina, such as diabetic retinopathy (DR) and age-related macular degeneration (AMD), are proliferative retinopathies involving the growth of new blood vessels on the retina, which in turn causes impairment and potential loss of vision. A drawback of conventional angiogenesis assays is that they are not representative of the angiogenic processes in the retina. In the retina, the new blood vessels grow (from pre-existing blood vessels) and migrate into a non-perfused region of the eye including the inner limiting membrane of the retina and the vitreous, both of which contribute to vision loss. The Matrigel Duplex Assay (MDA) measures the migration of angiogenic capillaries from a primary Matrigel layer to a secondary Matrigel layer, which resembles the pathological angiogenesis in AMD and DR. The methodology of MDA is comprised of two steps. In the first step, the human retinal microvascular endothelial cells (HRMECs) are mixed with phenol red-containing Matrigel (in a 1:1 ratio) and seeded in the center of an 8-well chamber slide. After 24 h, a second layer of phenol red-free Matrigel is overlaid over the first layer. Over the course of the next 24 h, the HRMECs invade from the primary Matrigel layer to the secondary layer. Subsequently, the angiogenic sprouts are visualized by brightfield phase contrast microscopy and quantified by ImageJ software. The present manuscript measures the angiogenesis-inhibitory activity of the Src kinase inhibitor PP2 in primary HRMECs using the MDA. The MDA may be used for multiple applications like screening anti-angiogenic drugs, measuring the pro-angiogenic activity of growth factors, and elucidating signaling pathways underlying retinal angiogenesis in normal and disease states.
Collapse
Affiliation(s)
- Kathleen C. Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| | - Reagan S. Light
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| | - Kushal J. Modi
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| | - Kaitlyn B. Conely
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| | - Amanda M. Sugrue
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| | - Ashley J. Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| | - Sarah L. Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| | - Monica A. Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, 25755 USA
| |
Collapse
|
14
|
Stoop J, Douma EH, van der Vlag M, Smidt MP, van der Heide LP. Tyrosine hydroxylase phosphorylation is under the control of serine 40. J Neurochem 2023; 167:376-393. [PMID: 37776259 DOI: 10.1111/jnc.15963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 10/02/2023]
Abstract
Tyrosine hydroxylase catalyzes the initial and rate-limiting step in the biosynthesis of the neurotransmitter dopamine. The phosphorylation state of Ser40 and Ser31 is believed to exert a direct effect on the enzymatic activity of tyrosine hydroxylase. Interestingly, some studies report that Ser31 phosphorylation affects Ser40 phosphorylation, while Ser40 phosphorylation has no effect on Ser31 phosphorylation, a process named hierarchical phosphorylation. Here, we provide a detailed investigation into the signal transduction mechanisms regulating Ser40 and Ser31 phosphorylation in dopaminergic mouse MN9D and Neuro2A cells. We find that cyclic nucleotide signaling drives Ser40 phosphorylation, and that Ser31 phosphorylation is strongly regulated by ERK signaling. Inhibition of ERK1/2 with UO126 or PD98059 reduced Ser31 phosphorylation, but surprisingly had no effect on Ser40 phosphorylation, contradicting a role for Ser31 in the regulation of Ser40. Moreover, to elucidate a possible hierarchical mechanism controlling tyrosine hydroxylase phosphorylation, we introduced tyrosine hydroxylase variants in Neuro2A mouse neuroblastoma cells that mimic either phosphorylated or unphosphorylated serine residues. When we introduced a Ser40Ala tyrosine hydroxylase variant, Ser31 phosphorylation was completely absent. Additionally, neither the tyrosine hydroxylase variant Ser31Asp, nor the variant Ser31Ala had any significant effect on basal Ser40 phosphorylation levels. These results suggest that tyrosine hydroxylase is not controlled by hierarchical phosphorylation in the sense that first Ser31 has to be phosphorylated and subsequently Ser40, but, conversely, that Ser40 phosphorylation is essential for Ser31 phosphorylation. Overall our study suggests that Ser40 is the crucial residue to target so as to modulate tyrosine hydroxylase activity.
Collapse
Affiliation(s)
- Jesse Stoop
- Macrobian Biotech B.V., Amsterdam, the Netherlands
| | - Erik H Douma
- Macrobian Biotech B.V., Amsterdam, the Netherlands
| | | | - Marten P Smidt
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Artoni F, Grützmacher N, Demetriades C. Unbiased evaluation of rapamycin's specificity as an mTOR inhibitor. Aging Cell 2023; 22:e13888. [PMID: 37222020 PMCID: PMC10410055 DOI: 10.1111/acel.13888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 05/25/2023] Open
Abstract
Rapamycin is a macrolide antibiotic that functions as an immunosuppressive and anti-cancer agent, and displays robust anti-ageing effects in multiple organisms including humans. Importantly, rapamycin analogues (rapalogs) are of clinical importance against certain cancer types and neurodevelopmental diseases. Although rapamycin is widely perceived as an allosteric inhibitor of mTOR (mechanistic target of rapamycin), the master regulator of cellular and organismal physiology, its specificity has not been thoroughly evaluated so far. In fact, previous studies in cells and in mice hinted that rapamycin may be also acting independently from mTOR to influence various cellular processes. Here, we generated a gene-edited cell line that expresses a rapamycin-resistant mTOR mutant (mTORRR ) and assessed the effects of rapamycin treatment on the transcriptome and proteome of control or mTORRR -expressing cells. Our data reveal a striking specificity of rapamycin towards mTOR, demonstrated by virtually no changes in mRNA or protein levels in rapamycin-treated mTORRR cells, even following prolonged drug treatment. Overall, this study provides the first unbiased and conclusive assessment of rapamycin's specificity, with potential implications for ageing research and human therapeutics.
Collapse
Affiliation(s)
- Filippo Artoni
- Max Planck Institute for Biology of Ageing (MPI‐AGE)CologneGermany
- Cologne Graduate School of Ageing Research (CGA)CologneGermany
| | - Nina Grützmacher
- Max Planck Institute for Biology of Ageing (MPI‐AGE)CologneGermany
| | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI‐AGE)CologneGermany
- Cologne Graduate School of Ageing Research (CGA)CologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD)University of CologneCologneGermany
| |
Collapse
|
16
|
Gupta Y, Savytskyi OV, Coban M, Venugopal A, Pleqi V, Weber CA, Chitale R, Durvasula R, Hopkins C, Kempaiah P, Caulfield TR. Protein structure-based in-silico approaches to drug discovery: Guide to COVID-19 therapeutics. Mol Aspects Med 2023; 91:101151. [PMID: 36371228 PMCID: PMC9613808 DOI: 10.1016/j.mam.2022.101151] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
With more than 5 million fatalities and close to 300 million reported cases, COVID-19 is the first documented pandemic due to a coronavirus that continues to be a major health challenge. Despite being rapid, uncontrollable, and highly infectious in its spread, it also created incentives for technology development and redefined public health needs and research agendas to fast-track innovations to be translated. Breakthroughs in computational biology peaked during the pandemic with renewed attention to making all cutting-edge technology deliver agents to combat the disease. The demand to develop effective treatments yielded surprising collaborations from previously segregated fields of science and technology. The long-standing pharmaceutical industry's aversion to repurposing existing drugs due to a lack of exponential financial gain was overrun by the health crisis and pressures created by front-line researchers and providers. Effective vaccine development even at an unprecedented pace took more than a year to develop and commence trials. Now the emergence of variants and waning protections during the booster shots is resulting in breakthrough infections that continue to strain health care systems. As of now, every protein of SARS-CoV-2 has been structurally characterized and related host pathways have been extensively mapped out. The research community has addressed the druggability of a multitude of possible targets. This has been made possible due to existing technology for virtual computer-assisted drug development as well as new tools and technologies such as artificial intelligence to deliver new leads. Here in this article, we are discussing advances in the drug discovery field related to target-based drug discovery and exploring the implications of known target-specific agents on COVID-19 therapeutic management. The current scenario calls for more personalized medicine efforts and stratifying patient populations early on for their need for different combinations of prognosis-specific therapeutics. We intend to highlight target hotspots and their potential agents, with the ultimate goal of using rational design of new therapeutics to not only end this pandemic but also uncover a generalizable platform for use in future pandemics.
Collapse
Affiliation(s)
- Yash Gupta
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Oleksandr V Savytskyi
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; In Vivo Biosystems, Eugene, OR, USA
| | - Matt Coban
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Vasili Pleqi
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Caleb A Weber
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Rohit Chitale
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA; The Council on Strategic Risks, 1025 Connecticut Ave NW, Washington, DC, USA
| | - Ravi Durvasula
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Prakasha Kempaiah
- Department of Medicine, Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | - Thomas R Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of QHS Computational Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA; Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
17
|
Lindberg MF, Deau E, Arfwedson J, George N, George P, Alfonso P, Corrionero A, Meijer L. Comparative Efficacy and Selectivity of Pharmacological Inhibitors of DYRK and CLK Protein Kinases. J Med Chem 2023; 66:4106-4130. [PMID: 36876904 DOI: 10.1021/acs.jmedchem.2c02068] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Dual-specificity, tyrosine phosphorylation-regulated kinases (DYRKs) and cdc2-like kinases (CLKs) play a large variety of cellular functions and are involved in several diseases (cognitive disorders, diabetes, cancers, etc.). There is, thus, growing interest in pharmacological inhibitors as chemical probes and potential drug candidates. This study presents an unbiased evaluation of the kinase inhibitory activity of a library of 56 reported DYRK/CLK inhibitors on the basis of comparative, side-by-side, catalytic activity assays on a panel of 12 recombinant human kinases, enzyme kinetics (residence time and Kd), in-cell inhibition of Thr-212-Tau phosphorylation, and cytotoxicity. The 26 most active inhibitors were modeled in the crystal structure of DYRK1A. The results show a rather large diversity of potencies and selectivities among the reported inhibitors and emphasize the difficulties to avoid "off-targets" in this area of the kinome. The use of a panel of DYRKs/CLKs inhibitors is suggested to analyze the functions of these kinases in cellular processes.
Collapse
Affiliation(s)
| | - Emmanuel Deau
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Jonas Arfwedson
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Nicolas George
- Oncodesign, 25-27 avenue du Québec, 91140 Villebon-sur-Yvette, France
| | - Pascal George
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| | - Patricia Alfonso
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Ana Corrionero
- Enzymlogic, Qube Technology Park, C/Santiago Grisolía, 2, 28760 Madrid, Spain
| | - Laurent Meijer
- Perha Pharmaceuticals, Perharidy Peninsula, 29680 Roscoff, France
| |
Collapse
|
18
|
Development of Novel Fluorinated Polyphenols as Selective Inhibitors of DYRK1A/B Kinase for Treatment of Neuroinflammatory Diseases including Parkinson’s Disease. Pharmaceuticals (Basel) 2023; 16:ph16030443. [PMID: 36986543 PMCID: PMC10058583 DOI: 10.3390/ph16030443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Natural polyphenol derivatives such as those found in green tea have been known for a long time for their useful therapeutic activity. Starting from EGCG, we have discovered a new fluorinated polyphenol derivative (1c) characterized by improved inhibitory activity against DYRK1A/B enzymes and by considerably improved bioavailability and selectivity. DYRK1A is an enzyme that has been implicated as an important drug target in various therapeutic areas, including neurological disorders (Down syndrome and Alzheimer’s disease), oncology, and type 2 diabetes (pancreatic β-cell expansion). Systematic structure–activity relationship (SAR) on trans-GCG led to the discovery that the introduction of a fluoro atom in the D ring and methylation of the hydroxy group from para to the fluoro atom provide a molecule (1c) with more desirable drug-like properties. Owing to its good ADMET properties, compound 1c showed excellent activity in two in vivo models, namely the lipopolysaccharide (LPS)-induced inflammation model and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model for Parkinson’s disease.
Collapse
|
19
|
ElHady AK, El-Gamil DS, Abadi AH, Abdel-Halim M, Engel M. An overview of cdc2-like kinase 1 (Clk1) inhibitors and their therapeutic indications. Med Res Rev 2023; 43:343-398. [PMID: 36262046 DOI: 10.1002/med.21928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 09/11/2022] [Indexed: 02/05/2023]
Abstract
Over the past decade, Clk1 has been identified as a promising target for the treatment of various diseases, in which deregulated alternative splicing plays a role. First small molecules targeting Clk1 are in clinical trials for the treatment of solid cancer, where variants of oncogenic proteins derived from alternative splicing promote tumor progression. Since many infectious pathogens hi-jack the host cell's splicing machinery to ensure efficient replication, further indications in this area are under investigation, such as Influenza A, HIV-1 virus, and Trypanosoma infections, and more will likely be discovered in the future. In addition, Clk1 was found to contribute to the progression of Alzheimer's disease through causing an imbalance of tau splicing products. Interestingly, homozygous Clk1 knockout mice showed a rather mild phenotype, opposed to what might be expected in view of the profound role of Clk1 in alternative splicing. A major drawback of most Clk1 inhibitors is their insufficient selectivity; in particular, Dyrk kinases and haspin were frequently identified as off-targets, besides the other Clk isoforms. Only few inhibitors were shown to be selective over Dyrk1A and haspin, whereas no Clk1 inhibitor so far achieved selectivity over the Clk4 isoform. In this review, we carefully compiled all Clk1 inhibitors from the scientific literature and summarized their structure-activity relationships (SAR). In addition, we critically discuss the available selectivity data and describe the inhibitor's efficacy in cellular models, if reported. Thus, we provide a comprehensive overview on the current state of Clk1 drug discovery and highlight the most promising chemotypes.
Collapse
Affiliation(s)
- Ahmed K ElHady
- Department of Organic and Pharmaceutical Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, New Administrative Capital, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Dalia S El-Gamil
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Chemistry, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Matthias Engel
- Department of Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
20
|
Yang Y, Fan X, Liu Y, Ye D, Liu C, Yang H, Su Z, Zhang Y, Liu Y. Function and Inhibition of DYRK1A: emerging roles of treating multiple human diseases. Biochem Pharmacol 2023; 212:115521. [PMID: 36990324 DOI: 10.1016/j.bcp.2023.115521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is an evolutionarily conserved protein kinase and the most studied member of the Dual-specificity tyrosine-regulated kinase (DYRK) family. It has been shown that it participates in the development of plenty of diseases, and both the low or high expression of DYRK1A protein could lead to disorder. Thus, DYRK1A is recognized as a key target for the therapy for these diseases, and the studies on natural or synthetic DYRK1A inhibitors have become more and more popular. Here, we provide a comprehensive review for DYRK1A from the structure and function of DYRK1A, the roles of DYRK1A in various types of diseases, including diabetes mellitus, neurodegenerative diseases, and kinds of cancers, and the studies of its natural and synthetic inhibitors.
Collapse
|
21
|
Elfaki EM, Alhassan HH, Kamal M, Al-Enazi MM, Rub MA, Asiri AM, Ali M, Marwani HM, Alharethi SH, Alotaibi MM, Azum N. Identifying bioactive phytoconstituents as C-terminal Src kinase inhibitors: a virtual screening and molecular simulation approach. J Biomol Struct Dyn 2023; 41:13415-13424. [PMID: 36752377 DOI: 10.1080/07391102.2023.2176362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023]
Abstract
Tyrosine-protein kinase CSK otherwise known as C-terminal Src kinase (CSK), is involved in multiple pathways and processes, including regulating cell growth, differentiation, migration, and immune responses. Altered expression of CSK has been associated with various complexities, including cancer, CD45 deficiency, Osteopetrosis and lupus erythematosus. Important auxiliary roles of CSK in cancer progression make it a crucial target in developing novel anticancer therapy. Thus, CSK inhibitors are of concern as potent immuno-oncology agents. In this perspective, phytochemicals can be a significant source for unraveling novel CSK inhibitors. In this study, we carried out a systematic structure-based virtual screening of bioactive phytoconstituents against CSK to identify its potential inhibitors. After a multi-step screening process, two hits (Shinpterocarpin and Justicidin B) were selected based on their druglike properties and binding affinity towards CSK. The selected hits were further analyzed for their stability and interaction via all-atom molecular dynamics (MD) simulations. The selected hits indicated their potential as selective binding partners of CSK, which can further be used for therapeutic development against CSK-associated malignancies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elyasa Mustafa Elfaki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences-Qurayyat, Jouf University, Qurayyat, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Science, College of Applied medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Maher M Al-Enazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maroof Ali
- Chemistry Department, Faculty of Science, Aligarh Muslim University, Aligarh, India
| | - Hadi M Marwani
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Salem Hussain Alharethi
- Department of Biological Science, College of Arts and Science, Najran University, Najran, Saudia Arabia
| | - Maha Moteb Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
22
|
Kitamura H. Ubiquitin-Specific Proteases (USPs) and Metabolic Disorders. Int J Mol Sci 2023; 24:3219. [PMID: 36834633 PMCID: PMC9966627 DOI: 10.3390/ijms24043219] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Ubiquitination and deubiquitination are reversible processes that modify the characteristics of target proteins, including stability, intracellular localization, and enzymatic activity. Ubiquitin-specific proteases (USPs) constitute the largest deubiquitinating enzyme family. To date, accumulating evidence indicates that several USPs positively and negatively affect metabolic diseases. USP22 in pancreatic β-cells, USP2 in adipose tissue macrophages, USP9X, 20, and 33 in myocytes, USP4, 7, 10, and 18 in hepatocytes, and USP2 in hypothalamus improve hyperglycemia, whereas USP19 in adipocytes, USP21 in myocytes, and USP2, 14, and 20 in hepatocytes promote hyperglycemia. In contrast, USP1, 5, 9X, 14, 15, 22, 36, and 48 modulate the progression of diabetic nephropathy, neuropathy, and/or retinopathy. USP4, 10, and 18 in hepatocytes ameliorates non-alcoholic fatty liver disease (NAFLD), while hepatic USP2, 11, 14, 19, and 20 exacerbate it. The roles of USP7 and 22 in hepatic disorders are controversial. USP9X, 14, 17, and 20 in vascular cells are postulated to be determinants of atherosclerosis. Moreover, mutations in the Usp8 and Usp48 loci in pituitary tumors cause Cushing syndrome. This review summarizes the current knowledge about the modulatory roles of USPs in energy metabolic disorders.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Laboratory of Comparative Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| |
Collapse
|
23
|
Discovery of novel 5-methoxybenzothiophene hydrazides as metabolically stable Clk1 inhibitors with high potency and unprecedented Clk1 isoenzyme selectivity. Eur J Med Chem 2023; 247:115019. [PMID: 36580731 DOI: 10.1016/j.ejmech.2022.115019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Clk1 kinase is a key modulator of the pre-mRNA alternative splicing machinery which has been proposed as a promising target for treatment of various tumour types, Duchenne's muscular dystrophy and viral infections such as HIV-1 and influenza. Most reported Clk1 inhibitors showed significant co-inhibition of Clk2 and Clk4 in particular, which limits their usefulness for deciphering the individual roles of the Clk1 isoform in physiology and disease. Herein, we present a new 5-methoxybenzothiophene scaffold, enabling for the first time selective inhibition of Clk1 even among the isoenzymes. The 3,5-difluorophenyl and 3,5-dichlorophenyl derivatives 26a and 27a (Clk1 IC50 = 1.4 and 1.7 nM, respectively) showed unprecedented selectivity factors of 15 and 8 over Clk4, and selectivity factors of 535 and 84 over Clk2. Furthermore, 26a and 27a exhibited good growth inhibitory activity in T24 cancer cells and long metabolic half-lives of almost 1 and 6.4 h, respectively. The overall favorable profile of our new Clk1 inhibitors suggests that they may be used in in vivo disease models or as probes to unravel the physiological or pathogenic roles of the Clk1 isoenzyme.
Collapse
|
24
|
Abstract
The HER2+ subtype of human breast cancer is associated with the malignant transformation of luminal ductal cells of the mammary epithelium. The sequence analysis of tumor DNA identifies loss of function mutations and deletions of the MAP2K4 and MAP2K7 genes that encode direct activators of the JUN NH2-terminal kinase (JNK). We report that in vitro studies of human mammary epithelial cells with CRISPR-induced mutations in the MAPK and MAP2K components of the JNK pathway caused no change in growth in 2D culture, but these mutations promoted epithelial cell proliferation in 3D culture. Analysis of gene expression signatures in 3D culture demonstrated similar changes caused by HER2 activation and JNK pathway loss. The mechanism of signal transduction cross-talk may be mediated, in part, by JNK-suppressed expression of integrin α6β4 that binds HER2 and amplifies HER2 signaling. These data suggest that HER2 activation and JNK pathway loss may synergize to promote breast cancer. To test this hypothesis, we performed in vivo studies using a mouse model of HER2+ breast cancer with Cre/loxP-mediated ablation of genes encoding JNK (Mapk8 and Mapk9) and the MAP2K (Map2k4 and Map2k7) that activate JNK in mammary epithelial cells. Kaplan-Meier analysis of tumor development demonstrated that JNK pathway deficiency promotes HER2+-driven breast cancer. Collectively, these data identify JNK pathway genes as potential suppressors for HER2+ breast cancer.
Collapse
|
25
|
CDK5/p35-Dependent Microtubule Reorganization Contributes to Homeostatic Shortening of the Axon Initial Segment. J Neurosci 2023; 43:359-372. [PMID: 36639893 PMCID: PMC9864565 DOI: 10.1523/jneurosci.0917-22.2022] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/12/2022] Open
Abstract
The structural plasticity of the axon initial segment (AIS) contributes to the homeostatic control of activity and optimizes the function of neural circuits; however, the underlying mechanisms are not fully understood. In this study, we prepared a slice culture containing nucleus magnocellularis from chickens of both sexes that reproduces most features of AIS plasticity in vivo, regarding its effects on characteristics of AIS and cell-type specificity, and revealed that microtubule reorganization via activation of CDK5 underlies plasticity. Treating the culture with a high-K+ medium shortened the AIS and reduced sodium current and membrane excitability, specifically in neurons tuned to high-frequency sound, creating a tonotopic difference in AIS length in the nucleus. Pharmacological analyses revealed that this AIS shortening was driven by multiple Ca2+ pathways and subsequent signaling molecules that converge on CDK5 via the activation of ERK1/2. AIS shortening was suppressed by overexpression of dominant-negative CDK5, whereas it was facilitated by the overexpression of p35, an activator of CDK5. Notably, p35(T138A), a phosphorylation-inactive mutant of p35, did not shorten the AIS. Moreover, microtubule stabilizers occluded AIS shortening during the p35 overexpression, indicating that CDK5/p35 mediated AIS shortening by promoting disassembly of microtubules at distal AIS. This study highlights the importance of microtubule reorganization and regulation of CDK5 activity in structural AIS plasticity and the tuning of AIS characteristics in neurons.SIGNIFICANCE STATEMENT The structural plasticity of AIS has a strong impact on the output of neurons and plays a fundamental role in the physiology and pathology of the brain. However, the mechanisms linking neuronal activity to structural changes in AIS are not well understood. In this study, we prepared an organotypic culture of avian auditory brainstem, reproducing most AIS plasticity features in vivo, and we revealed that activity-dependent AIS shortening occurs through the disassembly of microtubules at distal AIS via activation of CDK5/p35 signals. This study emphasizes the importance of microtubule reorganization and regulation of CDK5 activity in structural AIS plasticity and tonotopic differentiation of AIS structures in the brainstem auditory circuit.
Collapse
|
26
|
Latonduine-1-Amino-Hydantoin Hybrid, Triazole-Fused Latonduine Schiff Bases and Their Metal Complexes: Synthesis, X-ray and Electron Diffraction, Molecular Docking Studies and Antiproliferative Activity. INORGANICS 2023. [DOI: 10.3390/inorganics11010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
A series of latonduine derivatives, namely 11-nitro-indolo[2,3-d]benzazepine-7-(1-amino-hydantoin) (B), triazole-fused indolo[2,3-d]benzazepine-based Schiff bases HL1 and HL2 and metal complexes [M(p-cymene)(HL1)Cl]Cl, where M = Ru (1), Os (2), and [Cu(HL2)Cl2] (3) were synthesized and characterized by spectroscopic techniques (UV–vis, 1H, 13C, 15N–1H HSQC NMR) and ESI mass spectrometry. The molecular structures of B and HL1 were confirmed by single-crystal X-ray diffraction, while that of 3 by electron diffraction of nanometer size crystalline sample. Molecular docking calculations of species B in the binding pocket of PIM-1 enzyme revealed that the 1-amino-hydantoin moiety is not involved in any hydrogen-bonding interactions, even though a good accommodation of the host molecule in the ATP binding pocket of the enzyme was found. The antiproliferative activity of organic compounds B, HL1 and HL2, as well as complexes 1–3 was investigated in lung adenocarcinoma A549, colon adenocarcinoma LS-174 and triple-negative breast adenocarcinoma MDA-MB-231 cells and normal human lung fibroblast cells MRC-5 by MTT assays; then, the results are discussed.
Collapse
|
27
|
Vu AT, Akingunsade L, Hoffer K, Petersen C, Betz CS, Rothkamm K, Rieckmann T, Bussmann L, Kriegs M. Src family kinase targeting in head and neck tumor cells using SU6656, PP2 and dasatinib. Head Neck 2023; 45:147-155. [PMID: 36285353 DOI: 10.1002/hed.27216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We have recently shown a frequent upregulation of Src-family kinases (SFK) in head and neck squamous cell carcinoma (HNSCC). Here we tested, if SFK targeting is effective especially in HNSCC cells with upregulated SFK signaling. METHODS The impact of SFK inhibitors SU6656, PP2 and dasatinib on three HNSCC cell lines with different SFK activity levels was analyzed using proliferation and colony formation assays, Western blot and functional kinomics. RESULTS Proliferation was blocked by all inhibitors in a micro-molar range. With respect to cell kill, dasatinib was most effective, while SU6656 showed moderate and PP2 minor effects. Cellular signaling was affected differently, with PP2 having no effect on SFK signaling while dasatinib probably has non-SFK specific effects. Only SU6656 showed clear SFK specific effects on signaling. CONCLUSION The results demonstrate potential benefit of SFK inhibition in HNSCC but they also highlight challenges due to non-specificities of the different drugs.
Collapse
Affiliation(s)
- Anh Thu Vu
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Akingunsade
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Konstantin Hoffer
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Stephan Betz
- Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lara Bussmann
- UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiobiology & Radiation Oncology, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,UCCH Kinomics Core Facility, Hubertus Wald Tumorzentrum - University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
28
|
Fyn nanoclustering requires switching to an open conformation and is enhanced by FTLD-Tau biomolecular condensates. Mol Psychiatry 2023; 28:946-962. [PMID: 36258016 PMCID: PMC9908554 DOI: 10.1038/s41380-022-01825-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.
Collapse
|
29
|
Guo Y, Li L, Yao Y, Li H. Regeneration of Pancreatic β-Cells for Diabetes Therapeutics by Natural DYRK1A Inhibitors. Metabolites 2022; 13:metabo13010051. [PMID: 36676976 PMCID: PMC9865674 DOI: 10.3390/metabo13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/07/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022] Open
Abstract
The pathogenesis of diabetes mellitus is characterized by insulin resistance and islet β-cell dysfunction. Up to now, the focus of diabetes treatment has been to control blood glucose to prevent diabetic complications. There is an urgent need to develop a therapeutic approach to restore the mass and function of β-cells. Although exogenous islet cell transplantation has been used to help patients control blood glucose, it is costly and has very narrow application scenario. So far, small molecules have been reported to stimulate β-cell proliferation and expand β-cell mass, increasing insulin secretion. Dual-specificity tyrosine-regulated kinase 1A (DYRK1A) inhibitors can induce human β-cell proliferation in vitro and in vivo, and show great potential in the field of diabetes therapeutics. From this perspective, we elaborated on the mechanism by which DYRK1A inhibitors regulate the proliferation of pancreatic β-cells, and summarized several effective natural DYRK1A inhibitors, hoping to provide clues for subsequent structural optimization and drug development in the future.
Collapse
Affiliation(s)
- Yichuan Guo
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lingqiao Li
- Zhejiang Starry Pharmaceutical Co., Ltd., Taizhou 317306, China
| | - Yuanfa Yao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (Y.Y.); (H.L.)
| | - Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (Y.Y.); (H.L.)
| |
Collapse
|
30
|
Ţînţaş ML, Peauger L, Alix F, Papamicaël C, Besson T, Sopková-de Oliveira Santos J, Gembus V, Levacher V. Straightforward Access to a New Class of Dual DYRK1A/CLK1 Inhibitors Possessing a Simple Dihydroquinoline Core. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010036. [PMID: 36615235 PMCID: PMC9822041 DOI: 10.3390/molecules28010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
The DYRK (Dual-specificity tyrosine phosphorylation-regulated kinase) family of protein kinases is involved in the pathogenesis of several neurodegenerative diseases. Among them, the DYRK1A protein kinase is thought to be implicated in Alzheimer's disease (AD) and Down syndrome, and as such, has emerged as an appealing therapeutic target. DYRKs are a subset of the CMGC (CDK, MAPKK, GSK3 and CLK) group of kinases. Within this group of kinases, the CDC2-like kinases (CLKs), such as CLK1, are closely related to DYRKs and have also sparked great interest as potential therapeutic targets for AD. Based on inhibitors previously described in the literature (namely TG003 and INDY), we report in this work a new class of dihydroquinolines exhibiting inhibitory activities in the nanomolar range on hDYRK1A and hCLK1. Moreover, there is overwhelming evidence that oxidative stress plays an important role in AD. Pleasingly, the most potent dual kinase inhibitor 1p exhibited antioxidant and radical scavenging properties. Finally, drug-likeness and molecular docking studies of this new class of DYRK1A/CLK1 inhibitors are also discussed in this article.
Collapse
Affiliation(s)
- Mihaela-Liliana Ţînţaş
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS UMR 6014 COBRA, FR 3038, F-76000 Rouen, France
| | - Ludovic Peauger
- VFP Therapies, 15 rue François Couperin, 76000 Rouen, France
| | - Florent Alix
- VFP Therapies, 15 rue François Couperin, 76000 Rouen, France
| | - Cyril Papamicaël
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS UMR 6014 COBRA, FR 3038, F-76000 Rouen, France
- Correspondence: (C.P.); (V.G.); (V.L.); Tel.: +33-023-552-2485 (V.L.)
| | - Thierry Besson
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS UMR 6014 COBRA, FR 3038, F-76000 Rouen, France
| | - Jana Sopková-de Oliveira Santos
- UNICAEN, CERMN (Centre d’Etudes et de Recherche sur le Médicament de Normandie), Normandie Univ., Bd Becquerel, F-14032 Caen, France
| | - Vincent Gembus
- VFP Therapies, 15 rue François Couperin, 76000 Rouen, France
- Correspondence: (C.P.); (V.G.); (V.L.); Tel.: +33-023-552-2485 (V.L.)
| | - Vincent Levacher
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS UMR 6014 COBRA, FR 3038, F-76000 Rouen, France
- Correspondence: (C.P.); (V.G.); (V.L.); Tel.: +33-023-552-2485 (V.L.)
| |
Collapse
|
31
|
Kuznetcova I, Ostojić M, Gligorijević N, Aranđelović S, Arion VB. Enriching Chemical Space of Bioactive Scaffolds by New Ring Systems: Benzazocines and Their Metal Complexes as Potential Anticancer Drugs. Inorg Chem 2022; 61:20445-20460. [PMID: 36473464 PMCID: PMC9768754 DOI: 10.1021/acs.inorgchem.2c03134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The search for new scaffolds of medicinal significance combined with molecular shape enhances their innovative potential and continues to attract the attention of researchers. Herein, we report the synthesis, spectroscopic characterization (1H and 13C NMR, UV-vis, IR), ESI-mass spectrometry, and single-crystal X-ray diffraction analysis of a new ring system of medicinal significance, 5,6,7,9-tetrahydro-8H-indolo[3,2-e]benzazocin-8-one, and a series of derived potential ligands (HL1-HL5), as well as ruthenium(II), osmium(II), and copper(II) complexes (1a, 1b, and 2-5). The stability of compounds in 1% DMSO aqueous solutions has been confirmed by 1H NMR and UV-vis spectroscopy measurements. The antiproliferative activity of HL1-HL5 and 1a, 1b, and 2-5 was evaluated by in vitro cytotoxicity tests against four cancer cell lines (LS-174, HCT116, MDA-MB-361, and A549) and one non-cancer cell line (MRC-5). The lead compounds HL5 and its copper(II) complex 5 were 15× and 17×, respectively, more cytotoxic than cisplatin against human colon cancer cell line HCT116. Annexin V-FITC apoptosis assay showed dominant apoptosis inducing potential of both compounds after prolonged treatment (48 h) in HCT116 cells. HL5 and 5 were found to induce a concentration- and time-dependent arrest of cell cycle in colon cancer cell lines. Antiproliferative activity of 5 in 3D multicellular tumor spheroid model of cancer cells (HCT116, LS-174) superior to that of cisplatin was found. Moreover, HL5 and 5 showed notable inhibition potency against glycogen synthase kinases (GSK-3α and GSK-3β), tyrosine-protein kinase (Src), lymphocyte-specific protein-tyrosine kinase (Lck), and cyclin-dependent kinases (Cdk2 and Cdk5) (IC50 = 1.4-6.1 μM), suggesting their multitargeted mode of action as potential anticancer drugs.
Collapse
Affiliation(s)
- Irina Kuznetcova
- Institute
of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Marija Ostojić
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Nevenka Gligorijević
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sandra Aranđelović
- Department
of Experimental Oncology, Institute for
Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia,
| | - Vladimir B. Arion
- Institute
of Inorganic Chemistry of the University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria,
| |
Collapse
|
32
|
Non-kinase targeting of oncogenic c-Jun N-terminal kinase (JNK) signaling: the future of clinically viable cancer treatments. Biochem Soc Trans 2022; 50:1823-1836. [PMID: 36454622 PMCID: PMC9788565 DOI: 10.1042/bst20220808] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 01/09/2023]
Abstract
c-Jun N-terminal Kinases (JNKs) have been identified as key disease drivers in a number of pathophysiological settings and central oncogenic signaling nodes in various cancers. Their roles in driving primary tumor growth, positively regulating cancer stem cell populations, promoting invasion and facilitating metastatic outgrowth have led JNKs to be considered attractive targets for anti-cancer therapies. However, the homeostatic, apoptotic and tumor-suppressive activities of JNK proteins limit the use of direct JNK inhibitors in a clinical setting. In this review, we will provide an overview of the different JNK targeting strategies developed to date, which include various ATP-competitive, non-kinase and substrate-competitive inhibitors. We aim to summarize their distinct mechanisms of action, review some of the insights they have provided regarding JNK-targeting in cancer, and outline the limitations as well as challenges of all strategies that target JNKs directly. Furthermore, we will highlight alternate drug targets within JNK signaling complexes, including recently identified scaffold proteins, and discuss how these findings may open up novel therapeutic options for targeting discrete oncogenic JNK signaling complexes in specific cancer settings.
Collapse
|
33
|
The Role of NO/sGC/cGMP/PKG Signaling Pathway in Regulation of Platelet Function. Cells 2022; 11:cells11223704. [PMID: 36429131 PMCID: PMC9688146 DOI: 10.3390/cells11223704] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Circulating blood platelets are controlled by stimulatory and inhibitory factors, and a tightly regulated equilibrium between these two opposing processes is essential for normal platelet and vascular function. NO/cGMP/ Protein Kinase G (PKG) pathways play a highly significant role in platelet inhibition, which is supported by a large body of studies and data. This review focused on inconsistent and controversial data of NO/sGC/cGMP/PKG signaling in platelets including sources of NO that activate sGC in platelets, the role of sGC/PKG in platelet inhibition/activation, and the complexity of the regulation of platelet inhibitory mechanisms by cGMP/PKG pathways. In conclusion, we suggest that the recently developed quantitative phosphoproteomic method will be a powerful tool for the analysis of PKG-mediated effects. Analysis of phosphoproteins in PKG-activated platelets will reveal many new PKG substrates. A future detailed analysis of these substrates and their involvement in different platelet inhibitory pathways could be a basis for the development of new antiplatelet drugs that may target only specific aspects of platelet functions.
Collapse
|
34
|
Ajiboye B, Fagbola T, Folorunso I, Salami A, Aletile O, Akomolede B, Ayemoni F, Akinfemiwa K, Anwo V, Ojeleke M, Oyinloye B. In silico identification of chemical compounds in Spondias mombin targeting aldose reductase and glycogen synthase kinase 3β to abate diabetes mellitus. INFORMATICS IN MEDICINE UNLOCKED 2022. [DOI: 10.1016/j.imu.2022.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
35
|
Mishra RP, Gupta S, Rathore AS, Goel G. Multi-Level High-Throughput Screening for Discovery of Ligands That Inhibit Insulin Aggregation. Mol Pharm 2022; 19:3770-3783. [PMID: 36173709 DOI: 10.1021/acs.molpharmaceut.2c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed a multi-level virtual screening protocol to identify lead molecules from the FDA inactives database that can inhibit insulin aggregation. The method is based on the presence of structural and interaction specificity in non-native aggregation pathway protein-protein interactions. Some key challenges specific to the present problem, when compared with native protein association, include structural heterogeneity of the protein species involved, multiple association pathways, and relatively higher probability of conformational rearrangement of the association complex. In this multi-step method, the inactives database was first screened using the dominant pharmacophore features of previously identified molecules shown to significantly inhibit insulin aggregation nucleation by binding to its aggregation-prone conformers. We then performed ensemble docking of several low-energy ligand conformations on these aggregation-prone conformers followed by molecular dynamics simulations and binding affinity calculations on a subset of docked complexes to identify a final set of five potential lead molecules to inhibit insulin aggregation nucleation. Their effect on aggregation inhibition was extensively investigated by incubating insulin under aggregation-prone aqueous buffer conditions (low pH, high temperature). Aggregation kinetics were characterized using size exclusion chromatography and Thioflavin T fluorescence assay, and the secondary structure was determined using circular dichroism spectroscopy. Riboflavin provided the best aggregation inhibition, with 85% native monomer retention after 48 h incubation under aggregation-prone conditions, whereas the no-ligand formulation showed complete monomer loss after 36 h. Further, insulin incubated with two of the screened inactives (aspartame, riboflavin) had the characteristic α-helical dip in CD spectra, while the no-ligand formulation showed a change to β-sheet rich conformations.
Collapse
Affiliation(s)
- Rit Pratik Mishra
- Department of Chemical Engineering, Indian Institute Technology Delhi, New Delhi, 110016, India
| | - Surbhi Gupta
- Department of Chemical Engineering, Indian Institute Technology Delhi, New Delhi, 110016, India
| | - Anurag Singh Rathore
- Department of Chemical Engineering, Indian Institute Technology Delhi, New Delhi, 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
36
|
Rognant S, Kravtsova VV, Bouzinova EV, Melnikova EV, Krivoi II, Pierre SV, Aalkjaer C, Jepps TA, Matchkov VV. The microtubule network enables Src kinase interaction with the Na,K-ATPase to generate Ca2+ flashes in smooth muscle cells. Front Physiol 2022; 13:1007340. [PMID: 36213229 PMCID: PMC9538378 DOI: 10.3389/fphys.2022.1007340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Background: Several local Ca2+ events are characterized in smooth muscle cells. We have previously shown that an inhibitor of the Na,K-ATPase, ouabain induces spatially restricted intracellular Ca2+ transients near the plasma membrane, and suggested the importance of this signaling for regulation of intercellular coupling and smooth muscle cell contraction. The mechanism behind these Na,K-ATPase-dependent “Ca2+ flashes” remains to be elucidated. In addition to its conventional ion transport function, the Na,K-ATPase is proposed to contribute to intracellular pathways, including Src kinase activation. The microtubule network is important for intracellular signaling, but its role in the Na,K-ATPase-Src kinase interaction is not known. We hypothesized the microtubule network was responsible for maintaining the Na,K-ATPase-Src kinase interaction, which enables Ca2+ flashes. Methods: We characterized Ca2+ flashes in cultured smooth muscle cells, A7r5, and freshly isolated smooth muscle cells from rat mesenteric artery. Cells were loaded with Ca2+-sensitive fluorescent dyes, Calcium Green-1/AM and Fura Red/AM, for ratiometric measurements of intracellular Ca2+. The Na,K-ATPase α2 isoform was knocked down with siRNA and the microtubule network was disrupted with nocodazole. An involvement of the Src signaling was tested pharmacologically and with Western blot. Protein interactions were validated with proximity ligation assays. Results: The Ca2+ flashes were induced by micromolar concentrations of ouabain. Knockdown of the α2 isoform Na,K-ATPase abolished Ca2+ flashes, as did inhibition of tyrosine phosphorylation with genistein and PP2, and the inhibitor of the Na,K-ATPase-dependent Src activation, pNaKtide. Ouabain-induced Ca2+ flashes were associated with Src kinase activation by phosphorylation. The α2 isoform Na,K-ATPase and Src kinase colocalized in the cells. Disruption of microtubule with nocodazole inhibited Ca2+ flashes, reduced Na,K-ATPase/Src interaction and Src activation. Conclusion: We demonstrate that the Na,K-ATPase-dependent Ca2+ flashes in smooth muscle cells require an interaction between the α2 isoform Na, K-ATPase and Src kinase, which is maintained by the microtubule network.
Collapse
Affiliation(s)
- Salomé Rognant
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Violetta V. Kravtsova
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | | | | | - Igor I. Krivoi
- Department of General Physiology, St. Petersburg State University, St. Petersburg, Russia
| | - Sandrine V. Pierre
- Marshall Institute for Interdisciplinary Research, Marshall University, Huntington, WV, United States
| | | | - Thomas A. Jepps
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Vladimir V. Matchkov,
| |
Collapse
|
37
|
Verma V, Dileepan M, Huang Q, Phan T, Hu WS, Ly H, Liang Y. Influenza A virus activates cellular Tropomyosin receptor kinase A (TrkA) signaling to promote viral replication and lung inflammation. PLoS Pathog 2022; 18:e1010874. [PMID: 36121891 PMCID: PMC9521937 DOI: 10.1371/journal.ppat.1010874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/29/2022] [Accepted: 09/09/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection causes acute respiratory disease with potential severe and deadly complications. Viral pathogenesis is not only due to the direct cytopathic effect of viral infections but also to the exacerbated host inflammatory responses. Influenza viral infection can activate various host signaling pathways that function to activate or inhibit viral replication. Our previous studies have shown that a receptor tyrosine kinase TrkA plays an important role in the replication of influenza viruses in vitro, but its biological roles and functional mechanisms in influenza viral infection have not been characterized. Here we show that IAV infection strongly activates TrkA in vitro and in vivo. Using a chemical-genetic approach to specifically control TrkA kinase activity through a small molecule compound 1NMPP1 in a TrkA knock-in (TrkA KI) mouse model, we show that 1NMPP1-mediated TrkA inhibition completely protected mice from a lethal IAV infection by significantly reducing viral loads and lung inflammation. Using primary lung cells isolated from the TrkA KI mice, we show that specific TrkA inhibition reduced IAV viral RNA synthesis in airway epithelial cells (AECs) but not in alveolar macrophages (AMs). Transcriptomic analysis confirmed the cell-type-specific role of TrkA in viral RNA synthesis, and identified distinct gene expression patterns under the TrkA regulation in IAV-infected AECs and AMs. Among the TrkA-activated targets are various proinflammatory cytokines and chemokines such as IL6, IL-1β, IFNs, CCL-5, and CXCL9, supporting the role of TrkA in mediating lung inflammation. Indeed, while TrkA inhibitor 1NMPP1 administered after the peak of IAV replication had no effect on viral load, it was able to decrease lung inflammation and provided partial protection in mice. Taken together, our results have demonstrated for the first time an important biological role of TrkA signaling in IAV infection, identified its cell-type-specific contribution to viral replication, and revealed its functional mechanism in virus-induced lung inflammation. This study suggests TrkA as a novel host target for therapeutic development against influenza viral disease.
Collapse
Affiliation(s)
- Vikram Verma
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Mythili Dileepan
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Qinfeng Huang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Thu Phan
- Department of Chemical Engineering and Material Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Wei-Shou Hu
- Department of Chemical Engineering and Material Sciences, College of Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - Yuying Liang
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| |
Collapse
|
38
|
Zuhra K, Petrosino M, Gupta B, Panagaki T, Cecconi M, Myrianthopoulos V, Schneiter R, Mikros E, Majtan T, Szabo C. Epigallocatechin gallate is a potent inhibitor of cystathionine beta-synthase: Structure-activity relationship and mechanism of action. Nitric Oxide 2022; 128:12-24. [PMID: 35973674 DOI: 10.1016/j.niox.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 10/31/2022]
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine β-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 μM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Maria Petrosino
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Barkha Gupta
- Department of Biology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 10, Fribourg, 1700, Switzerland
| | - Theodora Panagaki
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Marco Cecconi
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 10, Fribourg, 1700, Switzerland
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Tomas Majtan
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland.
| | - Csaba Szabo
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland.
| |
Collapse
|
39
|
A critical update on the strategies towards small molecule inhibitors targeting Serine/arginine-rich (SR) proteins and Serine/arginine-rich proteins related kinases in alternative splicing. Bioorg Med Chem 2022; 70:116921. [PMID: 35863237 DOI: 10.1016/j.bmc.2022.116921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/02/2022]
Abstract
>90% of genes in the human body undergo alternative splicing (AS) after transcription, which enriches protein species and regulates protein levels. However, there is growing evidence that various genetic isoforms resulting from dysregulated alternative splicing are prevalent in various types of cancers. Dysregulated alternative splicing leads to cancer generation and maintenance of cancer properties such as proliferation differentiation, apoptosis inhibition, invasion metastasis, and angiogenesis. Serine/arginine-rich proteins and SR protein-associated kinases mediate splice site recognition and splice complex assembly during variable splicing. Based on the impact of dysregulated alternative splicing on disease onset and progression, the search for small molecule inhibitors targeting alternative splicing is imminent. In this review, we discuss the structure and specific biological functions of SR proteins and describe the regulation of SR protein function by SR protein related kinases meticulously, which are closely related to the occurrence and development of various types of cancers. On this basis, we summarize the reported small molecule inhibitors targeting SR proteins and SR protein related kinases from the perspective of medicinal chemistry. We mainly categorize small molecule inhibitors from four aspects, including targeting SR proteins, targeting Serine/arginine-rich protein-specific kinases (SRPKs), targeting Cdc2-like kinases (CLKs) and targeting dual-specificity tyrosine-regulated kinases (DYRKs), in terms of structure, inhibition target, specific mechanism of action, biological activity, and applicable diseases. With this review, we are expected to provide a timely summary of recent advances in alternative splicing regulated by kinases and a preliminary introduction to relevant small molecule inhibitors.
Collapse
|
40
|
Araldi GL, Hwang YW. Design, synthesis, and biological evaluation of polyphenol derivatives as DYRK1A inhibitors. The discovery of a potentially promising treatment for Multiple Sclerosis. Bioorg Med Chem Lett 2022; 64:128675. [PMID: 35292341 PMCID: PMC9067539 DOI: 10.1016/j.bmcl.2022.128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/08/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022]
Abstract
Green tea and its natural components are known for their usefulness against a variety of diseases. In particular, the activity of main catechin Epigallocatechin gallate (EGCG) against Dual-specificity tyrosine-(Y)-phosphorylation Regulated Kinase-1A (DYRK1A) has been reported; here we are showing a structure-activity relationship (SAR) for EGCG against this molecular target. We have studied the influence of all four rings on the activity and the nature of its absolute geometry. This work has led to the identification of the more potent and stable trans fluoro-catechin derivative 1f (IC50 = 35 nM). This molecule together with a novel delivery method showed good efficacy in vivo when tested in a validated model of multiple sclerosis (EAE).
Collapse
Affiliation(s)
- Gian Luca Araldi
- Avanti Biosciences, Inc. 3210 Merryfield Row, San Diego, CA 92121, United States.
| | - Yu-Wen Hwang
- Department of Molecular Biology, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, United States
| |
Collapse
|
41
|
Noll C, Kandiah J, Moroy G, Gu Y, Dairou J, Janel N. Catechins as a Potential Dietary Supplementation in Prevention of Comorbidities Linked with Down Syndrome. Nutrients 2022; 14:2039. [PMID: 35631180 PMCID: PMC9147372 DOI: 10.3390/nu14102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/24/2022] Open
Abstract
Plant-derived polyphenols flavonoids are increasingly being recognized for their medicinal potential. These bioactive compounds derived from plants are gaining more interest in ameliorating adverse health risks because of their low toxicity and few side effects. Among them, therapeutic approaches demonstrated the efficacy of catechins, a major group of flavonoids, in reverting several aspects of Down syndrome, the most common genomic disorder that causes intellectual disability. Down syndrome is characterized by increased incidence of developing Alzheimer's disease, obesity, and subsequent metabolic disorders. In this focused review, we examine the main effects of catechins on comorbidities linked with Down syndrome. We also provide evidence of catechin effects on DYRK1A, a dosage-sensitive gene encoding a protein kinase involved in brain defects and metabolic disease associated with Down syndrome.
Collapse
Affiliation(s)
- Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada;
| | - Janany Kandiah
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Gautier Moroy
- Unité de Biologie Fonctionnelle et Adaptative, INSERM CNRS, Université Paris Cité, F-75013 Paris, France;
| | - Yuchen Gu
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| | - Julien Dairou
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR 8601 CNRS, Université Paris Cité, F-75006 Paris, France;
| | - Nathalie Janel
- Unité de Biologie Fonctionnelle et Adaptative, UMR 8251 CNRS, Université Paris Cité, F-75013 Paris, France; (J.K.); (Y.G.)
| |
Collapse
|
42
|
Zhao L, Xiong X, Liu L, Liang Q, Tong R, Feng X, Bai L, Shi J. Recent research and development of DYRK1A inhibitors. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Jamal R, LaCombe J, Patel R, Blackwell M, Thomas JR, Sloan K, Wallace JM, Roper RJ. Increased dosage and treatment time of Epigallocatechin-3-gallate (EGCG) negatively affects skeletal parameters in normal mice and Down syndrome mouse models. PLoS One 2022; 17:e0264254. [PMID: 35196359 PMCID: PMC8865638 DOI: 10.1371/journal.pone.0264254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Bone abnormalities affect all individuals with Down syndrome (DS) and are linked to abnormal expression of DYRK1A, a gene found in three copies in people with DS and Ts65Dn DS model mice. Previous work in Ts65Dn male mice demonstrated that both genetic normalization of Dyrk1a and treatment with ~9 mg/kg/day Epigallocatechin-3-gallate (EGCG), the main polyphenol found in green tea and putative DYRK1A inhibitor, improved some skeletal deficits. Because EGCG treatment improved mostly trabecular skeletal deficits, we hypothesized that increasing EGCG treatment dosage and length of administration would positively affect both trabecular and cortical bone in Ts65Dn mice. Treatment of individuals with DS with green tea extract (GTE) containing EGCG also showed some weight loss in individuals with DS, and we hypothesized that weights would be affected in Ts65Dn mice after EGCG treatment. Treatment with ~20 mg/kg/day EGCG for seven weeks showed no improvements in male Ts65Dn trabecular bone and only limited improvements in cortical measures. Comparing skeletal analyses after ~20mg/kg/day EGCG treatment with previously published treatments with ~9, 50, and 200 mg/kg/day EGCG showed that increased dosage and treatment time increased cortical structural deficits leading to weaker appendicular bones in male mice. Weight was not affected by treatment in mice, except for those given a high dose of EGCG by oral gavage. These data indicate that high doses of EGCG, similar to those reported in some treatment studies of DS and other disorders, may impair long bone structure and strength. Skeletal phenotypes should be monitored when high doses of EGCG are administered therapeutically.
Collapse
Affiliation(s)
- Raza Jamal
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jonathan LaCombe
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Roshni Patel
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Matthew Blackwell
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Jared R. Thomas
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Kourtney Sloan
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Joseph M. Wallace
- Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| | - Randall J. Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States of America
| |
Collapse
|
44
|
Li H, Zhou X, Chen R, Xiao Y, Zhou T. The Src-Kinase Fyn is Required for Cocaine-Associated Memory Through Regulation of Tau. Front Pharmacol 2022; 13:769827. [PMID: 35185557 PMCID: PMC8850722 DOI: 10.3389/fphar.2022.769827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Drug-associated context-induced relapse of cocaine-seeking behaviour requires the retrieval of drug-associated memory. Studies exploring the underlying neurobiological mechanism of drug memory formation will likely contribute to the development of treatments for drug addiction and the prevention of relapse. In our study, we applied a cocaine-conditioned place preference (CPP) paradigm and a self-administration paradigm (two drug-associated memory formation model) to confirm the hypothesis that the Src kinase Fyn critically regulates cocaine-associated memory formation in the hippocampus. For this experiment, we administered the Src kinase inhibitor PP2 into the bilateral hippocampus before cocaine-CPP and self-administration training, and the results showed that pharmacological manipulation of the Src kinase Fyn activity significantly attenuated the response to cocaine-paired cues in the cocaine-CPP and self-administration paradigms, indicating that hippocampal Fyn activity contributes to cocaine-associated memory formation. In addition, the regulation of cocaine-associated memory formation by Fyn depends on Tau expression, as restoring Tau to normal levels disrupted cocaine memory formation. Together, these results indicate that hippocampal Fyn activity plays a key role in the formation of cocaine-associated memory, which underlies cocaine-associated contextual stimulus-mediated regulation of cocaine-seeking behaviour, suggesting that Fyn represents a promising therapeutic target for weakening cocaine-related memory and treating cocaine addiction.
Collapse
Affiliation(s)
- Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hongchun Li,
| | - Xinglong Zhou
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuzhou Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Tao Zhou
- Department of Drug and Equipment, China Rongtong Bayi Orthopaedic Hospital, Chengdu, China
| |
Collapse
|
45
|
Transcription Factor 21 Promotes Chicken Adipocyte Differentiation at Least in Part via Activating MAPK/JNK Signaling. Genes (Basel) 2021; 12:genes12121971. [PMID: 34946919 PMCID: PMC8701358 DOI: 10.3390/genes12121971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The molecular mechanisms of transcription factor 21 (TCF21) in regulating chicken adipogenesis remain unclear. Thus, the current study was designed to investigate the signaling pathway mediating the effect of TCF21 on chicken adipogenesis. Immortalized chicken preadipocytes cell line (ICP), a preadipocyte cell line stably overexpressing TCF21 (LV-TCF21) and a control preadipocyte cell line (LV-control) were used in the current study. We found that the phosphorylation of c-Jun N-terminal kinases (JNK) was significantly elevated in LV-TCF21 compared to LV-control. After treating ICP cells with a JNK inhibitor SP600125, the differentiation of ICP was inhibited, as evidenced by decreased accumulation of lipid droplets and reduced expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), adipocyte fatty acid binding protein (A-FABP), and lipoprotein lipase (LPL). Moreover, we found that the inhibition of JNK by SP600125 remarkably impaired the ability of TCF21 to drive adipogenesis. Taken together, our results suggest that TCF21 promotes the differentiation of adipocytes at least in part via activating MAPK/JNK pathway.
Collapse
|
46
|
Stoll K, Bergmann M, Spiliotis M, Brehm K. A MEKK1 - JNK mitogen activated kinase (MAPK) cascade module is active in Echinococcus multilocularis stem cells. PLoS Negl Trop Dis 2021; 15:e0010027. [PMID: 34879059 PMCID: PMC8687709 DOI: 10.1371/journal.pntd.0010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 12/20/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Background The metacestode larval stage of the fox-tapeworm Echinococcus multilocularis causes alveolar echinococcosis by tumour-like growth within the liver of the intermediate host. Metacestode growth and development is stimulated by host-derived cytokines such as insulin, fibroblast growth factor, and epidermal growth factor via activation of cognate receptor tyrosine kinases expressed by the parasite. Little is known, however, concerning signal transmission to the parasite nucleus and cross-reaction with other parasite signalling systems. Methodology/Principal findings Using bioinformatic approaches, cloning, and yeast two-hybrid analyses we identified a novel mitogen-activated kinase (MAPK) cascade module that consists of E. multilocularis orthologs of the tyrosine kinase receptor interactor Growth factor receptor-bound 2, EmGrb2, the MAPK kinase kinase EmMEKK1, a novel MAPK kinase, EmMKK3, and a close homolog to c-Jun N-terminal kinase (JNK), EmMPK3. Whole mount in situ hybridization analyses indicated that EmMEKK1 and EmMPK3 are both expressed in E. multilocularis germinative (stem) cells but also in differentiated or differentiating cells. Treatment with the known JNK inhibitor SP600125 led to a significantly reduced formation of metacestode vesicles from stem cells and to a specific reduction of proliferating stem cells in mature metacestode vesicles. Conclusions/Significance We provide evidence for the expression of a MEKK1-JNK MAPK cascade module which, in mammals, is crucially involved in stress responses, cytoskeletal rearrangements, and apoptosis, in E. multilocularis stem cells. Inhibitor studies indicate an important role of JNK signalling in E. multilocularis stem cell survival and/or maintenance. Our data are relevant for molecular and cellular studies into crosstalk signalling mechanisms that govern Echinococcus stem cell function and introduce the JNK signalling cascade as a possible target of chemotherapeutics against echinococcosis. The metacestode larva of the tapeworm E. multilocularis grows infiltrative, like a malignant tumour, within the liver of the host thus causing the lethal disease alveolar echinococcosis. Previous work established that the metacestode senses signals of host hormones and cytokines by expressing surface receptors that share high homology with respective host receptors. However, little is known how these signals are transmitted from the parasite cell surface to the nucleus to alter gene expression. In this work, the authors present a module of several protein kinases that typically transmit cytokine signals from surface receptors to central regulators called mitogen-activated protein kinases (MAPK). The authors demonstrate that this module is active in parasite stem cells, which drive the development of metacestode larva. They also show that inhibitors directed against one component of the module, EmMPK3, affect maintenance and/or survival of stem cells in the metacestode and prevent the formation of metacestode larva from parasite cell cultures. This information facilitates molecular and cellular studies to unravel the complex signalling network that regulate Echinococcus stem cell proliferation in response to host signals. Furthermore, these data could open new ways of anti-parasitic chemotherapy by introducing EmMPK3 as a possible drug target.
Collapse
Affiliation(s)
- Kristin Stoll
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Monika Bergmann
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Markus Spiliotis
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
| | - Klaus Brehm
- University of Würzburg, Institute of Hygiene and Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
47
|
Shpakova V, Rukoyatkina N, Walter U, Gambaryan S. Potential and limitations of PKA/ PKG inhibitors for platelet studies. Platelets 2021; 33:859-868. [PMID: 34845961 DOI: 10.1080/09537104.2021.2003316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cyclic nucleotides (cAMP and cGMP) and corresponding protein kinases, protein kinase A (PKA) and protein kinase G (PKG), are the main intracellular mediators of endothelium-derived platelet inhibitors. Pharmacological PKA/PKG inhibitors are often used to discriminate between these two kinase activities and to analyze their underlying mechanisms. Previously we showed that all widely used PKG inhibitors (KT5823, DT3, RP isomers) either did not inhibit PKG or inhibited and even activated platelets independently from PKG. In this study, we examined several PKA inhibitors as well as inhibitors of adenylate and guanylate cyclases to reveal their effects on platelets and establish whether they are mediated by PKA/PKG. The commonly used PKA inhibitor H89 inhibited both PKA and PKG but PKA-independently inhibited thrombin-induced platelet activation. In our experiments, KT5720 did not inhibit PKA and had no effect on platelet activation. PKI inhibited PKA activity in platelets but also strongly PKA-independently activated platelets. Inhibition of adenylate and guanylate cyclases may be an alternative approach to analyze PKA/PKG function. Based on our previous and presented data, we conclude that all results where the mentioned PKA inhibitors were used for the analysis of PKA activity in intact platelets should be considered with caution.
Collapse
Affiliation(s)
- Valentina Shpakova
- Laboratory of cellular mechanisms of blood homeostasis, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Natalia Rukoyatkina
- Laboratory of cellular mechanisms of blood homeostasis, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ulrich Walter
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stepan Gambaryan
- Laboratory of cellular mechanisms of blood homeostasis, Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint Petersburg, Russia
| |
Collapse
|
48
|
Filina Y, Gabdoulkhakova A, Rizvanov A, Safronova V. MAP kinases in regulation of NOX activity stimulated through two types of formyl peptide receptors in murine bone marrow granulocytes. Cell Signal 2021; 90:110205. [PMID: 34826588 DOI: 10.1016/j.cellsig.2021.110205] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/29/2021] [Accepted: 11/19/2021] [Indexed: 11/16/2022]
Abstract
The functional activity of the phagocytes, as well as the development and resolution of the inflammation, is determined by formylpeptide receptors (FPRs) signaling. There is a growing data on the signaling pathways from two major types of formylpeptide receptors, FPR1 and FPR2, which could be activated by different sets of ligands to provide certain defense functions. Generation of reactive oxygen species (ROS) by the membrane enzyme NADPH oxidase is the most important among them. One of the most studied and significant mechanism for the regulation of activity of NADPH oxidase is phosphorylation by a variety of kinases, including MAP kinases. The question arose whether the role of MAPKs differ in the activation of NADPH oxidase through FPR1 and FPR2. We have studied Fpr1- and Fpr2-induced phosphorylation of p38, ERK, and JNK kinases and their role in the activation of the respiratory burst in isolated mice bone marrow granulocytes. Data has shown distinct patterns of MAP kinase activity for Fpr1 and Fpr2: JNK was involved in both Fpr1 and Fpr2 mediated activation of ROS production, while p38 MAPK and ERK were involved in Fpr1 induced ROS generation only.
Collapse
Affiliation(s)
- Yuliya Filina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.
| | - Aida Gabdoulkhakova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation; Kazan State Medical Academy, Federal State Budgetary Educational Institution of Further Professional Education "Russian Medical Academy of Continuous Professional Education" of the Ministry of Healthcare of the Russian Federation, Kazan, Russian Federation
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Valentina Safronova
- Institute of Cell Biophysics of Russian Academy of Sciences, Pushchino, Russian Federation
| |
Collapse
|
49
|
Atas-Ozcan H, Brault V, Duchon A, Herault Y. Dyrk1a from Gene Function in Development and Physiology to Dosage Correction across Life Span in Down Syndrome. Genes (Basel) 2021; 12:1833. [PMID: 34828439 PMCID: PMC8624927 DOI: 10.3390/genes12111833] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 01/12/2023] Open
Abstract
Down syndrome is the main cause of intellectual disabilities with a large set of comorbidities from developmental origins but also that appeared across life span. Investigation of the genetic overdosage found in Down syndrome, due to the trisomy of human chromosome 21, has pointed to one main driver gene, the Dual-specificity tyrosine-regulated kinase 1A (Dyrk1a). Dyrk1a is a murine homolog of the drosophila minibrain gene. It has been found to be involved in many biological processes during development and in adulthood. Further analysis showed its haploinsufficiency in mental retardation disease 7 and its involvement in Alzheimer's disease. DYRK1A plays a role in major developmental steps of brain development, controlling the proliferation of neural progenitors, the migration of neurons, their dendritogenesis and the function of the synapse. Several strategies targeting the overdosage of DYRK1A in DS with specific kinase inhibitors have showed promising evidence that DS cognitive conditions can be alleviated. Nevertheless, providing conditions for proper temporal treatment and to tackle the neurodevelopmental and the neurodegenerative aspects of DS across life span is still an open question.
Collapse
Affiliation(s)
- Helin Atas-Ozcan
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Véronique Brault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Arnaud Duchon
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France; (H.A.-O.); (V.B.); (A.D.)
- Université de Strasbourg, CNRS, INSERM, Celphedia, Phenomin-Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, 67404 Illkirch Graffenstaden, France
| |
Collapse
|
50
|
Aboushady Y, Gabr M, ElHady AK, Salah M, Abadi AH, Wilms G, Becker W, Abdel-Halim M, Engel M. Discovery of Hydroxybenzothiazole Urea Compounds as Multitargeted Agents Suppressing Major Cytotoxic Mechanisms in Neurodegenerative Diseases. ACS Chem Neurosci 2021; 12:4302-4318. [PMID: 34726394 DOI: 10.1021/acschemneuro.1c00475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Multiple factors are causally responsible and/or contribute to the progression of Alzheimer's and Parkinson's diseases. The protein kinase Dyrk1A was identified as a promising target as it phosphorylates tau protein, α-synuclein, and parkin. The first goal of our study was to optimize our previously identified Dyrk1A inhibitors of the 6-hydroxy benzothiazole urea chemotype in terms of potency and selectivity. Our efforts led to the development of the 3-fluorobenzyl amide derivative 16b, which displayed the highest potency against Dyrk1A (IC50 = 9.4 nM). In general, the diversification of the benzylamide moiety led to an enhanced selectivity over the most homologous isoform, Dyrk1B, which was a meaningful indicator, as the high selectivity could be confirmed in an extended selectivity profiling of 3b and 16b. Eventually, we identified the novel phenethyl amide derivative 24b as a triple inhibitor of Dyrk1A kinase activity (IC50 = 119 nM) and the aggregation of tau and α-syn oligomers. We provide evidence that the novel combination of selective Dyrk1A inhibition and suppression of tau and α-syn aggregations of our new lead compound confers efficacy in several established cellular models of neurotoxic mechanisms relevant to neurodegenerative diseases, including α-syn- and 6-hydroxydopamine-induced cytotoxicities.
Collapse
Affiliation(s)
- Youssef Aboushady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Moustafa Gabr
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Ahmed K. ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
- School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo 11311, Egypt
| | - Mohamed Salah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts, Cairo 12451, Egypt
| | - Ashraf H. Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Gerrit Wilms
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | - Walter Becker
- Institute of Pharmacology and Toxicology, Medical Faculty of the RWTH Aachen University, Wendlingweg 2, Aachen 52074, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3 Saarbrücken D-66123, Germany
| |
Collapse
|