1
|
Gómez-Gaviria M, Mora-Montes HM. Exploring the potential of chitin and chitosan in nanobiocomposites for fungal immunological detection and antifungal action. Carbohydr Res 2024; 543:109220. [PMID: 39038396 DOI: 10.1016/j.carres.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chitin is a polymer of N-acetylglucosamine and an essential component of the fungal cell wall. Chitosan is the deacetylated form of chitin and is also important for maintaining the integrity of this structure. Both polysaccharides are widely distributed in nature and have been shown to have a variety of applications in biomedicine, including their potential in immune sensing and as potential antifungal agents. In addition, chitin has been reported to play an important role in the pathogen-host interaction, involving innate and adaptive immune responses. This paper will explore the role of chitin and chitosan when incorporated into nanobiocomposites to improve their efficacy in detecting fungi of medical interest and inhibiting their growth. Potential applications in diagnostic and therapeutic medicine will be discussed, highlighting their promise in the development of more sensitive and effective tools for the early diagnosis of fungal infections. This review aims to highlight the importance of the convergence of nanotechnology and biology in addressing public health challenges.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico.
| |
Collapse
|
2
|
Mascarenhas R, Hegde S, Manaktala N. Chitosan nanoparticle applications in dentistry: a sustainable biopolymer. Front Chem 2024; 12:1362482. [PMID: 38660569 PMCID: PMC11039901 DOI: 10.3389/fchem.2024.1362482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
The epoch of Nano-biomaterials and their application in the field of medicine and dentistry has been long-lived. The application of nanotechnology is extensively used in diagnosis and treatment aspects of oral diseases. The nanomaterials and its structures are being widely involved in the production of medicines and drugs used for the treatment of oral diseases like periodontitis, oral carcinoma, etc. and helps in maintaining the longevity of oral health. Chitosan is a naturally occurring biopolymer derived from chitin which is seen commonly in arthropods. Chitosan nanoparticles are the latest in the trend of nanoparticles used in dentistry and are becoming the most wanted biopolymer for use toward therapeutic interventions. Literature search has also shown that chitosan nanoparticles have anti-tumor effects. This review highlights the various aspects of chitosan nanoparticles and their implications in dentistry.
Collapse
Affiliation(s)
- Roma Mascarenhas
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shreya Hegde
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nidhi Manaktala
- Department of Oral Pathology and Microbiology, Manipal College of Dental Sciences Mangalore, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
3
|
Chen Z, Song B, Guo H, Xia D, Cai Y, Wang Y, Zhao W. Metagenomic characterization of biomethane transformation by lipid-catalyzed anaerobic fermentation of lignite. ENVIRONMENTAL RESEARCH 2023; 227:115777. [PMID: 36966989 DOI: 10.1016/j.envres.2023.115777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/02/2023] [Accepted: 03/24/2023] [Indexed: 05/08/2023]
Abstract
The present study aims at using lipid in a novel way to improve the efficiency of methane production from lignite anaerobic digestion. The obtained results showed an increase by 3.13 times of the cumulative biomethane content of lignite anaerobic fermentation, when 1.8 g lipid was added. The gene expression of functional metabolic enzymes was also found to be enhanced during the anaerobic fermentation. Moreover, the enzymes related to fatty acid degradation such as long-chain Acyl-CoA synthetase and Acyl-CoA dehydrogenase were increased by 1.72 and 10.48 times, respectively, which consequently, accelerated the conversion of fatty acid. Furthermore, the addition of lipid enhanced the carbon dioxide trophic and acetic acid trophic metabolic pathways. Hence, the addition of lipids was argued to promote the production of methane from lignite anaerobic fermentation, which provided a new insight for the conversion and utilization of lipid waste.
Collapse
Affiliation(s)
- Zhenhong Chen
- Research Institute of Petroleum Exploration & Development, Beijing, 100083, China.
| | - Bo Song
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Hongyu Guo
- School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China; Collaborative Innovation Center of Coal Work Safety and Clean High Efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Dapin Xia
- Mining Research Institute of Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Yidong Cai
- School of Energy Resources, China University of Geosciences, Beijing, 100083, China.
| | - Yongjun Wang
- College of Computer Science and Technology, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Weizhong Zhao
- Department of Environmental Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark.
| |
Collapse
|
4
|
Anani OA, Adama KK, Ukhurebor KE, Habib AI, Abanihi VK, Pal K. Application of nanofibrous protein for the purification of contaminated water as a next generational sorption technology: a review. NANOTECHNOLOGY 2023; 34:232004. [PMID: 36807991 DOI: 10.1088/1361-6528/acbd9f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Globally, wastes from agricultural and industrial activities cause water pollution. Pollutants such as microbes, pesticides, and heavy metals in contaminated water bodies beyond their threshold limits result in several diseases like mutagenicity, cancer, gastrointestinal problems, and skin or dermal issues when bioaccumulated via ingestion and dermal contacts. Several technologies have been used in modern times to treat wastes or pollutants such as membrane purification technologies and ionic exchange methods. However, these methods have been recounted to be capital intensive, non-eco-friendly, and need deep technical know-how to operate thus, contributing to their inefficiencies and non-efficacies. This review work evaluated the application of Nanofibrils-protein for the purification of contaminated water. Findings from the study indicated that Nanofibrils protein is economically viable, green, and sustainable when used for water pollutant management or removal because they have outstanding recyclability of wastes without resulting in a secondary phase-pollutant. It is recommended to use residues from dairy industries, agriculture, cattle guano, and wastes from a kitchen in conjunction with nanomaterials to develop nanofibrils protein which has been recounted for the effective removal of micro and micropollutants from wastewater and water. The commercialization of nanofibrils protein for the purification of wastewater and water against pollutants has been tied to novel methods in nanoengineering technology, which depends strongly on the environmental impact in the aqueous ecosystem. So, there is a need to establish a legal framework for the establishment of a nano-based material for the effective purification of water against pollutants.
Collapse
Affiliation(s)
- Osikemekha Anthony Anani
- Laboratory for Ecotoxicology and Forensic Biology, Department of Biological Science, Faculty of Science, Edo State University, Uzairue, Edo State, Nigeria
| | - Kenneth Kennedy Adama
- Department of Chemical Engineering, Faculty of Engineering, Edo State University, Uzairue, Edo State, Nigeria
| | | | - Aishatu Idris Habib
- Department of Microbiology, Edo State University, Faculty of Science, Uzairue, Nigeria
| | - Vincent Kenechi Abanihi
- Department of Electrical/Electronic Engineering, Faculty of Engineering, Edo State University, Uzairue, Nigeria
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University, Mohali, Gharuan, Punjab 140413, India
| |
Collapse
|
5
|
Cheng M, Shao Z, Wang X, Lu C, Li S, Duan D. Novel Chitin Deacetylase from Thalassiosira weissflogii Highlights the Potential for Chitin Derivative Production. Metabolites 2023; 13:metabo13030429. [PMID: 36984869 PMCID: PMC10057020 DOI: 10.3390/metabo13030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
β-Chitin is an important carbon fixation product of diatoms, and is the most abundant nitrogen-containing polysaccharide in the ocean. It has potential for widespread application, but the characterization of chitin-related enzymes from β-chitin producers has rarely been reported. In this study, a chitin deacetylase (TwCDA) was retrieved from the Marine Microbial Eukaryote Transcriptome Sequencing Project (MMETSP) database and was heterologously expressed in vitro for functional analysis. The results showed that both the full-length sequence (TwCDA) and the N-terminal truncated sequence (TwCDA-S) had chitin deacetylase and chitinolytic activities after expression in Escherichia coli. High-performance liquid chromatography (HPLC) and gas chromatography–mass spectrometry (GC-MS) indicated that TwCDA and TwCDA-S could catalyze the deacetylation of oligosaccharide (GlcNAc)5. TwCDA had higher deacetylase activity, and also catalyzed the deacetylation of the β-chitin polymer. A dinitrosalicylic acid (DNS) assay showed that TwCDA-S had high chitinolytic activity for (GlcNAc)5, and the optimal reaction temperature was 35 °C. Liquid chromatography combined with time-of-flight mass spectrometry (LC-coTOF-MS) detected the formation of a N-acetylglucosamine monomer (C8H15NO6) in the reaction mixture. Altogether, we isolated a chitin deacetylase from a marine diatom, which can catalyze the deacetylation and degradation of chitin and chitin oligosaccharides. The relevant results lay a foundation for the internal regulation mechanism of chitin metabolism in diatoms and provide a candidate enzyme for the green industrial preparation of chitosan and chitin oligosaccharides.
Collapse
Affiliation(s)
- Mengzhen Cheng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Lu
- Department of Biological Engineering, College of Life Science, Yantai University, Yantai 264005, China
| | - Shuang Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
6
|
Isobe N, Kaku Y, Okada S, Kawada S, Tanaka K, Fujiwara Y, Nakajima R, Bissessur D, Chen C. Identification of Chitin Allomorphs in Poorly Crystalline Samples Based on the Complexation with Ethylenediamine. Biomacromolecules 2022; 23:4220-4229. [PMID: 36084927 PMCID: PMC9554874 DOI: 10.1021/acs.biomac.2c00714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chitin is a key component of hard parts in many organisms, but the biosynthesis of the two distinctive chitin allomorphs, α- and β-chitin, is not well understood. The accurate determination of chitin allomorphs in natural biomaterials is vital. Many chitin-secreting living organisms, however, produce poorly crystalline chitin. This leads to spectrums with only broad lines and imprecise peak positions under conventional analytical methods such as X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and solid-state nuclear magnetic resonance spectroscopy, resulting in inconclusive identification of chitin allomorphs. Here, we developed a novel method for discerning chitin allomorphs based on their different complexation capacity and guest selectivity, using ethylenediamine (EDA) as a complexing agent. From the peak shift observed in XRD profiles of the chitin/EDA complex, the chitin allomorphs can be clearly discerned. By testing this method on a series of samples with different chitin allomorphs and crystallinity, we show that the sensitivity is sufficiently high to detect the chitin allomorphs even in near-amorphous, very poorly crystalline samples. This is a powerful tool for determining the chitin allomorphs in phylogenetically important chitin-producing organisms and will pave the way for clarifying the evolution and mechanism of chitin biosynthesis.
Collapse
Affiliation(s)
- Noriyuki Isobe
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.,Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yuto Kaku
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan.,Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Okada
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Sachiko Kawada
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Keiko Tanaka
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Yoshihiro Fujiwara
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Yokosuka, Kanagawa 237-0061, Japan
| | - Ryota Nakajima
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Yokosuka, Kanagawa 237-0061, Japan
| | - Dass Bissessur
- Department for Continental Shelf, Maritime Zones Administration and Exploration, Prime Minister's Office, 2nd Floor, Belmont House, 12 Intendance Street, Port Louis 11328, Mauritius
| | - Chong Chen
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
7
|
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X, Liu S, Yang G, Fan Y, Rojas OJ. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022; 122:11604-11674. [PMID: 35653785 PMCID: PMC9284562 DOI: 10.1021/acs.chemrev.2c00125] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.
Collapse
Affiliation(s)
- Long Bai
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liang Liu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Marianelly Esquivel
- Polymer
Research Laboratory, Department of Chemistry, National University of Costa Rica, Heredia 3000, Costa Rica
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Siqi Huan
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shouxin Liu
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
| | - Guihua Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Sciences, Jinan 250353, China
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
8
|
Ogawa Y, Putaux JL, Nishiyama Y. Crystallography of polysaccharides: Current state and challenges. Curr Opin Chem Biol 2022; 70:102183. [PMID: 35803025 DOI: 10.1016/j.cbpa.2022.102183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/27/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Polysaccharides are the most abundant class of biopolymers, holding an important place in biological systems and sustainable material development. Their spatial organization and intra- and intermolecular interactions are thus of great interest. However, conventional single crystal crystallography is not applicable since polysaccharides crystallize only into tiny crystals. Several crystallographic methods have been developed to extract atomic-resolution structural information from polysaccharide crystals. Small-probe single crystal diffractometry, high-resolution fiber diffraction and powder diffraction combined with molecular modeling brought new insights from various types of polysaccharide crystals, and led to many high-resolution crystal structures over the past two decades. Current challenges lie in the analysis of disorder and defects by further integrating molecular modeling methods for low-resolution diffraction data.
Collapse
Affiliation(s)
- Yu Ogawa
- Univ. Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France.
| | | | | |
Collapse
|
9
|
Isobe N, Chen C, Daicho K, Saito T, Bissessur D, Takai K, Okada S. Uniaxial orientation of β-chitin nanofibres used as an organic framework in the scales of a hot vent snail. J R Soc Interface 2022; 19:20220120. [PMID: 35642424 PMCID: PMC9156901 DOI: 10.1098/rsif.2022.0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 04/06/2022] [Indexed: 01/05/2023] Open
Abstract
Organisms use various forms and orientations of chitin nanofibres to make structures with a wide range of functions, from insect wings to mussel shells. Lophotrochozoan animals such as snails and annelid worms possess an ancient 'biomineralization toolkit', enabling them to flexibly and rapidly evolve unique hard parts. The scaly-foot snail is a gastropod endemic to deep-sea hydrothermal vents, unique in producing dermal sclerites used as sites of sulfur detoxification. Once considered to be strictly proteinaceous, recent data pointed to the presence of chitin in these sclerites, but direct evidence is still lacking. Here, we show that β-chitin fibres (approx. 5% of native weight) are indeed the building framework, through a combination of solid-state nuclear magnetic resonance spectroscopy, wide-angle X-ray diffraction, and electron microscopy. The fibres are uniaxially oriented, likely forming a structural basis for column-like channels into which the scaly-foot snail is known to actively secrete sulfur waste-expanding the known function of chitinous hard parts in animals. Our results add to the existing evidence that animals are capable of modifying and co-opting chitin synthesis pathways flexibly and rapidly, in order to serve novel functions during their evolution.
Collapse
Affiliation(s)
- Noriyuki Isobe
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization (MRU), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Chong Chen
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Kazuho Daicho
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tsuguyuki Saito
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Dass Bissessur
- Department for Continental Shelf, Maritime Zones Administration and Exploration, Prime Minister's Office, 2nd Floor, Belmont House, 12 Intendance Street, Port Louis 11328, Mauritius
| | - Ken Takai
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | - Satoshi Okada
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-STAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| |
Collapse
|
10
|
Kumar A, Zhang KYJ. Human Chitinases: Structure, Function, and Inhibitor Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:221-251. [PMID: 31102249 DOI: 10.1007/978-981-13-7318-3_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitinases are glycosyl hydrolases that hydrolyze the β-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
11
|
Ogawa Y, Lee CM, Nishiyama Y, Kim SH. Absence of Sum Frequency Generation in Support of Orthorhombic Symmetry of α-Chitin. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01583] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yu Ogawa
- Univ. Grenoble Alpes, Cermav, F-38000 Grenoble, France
- CNRS-Cermav, F-38000 Grenoble, France
| | - Christopher M. Lee
- Department of Chemical Engineering
and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yoshiharu Nishiyama
- Univ. Grenoble Alpes, Cermav, F-38000 Grenoble, France
- CNRS-Cermav, F-38000 Grenoble, France
| | - Seong H. Kim
- Department of Chemical Engineering
and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Changes in physicochemical properties of chitin at developmental stages (larvae, pupa and adult) of Vespa crabro (wasp). Carbohydr Polym 2016; 145:64-70. [DOI: 10.1016/j.carbpol.2016.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 02/24/2016] [Accepted: 03/06/2016] [Indexed: 11/21/2022]
|
13
|
Elieh-Ali-Komi D, Hamblin MR. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. INTERNATIONAL JOURNAL OF ADVANCED RESEARCH 2016; 4:411-427. [PMID: 27819009 PMCID: PMC5094803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Chitin is the most abundant aminopolysaccharide polymer occurring in nature, and is the building material that gives strength to the exoskeletons of crustaceans, insects, and the cell walls of fungi. Through enzymatic or chemical deacetylation, chitin can be converted to its most well-known derivative, chitosan. The main natural sources of chitin are shrimp and crab shells, which are an abundant byproduct of the food-processing industry, that provides large quantities of this biopolymer to be used in biomedical applications. In living chitin-synthesizing organisms, the synthesis and degradation of chitin require strict enzymatic control to maintain homeostasis. Chitin synthase, the pivotal enzyme in the chitin synthesis pathway, uses UDP-N-acetylglucosamine (UDPGlcNAc), produce the chitin polymer, whereas, chitinase enzymes degrade chitin. Bacteria are considered as the major mediators of chitin degradation in nature. Chitin and chitosan, owing to their unique biochemical properties such as biocompatibility, biodegradability, non-toxicity, ability to form films, etc, have found many promising biomedical applications. Nanotechnology has also increasingly applied chitin and chitosan-based materials in its most recent achievements. Chitin and chitosan have been widely employed to fabricate polymer scaffolds. Moreover, the use of chitosan to produce designed-nanocarriers and to enable microencapsulation techniques is under increasing investigation for the delivery of drugs, biologics and vaccines. Each application is likely to require uniquely designed chitosan-based nano/micro-particles with specific dimensions and cargo-release characteristics. The ability to reproducibly manufacture chitosan nano/microparticles that can encapsulate protein cargos with high loading efficiencies remains a challenge. Chitosan can be successfully used in solution, as hydrogels and/or nano/microparticles, and (with different degrees of deacetylation) an endless array of derivatives with customized biochemical properties can be prepared. As a result, chitosan is one of the most well-studied biomaterials. The purpose of this review is to survey the biosynthesis and isolation, and summarize nanotechnology applications of chitin and chitosan ranging from tissue engineering, wound dressings, antimicrobial agents, antiaging cosmetics, and vaccine adjuvants.
Collapse
Affiliation(s)
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
14
|
Gügi B, Le Costaouec T, Burel C, Lerouge P, Helbert W, Bardor M. Diatom-Specific Oligosaccharide and Polysaccharide Structures Help to Unravel Biosynthetic Capabilities in Diatoms. Mar Drugs 2015; 13:5993-6018. [PMID: 26393622 PMCID: PMC4584364 DOI: 10.3390/md13095993] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/12/2022] Open
Abstract
Diatoms are marine organisms that represent one of the most important sources of biomass in the ocean, accounting for about 40% of marine primary production, and in the biosphere, contributing up to 20% of global CO₂ fixation. There has been a recent surge in developing the use of diatoms as a source of bioactive compounds in the food and cosmetic industries. In addition, the potential of diatoms such as Phaeodactylum tricornutum as cell factories for the production of biopharmaceuticals is currently under evaluation. These biotechnological applications require a comprehensive understanding of the sugar biosynthesis pathways that operate in diatoms. Here, we review diatom glycan and polysaccharide structures, thus revealing their sugar biosynthesis capabilities.
Collapse
Affiliation(s)
- Bruno Gügi
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - Tinaïg Le Costaouec
- CNRS, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Grenoble Alpes, CERMAV, F-38000 Grenoble, France.
| | - Carole Burel
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - Patrice Lerouge
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
| | - William Helbert
- CNRS, Centre de Recherches sur les Macromolécules Végétales (CERMAV), Université Grenoble Alpes, CERMAV, F-38000 Grenoble, France.
| | - Muriel Bardor
- Laboratoire Glyco-MEV EA 4358, Université de Rouen, Normandie Université, Institut de Recherche et d'Innovation Biomédicale (IRIB), Végétale Agronomie Sol Innovation (VASI), Normandie Université, Faculté des Sciences et Techniques, 76821 Mont-Saint-Aignan, France.
- Institut Universitaire de France (IUF), 75005 Paris, France.
| |
Collapse
|
15
|
Yu HZ, Wen DF, Wang WL, Geng L, Zhang Y, Xu JP. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis. Int J Mol Sci 2015; 16:21873-96. [PMID: 26378520 PMCID: PMC4613286 DOI: 10.3390/ijms160921873] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/01/2015] [Accepted: 08/25/2015] [Indexed: 01/15/2023] Open
Abstract
The rice leaf roller (Cnaphalocrocis medinalis) is one of the most destructive agricultural pests. Due to its migratory behavior, it is difficult to control worldwide. To date, little is known about major genes of C. medinalis involved in chitin metabolism and insecticide detoxification. In order to obtain a comprehensive genome dataset of C. medinalis, we conducted de novo transcriptome sequencing which focused on the major feeding stage of fourth-instar larvae, and our work revealed useful information on chitin metabolism and insecticide detoxification and target genes of C. medinalis. We acquired 29,367,797 Illumina reads and assembled these reads into 63,174 unigenes with an average length of 753 bp. Among these unigenes, 31,810 were annotated against the National Center for Biotechnology Information non-redundant (NCBI nr) protein database, resulting in 24,246, 8669 and 18,176 assigned to Swiss-Prot, clusters of orthologous group (COG), and gene ontology (GO), respectively. We were able to map 10,043 unigenes into 285 pathways using the Kyoto Encyclopedia of Genes and Genomes Pathway database (KEGG). Specifically, 16 genes, including five chitin deacetylases, two chitin synthases, five chitinases and four other related enzymes, were identified to be putatively involved in chitin biosynthesis and degradation, whereas 360 genes, including cytochrome P450s, glutathione S-transferases, esterases, and acetylcholinesterases, were found to be potentially involved in insecticide detoxification or as insecticide targets. The reliability of the transcriptome data was determined by reverse transcription quantitative PCR (RT-qPCR) for the selected genes. Our data serves as a new and valuable sequence resource for genomic studies on C. medinalis. The findings should improve our understanding of C. medinalis genetics and contribute to management of this important agricultural pest.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - De-Fu Wen
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Wan-Lin Wang
- Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Lei Geng
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| | - Yan Zhang
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei 230061, China.
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
16
|
Mélida H, Sain D, Stajich JE, Bulone V. Deciphering the uniqueness of Mucoromycotina cell walls by combining biochemical and phylogenomic approaches. Environ Microbiol 2014; 17:1649-62. [DOI: 10.1111/1462-2920.12601] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Hugo Mélida
- Division of Glycoscience; School of Biotechnology; Royal Institute of Technology (KTH); AlbaNova University Centre; Stockholm Sweden
| | - Divya Sain
- Department of Plant Pathology and Microbiology; University of California; Riverside CA 92507 USA
| | - Jason E. Stajich
- Department of Plant Pathology and Microbiology; University of California; Riverside CA 92507 USA
| | - Vincent Bulone
- Division of Glycoscience; School of Biotechnology; Royal Institute of Technology (KTH); AlbaNova University Centre; Stockholm Sweden
| |
Collapse
|
17
|
Dorfmueller HC, Ferenbach AT, Borodkin VS, van Aalten DMF. A structural and biochemical model of processive chitin synthesis. J Biol Chem 2014; 289:23020-23028. [PMID: 24942743 PMCID: PMC4132801 DOI: 10.1074/jbc.m114.563353] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Chitin synthases (CHS) produce chitin, an essential component of the fungal cell wall. The molecular mechanism of processive chitin synthesis is not understood, limiting the discovery of new inhibitors of this enzyme class. We identified the bacterial glycosyltransferase NodC as an appropriate model system to study the general structure and reaction mechanism of CHS. A high throughput screening-compatible novel assay demonstrates that a known inhibitor of fungal CHS also inhibit NodC. A structural model of NodC, on the basis of the recently published BcsA cellulose synthase structure, enabled probing of the catalytic mechanism by mutagenesis, demonstrating the essential roles of the DD and QXXRW catalytic motifs. The NodC membrane topology was mapped, validating the structural model. Together, these approaches give insight into the CHS structure and mechanism and provide a platform for the discovery of inhibitors for this antifungal target.
Collapse
Affiliation(s)
- Helge C Dorfmueller
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
| | - Andrew T Ferenbach
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Vladimir S Borodkin
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom
| | - Daan M F van Aalten
- Division of Molecular Microbiology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom; MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom.
| |
Collapse
|
18
|
Ogawa Y, Kobayashi K, Kimura S, Nishiyama Y, Wada M, Kuga S. X-ray texture analysis indicates downward spinning of chitin microfibrils in tubeworm tube. J Struct Biol 2013; 184:212-6. [DOI: 10.1016/j.jsb.2013.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/13/2013] [Accepted: 10/09/2013] [Indexed: 11/27/2022]
|
19
|
Frischkorn KR, Stojanovski A, Paranjpye R. Vibrio parahaemolyticus type IV pili mediate interactions with diatom-derived chitin and point to an unexplored mechanism of environmental persistence. Environ Microbiol 2013; 15:1416-27. [PMID: 23441888 DOI: 10.1111/1462-2920.12093] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 11/26/2022]
Abstract
Vibrio parahaemolyticus is a naturally occurring bacterium common in coastal waters where it concentrates in shellfish through filter feeding. The bacterium is a human pathogen and the leading cause of seafood-borne gastroenteritis. Presently there is little information regarding mechanisms of environmental persistence of V.parahaemolyticus or an accurate early warning system for outbreak prediction. Vibrios have been shown to adhere to several substrates in the environment, including chitin, one of the most abundant polymers in the ocean. Diatoms are abundant in estuarine waters and some species produce chitin as a component of the silica cell wall or as extracellular fibrils. We examined the role of specific surface structures on the bacterium, the type IV pilins PilA and MshA, in adherence to diatom-derived chitin. Biofilm formation and adherence of V.parahaemolyticus to chitin is mediated by the ability of the bacterium to express functional type IV pili. The amount of adherence to diatom-derived chitin is controlled by increased chitin production that occurs in later stages of diatom growth. The data presented here suggest late-stage diatom blooms may harbour high concentrations of V.parahaemolyticus and could serve as the foundation for a more accurate early warning system for outbreaks of this human pathogen.
Collapse
Affiliation(s)
- Kyle R Frischkorn
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard E, Seattle, WA 98112, USA
| | | | | |
Collapse
|
20
|
Orlean P. Architecture and biosynthesis of the Saccharomyces cerevisiae cell wall. Genetics 2012; 192:775-818. [PMID: 23135325 PMCID: PMC3522159 DOI: 10.1534/genetics.112.144485] [Citation(s) in RCA: 315] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 08/06/2012] [Indexed: 01/02/2023] Open
Abstract
The wall gives a Saccharomyces cerevisiae cell its osmotic integrity; defines cell shape during budding growth, mating, sporulation, and pseudohypha formation; and presents adhesive glycoproteins to other yeast cells. The wall consists of β1,3- and β1,6-glucans, a small amount of chitin, and many different proteins that may bear N- and O-linked glycans and a glycolipid anchor. These components become cross-linked in various ways to form higher-order complexes. Wall composition and degree of cross-linking vary during growth and development and change in response to cell wall stress. This article reviews wall biogenesis in vegetative cells, covering the structure of wall components and how they are cross-linked; the biosynthesis of N- and O-linked glycans, glycosylphosphatidylinositol membrane anchors, β1,3- and β1,6-linked glucans, and chitin; the reactions that cross-link wall components; and the possible functions of enzymatic and nonenzymatic cell wall proteins.
Collapse
Affiliation(s)
- Peter Orlean
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
21
|
Ogawa Y, Kimura S, Wada M. Electron diffraction and high-resolution imaging on highly-crystalline β-chitin microfibril. J Struct Biol 2011; 176:83-90. [PMID: 21771660 DOI: 10.1016/j.jsb.2011.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/05/2011] [Accepted: 07/05/2011] [Indexed: 11/16/2022]
Abstract
The ultrastructure of β-chitin microfibrils from a centric diatom, Thalassiosira, and a tubeworm, Lamellibrachia, was studied using electron diffraction and high-resolution electron microscopy. Electron microdiffraction diagrams corresponding to each projection of the β-chitin crystals were obtained, and all the data support the structure model of anhydrous β-chitin crystals proposed by X-ray diffraction experiments. From high-resolution electron microscopy on ultrathin sections, the cross-sectional shapes of the microfibrils from Thalassiosira and Lamellibrachia were observed as a rectangular and parallelogram, respectively. The lattice fringes corresponding to the (010) plane of anhydrous β-chitin crystals were clearly observed in both cross-sections. Based on these observations, we have constructed a molecular packing model for β-chitin microfibrils.
Collapse
Affiliation(s)
- Yu Ogawa
- Department of Biomaterials Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
22
|
Nishiyama Y, Noishiki Y, Wada M. X-ray Structure of Anhydrous β-Chitin at 1 Å Resolution. Macromolecules 2011. [DOI: 10.1021/ma102240r] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yoshiharu Nishiyama
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS), BP 53, F-38041Grenoble Cedex 9, France
| | - Yasutomo Noishiki
- Department of Biomaterials Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masahisa Wada
- Department of Biomaterials Science, The University of Tokyo, Tokyo 113-8657, Japan
- College of Life Sciences, Kyung Hee University, Gyeonggi-do 446-701, Korea
| |
Collapse
|
23
|
Carpita NC. Update on mechanisms of plant cell wall biosynthesis: how plants make cellulose and other (1->4)-β-D-glycans. PLANT PHYSIOLOGY 2011; 155:171-84. [PMID: 21051553 PMCID: PMC3075763 DOI: 10.1104/pp.110.163360] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 11/02/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Nicholas C Carpita
- Department of Botany and Plant Pathology, and Bindley Bioscience Center, Purdue University, West Lafayette, Indiana 47907-2054, USA.
| |
Collapse
|
24
|
|
25
|
Caldwell GS, Pagett HE. Marine glycobiology: current status and future perspectives. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2010; 12:241-252. [PMID: 20390314 DOI: 10.1007/s10126-010-9263-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 01/19/2010] [Indexed: 05/29/2023]
Abstract
Glycobiology, which is the study of the structure and function of carbohydrates and carbohydrate containing molecules, is fundamental to all biological systems.Progress in glycobiology has shed light on a range of complex biological processes associated with, for example,disease and immunology, molecular and cellular communication,and developmental biology. There is an established,if rather modest, tradition of glycobiology research in marine systems that has primarily focused on reproduction,biofouling, and chemical communication. The current status of marine glycobiology research is primarily descriptive with very limited progress on structural elucidation and the subsequent definition of precise functional roles beyond a small number of classical examples, e.g., induction of the acrosome reaction in echinoderms. However, with recent advances in analytical instrumentation, there is now the capacity to begin to characterize marine glycoconjugates,many of which will have potential biomedical and biotechnological applications. The analytical approach to glycoscience has developed to such an extent that it has acquired its own "-omics" identity. Glycomics is the quest to decipher the complex information conveyed by carbohydrate molecules--the carbohydrate code or glycocode. Due to the paucity of structural information available, this article will highlight the fundamental importance of glycobiology for many biological processes in marine organisms and will draw upon the best defined systems. These systems therefore may prove genuine candidates for full carbohydrate characterization.
Collapse
Affiliation(s)
- Gary S Caldwell
- School of Marine Science and Technology, Newcastle University, Ridley Building, Claremont Road, Newcastle upon Tyne NE17RU, England, UK.
| | | |
Collapse
|
26
|
Guerriero G, Fugelstad J, Bulone V. What do we really know about cellulose biosynthesis in higher plants? JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:161-75. [PMID: 20377678 DOI: 10.1111/j.1744-7909.2010.00935.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cellulose biosynthesis is one of the most important biochemical processes in plant biology. Despite the considerable progress made during the last decade, numerous fundamental questions related to this key process in plant development are outstanding. Numerous models have been proposed through the years to explain the detailed molecular events of cellulose biosynthesis. Almost all models integrate solid experimental data with hypotheses on several of the steps involved in the process. Speculative models are most useful to stimulate further research investigations and bring new exciting ideas to the field. However, it is important to keep their hypothetical nature in mind and be aware of the risk that some undemonstrated hypotheses may progressively become admitted. In this review, we discuss the different steps required for cellulose formation and crystallization, and highlight the most important specific aspects that are supported by solid experimental data.
Collapse
Affiliation(s)
- Gea Guerriero
- Division of Glycoscience, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | |
Collapse
|
27
|
Structural Characteristics that Influence on the Insecticidal Activity of 2-(n-Octyl)pseudothiourea Analogues against the Diamondback Moth (Plutella xylostella, L.). B KOREAN CHEM SOC 2009. [DOI: 10.5012/bkcs.2009.30.11.2749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Spiral and target patterns in bivalve nacre manifest a natural excitable medium from layer growth of a biological liquid crystal. Proc Natl Acad Sci U S A 2009; 106:10499-504. [PMID: 19528636 DOI: 10.1073/pnas.0900867106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nacre is an exquisitely structured biocomposite of the calcium carbonate mineral aragonite with small amounts of proteins and the polysaccharide chitin. For many years, it has been the subject of research, not just because of its beauty, but also to discover how nature can produce such a superior product with excellent mechanical properties from such relatively weak raw materials. Four decades ago, Wada [Wada K (1966) Spiral growth of nacre. Nature 211:1427] proposed that the spiral patterns in nacre could be explained by using the theory Frank [Frank F (1949) The influence of dislocations on crystal growth. Discuss Faraday Soc 5:48-54] had put forward of the growth of crystals by means of screw dislocations. Frank's mechanism of crystal growth has been amply confirmed by experimental observations of screw dislocations in crystals, but it is a growth mechanism for a single crystal, with growth fronts of molecules. However, the growth fronts composed of many tablets of crystalline aragonite visible in micrographs of nacre are not a molecular-scale but a mesoscale phenomenon, so it has not been evident how the Frank mechanism might be of relevance. Here, we demonstrate that nacre growth is organized around a liquid-crystal core of chitin crystallites, a skeleton that the other components of nacre subsequently flesh out in a process of hierarchical self-assembly. We establish that spiral and target patterns can arise in a liquid crystal formed layer by layer through the Burton-Cabrera-Frank [Burton W, Cabrera N, Frank F (1951) The growth of crystals and the equilibrium structure of their surfaces. Philos Trans R Soc London Ser A 243:299-358] dynamics, and furthermore that this layer growth mechanism is an instance of an important class of physical systems termed excitable media. Artificial liquid crystals grown in this way may have many technological applications.
Collapse
|
29
|
Abstract
We show how nacre and pearl construction in bivalve and gastropod molluscs can be understood in terms of successive processes of controlled self-assembly from the molecular- to the macro-scale. This dynamics involves the physics of the formation of both solid and liquid crystals and of membranes and fluids to produce a nanostructured hierarchically constructed biological composite of polysaccharides, proteins and mineral, whose mechanical properties far surpass those of its component parts.
Collapse
Affiliation(s)
- Julyan H.E Cartwright
- Laboratorio de Estudios CristalográficosCSIC, P.T. Ciencias de la Salud, 18100 Armilla, Granada, Spain
- Authors for correspondence () ()
| | - Antonio G Checa
- Departamento de Estratigrafía y Paleontología, Facultad de Ciencias, Universidad de Granada18071 Granada, Spain
- Authors for correspondence () ()
| |
Collapse
|
30
|
Yui T, Taki N, Sugiyama J, Hayashi S. Exhaustive crystal structure search and crystal modeling of β-chitin. Int J Biol Macromol 2007; 40:336-44. [PMID: 17010423 DOI: 10.1016/j.ijbiomac.2006.08.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2006] [Revised: 08/06/2006] [Accepted: 08/30/2006] [Indexed: 10/24/2022]
Abstract
An exhaustive search of the crystal structure of beta-chitin was carried out by simultaneously optimizing all the structural parameters based on published X-ray diffraction data and stereochemical criteria. The most probable structure was characterized by a parallel-up chain polarity, a gg orientation of hydroxymethyl groups and an intermolecular hydrogen bond along the a-axis, which essentially reproduced the original structure proposed by Gardner and Blackwell. The proposed crystal structure was subsequently subjected to crystal modeling using the AMBER force field. The probable orientation of hydroxyl groups and their motional behaviors is proposed based on calculations for the crystal models identified. Solvated crystal models exhibited a slightly deformed structure with the formation of appreciable numbers of hydrogen bonds along the b-axis.
Collapse
Affiliation(s)
- Toshifumi Yui
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Nsihi 1-1, Gakuen-kibanadai, Miyazaki, Miyazaki 889-2192, Japan.
| | | | | | | |
Collapse
|
31
|
Abstract
The recently developed technique of reductive amination, followed by gold labeling, was applied to visualize the reducing ends of cellulose microcrystals from cellulose I, cellulose II, and cellulose III(I). In these crystals, which were also characterized by electron diffraction, the labeling proved that the chains were organized in a parallel fashion in cellulose I from ramie and Valonia and also in cellulose III(I) from Valonia. In microcrystals of cellulose II from mercerized ramie, the labeling method showed that the chains were packed into an antiparallel mode. These results are discussed in terms of the fine structure of cellulose I where neighboring microfibrils of opposite polarity are visualized. The mercerization process whereby cellulose I is converted into cellulose II is therefore best described in terms of an intermingling of the cellulose chains from neighboring microfibrils of opposite polarity. As opposed to the case of mercerization the conversion of cellulose I into cellulose III(I) does not require the participation of neighboring microfibrils since the crystalline domains are converted individually.
Collapse
Affiliation(s)
- Nam-Hun Kim
- College of Forest Sciences, Kangwon National University, Chunchon 200-701, Korea
| | | | | | | |
Collapse
|
32
|
Hult EL, Katouno F, Uchiyama T, Watanabe T, Sugiyama J. Molecular directionality in crystalline beta-chitin: hydrolysis by chitinases A and B from Serratia marcescens 2170. Biochem J 2005; 388:851-6. [PMID: 15717865 PMCID: PMC1183465 DOI: 10.1042/bj20050090] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Beta-chitin microfibrils were treated with ChiA and ChiB (chitinases A and B respectively) from Serratia marcescens 2170. The beta-chitin microfibrils were shortened, and the tips appeared narrowed and sharpened at both ends, after either consecutive or simultaneous degradation by ChiA and ChiB. Increased production of reducing sugars by simultaneous degradation (by ChiA and ChiB) of beta-chitin, but not of glycol chitin, suggests synergistic interactions between the two enzymes. A combined analysis using the tilt microdiffraction method to determine the crystallographic axes, together with the biotin-streptavidin-gold-labelling method specific to the reducing ends, was used to investigate the polarity of the degraded beta-chitin microcrystals. The digestion of the beta-chitin fibrils by ChiA occurred from the reducing end to the nonreducing end, whereas digestion by ChiB occurred from the non-reducing end to the reducing end. The results are in agreement with the previously determined three-dimensional structures of these enzymes.
Collapse
Affiliation(s)
- Eva-Lena Hult
- *Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011, Japan
| | - Fuminori Katouno
- †Faculty of Agriculture, Niigata University, Ikarashi, Niigata 950–2181, Japan
| | - Taku Uchiyama
- †Faculty of Agriculture, Niigata University, Ikarashi, Niigata 950–2181, Japan
| | - Takeshi Watanabe
- †Faculty of Agriculture, Niigata University, Ikarashi, Niigata 950–2181, Japan
| | - Junji Sugiyama
- *Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611–0011, Japan
- To whom correspondence should be addressed (email )
| |
Collapse
|
33
|
Merzendorfer H. Insect chitin synthases: a review. J Comp Physiol B 2005; 176:1-15. [PMID: 16075270 DOI: 10.1007/s00360-005-0005-3] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 05/02/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022]
Abstract
Chitin is the most widespread amino polysaccharide in nature. The annual global amount of chitin is believed to be only one order of magnitude less than that of cellulose. It is a linear polymer composed of N-acetylglucosamines that are joined in a reaction catalyzed by the membrane-integral enzyme chitin synthase, a member of the family 2 of glycosyltransferases. The polymerization requires UDP-N-acetylglucosamines as a substrate and divalent cations as co-factors. Chitin formation can be divided into three distinct steps. In the first step, the enzymes' catalytic domain facing the cytoplasmic site forms the polymer. The second step involves the translocation of the nascent polymer across the membrane and its release into the extracellular space. The third step completes the process as single polymers spontaneously assemble to form crystalline microfibrils. In subsequent reactions the microfibrils combine with other sugars, proteins, glycoproteins and proteoglycans to form fungal septa and cell walls as well as arthropod cuticles and peritrophic matrices, notably in crustaceans and insects. In spite of the good effort by a hardy few, our present knowledge of the structure, topology and catalytic mechanism of chitin synthases is rather limited. Gaps remain in understanding chitin synthase biosynthesis, enzyme trafficking, regulation of enzyme activity, translocation of chitin chains across cell membranes, fibrillogenesis and the interaction of microfibrils with other components of the extracellular matrix. However, cumulating genomic data on chitin synthase genes and new experimental approaches allow increasingly clearer views of chitin synthase function and its regulation, and consequently chitin biosynthesis. In the present review, I will summarize recent advances in elucidating the structure, regulation and function of insect chitin synthases as they relate to what is known about fungal chitin synthases and other glycosyltransferases.
Collapse
Affiliation(s)
- Hans Merzendorfer
- Department of Biology/Chemistry, Division of Animal Physiology, University of Osnabrück, Germany.
| |
Collapse
|
34
|
Bodevin-Authelet S, Kusche-Gullberg M, Pummill PE, DeAngelis PL, Lindahl U. Biosynthesis of Hyaluronan. J Biol Chem 2005; 280:8813-8. [PMID: 15623518 DOI: 10.1074/jbc.m412803200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyaluronan (HA), a functionally essential glycosaminoglycan in vertebrate tissues and a putative virulence factor in certain pathogenic bacteria, is an extended linear polymer composed of alternating units of glucuronic acid (GlcUA) and N-acetylglucosamine (GlcNAc). Uncertainty regarding the mechanism of HA biosynthesis has included the directionality of chain elongation, i.e. whether addition of monosaccharide units occurs at the reducing or non-reducing terminus of nascent chains. We have investigated this problem using yeast-derived recombinant HA synthases from Xenopus laevis (xlHAS1) and from Streptococcus pyogenes (spHAS). The enzymes were incubated with UDP-[3H]GlcUA and UDP-[14C]GlcNAc, under experimental conditions designed to yield HA chains with differentially labeled reducing-terminal and non-reducing terminal domains. Digestion of the products with a mixture of beta-glucuronidase and beta-N-acetylglucosaminidase exoenzymes resulted in truncation of the HA chain strictly from the non-reducing end and release of labeled monosaccharides. The change in 3H/14C ratio of the monosaccharide fraction, during the course of exoglycosidase digestion, was interpreted to indicate whether sugar units had been added at the reducing or non-reducing end. The results demonstrate that the vertebrate xlHAS1 and the bacterial spHAS extend HA in opposite directions. Chain elongation catalyzed by xlHAS1 occurs at the non-reducing end of the HA chain, whereas elongation catalyzed by spHAS occurs at the reducing end. The spHAS is the first glycosyltransferase that has been unanimously demonstrated to function at the reducing end of a growing glycosaminoglycan chain.
Collapse
Affiliation(s)
- Sabrina Bodevin-Authelet
- Department of Medical Biochemistry and Microbiology, University of Uppsala, The Biomedical Center, SE-75123 Uppsala, Sweden
| | | | | | | | | |
Collapse
|