1
|
Menendez-Gil P, Caballero CJ, Catalan-Moreno A, Irurzun N, Barrio-Hernandez I, Caldelari I, Toledo-Arana A. Differential evolution in 3'UTRs leads to specific gene expression in Staphylococcus. Nucleic Acids Res 2020; 48:2544-2563. [PMID: 32016395 PMCID: PMC7049690 DOI: 10.1093/nar/gkaa047] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 12/05/2019] [Accepted: 01/16/2020] [Indexed: 12/16/2022] Open
Abstract
The evolution of gene expression regulation has contributed to species differentiation. The 3' untranslated regions (3'UTRs) of mRNAs include regulatory elements that modulate gene expression; however, our knowledge of their implications in the divergence of bacterial species is currently limited. In this study, we performed genome-wide comparative analyses of mRNAs encoding orthologous proteins from the genus Staphylococcus and found that mRNA conservation was lost mostly downstream of the coding sequence (CDS), indicating the presence of high sequence diversity in the 3'UTRs of orthologous genes. Transcriptomic mapping of different staphylococcal species confirmed that 3'UTRs were also variable in length. We constructed chimeric mRNAs carrying the 3'UTR of orthologous genes and demonstrated that 3'UTR sequence variations affect protein production. This suggested that species-specific functional 3'UTRs might be specifically selected during evolution. 3'UTR variations may occur through different processes, including gene rearrangements, local nucleotide changes, and the transposition of insertion sequences. By extending the conservation analyses to specific 3'UTRs, as well as the entire set of Escherichia coli and Bacillus subtilis mRNAs, we showed that 3'UTR variability is widespread in bacteria. In summary, our work unveils an evolutionary bias within 3'UTRs that results in species-specific non-coding sequences that may contribute to bacterial diversity.
Collapse
Affiliation(s)
- Pilar Menendez-Gil
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Carlos J Caballero
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Arancha Catalan-Moreno
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Naiara Irurzun
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| | - Inigo Barrio-Hernandez
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Isabelle Caldelari
- Université de Strasbourg, CNRS, Architecture et Réactivité de l’ARN, UPR9002, F-67000-Strasbourg, France
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología (IdAB), CSIC-UPNA-Gobierno de Navarra, 31192-Mutilva, Navarra, Spain
| |
Collapse
|
2
|
Elbeyioglu F, Roberts SB, Spencer-Smith R, Pulijala M, Zelewska MA, Nebel JC, Snyder LAS. Inversion of Correia repeat enclosed elements in Neisseria gonorrhoeae. Microbiology (Reading) 2017; 163:31-36. [DOI: 10.1099/mic.0.000394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Firat Elbeyioglu
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Sabrina B. Roberts
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Russell Spencer-Smith
- Present address: University of Illinois at Chicago, Chicago, IL, USA
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Madhuri Pulijala
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Marta A. Zelewska
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Jean-Christophe Nebel
- School of Computer Science and Mathematics, Kingston University, Kingston upon Thames KT1 2EE, UK
| | - Lori A. S. Snyder
- School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
3
|
Tourasse NJ, Shtaida N, Khozin-Goldberg I, Boussiba S, Vallon O. The complete mitochondrial genome sequence of the green microalga Lobosphaera (Parietochloris) incisa reveals a new type of palindromic repetitive repeat. BMC Genomics 2015; 16:580. [PMID: 26238519 PMCID: PMC4524435 DOI: 10.1186/s12864-015-1792-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lobosphaera incisa, formerly known as Myrmecia incisa and then Parietochloris incisa, is an oleaginous unicellular green alga belonging to the class Trebouxiophyceae (Chlorophyta). It is the richest known plant source of arachidonic acid, an ω-6 poly-unsaturated fatty acid valued by the pharmaceutical and baby-food industries. It is therefore an organism of high biotechnological interest, and we recently reported the sequence of its chloroplast genome. Results We now report the complete sequence of the mitochondrial genome of L. incisa from high-throughput Illumina short-read sequencing. The circular chromosome of 69,997 bp is predicted to encode a total of 64 genes, some harboring specific self-splicing group I and group II introns. Overall, the gene content is highly similar to that of the mitochondrial genomes of other Trebouxiophyceae, with 34 protein-coding, 3 rRNA, and 27 tRNA genes. Genes are distributed in two clusters located on different DNA strands, a bipartite arrangement that suggests expression from two divergent promoters yielding polycistronic primary transcripts. The L. incisa mitochondrial genome contains families of intergenic dispersed DNA repeat sequences that are not shared with other known mitochondrial genomes of Trebouxiophyceae. The most peculiar feature of the genome is a repetitive palindromic repeat, the LIMP (L. Incisa Mitochondrial Palindrome), found 19 times in the genome. It is formed by repetitions of an AACCA pentanucleotide, followed by an invariant 7-nt loop and a complementary repeat of the TGGTT motif. Analysis of the genome sequencing reads indicates that the LIMP can be a substrate for large-scale genomic rearrangements. We speculate that LIMPs can act as origins of replication. Deep sequencing of the L. incisa transcriptome also suggests that the LIMPs with long stems are sites of transcript processing. The genome also contains five copies of a related palindromic repeat, the HyLIMP, with a 10-nt motif related to that of the LIMP. Conclusions The mitochondrial genome of L. incisa encodes a unique type of repetitive palindromic repeat sequence, the LIMP, which can mediate genome rearrangements and play a role in mitochondrial gene expression. Experimental studies are needed to confirm and further characterize the functional role(s) of the LIMP.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 - Université Pierre et Marie Curie, Paris, France. .,Institut de Biologie Physico-Chimique, FRC CNRS 550, Université Pierre et Marie Curie, Paris, France. .,ARNA Laboratory, INSERM UMR 869, Université Bordeaux 2, Bordeaux, France.
| | - Nastassia Shtaida
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 - Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
4
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
5
|
Di Nocera PP, De Gregorio E, Rocco F. GTAG- and CGTC-tagged palindromic DNA repeats in prokaryotes. BMC Genomics 2013; 14:522. [PMID: 23902135 PMCID: PMC3733652 DOI: 10.1186/1471-2164-14-522] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND REPs (Repetitive Extragenic Palindromes) are small (20-40 bp) palindromic repeats found in high copies in some prokaryotic genomes, hypothesized to play a role in DNA supercoiling, transcription termination, mRNA stabilization. RESULTS We have monitored a large number of REP elements in prokaryotic genomes, and found that most can be sorted into two large DNA super-families, as they feature at one end unpaired motifs fitting either the GTAG or the CGTC consensus. Tagged REPs have been identified in >80 species in 8 different phyla. GTAG and CGTC repeats reside predominantly in microorganisms of the gamma and alpha division of Proteobacteria, respectively. However, the identification of members of both super- families in deeper branching phyla such Cyanobacteria and Planctomycetes supports the notion that REPs are old components of the bacterial chromosome. On the basis of sequence content and overall structure, GTAG and CGTC repeats have been assigned to 24 and 4 families, respectively. Of these, some are species-specific, others reside in multiple species, and several organisms contain different REP types. In many families, most units are close to each other in opposite orientation, and may potentially fold into larger secondary structures. In different REP-rich genomes the repeats are predominantly located between unidirectionally and convergently transcribed ORFs. REPs are predominantly located downstream from coding regions, and many are plausibly transcribed and function as RNA elements. REPs located inside genes have been identified in several species. Many lie within replication and global genome repair genes. It has been hypothesized that GTAG REPs are miniature transposons mobilized by specific transposases known as RAYTs (REP associated tyrosine transposases). RAYT genes are flanked either by GTAG repeats or by long terminal inverted repeats (TIRs) unrelated to GTAG repeats. Moderately abundant families of TIRs have been identified in multiple species. CONCLUSIONS CGTC REPs apparently lack a dedicated transposase. Future work will clarify whether these elements may be mobilized by RAYTs or other transposases, and assess if de-novo formation of either GTAG or CGTC repeats type still occurs.
Collapse
Affiliation(s)
- Pier Paolo Di Nocera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Napoli, Via S, Pansini 5 80131, Naples, Italy.
| | | | | |
Collapse
|
6
|
Messing SAJ, Ton-Hoang B, Hickman AB, McCubbin AJ, Peaslee GF, Ghirlando R, Chandler M, Dyda F. The processing of repetitive extragenic palindromes: the structure of a repetitive extragenic palindrome bound to its associated nuclease. Nucleic Acids Res 2012; 40:9964-79. [PMID: 22885300 PMCID: PMC3479197 DOI: 10.1093/nar/gks741] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extragenic sequences in genomes, such as microRNA and CRISPR, are vital players in the cell. Repetitive extragenic palindromic sequences (REPs) are a class of extragenic sequences, which form nucleotide stem-loop structures. REPs are found in many bacterial species at a high copy number and are important in regulation of certain bacterial functions, such as Integration Host Factor recruitment and mRNA turnover. Although a new clade of putative transposases (RAYTs or TnpAREP) is often associated with an increase in these repeats, it is not clear how these proteins might have directed amplification of REPs. We report here the structure to 2.6 Å of TnpAREP from Escherichia coli MG1655 bound to a REP. Sequence analysis showed that TnpAREP is highly related to the IS200/IS605 family, but in contrast to IS200/IS605 transposases, TnpAREP is a monomer, is auto-inhibited and is active only in manganese. These features suggest that, relative to IS200/IS605 transposases, it has evolved a different mechanism for the movement of discrete segments of DNA and has been severely down-regulated, perhaps to prevent REPs from sweeping through genomes.
Collapse
Affiliation(s)
- Simon A J Messing
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lin YH, Ryan CS, Davies JK. Neisserial Correia repeat-enclosed elements do not influence the transcription of pil genes in Neisseria gonorrhoeae and Neisseria meningitidis. J Bacteriol 2011; 193:5728-36. [PMID: 21856854 PMCID: PMC3187199 DOI: 10.1128/jb.05526-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022] Open
Abstract
Two human-specific neisserial pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, require the expression of type IV pili (tfp) for initial attachment to the host during infection. However, the mechanisms controlling the assembly and functionality of tfp are poorly understood. It is known that the gonococcal pilE gene, encoding the major subunit, is positively regulated by IHF, a multifunctional DNA binding protein. A neisserial specific repetitive DNA sequence, termed the Correia repeat-enclosed element (CREE) is situated upstream of three pil loci: pilHIJKX (pilH-X), pilGD, and pilF. CREEs have been shown to contain strong promoters, and some CREE variants contain a functional IHF binding site. CREEs might therefore be involved in the regulation of tfp biogenesis in pathogenic Neisseria. Site-directed and deletion mutagenesis on promoter::cat reporter constructs demonstrated that transcription of pilH-X and pilGD is from a σ(70) promoter and is independent of the CREE. The insertion of a CREE in the pilF promoter region in N. meningitidis generated a functional σ(70) promoter. However, there is also a functional promoter at this position in N. gonorrhoeae, where there is no CREE. These results suggest CREE insertion in these three pil loci does not influence transcription and that IHF does not coordinately regulate tfp biogenesis.
Collapse
Affiliation(s)
- Ya-Hsun Lin
- Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia.
| | | | | |
Collapse
|
8
|
Siddique A, Buisine N, Chalmers R. The transposon-like Correia elements encode numerous strong promoters and provide a potential new mechanism for phase variation in the meningococcus. PLoS Genet 2011; 7:e1001277. [PMID: 21283790 PMCID: PMC3024310 DOI: 10.1371/journal.pgen.1001277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/14/2010] [Indexed: 01/05/2023] Open
Abstract
Neisseria meningitidis is the primary causative agent of bacterial meningitis. The genome is rich in repetitive DNA and almost 2% is occupied by a diminutive transposon called the Correia element. Here we report a bioinformatic analysis defining eight subtypes of the element with four distinct types of ends. Transcriptional analysis, using PCR and a lacZ reporter system, revealed that two ends in particular encode strong promoters. The activity of the strongest promoter is dictated by a recurrent polymorphism (Y128) at the right end of the element. We highlight examples of elements that appear to drive transcription of adjacent genes and others that may express small non-coding RNAs. Pair-wise comparisons between three meningococcal genomes revealed that no more than two-thirds of Correia elements maintain their subtype at any particular locus. This is due to recombinational class switching between elements in a single strain. Upon switching subtype, a new allele is available to spread through the population by natural transformation. This process may represent a hitherto unrecognized mechanism for phase variation in the meningococcus. We conclude that the strain-to-strain variability of the Correia elements, and the large number of strong promoters encoded by them, allows for potentially widespread effects within the population as a whole. By defining the strength of the promoters encoded by the eight subtypes of Correia ends, we provide a resource that allows the transcriptional effects of a particular subtype at a given locus to be predicted.
Collapse
MESH Headings
- Base Sequence
- Computational Biology
- DNA Transposable Elements/genetics
- Evolution, Molecular
- Gene Expression Regulation, Bacterial
- Genome, Bacterial
- Humans
- Meningitis, Meningococcal/microbiology
- Molecular Sequence Data
- Neisseria gonorrhoeae/genetics
- Neisseria meningitidis/genetics
- Polymorphism, Single Nucleotide
- Promoter Regions, Genetic
- RNA, Small Untranslated/genetics
- Recombination, Genetic
- Repetitive Sequences, Nucleic Acid/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Azeem Siddique
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| | - Nicolas Buisine
- Evolution des Régulation Endocriniennes, Museum National d'Histoire Naturelle, Paris, France
| | - Ronald Chalmers
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
9
|
Rocco F, De Gregorio E, Di Nocera PP. A giant family of short palindromic sequences in Stenotrophomonas maltophilia. FEMS Microbiol Lett 2010; 308:185-92. [PMID: 20528935 DOI: 10.1111/j.1574-6968.2010.02010.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The genome of Stenotrophomonas maltophilia is peppered with palindromic elements called SMAG (Stenotrophomonas maltophilia GTAG) because they carry at one terminus the tetranucleotide GTAG. The repeats are species-specific variants of the superfamily of repetitive extragenic palindromes (REPs), DNA sequences spread in the intergenic space in many prokaryotic genomes. The genomic organization and the functional features of SMAG elements are described herein. A total of 1650 SMAG elements were identified in the genome of the S. maltophilia K279a strain. The elements are 22-25 bp in size, and can be sorted into five distinct major subfamilies because they have different stem and loop sequences. One fifth of the SMAG family is comprised of single units, 2/5 of elements located at a close distance from each other and 2/5 of elements grouped in tandem arrays of variable lengths. Altogether, SMAGs and intermingled DNA occupy 13% of the intergenic space, and make up 1.4% of the chromosome. Hundreds of genes are immediately flanked by SMAGs, and the level of expression of many may be influenced by the folding of the repeats in the mRNA. Expression analyses suggested that SMAGs function as RNA control sequences, either stabilizing upstream transcripts or favoring their degradation.
Collapse
Affiliation(s)
- Francesco Rocco
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università FEDERICO II, Napoli, Italy
| | | | | |
Collapse
|
10
|
The genome sequence of Psychrobacter arcticus 273-4, a psychroactive Siberian permafrost bacterium, reveals mechanisms for adaptation to low-temperature growth. Appl Environ Microbiol 2010; 76:2304-12. [PMID: 20154119 DOI: 10.1128/aem.02101-09] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Psychrobacter arcticus strain 273-4, which grows at temperatures as low as -10 degrees C, is the first cold-adapted bacterium from a terrestrial environment whose genome was sequenced. Analysis of the 2.65-Mb genome suggested that some of the strategies employed by P. arcticus 273-4 for survival under cold and stress conditions are changes in membrane composition, synthesis of cold shock proteins, and the use of acetate as an energy source. Comparative genome analysis indicated that in a significant portion of the P. arcticus proteome there is reduced use of the acidic amino acids and proline and arginine, which is consistent with increased protein flexibility at low temperatures. Differential amino acid usage occurred in all gene categories, but it was more common in gene categories essential for cell growth and reproduction, suggesting that P. arcticus evolved to grow at low temperatures. Amino acid adaptations and the gene content likely evolved in response to the long-term freezing temperatures (-10 degrees C to -12 degrees C) of the Kolyma (Siberia) permafrost soil from which this strain was isolated. Intracellular water likely does not freeze at these in situ temperatures, which allows P. arcticus to live at subzero temperatures.
Collapse
|
11
|
Regulatory role of the MisR/S two-component system in hemoglobin utilization in Neisseria meningitidis. Infect Immun 2009; 78:1109-22. [PMID: 20008531 DOI: 10.1128/iai.00363-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Outer membrane iron receptors are some of the major surface entities that are critical for meningococcal pathogenesis. The gene encoding the meningococcal hemoglobin receptor, HmbR, is both independently transcribed and transcriptionally linked to the upstream gene hemO, which encodes a heme oxygenase. The MisR/S two-component system was previously determined to regulate hmbR transcription, and its hemO and hmbR regulatory mechanisms were characterized further here. The expression of hemO and hmbR was downregulated in misR/S mutants under both iron-replete and iron-restricted conditions, and the downregulation could be reversed by complementation. No significant changes in expression of other iron receptors were detected, suggesting that the MisR/S system specifically regulates hmbR. When hemoglobin was the sole iron source, growth defects were detected in the mutants. Primer extension analysis identified a promoter upstream of the hemO-associated Correia element (CE) and another promoter at the proximal end of CE, and processed transcripts previously identified for other cotranscribed CEs were also detected, suggesting that there may be posttranscriptional regulation. MisR directly interacts with sequences upstream of the CE and upstream of the hmbR Fur binding site and thus independently regulates hemO and hmbR. Analysis of transcriptional reporters of hemO and hmbR further demonstrated the positive role of the MisR/S system and showed that the transcription of hmbR initiated from hemO was significantly reduced. A comparison of the effects of the misS mutation under iron-replete and iron-depleted conditions suggested that activation by the MisR/S system and iron-mediated repression by Fur act independently. Thus, the expression of hemO and hmbR is coordinately controlled by multiple independent regulatory mechanisms, including the MisR/S two-component system.
Collapse
|
12
|
Treangen TJ, Abraham AL, Touchon M, Rocha EPC. Genesis, effects and fates of repeats in prokaryotic genomes. FEMS Microbiol Rev 2009; 33:539-71. [PMID: 19396957 DOI: 10.1111/j.1574-6976.2009.00169.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DNA repeats are causes and consequences of genome plasticity. Repeats are created by intrachromosomal recombination or horizontal transfer. They are targeted by recombination processes leading to amplifications, deletions and rearrangements of genetic material. The identification and analysis of repeats in nearly 700 genomes of bacteria and archaea is facilitated by the existence of sequence data and adequate bioinformatic tools. These have revealed the immense diversity of repeats in genomes, from those created by selfish elements to the ones used for protection against selfish elements, from those arising from transient gene amplifications to the ones leading to stable duplications. Experimental works have shown that some repeats do not carry any adaptive value, while others allow functional diversification and increased expression. All repeats carry some potential to disorganize and destabilize genomes. Because recombination and selection for repeats vary between genomes, the number and types of repeats are also quite diverse and in line with ecological variables, such as host-dependent associations or population sizes, and with genetic variables, such as the recombination machinery. From an evolutionary point of view, repeats represent both opportunities and problems. We describe how repeats are created and how they can be found in genomes. We then focus on the functional and genomic consequences of repeats that dictate their fate.
Collapse
|
13
|
De Gregorio E, Bertocco T, Silvestro G, Carlomagno MS, Zarrilli R, Di Nocera PP. Structural organization of a complex family of palindromic repeats in Enterococci. FEMS Microbiol Lett 2009; 292:7-12. [PMID: 19222577 DOI: 10.1111/j.1574-6968.2008.01461.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Enterococcus faecalis/faecium repeats (EFARs) are miniature insertion sequences spread in the genome of Enterococcus faecalis and Enterococcus faecium. Unit-length repeats measure 165-170 bp and contain two modules (B and T) capable of folding independently into stem-loop sequences, connected by a short, unstructured module J. The E. faecalis elements feature only one type of B, J and T modules. In contrast, the E. faecium elements result from the assembly of different types of B, J and T modules, and may vary in length because they carry multiple B modules. Most EFARs are located close (0-20 bp) to ORF stop codons, and are thus cotranscribed with upstream flanking genes. In both E. faecalis and E. faecium cells, EFAR transcripts accumulate in a strand-dependent fashion. Data suggest that T modules function as bidirectional transcriptional terminators, which provide a 3'-end to gene transcripts spanning B modules, while blocking antisense transcripts coming in from the opposite direction.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Comparative analysis of two Neisseria gonorrhoeae genome sequences reveals evidence of mobilization of Correia Repeat Enclosed Elements and their role in regulation. BMC Genomics 2009; 10:70. [PMID: 19203353 PMCID: PMC2649163 DOI: 10.1186/1471-2164-10-70] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/09/2009] [Indexed: 11/22/2022] Open
Abstract
Background The Correia Repeat Enclosed Element (CREE) of the Neisseria spp., with its inverted repeat and conserved core structure, can generate a promoter sequence at either or both ends, can bind IHF, and can bind RNase III and either be cleaved by it or protected by it. As such, the presence of this element can directly control the expression of adjacent genes. Previous work has shown differences in regulation of gene expression between neisserial strains and species due to the presence of a CREE. These interruptions perhaps remove the expression of CREE-associated genes from ancestral neisserial regulatory networks. Results Analysis of the chromosomal locations of the CREE in Neisseria gonorrhoeae strain FA1090 and N. gonorrhoeae strain NCCP11945 has revealed that most of the over 120 copies of the element are conserved in location between these genome sequences. However, there are some notable exceptions, including differences in the presence and sequence of CREE 5' of copies of the opacity protein gene opa, differences in the potential to bind IHF, and differences in the potential to be cleaved by RNase III. Conclusion The presence of CREE insertions in one strain relative to the other, CREE within a prophage region, and CREE disrupting coding sequences, provide strong evidence of mobility of this element in N. gonorrhoeae. Due to the previously demonstrated role of these elements in altering transcriptional control and the findings from comparing the two gonococcal genome sequences, it is suggested that regulatory differences orchestrated by CREE contribute to the differences between strains and also between the closely related yet clinically distinct species N. gonorrhoeae, Neisseria meningitidis, and Neisseria lactamica.
Collapse
|
15
|
Sardiñas G, Yero D, Climent Y, Caballero E, Cobas K, Niebla O. Neisseria meningitidis antigen NMB0088: sequence variability, protein topology and vaccine potential. J Med Microbiol 2009; 58:196-208. [DOI: 10.1099/jmm.0.004820-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The significance of Neisseria meningitidis serogroup B membrane proteins as vaccine candidates is continually growing. Here, we studied different aspects of antigen NMB0088, a protein that is abundant in outer-membrane vesicle preparations and is thought to be a surface protein. The gene encoding protein NMB0088 was sequenced in a panel of 34 different meningococcal strains with clinical and epidemiological relevance. After this analysis, four variants of NMB0088 were identified; the variability was confined to three specific segments, designated VR1, VR2 and VR3. Secondary structure predictions, refined with alignment analysis and homology modelling using FadL of Escherichia coli, revealed that almost all the variable regions were located in extracellular loop domains. In addition, the NMB0088 antigen was expressed in E. coli and a procedure for obtaining purified recombinant NMB0088 is described. The humoral immune response elicited in BALB/c mice was measured by ELISA and Western blotting, while the functional activity of these antibodies was determined in a serum bactericidal assay and an animal protection model. After immunization in mice, the recombinant protein was capable of inducing a protective response when it was administered inserted into liposomes. According to our results, the recombinant NMB0088 protein may represent a novel antigen for a vaccine against meningococcal disease. However, results from the variability study should be considered for designing a cross-protective formulation in future studies.
Collapse
Affiliation(s)
- Gretel Sardiñas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Daniel Yero
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Yanet Climent
- Department of Molecular Biology, Division of Biotechnology, Finlay Institute, Avenue 27, La Lisa, Habana 11600, Cuba
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Evelin Caballero
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Karem Cobas
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| | - Olivia Niebla
- Meningococcal Research Department, Division of Vaccines, Center for Genetic Engineering and Biotechnology, Avenue 31, Cubanacan, Habana 10600, Cuba
| |
Collapse
|
16
|
Cozzuto L, Petrillo M, Silvestro G, Di Nocera PP, Paolella G. Systematic identification of stem-loop containing sequence families in bacterial genomes. BMC Genomics 2008; 9:20. [PMID: 18201379 PMCID: PMC2267715 DOI: 10.1186/1471-2164-9-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 01/17/2008] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Analysis of non-coding sequences in several bacterial genomes brought to the identification of families of repeated sequences, able to fold as secondary structures. These sequences have often been claimed to be transcribed and fulfill a functional role. A previous systematic analysis of a representative set of 40 bacterial genomes produced a large collection of sequences, potentially able to fold as stem-loop structures (SLS). Computational analysis of these sequences was carried out by searching for families of repetitive nucleic acid elements sharing a common secondary structure. RESULTS The initial clustering procedure identified clusters of similar sequences in 29 genomes, corresponding to about 1% of the whole population. Sequences selected in this way have a substantially higher aptitude to fold into a stable secondary structure than the initial set. Removal of redundancies and regrouping of the selected sequences resulted in a final set of 92 families, defined by HMM analysis. 25 of them include all well-known SLS containing repeats and others reported in literature, but not analyzed in detail. The remaining 67 families have not been previously described. Two thirds of the families share a common predicted secondary structure and are located within intergenic regions. CONCLUSION Systematic analysis of 40 bacterial genomes revealed a large number of repeated sequence families, including known and novel ones. Their predicted structure and genomic location suggest that, even in compact bacterial genomes, a relatively large fraction of the genome consists of non-protein-coding sequences, possibly functioning at the RNA level.
Collapse
Affiliation(s)
- Luca Cozzuto
- CEINGE Biotecnologie Avanzate scarl, Via Comunale Margherita 482, 80145 Napoli, Italy.
| | | | | | | | | |
Collapse
|
17
|
Abstract
Small repeat sequences in bacterial genomes, which represent non-autonomous mobile elements, have close similarities to archaeon and eukaryotic miniature inverted repeat transposable elements. These repeat elements are found in both intergenic and intragenic chromosomal regions, and contain an array of diverse motifs. These can include DNA sequences containing an integration host factor binding site and a proposed DNA methyltransferase recognition site, transcribed RNA secondary structural motifs, which are involved in mRNA regulation, and translated open reading frames found fused to other open reading frames. Some bacterial mobile element fusions are in evolutionarily conserved protein and RNA genes. Others might represent or lead to creation of new protein genes. Here we review the remarkable properties of these small bacterial mobile elements in the context of possible beneficial roles resulting from random insertions into the genome.
Collapse
Affiliation(s)
- Nicholas Delihas
- Department of Molecular Genetics and Microbiology, School of Medicine, SUNY, Stony Brook, NY 11794-5222, USA.
| |
Collapse
|
18
|
Venditti R, De Gregorio E, Silvestro G, Bertocco T, Salza MF, Zarrilli R, Di Nocera PP. A novel class of small repetitive DNA sequences inEnterococcus faecalis. FEMS Microbiol Lett 2007; 271:193-201. [PMID: 17425667 DOI: 10.1111/j.1574-6968.2007.00717.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The structural organization of Enterococcus faecalis repeats (EFAR) is described, palindromic DNA sequences identified in the genome of the Enterococcus faecalis V583 strain by in silico analyses. EFAR are a novel type of miniature insertion sequences, which vary in size from 42 to 650 bp. Length heterogeneity results from the variable assembly of 16 different sequence types. Most elements measure 170 bp, and can fold into peculiar L-shaped structures resulting from the folding of two independent stem-loop structures (SLSs). Homologous chromosomal regions lacking or containing EFAR sequences were identified by PCR among 20 E. faecalis clinical isolates of different genotypes. Sequencing of a representative set of 'empty' sites revealed that 24-37 bp-long sequences, unrelated to each other but all able to fold into SLSs, functioned as targets for the integration of EFAR. In the process, most of the SLS had been deleted, but part of the targeted stems had been retained at EFAR termini.
Collapse
Affiliation(s)
- Rossella Venditti
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università Federico II, Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
De Gregorio E, Silvestro G, Venditti R, Carlomagno MS, Di Nocera PP. Structural organization and functional properties of miniature DNA insertion sequences in yersiniae. J Bacteriol 2006; 188:7876-84. [PMID: 16963573 PMCID: PMC1636318 DOI: 10.1128/jb.00942-06] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YPALs (Yersinia palindromic sequences) are miniature DNA insertions scattered along the chromosomes of yersiniae. The spread of these intergenic repeats likely occurred via transposition, as suggested by the presence of target site duplications at their termini and the identification of syntenic chromosomal regions which differ in the presence/absence of YPAL DNA among Yersinia strains. YPALs tend to be inserted closely downstream from the stop codon of flanking genes, and many YPAL targets overlap rho-independent transcriptional terminator-like sequences. This peculiar pattern of insertion supports the hypothesis that most of these repeats are cotranscribed with upstream sequences into mRNAs. YPAL RNAs fold into stable hairpins which may modulate mRNA decay. Accordingly, we found that YPAL-positive transcripts accumulate in Yersinia enterocolitica cells at significantly higher levels than homologous transcripts lacking YPAL sequences in their 3' untranslated region.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | | | | |
Collapse
|
20
|
Petrillo M, Silvestro G, Di Nocera PP, Boccia A, Paolella G. Stem-loop structures in prokaryotic genomes. BMC Genomics 2006; 7:170. [PMID: 16820051 PMCID: PMC1590033 DOI: 10.1186/1471-2164-7-170] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Accepted: 07/04/2006] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Prediction of secondary structures in the expressed sequences of bacterial genomes allows to investigate spontaneous folding of the corresponding RNA. This is particularly relevant in untranslated mRNA regions, where base pairing is less affected by interactions with the translation machinery. Relatively large stem-loops significantly contribute to the formation of more complex secondary structures, often important for the activity of sequence elements controlling gene expression. RESULTS Systematic analysis of the distribution of stem-loop structures (SLSs) in 40 wholly-sequenced bacterial genomes is presented. SLSs were searched as stems measuring at least 12 bp, bordering loops 5 to 100 nt in length. G-U pairing in the stems was allowed. SLSs found in natural genomes are constantly more numerous and stable than those expected to randomly form in sequences of comparable size and composition. The large majority of SLSs fall within protein-coding regions but enrichment of specific, non random, SLS sub-populations of higher stability was observed within the intergenic regions of the chromosomes of several species. In low-GC firmicutes, most higher stability intergenic SLSs resemble canonical rho-independent transcriptional terminators, but very frequently feature at the 5'-end an additional A-rich stretch complementary to the 3' uridines. In all species, a clearly biased SLS distribution was observed within the intergenic space, with most concentrating at the 3'-end side of flanking CDSs. Some intergenic SLS regions are members of novel repeated sequence families. CONCLUSION In depth analysis of SLS features and distribution in 40 different bacterial genomes showed the presence of non random populations of such structures in all species. Many of these structures are plausibly transcribed, and might be involved in the control of transcription termination, or might serve as RNA elements which can enhance either the stability or the turnover of cotranscribed mRNAs. Three previously undescribed families of repeated sequences were found in Yersiniae, Bordetellae and Enterococci.
Collapse
Affiliation(s)
- Mauro Petrillo
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giustina Silvestro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Pier Paolo Di Nocera
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| | - Angelo Boccia
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
| | - Giovanni Paolella
- CEINGE Biotecnologie Avanzate scarl Via Comunale Margherita 482, 80145 Napoli, Italy
- Dipartimento SAVA Università del Molise Via De Sanctis, 86100 Campobasso, Italy
- Dipartimento di Biochimica e Biotecnologie Mediche, Università Federico II Via S. Pansini 5, 80131 Napoli, Italy
| |
Collapse
|
21
|
De Gregorio E, Silvestro G, Petrillo M, Carlomagno MS, Di Nocera PP. Enterobacterial repetitive intergenic consensus sequence repeats in yersiniae: genomic organization and functional properties. J Bacteriol 2005; 187:7945-54. [PMID: 16291667 PMCID: PMC1291288 DOI: 10.1128/jb.187.23.7945-7954.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide analyses carried out in silico revealed that the DNA repeats called enterobacterial repetitive intergenic consensus sequences (ERICs), which are present in several Enterobacteriaceae, are overrepresented in yersiniae. From the alignment of DNA regions from the wholly sequenced Yersinia enterocolitica 8081 and Yersinia pestis CO92 strains, we could establish that ERICs are miniature mobile elements whose insertion leads to duplication of the dinucleotide TA. ERICs feature long terminal inverted repeats (TIRs) and can fold as RNA into hairpin structures. The proximity to coding regions suggests that most Y. enterocolitica ERICs are cotranscribed with flanking genes. Elements which either overlap or are located next to stop codons are preferentially inserted in the same (or B) orientation. In contrast, ERICs located far apart from open reading frames are inserted in the opposite (or A) orientation. The expression of genes cotranscribed with A- and B-oriented ERICs has been monitored in vivo. In mRNAs spanning B-oriented ERICs, upstream gene transcripts accumulated at lower levels than downstream gene transcripts. This difference was abolished by treating cells with chloramphenicol. We hypothesize that folding of B-oriented elements is impeded by translating ribosomes. Consequently, upstream RNA degradation is triggered by the unmasking of a site for the RNase E located in the right-hand TIR of ERIC. A-oriented ERICs may act in contrast as upstream RNA stabilizers or may have other functions. The hypothesis that ERICs act as regulatory RNA elements is supported by analyses carried out in Yersinia strains which either lack ERIC sequences or carry alternatively oriented ERICs at specific loci.
Collapse
Affiliation(s)
- Eliana De Gregorio
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Facoltà di Medicina, Università Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
22
|
Snyder LAS, Davies JK, Ryan CS, Saunders NJ. Comparative overview of the genomic and genetic differences between the pathogenic Neisseria strains and species. Plasmid 2005; 54:191-218. [PMID: 16024078 DOI: 10.1016/j.plasmid.2005.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/18/2005] [Accepted: 04/21/2005] [Indexed: 01/19/2023]
Abstract
The availability of complete genome sequences from multiple pathogenic Neisseria strains and species has enabled a comprehensive survey of the genomic and genetic differences occurring within these species. In this review, we describe the chromosomal rearrangements that have occurred, and the genomic islands and prophages that have been identified in the various genomes. We also describe instances where specific genes are present or absent, other instances where specific genes have been inactivated, and situations where there is variation in the version of a gene that is present. We also provide an overview of mosaic genes present in these genomes, and describe the variation systems that allow the expression of particular genes to be switched ON or OFF. We have also described the presence and location of mobile non-coding elements in the various genomes. Finally, we have reviewed the incidence and properties of various extra-chromosomal elements found within these species. The overall impression is one of genomic variability and instability, resulting in increased functional flexibility within these species.
Collapse
Affiliation(s)
- Lori A S Snyder
- Bacterial Pathogenesis and Functional Genomics Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | |
Collapse
|
23
|
Økstad OA, Tourasse NJ, Stabell FB, Sundfaer CK, Egge-Jacobsen W, Risøen PA, Read TD, Kolstø AB. The bcr1 DNA repeat element is specific to the Bacillus cereus group and exhibits mobile element characteristics. J Bacteriol 2004; 186:7714-25. [PMID: 15516586 PMCID: PMC524882 DOI: 10.1128/jb.186.22.7714-7725.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus cereus strains ATCC 10987 and ATCC 14579 harbor an approximately 155-bp repeated element, bcr1, which is conserved in B. cereus, B. anthracis, B. thuringiensis, and B. mycoides but not in B. subtilis and B. licheniformis. In this study, we show by Southern blot hybridizations that bcr1 is present in all 54 B. cereus group strains tested but absent in 11 Bacillus strains outside the group, suggesting that bcr1 may be specific and ubiquitous to the B. cereus group. By comparative analysis of the complete genome sequences of B. cereus ATCC 10987, B. cereus ATCC 14579, and B. anthracis Ames, we show that bcr1 is exclusively present in the chromosome but absent from large plasmids carried by these strains and that the numbers of full-length bcr1 repeats for these strains are 79, 54, and 12, respectively. Numerous copies of partial bcr1 elements are also present in the three genomes (91, 128, and 53, respectively). Furthermore, the genomic localization of bcr1 is not conserved between strains with respect to chromosomal position or organization of gene neighbors, as only six full-length bcr1 loci are common to at least two of the three strains. However, the intergenic sequence surrounding a specific bcr1 repeat in one of the three strains is generally strongly conserved in the other two, even in loci where bcr1 is found exclusively in one strain. This finding indicates that bcr1 either has evolved by differential deletion from a very high number of repeats in a common ancestor to the B. cereus group or is moving around the chromosome. The identification of bcr1 repeats interrupting genes in B. cereus ATCC 10987 and ATCC 14579 and the presence of a flanking TTTAT motif in each end show that bcr1 exhibits features characteristic of a mobile element.
Collapse
|