1
|
Hejazian SM, Pirmoradi S, Zununi Vahed S, Kumar Roy R, Hosseiniyan Khatibi SM. An update on Glycerophosphodiester Phosphodiesterases; From Bacteria to Human. Protein J 2024; 43:187-199. [PMID: 38491249 DOI: 10.1007/s10930-024-10190-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2024] [Indexed: 03/18/2024]
Abstract
The hydrolysis of deacylated glycerophospholipids into sn-glycerol 3-phosphate and alcohol is facilitated by evolutionarily conserved proteins known as glycerophosphodiester phosphodiesterases (GDPDs). These proteins are crucial for the pathogenicity of bacteria and for bioremediation processes aimed at degrading organophosphorus esters that pose a hazard to both humans and the environment. Additionally, GDPDs are enzymes that respond to multiple nutrients and could potentially serve as candidate genes for addressing deficiencies in zinc, iron, potassium, and especially phosphate in important plants like rice. In mammals, glycerophosphodiesterases (GDEs) play a role in regulating osmolytes, facilitating the biosynthesis of anandamine, contributing to the development of skeletal muscle, promoting the differentiation of neurons and osteoblasts, and influencing pathological states. Due to their capacity to enhance a plant's ability to tolerate various nutrient deficiencies and their potential as pharmaceutical targets in humans, GDPDs have received increased attention in recent times. This review provides an overview of the functions of GDPD families as vital and resilient enzymes that regulate various pathways in bacteria, plants, and humans.
Collapse
Affiliation(s)
| | - Saeed Pirmoradi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Faculty of Electrical Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | | | | | - Seyed Mahdi Hosseiniyan Khatibi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Wang C, Cheng H, Xu W, Xue J, Hua X, Tong G, Ma X, Yang C, Lan X, Shen SY, Yang Z, Huang J, Cheng Y. Arabidopsis pollen-specific glycerophosphodiester phosphodiesterase-like genes are essential for pollen tube tip growth. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2001-2017. [PMID: 37014030 DOI: 10.1111/jipb.13490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
In angiosperms, pollen tube growth is critical for double fertilization and seed formation. Many of the factors involved in pollen tube tip growth are unknown. Here, we report the roles of pollen-specific GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE-LIKE (GDPD-LIKE) genes in pollen tube tip growth. Arabidopsis thaliana GDPD-LIKE6 (AtGDPDL6) and AtGDPDL7 were specifically expressed in mature pollen grains and pollen tubes and green fluorescent protein (GFP)-AtGDPDL6 and GFP-AtGDPDL7 fusion proteins were enriched at the plasma membrane at the apex of forming pollen tubes. Atgdpdl6 Atgdpdl7 double mutants displayed severe sterility that was rescued by genetic complementation with AtGDPDL6 or AtGDPDL7. This sterility was associated with defective male gametophytic transmission. Atgdpdl6 Atgdpdl7 pollen tubes burst immediately after initiation of pollen germination in vitro and in vivo, consistent with the thin and fragile walls in their tips. Cellulose deposition was greatly reduced along the mutant pollen tube tip walls, and the localization of pollen-specific CELLULOSE SYNTHASE-LIKE D1 (CSLD1) and CSLD4 was impaired to the apex of mutant pollen tubes. A rice pollen-specific GDPD-LIKE protein also contributed to pollen tube tip growth, suggesting that members of this family have conserved functions in angiosperms. Thus, pollen-specific GDPD-LIKEs mediate pollen tube tip growth, possibly by modulating cellulose deposition in pollen tube walls.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jingshi Xue
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinguo Hua
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xujun Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chuanping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xingguo Lan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Shi-Yi Shen
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhongnan Yang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
3
|
Ngo AH, Nakamura Y. Phosphate starvation-inducible GLYCEROPHOSPHODIESTER PHOSPHODIESTERASE6 is involved in Arabidopsis root growth. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2995-3003. [PMID: 35560191 DOI: 10.1093/jxb/erac064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
Plants that are starved of phosphate trigger membrane lipid remodeling, which hydrolyses phospholipids and presumably allows their phosphate to be utilized, whilst replacing them with galactolipids to maintain the integrity of the membrane system. In addition to the two concurrent pathways of phospholipid hydrolysis by phospholipases C and D that have already been established, an emerging third pathway has been proposed that includes a reaction step catalysed by glycerophosphodiester phosphodiesterases (GDPDs). However, its functional involvement in phosphate-starved plants remains elusive. Here, we show that Arabidopsis GDPD6 is a functional isoform responsible for glycerophosphocholine hydrolysis in vivo. Overexpression of GDPD6 promoted root growth whilst gdpd6 mutants showed impaired root growth under phosphate starvation, and this defect was rescued by supplementing with the reaction product glycerol 3-phosphate but not with choline. Since GDPD6 is induced by phosphate starvation, we suggest that GDPD6 might be involved in root growth via the production of glycerol 3-phosphate in phosphate-starved plants.
Collapse
Affiliation(s)
- Anh H Ngo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- RIKEN Center for Sustainable Resource Science (CSRS), Yokohama 230-0045, Japan
| |
Collapse
|
4
|
Lu J, Li Y, Li YA, Wang L, Zeng AR, Ma XL, Qiang JW. In vivo detection of dysregulated choline metabolism in paclitaxel-resistant ovarian cancers with proton magnetic resonance spectroscopy. J Transl Med 2022; 20:92. [PMID: 35168606 PMCID: PMC8845351 DOI: 10.1186/s12967-022-03292-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 02/02/2022] [Indexed: 02/07/2023] Open
Abstract
Background Chemoresistance gradually develops during treatment of epithelial ovarian cancer (EOC). Metabolic alterations, especially in vivo easily detectable metabolites in paclitaxel (PTX)-resistant EOC remain unclear. Methods Xenograft models of the PTX-sensitive and PTX-resistant EOCs were built. Using a combination of in vivo proton-magnetic resonance spectroscopy (1H-MRS), metabolomics and proteomics, we investigated the in vivo metabolites and dysregulated metabolic pathways in the PTX-resistant EOC. Furthermore, we analyzed the RNA expression to validate the key enzymes in the dysregulated metabolic pathway. Results On in vivo 1H-MRS, the ratio of (glycerophosphocholine + phosphocholine) to (creatine + phosphocreatine) ((GPC + PC) to (Cr + PCr))(i.e. Cho/Cr) in the PTX-resistant tumors (1.64 [0.69, 4.18]) was significantly higher than that in the PTX-sensitive tumors (0.33 [0.10, 1.13]) (P = 0.04). Forty-five ex vivo metabolites were identified to be significantly different between the PTX-sensitive and PTX-resistant tumors, with the majority involved of lipids and lipid-like molecules. Spearman’s correlation coefficient analysis indicated in vivo and ex vivo metabolic characteristics were highly consistent, exhibiting the highest positive correlation between in vivo GPC + PC and ex vivo GPC (r = 0.885, P < 0.001). These metabolic data suggested that abnormal choline concentrations were the results from the dysregulated glycerophospholipid metabolism, especially choline metabolism. The proteomics data indicated that the expressions of key enzymes glycerophosphocholine phosphodiesterase 1 (GPCPD1) and glycerophosphodiester phosphodiesterase 1 (GDE1) were significantly lower in the PTX-resistant tumors compared to the PTX-sensitive tumors (both P < 0.01). Decreased expressions of GPCPD1 and GDE1 in choline metabolism led to an increased GPC levels in the PTX-resistant EOCs, which was observed as an elevated total choline (tCho) on in vivo 1H-MRS. Conclusions These findings suggested that dysregulated choline metabolism was associated with PTX-resistance in EOCs and the elevated tCho on in vivo 1H-MRS could be as an indicator for the PTX-resistance in EOCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03292-z.
Collapse
Affiliation(s)
- Jing Lu
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Ying Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Yong Ai Li
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Li Wang
- Department of Pathology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - An Rong Zeng
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Xiao Liang Ma
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China
| | - Jin Wei Qiang
- Department of Radiology, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai, 201508, People's Republic of China.
| |
Collapse
|
5
|
Neelam K, Mahajan R, Gupta V, Bhatia D, Gill BK, Komal R, Lore JS, Mangat GS, Singh K. High-resolution genetic mapping of a novel bacterial blight resistance gene xa-45(t) identified from Oryza glaberrima and transferred to Oryza sativa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:689-705. [PMID: 31811315 DOI: 10.1007/s00122-019-03501-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/30/2019] [Indexed: 05/07/2023]
Abstract
A novel recessive bacterial blight resistance locus designated as a xa-45(t) was identified from Oryza glaberrima accession IRGC 102600B, transferred to O. sativa and mapped to the long arm of chromosome 8 using ddRAD sequencing approach. The identified QTL spans 80 kb region on Nipponbare reference genome IRGSP-1.0 and contains 9 candidate genes. An STS marker developed from the locus LOC_Os08g42410 was found co-segregating with the trait and will be useful for marker-assisted transfer of this recessive resistance gene in breeding programs. Bacterial blight, caused by Xanthomonas oryzae pv. oryzae, is one of the major constraints of rice productivity in Southeast Asia. In spite of having 44 bacterial blight resistance genes from cultivated rice and wild species, the durability of resistance is always at stake due to the continually evolving nature of the pathogen and lack of suitable chemical control. Here, we report high-resolution genetic mapping of a novel bacterial blight resistance gene tentatively designated as a xa-45(t) from an introgression line derived from Oryza glaberrima accession IRGC 102600B. This introgression line was crossed with the susceptible rice indica cultivar cv. Pusa 44 to generate F2 and F2:3 populations for inheritance and mapping studies. The inheritance studies revealed the presence of single recessive locus controlling resistance to the Xanthomonas pathotype seven. A high-density linkage map was constructed using double-digest restriction-associated DNA sequencing of 96 F2 populations along with the parents. The QTL mapping identified a major locus on the long arm of rice chromosome 8 with a LOD score of 33.22 between the SNP markers C8.26737175 and C8.26818765. The peak marker, C8.26810477, explains 49.8% of the total phenotypic variance and was positioned at 202.90 cM on the linkage map. This major locus spans 80 kb region on Nipponbare reference genome IRGSP-1.0 and contains 9 candidate genes. A co-segregating STS marker was developed from the LOC_Os08g42410 for efficient transfer of this novel gene to elite cultivars.
Collapse
Affiliation(s)
- Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Ritu Mahajan
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Vikas Gupta
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Dharminder Bhatia
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Baljeet Kaur Gill
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Ratika Komal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Jagjeet Singh Lore
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Gurjit Singh Mangat
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, 141004, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, 141004, India.
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110073, India.
| |
Collapse
|
6
|
Tiwari JK, Buckseth T, Zinta R, Saraswati A, Singh RK, Rawat S, Dua VK, Chakrabarti SK. Transcriptome analysis of potato shoots, roots and stolons under nitrogen stress. Sci Rep 2020; 10:1152. [PMID: 31980689 PMCID: PMC6981199 DOI: 10.1038/s41598-020-58167-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
Potato crop requires high dose of nitrogen (N) to produce high tuber yield. Excessive application of N causes environmental pollution and increases cost of production. Hence, knowledge about genes and regulatory elements is essential to strengthen research on N metabolism in this crop. In this study, we analysed transcriptomes (RNA-seq) in potato tissues (shoot, root and stolon) collected from plants grown in aeroponic culture under controlled conditions with varied N supplies i.e. low N (0.2 milli molar N) and high N (4 milli molar N). High quality data ranging between 3.25 to 4.93 Gb per sample were generated using Illumina NextSeq500 that resulted in 83.60-86.50% mapping of the reads to the reference potato genome. Differentially expressed genes (DEGs) were observed in the tissues based on statistically significance (p ≤ 0.05) and up-regulation with ≥ 2 log2 fold change (FC) and down-regulation with ≤ -2 log2 FC values. In shoots, of total 19730 DEGs, 761 up-regulated and 280 down-regulated significant DEGs were identified. Of total 20736 DEGs in roots, 572 (up-regulated) and 292 (down-regulated) were significant DEGs. In stolons, of total 21494 DEG, 688 and 230 DEGs were significantly up-regulated and down-regulated, respectively. Venn diagram analysis showed tissue specific and common genes. The DEGs were functionally assigned with the GO terms, in which molecular function domain was predominant in all the tissues. Further, DEGs were classified into 24 KEGG pathways, in which 5385, 5572 and 5594 DEGs were annotated in shoots, roots and stolons, respectively. The RT-qPCR analysis validated gene expression of RNA-seq data for selected genes. We identified a few potential DEGs responsive to N deficiency in potato such as glutaredoxin, Myb-like DNA-binding protein, WRKY transcription factor 16 and FLOWERING LOCUS T in shoots; high-affinity nitrate transporter, protein phosphatase-2c, glutaredoxin family protein, malate synthase, CLE7, 2-oxoglutarate-dependent dioxygenase and transcription factor in roots; and glucose-6-phosphate/phosphate translocator 2, BTB/POZ domain-containing protein, F-box family protein and aquaporin TIP1;3 in stolons, and many genes of unknown function. Our study highlights that these potential genes play very crucial roles in N stress tolerance, which could be useful in augmenting research on N metabolism in potato.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
| | - Tanuja Buckseth
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Rasna Zinta
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Aastha Saraswati
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Rajesh Kumar Singh
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Shashi Rawat
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vijay Kumar Dua
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Swarup Kumar Chakrabarti
- Indian Council of Agricultural Research-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| |
Collapse
|
7
|
Belchí-Navarro S, Almagro L, Bru-Martínez R, Pedreño MA. Changes in the secretome of Vitis vinifera cv. Monastrell cell cultures treated with cyclodextrins and methyl jasmonate. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:520-527. [PMID: 30448023 DOI: 10.1016/j.plaphy.2018.11.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/08/2018] [Accepted: 11/07/2018] [Indexed: 06/09/2023]
Abstract
Elicitors induce defense responses that resemble those triggered by pathogen attack, including the synthesis of phytoalexins and pathogen-related proteins, which are accumulated in the extracellular space. In this work we analyze the changes in the secretome of Vitis vinifera cv. Monastrell cell cultures. This refers to the secreted proteome obtained from cell suspension cultures, in response to treatment with cyclodextrins and methyl jasmonate, separately or in combination using label-free quantitative approaches. Of the proteins found, thirty-three did not show significant differences in response to the different treatments carried out, indicating that these proteins were expressed in a constitutive way in both control and elicited grapevine cell cultures. These proteins included pathogenesis-related proteins 4 and 5, class III peroxidases, NtPRp-27, chitinases and class IV endochitinases, among others. Moreover, eleven proteins were differentially expressed in the presence of cyclodextrins and/or methyl jasmonate: three different peroxidases, two pathogenesis related protein 1, LysM domain-containing GPI-anchored protein 1, glycerophosphoryl diester phosphodiesterase, reticulin oxidase, heparanase, β-1,3-glucanase and xyloglucan endotransglycosylase. Treatments with cyclodextrins reinforced the defensive arsenal and induced the accumulation of peroxidase V and xyloglucan endotransglycosylase. However, elicitation with methyl jasmonate decreased the levels of several proteins such as pathogenesis related protein 1, LysM domain-containing GPI-anchored protein 1, cationic peroxidase, and glycerophosphoryl diester phosphodiesterase, but increased the levels of new gene products such as heparanase, β-1,3 glucanase, reticulin oxidase, and peroxidase IV, all of which could be used as potential biomarkers in the grapevine defense responses.
Collapse
Affiliation(s)
- S Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - L Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain.
| | - R Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante and Instituto de Investigación Sanitaria y Biomédica de Alicante ISABIAL-FISABIO, Alicante, Spain
| | - M A Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| |
Collapse
|
8
|
Yang SY, Huang TK, Kuo HF, Chiou TJ. Role of vacuoles in phosphorus storage and remobilization. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3045-3055. [PMID: 28077447 DOI: 10.1093/jxb/erw481] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Vacuoles play a fundamental role in storage and remobilization of various nutrients, including phosphorus (P), an essential element for cell growth and development. Cells acquire P primarily in the form of inorganic orthophosphate (Pi). However, the form of P stored in vacuoles varies by organism and tissue. Algae and yeast store polyphosphates (polyPs), whereas plants store Pi and inositol phosphates (InsPs) in vegetative tissues and seeds, respectively. In this review, we summarize how vacuolar P molecules are stored and reallocated and how these processes are regulated and co-ordinated. The roles of SYG1/PHO81/XPR1 (SPX)-domain-containing membrane proteins in allocating vacuolar P are outlined. We also highlight the importance of vacuolar P in buffering the cytoplasmic Pi concentration to maintain cellular homeostasis when the external P supply fluctuates, and present additional roles for vacuolar polyP and InsP besides being a P reserve. Furthermore, we discuss the possibility of alternative pathways to recycle Pi from other P metabolites in vacuoles. Finally, future perspectives for researching this topic and its potential application in agriculture are proposed.
Collapse
Affiliation(s)
- Shu-Yi Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Teng-Kuei Huang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Hui-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tzyy-Jen Chiou
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
9
|
Pi sensing and signalling: from prokaryotic to eukaryotic cells. Biochem Soc Trans 2016; 44:766-73. [DOI: 10.1042/bst20160026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 11/17/2022]
Abstract
Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae. In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research.
Collapse
|
10
|
Aktas M, Narberhaus F. Unconventional membrane lipid biosynthesis inXanthomonas campestris. Environ Microbiol 2015; 17:3116-24. [DOI: 10.1111/1462-2920.12956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 06/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Meriyem Aktas
- Microbial Biology; Ruhr University Bochum; Universitätsstrasse 150, NDEF 06/783 Bochum D-44780 Germany
| | - Franz Narberhaus
- Microbial Biology; Ruhr University Bochum; Universitätsstrasse 150, NDEF 06/783 Bochum D-44780 Germany
| |
Collapse
|
11
|
Corda D, Mosca MG, Ohshima N, Grauso L, Yanaka N, Mariggiò S. The emerging physiological roles of the glycerophosphodiesterase family. FEBS J 2014; 281:998-1016. [PMID: 24373430 DOI: 10.1111/febs.12699] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/12/2013] [Accepted: 12/19/2013] [Indexed: 01/21/2023]
Abstract
The glycerophosphodiester phosphodiesterases are evolutionarily conserved proteins that have been linked to several patho/physiological functions, comprising bacterial pathogenicity and mammalian cell proliferation or differentiation. The bacterial enzymes do not show preferential substrate selectivities among the glycerophosphodiesters, and they are mainly dedicated to glycerophosphodiester hydrolysis, producing glycerophosphate and alcohols as the building blocks that are required for bacterial biosynthetic pathways. In some cases, this enzymatic activity has been demonstrated to contribute to bacterial pathogenicity, such as with Hemophilus influenzae. Mammalian glyerophosphodiesterases have high substrate specificities, even if the number of potential physiological substrates is continuously increasing. Some of these mammalian enzymes have been directly linked to cell differentiation, such as GDE2, which triggers motor neuron differentiation, and GDE3, the enzymatic activity of which is necessary and sufficient to induce osteoblast differentiation. Instead, GDE5 has been shown to inhibit skeletal muscle development independent of its enzymatic activity.
Collapse
Affiliation(s)
- Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Nakamura Y. Phosphate starvation and membrane lipid remodeling in seed plants. Prog Lipid Res 2012; 52:43-50. [PMID: 22954597 DOI: 10.1016/j.plipres.2012.07.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 01/07/2023]
Abstract
Phosphate is an essential, yet scarce, nutrient that seed plants need to maintain viability. Phosphate-starved plants utilize their membrane phospholipids as a major source for internal phosphate supply by replacing phospholipids in their membranes with the non-phosphorus galactolipid, digalactosyldiacylglycerol. This membrane lipid remodeling has drawn much attention as a model of metabolic switching from phospholipids to the galactolipid. In the past decade, a considerable effort has been devoted to unraveling the molecular biology of this phenomenon. This review thus aims to summarize recent achievements with a focus on metabolic pathways during lipid remodeling.
Collapse
Affiliation(s)
- Yuki Nakamura
- Institute of Plant and Microbial Biology, Academia Sinica, 128 Sec. 2 Academia Rd., Nankang, Taipei 11529, Taiwan.
| |
Collapse
|
13
|
Salvioli A, Zouari I, Chalot M, Bonfante P. The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC PLANT BIOLOGY 2012; 12:44. [PMID: 22452950 PMCID: PMC3362744 DOI: 10.1186/1471-2229-12-44] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/27/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Arbuscular mycorrhizal (AM) symbiosis is the most widespread association between plant roots and fungi in natural and agricultural ecosystems. This work investigated the influence of mycorrhization on the economically relevant part of the tomato plant, by analyzing its impact on the physiology of the fruit. To this aim, a combination of phenological observations, transcriptomics (Microarrays and qRT-PCR) and biochemical analyses was used to unravel the changes that occur on fruits from Micro-Tom tomato plants colonized by the AM fungus Glomus mosseae. RESULTS Mycorrhization accelerated the flowering and fruit development and increased the fruit yield. Eleven transcripts were differentially regulated in the fruit upon mycorrhization, and the mycorrhiza-responsive genes resulted to be involved in nitrogen and carbohydrate metabolism as well as in regulation and signal transduction. Mycorrhization has increased the amino acid abundance in the fruit from mycorrhizal plants, with glutamine and asparagine being the most responsive amino acids. CONCLUSIONS The obtained results offer novel data on the systemic changes that are induced by the establishment of AM symbiosis in the plant, and confirm the work hypothesis that AM fungi may extend their influence from the root to the fruit.
Collapse
Affiliation(s)
- Alessandra Salvioli
- Dipartimento di Biologia Vegetale, Università degli Studi di Torino and IPP-CNR, viale Mattioli 25, 10125 Torino, Italy
| | - Inès Zouari
- Dipartimento di Biologia Vegetale, Università degli Studi di Torino and IPP-CNR, viale Mattioli 25, 10125 Torino, Italy
| | - Michel Chalot
- Université Henri Poincaré - Nancy I, Faculté des Sciences et Techniques, UMR INRA/UHP 1136 Interactions Arbres/Micro-organismes, BP 239, 54506, Vandoeuvre-les Nancy Cedex, France
| | - Paola Bonfante
- Dipartimento di Biologia Vegetale, Università degli Studi di Torino and IPP-CNR, viale Mattioli 25, 10125 Torino, Italy
- IPP-CNR, viale Mattioli 25, 10125 Torino, Italy
| |
Collapse
|
14
|
Wang N, Khan W, Smith DL. Changes in soybean global gene expression after application of lipo-chitooligosaccharide from Bradyrhizobium japonicum under sub-optimal temperature. PLoS One 2012; 7:e31571. [PMID: 22348109 PMCID: PMC3278468 DOI: 10.1371/journal.pone.0031571] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 01/13/2012] [Indexed: 11/18/2022] Open
Abstract
Lipo-chitooligosaccharides (LCOs), signal compounds produced by N(2)-fixing rhizobacteria after isoflavone induction, initiate nodule formation in host legumes. Given LCOs' structural similarity to pathogen-response-eliciting chitin oligomers, foliar application of LCOs was tested for ability to induce stress-related genes under optimal growth conditions. In order to study the effects of LCO foliar spray under stressed conditions, soybean (Glycine max) seedlings grown at optimal temperature were transferred to sub-optimal temperature. After a 5-day acclimation period, the first trifoliate leaves were sprayed with 10(-7) M LCO (NodBj-V (C(18:1), MeFuc)) purified from genistein-induced Bradyrhizobium japonicum culture, and harvested at 0 and 48 h following treatment. Microarray analysis was performed using Affymetrix GeneChip® Soybean Genome Arrays. Compared to the control at 48 h after LCO treatment, a total of 147 genes were differentially expressed as a result of LCO treatment, including a number of stress-related genes and transcription factors. In addition, during the 48 h time period following foliar spray application, over a thousand genes exhibited differential expression, including hundreds of those specific to the LCO-treated plants. Our results indicated that the dynamic soybean foliar transcriptome was highly responsive to LCO treatment. Quantitative real-time PCR (qPCR) validated the microarray data.
Collapse
Affiliation(s)
- Nan Wang
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| | - Wajahatullah Khan
- Genome Research Chair Unit, Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Donald L. Smith
- Department of Plant Science, McGill University, Ste Anne de Bellevue, Quebec, Canada
| |
Collapse
|
15
|
Zhao B, Dahlbeck D, Krasileva KV, Fong RW, Staskawicz BJ. Computational and biochemical analysis of the Xanthomonas effector AvrBs2 and its role in the modulation of Xanthomonas type three effector delivery. PLoS Pathog 2011; 7:e1002408. [PMID: 22144898 PMCID: PMC3228805 DOI: 10.1371/journal.ppat.1002408] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 10/14/2011] [Indexed: 01/06/2023] Open
Abstract
Effectors of the bacterial type III secretion system provide invaluable molecular probes to elucidate the molecular mechanisms of plant immunity and pathogen virulence. In this report, we focus on the AvrBs2 effector protein from the bacterial pathogen Xanthomonas euvesicatoria (Xe), the causal agent of bacterial spot disease of tomato and pepper. Employing homology-based structural analysis, we generate a three-dimensional structural model for the AvrBs2 protein and identify catalytic sites in its putative glycerolphosphodiesterase domain (GDE). We demonstrate that the identified catalytic region of AvrBs2 was able to functionally replace the GDE catalytic site of the bacterial glycerophosphodiesterase BhGlpQ cloned from Borrelia hermsii and is required for AvrBs2 virulence. Mutations in the GDE catalytic domain did not disrupt the recognition of AvrBs2 by the cognate plant resistance gene Bs2. In addition, AvrBs2 activation of Bs2 suppressed subsequent delivery of other Xanthomonas type III effectors into the host plant cells. Investigation of the mechanism underlying this modulation of the type III secretion system may offer new strategies to generate broad-spectrum resistance to bacterial pathogens. The bacterial pathogen Xanthomonas euvesicatoria (Xe) is the causal agent of bacterial leaf spot disease of pepper and tomato. This pathogen is capable of delivering more than 28 effector proteins to plant cells via the type three secretion and translocation system (TTSS). The AvrBs2 protein is a TTSS effector of Xe with a significant virulence contribution that depends on a conserved glycerolphosphodiesterase (GDE) domain. Additionally, activation of the resistance protein Bs2 by AvrBs2 modulates the TTSS of Xe and suppresses the subsequent delivery of TTSS effectors.
Collapse
Affiliation(s)
- Bingyu Zhao
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Douglas Dahlbeck
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Ksenia V. Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Richard W. Fong
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| | - Brian J. Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
16
|
Ramaiah M, Jain A, Baldwin JC, Karthikeyan AS, Raghothama KG. Characterization of the phosphate starvation-induced glycerol-3-phosphate permease gene family in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:279-91. [PMID: 21788361 PMCID: PMC3165876 DOI: 10.1104/pp.111.178541] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Accepted: 07/12/2011] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) deficiency is one of the leading causes of loss in crop productivity. Plants respond to Pi deficiency by increasing Pi acquisition and remobilization involving organic and inorganic Pi transporters. Here, we report the functional characterization of a putative organic Pi transporter, Glycerol-3-phosphate permease (G3Pp) family, comprising five members (AtG3Pp1 to -5) in Arabidopsis (Arabidopsis thaliana). AtG3Pp1 and AtG3Pp2 showed 24-and 3-fold induction, respectively, in the roots of Pi-deprived seedlings, whereas Pi deficiency-mediated induction of AtG3Pp3 and -4 was evident in both roots and shoots. Furthermore, promoter-β-glucuronidase (GUS) fusion transgenics were generated for AtG3Pp2 to -5 for elucidation of their in planta role in Pi homeostasis. During Pi starvation, there was a strong expression of the reporter gene driven by AtG3Pp4 promoter in the roots, shoots, anthers, and siliques, whereas GUS expression was specific either to the roots (AtG3Pp3) or to stamens and siliques (AtG3Pp5) in other promoter-GUS fusion transgenics. Quantification of reporter gene activities further substantiated differential responses of AtG3Pp family members to Pi deprivation. A distinct pattern of reporter gene expression exhibited by AtG3Pp3 and AtG3Pp5 during early stages of germination also substantiated their potential roles during seedling ontogeny. Furthermore, an AtG3Pp4 knockdown mutant exhibited accentuated total lateral root lengths under +phosphorus and -phosphorus conditions compared with the wild type. Several Pi starvation-induced genes involved in root development and/or Pi homeostasis were up-regulated in the mutant. A 9-fold induction of AtG3Pp3 in the mutant provided some evidence for a lack of functional redundancy in the gene family. These results thus reflect differential roles of members of the G3Pp family in the maintenance of Pi homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Kashchandra G. Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907–1165
| |
Collapse
|
17
|
Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Allan D, Shen J, Vance CP. White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. PLANT PHYSIOLOGY 2011; 156:1131-48. [PMID: 21464471 PMCID: PMC3135957 DOI: 10.1104/pp.111.173724] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/29/2011] [Indexed: 05/18/2023]
Abstract
White lupin (Lupinus albus) is a legume that is very efficient in accessing unavailable phosphorus (Pi). It develops short, densely clustered tertiary lateral roots (cluster/proteoid roots) in response to Pi limitation. In this report, we characterize two glycerophosphodiester phosphodiesterase (GPX-PDE) genes (GPX-PDE1 and GPX-PDE2) from white lupin and propose a role for these two GPX-PDEs in root hair growth and development and in a Pi stress-induced phospholipid degradation pathway in cluster roots. Both GPX-PDE1 and GPX-PDE2 are highly expressed in Pi-deficient cluster roots, particularly in root hairs, epidermal cells, and vascular bundles. Expression of both genes is a function of both Pi availability and photosynthate. GPX-PDE1 Pi deficiency-induced expression is attenuated as photosynthate is deprived, while that of GPX-PDE2 is strikingly enhanced. Yeast complementation assays and in vitro enzyme assays revealed that GPX-PDE1 shows catalytic activity with glycerophosphocholine while GPX-PDE2 shows highest activity with glycerophosphoinositol. Cell-free protein extracts from Pi-deficient cluster roots display GPX-PDE enzyme activity for both glycerophosphocholine and glycerophosphoinositol. Knockdown of expression of GPX-PDE through RNA interference resulted in impaired root hair development and density. We propose that white lupin GPX-PDE1 and GPX-PDE2 are involved in the acclimation to Pi limitation by enhancing glycerophosphodiester degradation and mediating root hair development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Carroll P. Vance
- Department of Plant Nutrition, China Agricultural University, Key Laboratory of Plant-Soil Interactions, Beijing 100193, People’s Republic of China (L.C., J.S.); Department of Agronomy and Plant Genetics (L.C., B.B., J.L., S.M., C.P.V.) and Department of Soil, Water, and Climate (J.L., K.Z., D.A.), University of Minnesota, St. Paul, Minnesota 55108; United States Department of Agriculture Agricultural Research Service, St. Paul, Minnesota 55108 (B.B., S.M., C.P.V.); Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282 (J.P.-V.)
| |
Collapse
|
18
|
Cheng Y, Zhou W, El Sheery NI, Peters C, Li M, Wang X, Huang J. Characterization of the Arabidopsis glycerophosphodiester phosphodiesterase (GDPD) family reveals a role of the plastid-localized AtGDPD1 in maintaining cellular phosphate homeostasis under phosphate starvation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:781-95. [PMID: 21323773 DOI: 10.1111/j.1365-313x.2011.04538.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Glycerophosphodiester phosphodiesterase (GDPD), which hydrolyzes glycerophosphodiesters into sn-glycerol-3-phosphate (G-3-P) and the corresponding alcohols, plays an important role in various physiological processes in both prokaryotes and eukaryotes. However, little is known about the physiological significance of GDPD in plants. Here, we characterized the Arabidopsis GDPD family that can be classified into canonical GDPD (AtGDPD1-6) and GDPD-like (AtGDPDL1-7) subfamilies. In vitro analysis of enzymatic activities showed that AtGDPD1 and AtGDPDL1 hydrolyzed glycerolphosphoglycerol, glycerophosphocholine and glycerophosphoethanolamine, but the maximum activity of AtGDPD1 was much higher than that of AtGDPDL1 under our assay conditions. Analyses of gene expression patterns revealed that all AtGDPD genes except for AtGDPD4 were transcriptionally active in flowers and siliques. In addition, the gene family displayed overlapping and yet distinguishable patterns of expression in roots, leaves and stems, indicating functional redundancy as well as specificity of GDPD genes. AtGDPDs but not AtGDPDLs are up-regulated by inorganic phosphate (P(i) ) starvation. Loss-of-function of the plastid-localized AtGDPD1 leads to a significant decrease in GDPD activity, G-3-P content, P(i) content and seedling growth rate only under P(i) starvation compared with the wild type (WT). However, membrane lipid compositions in the P(i) -deprived seedlings remain unaltered between the AtGDPD1 knockout mutant and WT. Thus, we suggest that the GDPD-mediated lipid metabolic pathway may be involved in release of P(i) from phospholipids during P(i) starvation.
Collapse
Affiliation(s)
- Yuxiang Cheng
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Okazaki Y, Ohshima N, Yoshizawa I, Kamei Y, Mariggiò S, Okamoto K, Maeda M, Nogusa Y, Fujioka Y, Izumi T, Ogawa Y, Shiro Y, Wada M, Kato N, Corda D, Yanaka N. A novel glycerophosphodiester phosphodiesterase, GDE5, controls skeletal muscle development via a non-enzymatic mechanism. J Biol Chem 2010; 285:27652-63. [PMID: 20576599 PMCID: PMC2934633 DOI: 10.1074/jbc.m110.106708] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 06/08/2010] [Indexed: 11/06/2022] Open
Abstract
Mammalian glycerophosphodiester phosphodiesterases (GP-PDEs) have been identified recently and shown to be implicated in several physiological functions. This study isolated a novel GP-PDE, GDE5, and showed that GDE5 selectively hydrolyzes glycerophosphocholine (GroPCho) and controls skeletal muscle development. We show that GDE5 expression was reduced in atrophied skeletal muscles in mice and that decreasing GDE5 abundance promoted myoblastic differentiation, suggesting that decreased GDE5 expression has a counter-regulatory effect on the progression of skeletal muscle atrophy. Forced expression of full-length GDE5 in cultured myoblasts suppressed myogenic differentiation. Unexpectedly, a truncated GDE5 construct (GDE5DeltaC471), which contained a GP-PDE sequence identified in other GP-PDEs but lacked GroPCho phosphodiesterase activity, showed a similar inhibitory effect. Furthermore, transgenic mice specifically expressing GDE5DeltaC471 in skeletal muscle showed less skeletal muscle mass, especially type II fiber-rich muscle. These results indicate that GDE5 negatively regulates skeletal muscle development even without GroPCho phosphodiesterase activity, providing novel insight into the biological significance of mammalian GP-PDE function in a non-enzymatic mechanism.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cell Differentiation
- Cell Line
- Cloning, Molecular
- Computational Biology
- DNA, Complementary/genetics
- Gene Expression Regulation, Enzymologic
- Humans
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscle Development
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/growth & development
- Muscular Atrophy/enzymology
- Muscular Atrophy/genetics
- Phosphoric Diester Hydrolases/chemistry
- Phosphoric Diester Hydrolases/genetics
- Phosphoric Diester Hydrolases/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
Collapse
Affiliation(s)
- Yuri Okazaki
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Noriyasu Ohshima
- the Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Ikumi Yoshizawa
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yasutomi Kamei
- the Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Stefania Mariggiò
- the Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
- the Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Keiko Okamoto
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Masahiro Maeda
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yoshihito Nogusa
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Yuichiro Fujioka
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Takashi Izumi
- the Department of Biochemistry, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan
| | - Yoshihiro Ogawa
- the Department of Molecular Medicine and Metabolism, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yoshitsugu Shiro
- the RIKEN SPring-8 Center, Harima Institute, Hongo 679-5148, Japan, and
| | - Masanobu Wada
- the Department of Human Sciences, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima 739-8521, Japan
| | - Norihisa Kato
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| | - Daniela Corda
- the Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, 66030 Chieti, Italy
- the Institute of Protein Biochemistry, National Research Council, 80131 Naples, Italy
| | - Noriyuki Yanaka
- From the Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima 739-8528, Japan
| |
Collapse
|
20
|
Bi D, Cheng YT, Li X, Zhang Y. Activation of plant immune responses by a gain-of-function mutation in an atypical receptor-like kinase. PLANT PHYSIOLOGY 2010; 153:1771-9. [PMID: 20508139 PMCID: PMC2923897 DOI: 10.1104/pp.110.158501] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/25/2010] [Indexed: 05/19/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) suppressor of npr1-1, constitutive1 (snc1) contains a gain-of-function mutation in a Toll/interleukin receptor-nucleotide binding site-leucine-rich repeat Resistance (R) protein and it has been a useful tool for dissecting R-protein-mediated immunity. Here we report the identification and characterization of snc4-1D, a semidominant mutant with snc1-like phenotypes. snc4-1D constitutively expresses defense marker genes PR1, PR2, and PDF1.2, and displays enhanced pathogen resistance. Map-based cloning of SNC4 revealed that it encodes an atypical receptor-like kinase with two predicted extracellular glycerophosphoryl diester phosphodiesterase domains. The snc4-1D mutation changes an alanine to threonine in the predicted cytoplasmic kinase domain. Wild-type plants transformed with the mutant snc4-1D gene displayed similar phenotypes as snc4-1D, suggesting that the mutation is a gain-of-function mutation. Epistasis analysis showed that NON-RACE-SPECIFIC DISEASE RESISTANCE1 is required for the snc4-1D mutant phenotypes. In addition, the snc4-1D mutant phenotypes are partially suppressed by knocking out MAP KINASE SUBSTRATE1, a positive defense regulator associated with MAP KINASE4. Furthermore, both the morphology and constitutive pathogen resistance of snc4-1D are partially suppressed by blocking jasmonic acid synthesis, suggesting that jasmonic acid plays an important role in snc4-1D-mediated resistance. Identification of snc4-1D provides us a unique genetic system for analyzing the signal transduction pathways downstream of receptor-like kinases.
Collapse
|
21
|
Gaude N, Nakamura Y, Scheible WR, Ohta H, Dörmann P. Phospholipase C5 (NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 56:28-39. [PMID: 18564386 DOI: 10.1111/j.1365-313x.2008.03582.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The replacement of phospholipids by galacto- and sulfolipids in plant membranes represents an important adaptive process for growth on phosphate-limiting soils. Gene expression and lipid analyses revealed that the MYB transcription factor PHR1 that has been previously shown to regulate phosphate responses is not a major factor controlling membrane lipid changes. Candidate genes for phospholipid degradation were selected based on induction of expression during phosphate deprivation. Lipid measurements in the corresponding Arabidopsis mutants revealed that the non-specific phospholipase C5 (NPC5) is required for normal accumulation of digalactosyldiacylglycerol (DGDG) during phosphate limitation in leaves. The growth and DGDG content of a double mutant npc5 pho1 (between npc5 and the phosphate-deficient pho1 mutant) are reduced compared to parental lines. The amount of DGDG increases from approximately 15 mol% to 22 mol% in npc5, compared to 28 mol% in wild-type, indicating that NPC5 is responsible for approximately 50% of the DGDG synthesized during phosphate limitation in leaves. Expression in Escherichia coli revealed that NPC5 shows phospholipase C activity on phosphatidylcholine and phosphatidylethanolamine. A double mutant of npc5 and pldzeta2 (carrying a mutation in the phospholipase Dzeta2 gene) was generated. Lipid measurements in npc5 pldzeta2 indicated that the contribution of PLDzeta2 to DGDG production in leaves is negligible. In contrast to the chloroplast envelope localization of galactolipid synthesis enzymes, NPC5 localizes to the cytosol, suggesting that, during phosphate limitation, soluble NPC5 associates with membranes where it contributes to the conversion of phospholipids to diacylglycerol, the substrate for galactolipid synthesis.
Collapse
Affiliation(s)
- Nicole Gaude
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany
| | | | | | | | | |
Collapse
|
22
|
Hayashi S, Ishii T, Matsunaga T, Tominaga R, Kuromori T, Wada T, Shinozaki K, Hirayama T. The glycerophosphoryl diester phosphodiesterase-like proteins SHV3 and its homologs play important roles in cell wall organization. PLANT & CELL PHYSIOLOGY 2008; 49:1522-35. [PMID: 18718934 DOI: 10.1093/pcp/pcn120] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Despite the importance of extracellular events in cell wall organization and biogenesis, the mechanisms and related factors are largely unknown. We isolated an allele of the shaven3 (shv3) mutant of Arabidopsis thaliana, which exhibits ruptured root hair cells during tip growth. SHV3 encodes a novel protein with two tandemly repeated glycerophosphoryl diester phosphodiesterase-like domains and a glycosylphosphatidylinositol anchor, and several of its paralogs are found in Arabidopsis. Here, we report the detailed characterization of mutants of SHV3 and one of its paralogs, SVL1. The shv3 and svl1 double mutant exhibited additional defects, including swollen guard cells, aberrant expansion of the hypocotyl epidermis and ectopic lignin deposits, suggesting decreased rigidity of the cell wall. Fourier-transform infrared spectroscopy and measurement of the cell wall components indicated an altered cellulose content and pectin modification with cross-linking in the double mutant. Furthermore, we found that the ruptured root hair phenotype of shv3 was suppressed by increasing the amount of borate, which is supposed to be involved in pectic polysaccharide cross-linking, in the medium. These findings indicate that SHV3 and its paralogs are novel important factors involved in primary cell wall organization.
Collapse
Affiliation(s)
- Shimpei Hayashi
- International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro, Tsurumi, Yokohama, 230-0045 Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Babor M, Gerzon S, Raveh B, Sobolev V, Edelman M. Prediction of transition metal-binding sites from apo protein structures. Proteins 2008; 70:208-17. [PMID: 17657805 DOI: 10.1002/prot.21587] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Metal ions are crucial for protein function. They participate in enzyme catalysis, play regulatory roles, and help maintain protein structure. Current tools for predicting metal-protein interactions are based on proteins crystallized with their metal ions present (holo forms). However, a majority of resolved structures are free of metal ions (apo forms). Moreover, metal binding is a dynamic process, often involving conformational rearrangement of the binding pocket. Thus, effective predictions need to be based on the structure of the apo state. Here, we report an approach that identifies transition metal-binding sites in apo forms with a resulting selectivity >95%. Applying the approach to apo forms in the Protein Data Bank and structural genomics initiative identifies a large number of previously unknown, putative metal-binding sites, and their amino acid residues, in some cases providing a first clue to the function of the protein.
Collapse
Affiliation(s)
- Mariana Babor
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | |
Collapse
|
24
|
Patton-Vogt J. Transport and metabolism of glycerophosphodiesters produced through phospholipid deacylation. Biochim Biophys Acta Mol Cell Biol Lipids 2006; 1771:337-42. [PMID: 16781190 DOI: 10.1016/j.bbalip.2006.04.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Revised: 04/20/2006] [Accepted: 04/26/2006] [Indexed: 10/25/2022]
Abstract
Phospholipid deacylation results in the formation of glycerophosphodiesters and free fatty acids. In Saccharomyces cerevisiae, four gene products with phospholipase B (deacylating) activity have been characterized (PLB1, PLB2, PLB3, NTE1), and those activities account for most, if not all, of the glycerophosphodiester production observed to date. The glycerophosphodiesters themselves are hydrolyzed into glycerol-3-phosphate and the corresponding alcohol by glycerophosphodiester phosphodiesterases. Although only one glycerophosphodiester phosphodiesterase-encoding gene (GDE1) has been characterized in S. cerevisiae, others certainly exist. Both internal and external glycerophosphodiesters (primarily glycerophosphocholine and glycerophosphoinositol) are formed as a result of phospholipid turnover in S. cerevisiae. A permease encoded by the GIT1 gene imports extracellular glycerophosphodiesters across the plasma membrane, where their hydrolytic products can provide crucial nutrients such as inositol, choline, and phosphate to the cell. The importance of this metabolic pathway in various aspects of S. cerevisiae cell physiology is being explored.
Collapse
Affiliation(s)
- Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
25
|
Fernández-Murray JP, McMaster CR. Glycerophosphocholine catabolism as a new route for choline formation for phosphatidylcholine synthesis by the Kennedy pathway. J Biol Chem 2005; 280:38290-6. [PMID: 16172116 DOI: 10.1074/jbc.m507700200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, neuropathy target esterase (Nte1p in yeast) deacylates phosphatidylcholine derived exclusively from the CDP-choline pathway to produce glycerophosphocholine (GroPCho) and release two fatty acids. The metabolic fate of GroPCho in eukaryotic cells is currently not known. Saccharomyces cerevisiae contains two open reading frames predicted to contain glycerophosphodiester phosphodiesterase domains, YPL110c and YPL206c. Pulse-chase experiments were conducted to monitor GroPCho metabolic fate under conditions known to alter CDP-choline pathway flux and consequently produce different rates of formation of GroPCho. From this analysis, it was revealed that GroPCho was metabolized to choline, with this choline serving as substrate for renewed synthesis of phosphatidylcholine. YPL110c played the major role in this metabolic pathway. To extend and confirm the metabolic studies, the ability of the ypl110cDelta and ypl206cDelta strains to utilize exogenous GroPCho or glycerophosphoinositol as the sole source of phosphate was analyzed. Consistent with our metabolic profiling, the ypl206cDelta strain grew on both substrates with a similar rate to wild type, whereas the ypl110cDelta strain grew very poorly on GroPCho and with moderately reduced growth on glycerophosphoinositol.
Collapse
Affiliation(s)
- J Pedro Fernández-Murray
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | |
Collapse
|
26
|
Fisher E, Almaguer C, Holic R, Griac P, Patton-Vogt J. Glycerophosphocholine-dependent growth requires Gde1p (YPL110c) and Git1p in Saccharomyces cerevisiae. J Biol Chem 2005; 280:36110-7. [PMID: 16141200 DOI: 10.1074/jbc.m507051200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycerophosphocholine is formed via the deacylation of the phospholipid phosphatidylcholine. The protein encoded by Saccharomyces cerevisiae open reading frame YPL110c effects glycerophosphocholine metabolism in vivo, most likely by acting as a glycerophosphocholine phosphodiesterase. Deletion of YPL110c causes an accumulation of glycerophosphocholine in cells prelabeled with [14C]choline. Correspondingly, overexpression of YPL110c results in reduced intracellular glycerophosphocholine in cells prelabeled with [14C]choline. Glycerophospho[3H]choline supplied in the growth medium accumulates to a much greater extent in the intracellular fraction of a YPL110Delta strain than in a wild type strain. Furthermore, glycerophospho[3H]choline accumulation requires the transporter encoded by GIT1, a known glycerophosphoinositol transporter. Growth on glycerophosphocholine as the sole phosphate source requires YPL110c and the Git1p permease. In contrast to glycerophosphocholine, glycerophosphoinositol metabolism is unaffected by deletion of YPL110c. The open reading frame YPL110c has been termed GDE1.
Collapse
Affiliation(s)
- Edward Fisher
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, USA
| | | | | | | | | |
Collapse
|