1
|
Kanova M, Kohout P. Molecular Mechanisms Underlying Intensive Care Unit-Acquired Weakness and Sarcopenia. Int J Mol Sci 2022; 23:8396. [PMID: 35955530 PMCID: PMC9368893 DOI: 10.3390/ijms23158396] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/19/2022] [Accepted: 07/26/2022] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a highly adaptable organ, and its amount declines under catabolic conditions such as critical illness. Aging is accompanied by a gradual loss of muscle, especially when physical activity decreases. Intensive care unit-acquired weakness is a common and highly serious neuromuscular complication in critically ill patients. It is a consequence of critical illness and is characterized by a systemic inflammatory response, leading to metabolic stress, that causes the development of multiple organ dysfunction. Muscle dysfunction is an important component of this syndrome, and the degree of catabolism corresponds to the severity of the condition. The population of critically ill is aging; thus, we face another negative effect-sarcopenia-the age-related decline of skeletal muscle mass and function. Low-grade inflammation gradually accumulates over time, inhibits proteosynthesis, worsens anabolic resistance, and increases insulin resistance. The cumulative consequence is a gradual decline in muscle recovery and muscle mass. The clinical manifestation for both of the above conditions is skeletal muscle weakness, with macromolecular damage, and a common mechanism-mitochondrial dysfunction. In this review, we compare the molecular mechanisms underlying the two types of muscle atrophy, and address questions regarding possible shared molecular mechanisms, and whether critical illness accelerates the aging process.
Collapse
Affiliation(s)
- Marcela Kanova
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Ostrava, 708 52 Ostrava, Czech Republic
- Institute of Physiology and Pathophysiology, Faculty of Medicine, University of Ostrava, 703 00 Ostrava, Czech Republic
| | - Pavel Kohout
- Department of Internal Medicine, 3rd Faculty of Medicine, Charles University Prague and Teaching Thomayer Hospital, 140 59 Prague, Czech Republic;
| |
Collapse
|
2
|
Sharma B, Dabur R. Role of Pro-inflammatory Cytokines in Regulation of Skeletal Muscle Metabolism: A Systematic Review. Curr Med Chem 2020; 27:2161-2188. [DOI: 10.2174/0929867326666181129095309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
Background:
Metabolic pathways perturbations lead to skeletal muscular atrophy in the
cachexia and sarcopenia due to increased catabolism. Pro-inflammatory cytokines induce the catabolic
pathways that impair the muscle integrity and function. Hence, this review primarily concentrates
on the effects of pro-inflammatory cytokines in regulation of skeletal muscle metabolism.
Objective:
This review will discuss the role of pro-inflammatory cytokines in skeletal muscles during
muscle wasting conditions. Moreover, the coordination among the pro-inflammatory cytokines
and their regulated molecular signaling pathways which increase the protein degradation will be
discussed.
Results:
During normal conditions, pro-inflammatory cytokines are required to balance anabolism
and catabolism and to maintain normal myogenesis process. However, during muscle wasting their
enhanced expression leads to marked destructive metabolism in the skeletal muscles. Proinflammatory
cytokines primarily exert their effects by increasing the expression of calpains and E3
ligases as well as of Nf-κB, required for protein breakdown and local inflammation. Proinflammatory
cytokines also locally suppress the IGF-1and insulin functions, hence increase the
FoxO activation and decrease the Akt function, the central point of carbohydrates lipid and protein
metabolism.
Conclusion:
Current advancements have revealed that the muscle mass loss during skeletal muscular
atrophy is multifactorial. Despite great efforts, not even a single FDA approved drug is available
in the market. It indicates the well-organized coordination among the pro-inflammatory cytokines
that need to be further understood and explored.
Collapse
Affiliation(s)
- Bhawana Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| | - Rajesh Dabur
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana-124001, India
| |
Collapse
|
3
|
Auvin S, Öztürk H, Abaci YT, Mautino G, Meyer-Losic F, Jollivet F, Bashir T, de Thé H, Sahin U. A molecule inducing androgen receptor degradation and selectively targeting prostate cancer cells. Life Sci Alliance 2019; 2:2/4/e201800213. [PMID: 31431473 PMCID: PMC6703138 DOI: 10.26508/lsa.201800213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/16/2022] Open
Abstract
A new molecule induces AR sumoylation and degradation resulting in selective growth inhibition in AR-dependent prostate cancer cells, but its activity is blunted by interference with proteasomes. Aberrant androgen signaling drives prostate cancer and is targeted by drugs that diminish androgen production or impede androgen–androgen receptor (AR) interaction. Clinical resistance arises from AR overexpression or ligand-independent constitutive activation, suggesting that complete AR elimination could be a novel therapeutic strategy in prostate cancers. IRC117539 is a new molecule that targets AR for proteasomal degradation. Exposure to IRC117539 promotes AR sumoylation and ubiquitination, reminiscent of therapy-induced PML/RARA degradation in acute promyelocytic leukemia. Critically, ex vivo, IRC117539-mediated AR degradation induces prostate cancer cell viability loss by inhibiting AR signaling, even in androgen-insensitive cells. This approach may be beneficial for castration-resistant prostate cancer, which remains a clinical issue. In xenograft models, IRC117539 is as potent as enzalutamide in impeding growth, albeit less efficient than expected from ex vivo studies. Unexpectedly, IRC117539 also behaves as a weak proteasome inhibitor, likely explaining its suboptimal efficacy in vivo. Our studies highlight the feasibility of AR targeting for degradation and off-target effects’ importance in modulating drug activity in vivo.
Collapse
Affiliation(s)
| | - Harun Öztürk
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | - Yusuf T Abaci
- Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| | | | | | - Florence Jollivet
- Université de Paris, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) unité mixte de recherche (UMR) 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut de Recherche St. Louis, Hôpital St. Louis, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Hôpital St. Louis, Paris, France
| | | | - Hugues de Thé
- Université de Paris, Hôpital St. Louis, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM) unité mixte de recherche (UMR) 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut de Recherche St. Louis, Hôpital St. Louis, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Hôpital St. Louis, Paris, France.,Assistance publique - Hôpitaux de Paris, Service de Biochimie, Hôpital St. Louis, Paris, France.,College de France, PSL Research University, INSERM UMR 1050, CNRS UMR 7241, Paris, France
| | - Umut Sahin
- Université de Paris, Hôpital St. Louis, Paris, France .,Institut National de la Santé et de la Recherche Médicale (INSERM) unité mixte de recherche (UMR) 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut de Recherche St. Louis, Hôpital St. Louis, Paris, France.,Centre National de la Recherche Scientifique (CNRS) UMR 7212, Hôpital St. Louis, Paris, France.,Department of Molecular Biology and Genetics, Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| |
Collapse
|
4
|
Gerke I, Kaup FJ, Neumann S. Evaluation of serum insulin-like growth factor-1 and 26S proteasome concentrations in healthy dogs and dogs with chronic diseases depending on body condition score. Res Vet Sci 2018; 118:484-490. [PMID: 29751280 DOI: 10.1016/j.rvsc.2018.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 01/24/2023]
Abstract
In patients suffering from chronic diseases, the objective assessment of metabolic states could be of interest for disease prognosis and therapeutic options. Therefore, the aim of this study was to assess insulin-like growth factor-1 (IGF-1) and 26S proteasome (26SP) in healthy dogs and dogs suffering from chronic diseases depending on their body condition score (BCS) and to examine their potential for objective assessment of anabolic and catabolic states. Serum concentrations of IGF-1, an anabolic hormone, and 26SP, a multiprotein complex which is part of the ubiquitin-proteasome pathway, by which the majority of endogenous proteins including the muscle proteins are degraded, were measured in 21 healthy dogs and 20 dogs with chronic diseases by canine ELISA. The concentrations of IGF-1, 26SP and their ratio (IGF-1/26SP) were set in relationship to the BCS of the dogs. When examining healthy and chronically diseased dogs separately, a positive correlation between IGF-1 and the BCS was observed in the healthy group and a negative correlation between 26SP and the BCS was noted in dogs with chronic diseases. Further, dogs suffering from chronic diseases showed higher 26SP concentrations and lower values for IGF-1/26SP than the healthy dogs. Overall, we detected a negative correlation between 26SP and the BCS and a positive correlation between IGF-1/26SP and the BCS. The results of our study indicate usability of IGF-1 for description of anabolic states, while 26SP could be useful for detection and description of catabolic states. Finally, the ratio IGF-1/26SP seems to be promising for assessment of metabolic states.
Collapse
Affiliation(s)
- Ingrid Gerke
- Institute of Veterinary Medicine, Georg August University of Goettingen, Burckhardtweg 2, Goettingen 37077, Germany.
| | - Franz-Josef Kaup
- Pathology Unit, German Primate Center, Leibniz-Institute for Primate Research, Kellnerweg 4, Goettingen 37077, Germany.
| | - Stephan Neumann
- Institute of Veterinary Medicine, Georg August University of Goettingen, Burckhardtweg 2, Goettingen 37077, Germany.
| |
Collapse
|
5
|
Przygodda F, Manfredi LH, Machado J, Gonçalves DAP, Zanon NM, Bonagamba LGH, Machado BH, Kettelhut ÍC, Navegantes LCC. Acute intermittent hypoxia in rats activates muscle proteolytic pathways through a gluccorticoid-dependent mechanism. J Appl Physiol (1985) 2016; 122:1114-1124. [PMID: 27932681 DOI: 10.1152/japplphysiol.00977.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 11/18/2016] [Accepted: 12/03/2016] [Indexed: 02/08/2023] Open
Abstract
Although it is well known that chronic hypoxia induces muscle wasting, the effects of intermittent hypoxia on skeletal muscle protein metabolism remain unclear. We hypothesized that acute intermittent hypoxia (AIH), a challenge that activates the hypothalamic-pituitary-adrenal axis, would alter muscle protein homeostasis through a glucocorticoid-dependent mechanism. Three-week-old rats were submitted to adrenalectomy (ADX) and exposed to 8 h of AIH (6% O2 for 40 s at 9-min intervals). Animals were euthanized, and the soleus and extensor digitorum longus (EDL) muscles were harvested and incubated in vitro for measurements of protein turnover. AIH increased plasma levels of corticosterone and induced insulin resistance as estimated by the insulin tolerance test and lower rates of muscle glucose oxidation and the HOMA index. In both soleus and EDL muscles, rates of overall proteolysis increased after AIH. This rise was accompanied by an increased proteolytic activities of the ubiquitin(Ub)-proteasome system (UPS) and lysosomal and Ca2+-dependent pathways. Furthermore, AIH increased Ub-protein conjugates and gene expression of atrogin-1 and MuRF-1, two key Ub-protein ligases involved in muscle atrophy. In parallel, AIH increased the mRNA expression of the autophagy-related genes LC3b and GABARAPl1. In vitro rates of protein synthesis in skeletal muscles did not differ between AIH and control rats. ADX completely blocked the insulin resistance in hypoxic rats and the AIH-induced activation of proteolytic pathways and atrogene expression in both soleus and EDL muscles. These results demonstrate that AIH induces insulin resistance in association with activation of the UPS, the autophagic-lysosomal process, and Ca2+-dependent proteolysis through a glucocorticoid-dependent mechanism.NEW & NOTEWORTHY Since hypoxia is a condition in which the body is deprived of adequate oxygen supply and muscle wasting is induced, the present work provides evidence linking hypoxia to proteolysis through a glucocorticoid-dependent mechanism. We show that the activation of proteolytic pathways, atrophy-related genes, and insulin resistance in rats exposed to acute intermittent hypoxia was abolished by surgical removal of adrenal gland. This finding will be helpful for understanding of the muscle wasting in hypoxemic conditions.
Collapse
Affiliation(s)
- Franciele Przygodda
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leandro Henrique Manfredi
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Federal University of Fronteira Sul, Chapecó, Santa Catarina, Brazil
| | - Juliano Machado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dawit A P Gonçalves
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Neusa M Zanon
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leni G H Bonagamba
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Benedito H Machado
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ísis C Kettelhut
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; and
| | - Luiz C C Navegantes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil;
| |
Collapse
|
6
|
Aedo JE, Maldonado J, Aballai V, Estrada JM, Bastias-Molina M, Meneses C, Gallardo-Escarate C, Silva H, Molina A, Valdés JA. mRNA-seq reveals skeletal muscle atrophy in response to handling stress in a marine teleost, the red cusk-eel (Genypterus chilensis). BMC Genomics 2015; 16:1024. [PMID: 26626593 PMCID: PMC4667402 DOI: 10.1186/s12864-015-2232-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
Background Fish reared under intensive conditions are repeatedly exposed to stress, which negatively impacts growth. Although most fish follow a conserved pattern of stress response, with increased concentrations of cortisol, each species presents specificities in the cell response and stress tolerance. Therefore, culturing new species requires a detailed knowledge of these specific responses. The red cusk-eel (Genypterus chilensis) is a new economically important marine species for the Chilean aquaculture industry. However, there is no information on the stress- and cortisol-induced mechanisms that decrease skeletal muscle growth in this teleost. Results Using Illumina RNA-seq technology, skeletal muscle sequence reads for G. chilensis were generated under control and handling stress conditions. Reads were mapped onto a reference transcriptome, resulting in the in silico identification of 785 up-regulated and 167 down-regulated transcripts. Gene ontology enrichment analysis revealed a significant up-regulation of catabolic genes associated with skeletal muscle atrophy. These results were validated by RT-qPCR analysis for ten candidates genes involved in ubiquitin-mediated proteolysis, autophagy and skeletal muscle growth. Additionally, using a primary culture of fish skeletal muscle cells, the effect of cortisol was evaluated in relation to red cusk-eel skeletal muscle atrophy. Conclusions The present data demonstrated that handling stress promotes skeletal muscle atrophy in the marine teleost G. chilensis through the expression of components of the ubiquitin-proteasome and autophagy-lysosome systems. Furthermore, cortisol was a powerful inductor of skeletal muscle atrophy in fish myotubes. This study is an important step towards understanding the atrophy system in non-model teleost species and provides novel insights on the cellular and molecular mechanisms that control skeletal muscle growth in early vertebrates. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2232-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge E Aedo
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Jonathan Maldonado
- Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Universidad de Chile, Facultad de Ciencias Agronómicas, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Víctor Aballai
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Juan M Estrada
- Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Macarena Bastias-Molina
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - Cristian Gallardo-Escarate
- Laboratory of Biotechnology and Aquatic Genomics, Universidad de Concepción, Concepción, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile
| | - Herman Silva
- Departamento de Producción Agrícola, Laboratorio de Genómica Funcional & Bioinformática, Universidad de Chile, Facultad de Ciencias Agronómicas, Av. Santa Rosa 11315, La Pintana, 8820808, Santiago, Chile
| | - Alfredo Molina
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile.,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile.,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile
| | - Juan A Valdés
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile. .,Interdisciplinary Center for Aquaculture Research (INCAR), P.O. Box 160-C, Concepción, Chile. .,Centro de Investigación Marina Quintay (CIMARQ), Universidad Andrés Bello, Quintay, Chile.
| |
Collapse
|
7
|
Bodine SC, Furlow JD. Glucocorticoids and Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015. [PMID: 26215994 DOI: 10.1007/978-1-4939-2895-8_7] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glucocorticoids are known to regulate protein metabolism in skeletal muscle, producing a catabolic effect that is opposite that of insulin. In many catabolic diseases, such as sepsis, starvation, and cancer cachexia, endogenous glucocorticoids are elevated contributing to the loss of muscle mass and function. Further, exogenous glucocorticoids are often given acutely and chronically to treat inflammatory conditions such as asthma, chronic obstructive pulmonary disease, and rheumatoid arthritis, resulting in muscle atrophy. This chapter will detail the nature of glucocorticoid-induced muscle atrophy and discuss the mechanisms thought to be responsible for the catabolic effects of glucocorticoids on muscle.
Collapse
Affiliation(s)
- Sue C Bodine
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA,
| | | |
Collapse
|
8
|
Nakashima K, Ishida A, Ijiri D, Ohtsuka A. Effect of dexamethasone on the expression of atrogin-1/MAFbx in chick skeletal muscle. Anim Sci J 2015; 87:405-10. [DOI: 10.1111/asj.12437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Kazuki Nakashima
- Animal Physiology and Nutrition Division; NARO Institute of Livestock and Grassland Science; Tsukuba Japan
| | - Aiko Ishida
- Animal Physiology and Nutrition Division; NARO Institute of Livestock and Grassland Science; Tsukuba Japan
| | - Daichi Ijiri
- Department of Biochemical Science and Technology, Faculty of Agriculture; Kagoshima University; Kagoshima Japan
| | - Akira Ohtsuka
- Department of Biochemical Science and Technology, Faculty of Agriculture; Kagoshima University; Kagoshima Japan
| |
Collapse
|
9
|
Britto FA, Begue G, Rossano B, Docquier A, Vernus B, Sar C, Ferry A, Bonnieu A, Ollendorff V, Favier FB. REDD1 deletion prevents dexamethasone-induced skeletal muscle atrophy. Am J Physiol Endocrinol Metab 2014; 307:E983-93. [PMID: 25315696 DOI: 10.1152/ajpendo.00234.2014] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
REDD1 (regulated in development and DNA damage response 1) has been proposed to inhibit the mechanistic target of rapamycin complex 1 (mTORC1) during in vitro hypoxia. REDD1 expression is low under basal conditions but is highly increased in response to several catabolic stresses, like hypoxia and glucocorticoids. However, REDD1 function seems to be tissue and stress dependent, and its role in skeletal muscle in vivo has been poorly characterized. Here, we investigated the effect of REDD1 deletion on skeletal muscle mass, protein synthesis, proteolysis, and mTORC1 signaling pathway under basal conditions and after glucocorticoid administration. Whereas skeletal muscle mass and typology were unchanged between wild-type (WT) and REDD1-null mice, oral gavage with dexamethasone (DEX) for 7 days reduced tibialis anterior and gastrocnemius muscle weights as well as tibialis anterior fiber size only in WT. Similarly, REDD1 deletion prevented the inhibition of protein synthesis and mTORC1 activity (assessed by S6, 4E-BP1, and ULK1 phosphorylation) observed in gastrocnemius muscle of WT mice following single DEX administration for 5 h. However, our results suggest that REDD1-mediated inhibition of mTORC1 in skeletal muscle is not related to the modulation of the binding between TSC2 and 14-3-3. In contrast, our data highlight a new mechanism involved in mTORC1 inhibition linking REDD1, Akt, and PRAS40. Altogether, these results demonstrated in vivo that REDD1 is required for glucocorticoid-induced inhibition of protein synthesis via mTORC1 downregulation. Inhibition of REDD1 may thus be a strategy to limit muscle loss in glucocorticoid-mediated atrophy.
Collapse
Affiliation(s)
- Florian A Britto
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France
| | - Gwenaelle Begue
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France
| | - Bernadette Rossano
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France
| | - Aurélie Docquier
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France
| | - Barbara Vernus
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France
| | - Chamroeun Sar
- Institut National de la Sante et de la Recherche Medicale (INSERM) U 583, Institut de Neuroscience de Montpellier, France
| | - Arnaud Ferry
- Institut de Myologie, INSERM, U974, Centre National de la Recherche Scientifique UMR 7215, Université Pierre et Marie Curie, Paris, France; and Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Anne Bonnieu
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France
| | - Vincent Ollendorff
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France
| | - François B Favier
- Institut National de la Recherche Agronomique, UMR 866 Dynamique Musculaire et Métabolisme, F-34000 Montpellier, France; Université Montpellier 1, F-34000 Montpellier, France; Université Montpellier 2, F-34000 Montpellier, France;
| |
Collapse
|
10
|
Supplementation with l-carnitine downregulates genes of the ubiquitin proteasome system in the skeletal muscle and liver of piglets. Animal 2013; 6:70-8. [PMID: 22436156 DOI: 10.1017/s1751731111001327] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Supplementation of carnitine has been shown to improve performance characteristics such as protein accretion in growing pigs. The molecular mechanisms underlying this phenomenon are largely unknown. Based on recent results from DNA microchip analysis, we hypothesized that carnitine supplementation leads to a downregulation of genes of the ubiquitin proteasome system (UPS). The UPS is the most important system for protein breakdown in tissues, which in turn could be an explanation for increased protein accretion. To test this hypothesis, we fed sixteen male, four-week-old piglets either a control diet or the same diet supplemented with carnitine and determined the expression of several genes involved in the UPS in the liver and skeletal muscle. To further determine whether the effects of carnitine on the expression of genes of the UPS are mediated directly or indirectly, we also investigated the effect of carnitine on the expression of genes of the UPS in cultured C2C12 myotubes and HepG2 liver cells. In the liver of piglets fed the carnitine-supplemented diet, the relative mRNA levels of atrogin-1, E214k and Psma1 were lower than in those of the control piglets (P < 0.05). In skeletal muscle, the relative mRNA levels of atrogin-1, MuRF1, E214k, Psma1 and ubiquitin were lower in piglets fed the carnitine-supplemented diet than that in control piglets (P < 0.05). Incubating C2C12 myotubes and HepG2 liver cells with increasing concentrations of carnitine had no effect on basal and/or hydrocortisone-stimulated mRNA levels of genes of the UPS. In conclusion, this study shows that dietary carnitine decreases the transcript levels of several genes involved in the UPS in skeletal muscle and liver of piglets, whereas carnitine has no effect on the transcript levels of these genes in cultivated HepG2 liver cells and C2C12 myotubes. These data suggest that the inhibitory effect of carnitine on the expression of genes of the UPS is mediated indirectly, probably via modulating the release of inhibitors of the UPS such as IGF-1. The inhibitory effect of carnitine on the expression of genes of the UPS might explain, at least partially, the increased protein accretion in piglets supplemented with carnitine.
Collapse
|
11
|
Gupta AK, Shah N, Thakar AB. Effect of Majja Basti (therapeutic enema) and Asthi Shrinkhala (Cissus quadrangularis) in the management of Osteoporosis (Asthi-Majjakshaya). Ayu 2012; 33:110-3. [PMID: 23049194 PMCID: PMC3456847 DOI: 10.4103/0974-8520.100326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Osteoporosis is a systemic disorder that affects entire skeleton, which is a metabolic bone disease characterized by low bone mass and microarchitectural deterioration of the skeleton, leading to enhanced bone fragility and a consequent increase in fracture risk. In Ayurveda, it can be correlated with Asthi-Majjakshaya. Basti (therapeutic enema) is the prime therapy for Asthi related diseases and Asthi Shrinkhala (Cissus quadrangularis) is the drug which is being used for strengthening of bone by traditional Vaidya since long. It has been selected for oral administration. In clinical trial, 12 patients treated with Majja Basti along with Asthi Shrinkhala pulp capsules and results are very encouraging.
Collapse
Affiliation(s)
- Ajay K Gupta
- Lecturer, Department of Panchakarma, Dayanand Ayurveda College and Hospital, Jalandhar, Punjab, India
| | | | | |
Collapse
|
12
|
Fanzani A, Conraads VM, Penna F, Martinet W. Molecular and cellular mechanisms of skeletal muscle atrophy: an update. J Cachexia Sarcopenia Muscle 2012; 3:163-79. [PMID: 22673968 PMCID: PMC3424188 DOI: 10.1007/s13539-012-0074-6] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/13/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy is defined as a decrease in muscle mass and it occurs when protein degradation exceeds protein synthesis. Potential triggers of muscle wasting are long-term immobilization, malnutrition, severe burns, aging as well as various serious and often chronic diseases, such as chronic heart failure, obstructive lung disease, renal failure, AIDS, sepsis, immune disorders, cancer, and dystrophies. Interestingly, a cooperation between several pathophysiological factors, including inappropriately adapted anabolic (e.g., growth hormone, insulin-like growth factor 1) and catabolic proteins (e.g., tumor necrosis factor alpha, myostatin), may tip the balance towards muscle-specific protein degradation through activation of the proteasomal and autophagic systems or the apoptotic pathway. Based on the current literature, we present an overview of the molecular and cellular mechanisms that contribute to muscle wasting. We also focus on the multifacetted therapeutic approach that is currently employed to prevent the development of muscle wasting and to counteract its progression. This approach includes adequate nutritional support, implementation of exercise training, and possible pharmacological compounds.
Collapse
Affiliation(s)
- Alessandro Fanzani
- Department of Biomedical Sciences and Biotechnologies and Interuniversitary Institute of Myology (IIM), University of Brescia, viale Europa 11, 25123, Brescia, Italy,
| | | | | | | |
Collapse
|
13
|
Metabolic syndrome: a proprietary extract of Cissus quadrangularis formulation in the management of metabolic syndrome, weight loss, and central obesity. Holist Nurs Pract 2012; 26:228-30. [PMID: 22694868 DOI: 10.1097/hnp.0b013e31825b192a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Hwee DT, Gomes AV, Bodine SC. Cardiac proteasome activity in muscle ring finger-1 null mice at rest and following synthetic glucocorticoid treatment. Am J Physiol Endocrinol Metab 2011; 301:E967-77. [PMID: 21828340 PMCID: PMC3214003 DOI: 10.1152/ajpendo.00165.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Muscle ring finger-1 (MuRF1) is a muscle-specific E3 ubiquitin ligase that has been implicated in the regulation of cardiac mass through its control of the ubiquitin proteasome system. While it has been suggested that MuRF1 is required for cardiac atrophy, a resting cardiac phenotype has not been reported in mice with a null deletion [knockout (KO)] of MuRF1. Here, we report that MuRF1 KO mice have significantly larger hearts than age-matched wild-type (WT) littermates at ≥ 6 mo of age and that loss of cardiac mass can occur in the absence of MuRF1. The objective of this study was to determine whether changes in proteasome activity were responsible for the cardiac phenotypes observed in MuRF1 KO mice. Cardiac function, architecture, and proteasome activity were analyzed at rest and following 28 days of dexamethasone (Dex) treatment in 6-mo-old WT and MuRF1 KO mice. Echocardiography demonstrated normal cardiac function in the enlarged hearts in MURF1 KO mice. At rest, heart mass and cardiomyocyte diameter were significantly greater in MuRF1 KO than in WT mice. The increase in cardiac size in MuRF1 KO mice was related to a decrease in proteasome activity and an increase in Akt signaling relative to WT mice. Dex treatment induced a significant loss of cardiac mass in MuRF1 KO, but not WT, mice. Furthermore, Dex treatment resulted in an increase in proteasome activity in KO, but a decrease in WT, mice. In contrast, Akt/mammalian target of rapamycin signaling decreased in MuRF1 KO mice and increased in WT mice in response to Dex treatment. These findings demonstrate that MuRF1 plays an important role in regulating cardiac size through alterations in protein turnover and that MuRF1 is not required to induce cardiac atrophy.
Collapse
Affiliation(s)
- Darren T Hwee
- 2Molecular, Cellular, and Integrative Physiology Graduate Group, University of California, Davis, Davis, California, USA
| | | | | |
Collapse
|
15
|
Tsumagari K, Chang SC, Lacey M, Baribault C, Chittur SV, Sowden J, Tawil R, Crawford GE, Ehrlich M. Gene expression during normal and FSHD myogenesis. BMC Med Genomics 2011; 4:67. [PMID: 21951698 PMCID: PMC3204225 DOI: 10.1186/1755-8794-4-67] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 09/27/2011] [Indexed: 01/31/2023] Open
Abstract
Background Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contraction of an array of tandem 3.3-kb repeats (D4Z4) at 4q35. Within each repeat unit is a gene, DUX4, that can encode a protein containing two homeodomains. A DUX4 transcript derived from the last repeat unit in a contracted array is associated with pathogenesis but it is unclear how. Methods Using exon-based microarrays, the expression profiles of myogenic precursor cells were determined. Both undifferentiated myoblasts and myoblasts differentiated to myotubes derived from FSHD patients and controls were studied after immunocytochemical verification of the quality of the cultures. To further our understanding of FSHD and normal myogenesis, the expression profiles obtained were compared to those of 19 non-muscle cell types analyzed by identical methods. Results Many of the ~17,000 examined genes were differentially expressed (> 2-fold, p < 0.01) in control myoblasts or myotubes vs. non-muscle cells (2185 and 3006, respectively) or in FSHD vs. control myoblasts or myotubes (295 and 797, respectively). Surprisingly, despite the morphologically normal differentiation of FSHD myoblasts to myotubes, most of the disease-related dysregulation was seen as dampening of normal myogenesis-specific expression changes, including in genes for muscle structure, mitochondrial function, stress responses, and signal transduction. Other classes of genes, including those encoding extracellular matrix or pro-inflammatory proteins, were upregulated in FSHD myogenic cells independent of an inverse myogenesis association. Importantly, the disease-linked DUX4 RNA isoform was detected by RT-PCR in FSHD myoblast and myotube preparations only at extremely low levels. Unique insights into myogenesis-specific gene expression were also obtained. For example, all four Argonaute genes involved in RNA-silencing were significantly upregulated during normal (but not FSHD) myogenesis relative to non-muscle cell types. Conclusions DUX4's pathogenic effect in FSHD may occur transiently at or before the stage of myoblast formation to establish a cascade of gene dysregulation. This contrasts with the current emphasis on toxic effects of experimentally upregulated DUX4 expression at the myoblast or myotube stages. Our model could explain why DUX4's inappropriate expression was barely detectable in myoblasts and myotubes but nonetheless linked to FSHD.
Collapse
Affiliation(s)
- Koji Tsumagari
- Human Genetics Program, Tulane Medical School, New Orleans, LA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Baehr LM, Furlow JD, Bodine SC. Muscle sparing in muscle RING finger 1 null mice: response to synthetic glucocorticoids. J Physiol 2011; 589:4759-76. [PMID: 21807613 DOI: 10.1113/jphysiol.2011.212845] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Skeletal muscle atrophy occurs under a variety of conditions and can result from alterations in both protein synthesis and protein degradation. The muscle-specific E3 ubiquitin ligases, MuRF1 and MAFbx, are excellent markers of muscle atrophy and increase under divergent atrophy-inducing conditions such as denervation and glucocorticoid treatment. While deletion of MuRF1 or MAFbx has been reported to spare muscle mass following 14 days of denervation, their role in other atrophy-inducing conditions is unclear. The goal of this study was to determine whether deletion of MuRF1 or MAFbx attenuates muscle atrophy after 2 weeks of treatment with the synthetic glucocorticoid dexamethasone (DEX). The response of the triceps surae (TS) and tibialis anterior (TA) muscles to 14 days of DEX treatment (3 mg kg(-1) day(-1)) was examined in 4 month-old male and female wild type (WT) and MuRF1 or MAFbx knock out (KO) mice. Following 14 days of DEX treatment, muscle wet weight was significantly decreased in the TS and TA of WT mice. Comparison of WT and KO mice following DEX treatment revealed significant sparing of mass in both sexes of the MuRF1 KO mice, but no muscle sparing in MAFbx KO mice. Further analysis of the MuRF1 KO mice showed significant sparing of fibre cross-sectional area and tension output in the gastrocnemius (GA) after DEX treatment. Muscle sparing in the MuRF1 KO mice was related to maintenance of protein synthesis, with no observed increases in protein degradation in either WT or MuRF1 KO mice. These results demonstrate that MuRF1 and MAFbx do not function similarly under all atrophy models, and that the primary role of MuRF1 may extend beyond controlling protein degradation via the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Leslie M Baehr
- Department of Neurobiology, Physiology, and Behavior, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
17
|
Wing SS, Lecker SH, Jagoe RT. Proteolysis in illness-associated skeletal muscle atrophy: from pathways to networks. Crit Rev Clin Lab Sci 2011; 48:49-70. [PMID: 21699435 DOI: 10.3109/10408363.2011.586171] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Improvements in health in the past decades have resulted in increased numbers of the elderly in both developed and developing regions of the world. Advances in therapy have also increased the prevalence of patients with chronic and degenerative diseases. Muscle wasting, a feature of most chronic diseases, is prominent in the elderly and contributes to both morbidity and mortality. A major research goal has been to identify the proteolytic system(s) that is responsible for the degradation of proteins that occurs in muscle atrophy. Findings over the past 20 years have clearly confirmed an important role of the ubiquitin proteasome system in mediating muscle proteolysis, particularly that of myofibrillar proteins. However, recent observations have provided evidence that autophagy, calpains and caspases also contribute to the turnover of muscle proteins in catabolic states, and furthermore, that these diverse proteolytic systems interact with each other at various levels. Importantly, a number of intracellular signaling pathways such as the IGF1/AKT, myostatin/Smad, PGC1, cytokine/NFκB, and AMPK pathways are now known to interact and can regulate some of these proteolytic systems in a coordinated manner. A number of loss of function studies have identified promising therapeutic approaches to the prevention and treatment of wasting. However, additional biomarkers and other approaches to improve early identification of patients who would benefit from such treatment need to be developed. The current data suggests a network of interacting proteolytic and signaling pathways in muscle. Future studies are needed to improve understanding of the nature and control of these interactions and how they work to preserve muscle function under various states of growth and atrophy.
Collapse
Affiliation(s)
- Simon S Wing
- Departments of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada.
| | | | | |
Collapse
|
18
|
Effects of Dichrostachys glomerata spice on cardiovascular diseases risk factors in normoglycemic and type 2 diabetic obese volunteers. Food Res Int 2011. [DOI: 10.1016/j.foodres.2010.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Olanow CW, McNaught K. Parkinson's disease, proteins, and prions: Milestones. Mov Disord 2011; 26:1056-71. [DOI: 10.1002/mds.23767] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
20
|
Lebid' I, Dosenko VI, Skybo HH. Expression of proteasome subunits PSMB5 and PSMB9 mRNA in hippocampal neurons in experimental diabetes mellitus: link with apoptosis and necrosis. ACTA ACUST UNITED AC 2010. [DOI: 10.15407/fz56.04.066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Zheng B, Ohkawa S, Li H, Roberts-Wilson TK, Price SR. FOXO3a mediates signaling crosstalk that coordinates ubiquitin and atrogin-1/MAFbx expression during glucocorticoid-induced skeletal muscle atrophy. FASEB J 2010; 24:2660-9. [PMID: 20371624 DOI: 10.1096/fj.09-151480] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Muscle atrophy is a consequence of chronic diseases (e.g., diabetes) and glucocorticoid-induced insulin resistance that results from enhanced activity of the ubiquitin-proteasome pathway. The PI3K/Akt pathway inhibits the FOXO-mediated transcription of the muscle-specific E3 ligase atrogin-1/MAFbx (AT-1), whereas the MEK/ERK pathway increases Sp1 activity and ubiquitin (UbC) expression. The observations raise a question about how the transcription of these atrogenes is synchronized in atrophic muscle. We tested a signaling model in which FOXO3a mediates crosstalk between the PI3K/Akt and MEK/ERK pathways to coordinate AT-1 and UbC expression. In rat L6 myotubes, dexamethasone (> or = 24 h) reduced insulin receptor substrate (IRS)-1 protein and PI3K/Akt signaling and increased AT-1 mRNA. IRS-2 protein, MEK/ERK signaling, Sp1 phosphorylation, and UbC transcription were simultaneously increased. Knockdown of IRS-1 using small interfering RNA or adenovirus-mediated expression of constitutively activated FOXO3a increased IRS-2 protein, MEK/ERK signaling, and UbC expression. Changes in PI3K/Akt and MEK/ERK signaling were recapitulated in rat muscles undergoing atrophy due to streptozotocin-induced insulin deficiency and concurrently elevated glucocorticoid production. IRS-1 and Akt phosphorylation were decreased, whereas MEK/ERK signaling and expression of IRS-2, UbC and AT-1 were increased. We conclude that FOXO3a mediates a reciprocal communication between the IRS-1/PI3K/Akt and IRS-2/MEK/ERK pathways that coordinates AT-1 and ubiquitin expression during muscle atrophy.
Collapse
Affiliation(s)
- Bin Zheng
- Renal Division, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | |
Collapse
|
22
|
Engelbrecht AM, Smith C, Neethling I, Thomas M, Ellis B, Mattheyse M, Myburgh KH. Daily brief restraint stress alters signaling pathways and induces atrophy and apoptosis in rat skeletal muscle. Stress 2010; 13:132-41. [PMID: 19929313 DOI: 10.3109/10253890903089834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle protein loss, known as atrophy, occurs during inactivity, disease, and aging. Atrophy may be the result of increased catabolic factors, e.g. glucocorticoids, or reduced influence of anabolic factors, e.g. insulin. The purpose of this study was to investigate atrophy, signaling mechanisms, and apoptosis in a rat model of restraint stress in 40 adult male Wistar rats. Due to the anxiolytic effects of Sutherlandia frutescens, we also determined if any of the molecular events in gastrocnemius muscle would be affected by daily treatment with S. frutescens. Rats were randomly assigned to four experimental groups: control placebo (CP); control Sutherlandia (CS) treatment; Restraint Placebo (RP) and Restraint Sutherlandia (RS) treatment. Restraint resulted in a significant increase in myostatin which was significantly reduced with Sutherlandia treatment. In addition, MyoD expression was significantly attenuated in RP and this effect was also counteracted by Sutherlandia treatment. Restraint also resulted in a significant attenuation of the PI3-Kinase/Akt signaling pathway and increased apoptosis which was reversed with Sutherlandia treatment. This study demonstrates for the first time that psychological stress elevates markers of muscle atrophy and apoptosis, whilst a herbal remedy, Sutherlandia, inhibits apoptosis, and signaling pathways associated with muscle atrophy.
Collapse
Affiliation(s)
- Anna-Mart Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa.
| | | | | | | | | | | | | |
Collapse
|
23
|
Cho JE, Fournier M, Da X, Lewis MI. Time course expression of Foxo transcription factors in skeletal muscle following corticosteroid administration. J Appl Physiol (1985) 2009; 108:137-45. [PMID: 19850732 DOI: 10.1152/japplphysiol.00704.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased expression of forkhead box O (Foxo) transcription factors were reported in cultured myotubes and mouse limb muscle with corticosteroid (CS) treatment. We previously reported that administration of CS to rats resulted in muscle fiber atrophy only by day 7. The aim of this study, therefore, was to evaluate the time-course changes in the expression of Foxo transcription factors and muscle-specific ubiquitin E3 ligases in rat limb muscle following CS administration. Triamcinolone (TRI; 1 mg x kg(-1) x day(-1) im) was administered for 1, 3, or 7 days. Control (CTL) rats were given saline. Muscle mRNA was analyzed by real-time RT-PCR. Compared with CTL, body weights of TRI-treated animals decreased by 3, 12, and 21% at days 1, 3, and 7, respectively. Muscle IGF-1 mRNA levels decreased by 33, 65, and 58% at days 1, 3, and 7 in TRI-treated rats compared with CTL. Levels of phosphorylated Akt were 28, 50, and 36% lower in TRI animals at these time points. Foxo1 mRNA increased progressively by 1.2-, 1.4-, and 2.5-fold at days 1, 3, and 7 in TRI animals. Similar changes were noted in the expression of Foxo3a mRNA (1.3-, 1.4-, and 2.6-fold increments). By contrast, Foxo4 mRNA was not significantly changed in TRI animals. With TRI, muscle atrophy F box/Atrogin-1 increased by 1.8-, 4.1-, and 7.5-fold at days 1, 3, and 7 compared with CTL rats. By contrast, muscle RING finger 1 increased only from day 7 (2.7-fold). Gradual reduction in IGF-I expression with TRI over the time series paralleled that of Akt. These findings are consistent with a progressive stimulus to muscle protein degradation and the need to process/remove disassembled muscle proteins via the ubiquitin-proteasome system. Elucidating the dynamic catabolic responses to CS challenge is important in understanding the mechanisms underlying muscle atrophy and therapeutic measures to offset this.
Collapse
Affiliation(s)
- John E Cho
- Division of Pulmonary/Critical Care Medicine, The Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | | |
Collapse
|
24
|
Rieu I, Magne H, Savary-Auzeloux I, Averous J, Bos C, Peyron MA, Combaret L, Dardevet D. Reduction of low grade inflammation restores blunting of postprandial muscle anabolism and limits sarcopenia in old rats. J Physiol 2009; 587:5483-92. [PMID: 19752122 DOI: 10.1113/jphysiol.2009.178319] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ageing is characterized by a decline in muscle mass that could be explained by a defect in the regulation of postprandial muscle protein metabolism. Indeed, the stimulatory effect of food intake on protein synthesis and its inhibitory effect on proteolysis is blunted in old muscles from both animals and humans. Recently, low grade inflammation has been suspected to be one of the factors responsible for the decreased sensitivity of muscle protein metabolism to food intake. This study was undertaken to examine the effect of long-term prevention of low grade inflammation on muscle protein metabolism during ageing. Old rats (20 months of age) were separated into two groups: a control group and a group (IBU) in which low grade inflammation had been reduced with a non-steroidal anti inflammatory drug (ibuprofen). After 5 months of treatment, inflammatory markers and cytokine levels were significantly improved in treated old rats when compared with the controls: -22.3% fibrinogen, -54.2% alpha2-macroglobulin, +12.6% albumin, -59.6% IL(6) and -45.9% IL(1beta) levels. As expected, food intake had no effect on muscle protein synthesis or muscle proteolysis in controls whereas it significantly increased muscle protein synthesis by 24.8% and significantly decreased proteolysis in IBU rats. The restoration of muscle protein anabolism at the postprandial state by controlling the development of low grade inflammation in old rats significantly decreased muscle mass loss between 20 and 25 months of age. In conclusion, the observations made in this study have identified low grade inflammation as an important target for pharmacological, nutritional and lifestyle interventions that aim to limit sarcopenia and muscle weakness in the rapidly growing elderly population in Europe and North America.
Collapse
Affiliation(s)
- Isabelle Rieu
- Inra, UMR 1019 Nutrition Humaine, Saint Genés Champanelle, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Attaix D, Combaret L, Béchet D, Taillandier D. Role of the ubiquitin-proteasome pathway in muscle atrophy in cachexia. Curr Opin Support Palliat Care 2008; 2:262-6. [DOI: 10.1097/spc.0b013e3283196ac2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
26
|
Critical illness myopathy: sepsis-mediated failure of the peripheral nervous system. Eur J Anaesthesiol 2008; 42:73-82. [PMID: 18289421 DOI: 10.1017/s0265021507003262] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With better survival of critically ill patients, 'de novo' arising neuromuscular complications like critical illness myopathy or polyneuropathy have been increasingly observed. Prolonged hospitalization not only imposes risks like pneumonia or thrombosis on patients but also represents a real budget threat to modern intensive-care medicine. Clinical symptoms like muscle weakness and weaning failure are common to critical illness myopathy and critical illness polyneuropathy and do not allow for distinction. Specific therapies are not yet available, and the quest for the pathomechanisms has proved more complicated than anticipated. Especially for critical illness myopathy, multiple sites of disturbances to the excitation-contraction coupling cascade are possible causes of muscle weakness. The present review summarizes the epidemiological, clinical and diagnostic features of critical illness myopathy and then focuses on current concepts of the presumed pathomechanisms of critical illness myopathy. Sepsis was shown to be a major cause of critical illness myopathy and special emphasis will be placed on how sepsis and inflammatory mediators influence (i) the membrane excitability at the level of voltage-gated ion channels and (ii) the intracellular protein signalling that results in selective loss of myosin protein content and muscle wasting. For (i), critical illness myopathy represents a new type of acquired channelopathy affecting the inactivation properties of Na+ channels. For (ii), both protein proteolysis and protein build up at the transcriptional level seem to be involved. Findings from different studies are put into a common context to propose a model for cytokine-mediated failure of muscle in severe sepsis. This can open a series of new possible trials to test specific therapeutic strategies in the future.
Collapse
|
27
|
Dröge W, Kinscherf R. Aberrant insulin receptor signaling and amino acid homeostasis as a major cause of oxidative stress in aging. Antioxid Redox Signal 2008; 10:661-78. [PMID: 18162053 DOI: 10.1089/ars.2007.1953] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mechanisms leading to the increase in free radical-derived oxidative stress in "normal aging" remains obscure. Here we present our perspective on studies from different fields that reveal a previously unnoticed vicious cycle of oxidative stress. The plasma cysteine concentrations during starvation in the night and early morning hours (the postabsorptive state) decreases with age. This decrease is associated with a decrease in tissue concentrations of the cysteine derivative and quantitatively important antioxidant glutathione. The decrease in cysteine reflects changes in the autophagic protein catabolism that normally ensures free amino acid homeostasis during starvation. Autophagy is negatively regulated by the insulin receptor signaling cascade that is enhanced by oxidative stress in the absence of insulin. This synopsis of seemingly unrelated processes reveals a novel mechanism of progressive oxidative stress in which decreasing antioxidant concentrations and increasing basal (postabsorptive) insulin receptor signaling activity compromise not only the autophagic protein catabolism but also the activity of FOXO transcription factors (i.e., two functions that were found to have an impact on lifespan in several animal models of aging). In addition, the aging-related decrease in glutathione levels is likely to facilitate certain "secondary" disease-related mechanisms of oxidative stress. Studies on cysteine supplementation show therapeutic promise.
Collapse
Affiliation(s)
- Wulf Dröge
- Department of Research and Development, Immunotec Inc, Vaudreuil, Québec, Canada.
| | | |
Collapse
|
28
|
Glucocorticoids differentially regulate degradation of MyoD and Id1 by N-terminal ubiquitination to promote muscle protein catabolism. Proc Natl Acad Sci U S A 2008; 105:3339-44. [PMID: 18296633 DOI: 10.1073/pnas.0800165105] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accelerated protein degradation via the ubiquitin-proteasome pathway is the principal cause of skeletal muscle wasting associated with common human disease states and pharmacological treatment with glucocorticoids. Although many protein regulatory factors essential for muscle development and regeneration are degraded via the ubiquitin system, little is known about the mechanisms and regulation of this pathway that promote wasting muscle. Here, we demonstrate that, in differentiated myotubes, glucocorticoid, via the glucocorticoid receptor, selectively induces a decrease in protein abundance of MyoD, a master switch for muscle development and regeneration, but not that of its negative regulator Id1. This decrease in MyoD protein results from accelerated degradation after glucocorticoid exposure. Using MyoD and Id1 mutants deficient in either N terminus-dependent or internal lysine-dependent ubiquitination, we further show that these ubiquitination pathways of MyoD degradation are regulated differently from those of Id1 degradation. Specifically, glucocorticoid activates the N-terminal ubiquitination pathway in MyoD degradation in myotubes, without concomitant effects on Id1 degradation. This effect of glucocorticoid on MyoD and Id1 protein degradation is associated with the distinct cellular compartments in which their degradation occurs. Taken together, these results support a key role for the N terminus-dependent ubiquitination pathway in the physiology of muscle protein degradation.
Collapse
|
29
|
Lim KL, Tan JMM. Role of the ubiquitin proteasome system in Parkinson's disease. BMC BIOCHEMISTRY 2007; 8 Suppl 1:S13. [PMID: 18047737 PMCID: PMC2106364 DOI: 10.1186/1471-2091-8-s1-s13] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder. Although a subject of intense research, the etiology of PD remains poorly understood. Recently, several lines of evidence have implicated an intimate link between aberrations in the ubiquitin proteasome system (UPS) and PD pathogenesis. Derangements of the UPS, which normally functions as a type of protein degradation machinery, lead to alterations in protein homeostasis that could conceivably promote the toxic accumulation of proteins detrimental to neuronal survival. Not surprisingly, various cellular and animal models of PD that are based on direct disruption of UPS function reproduce the most prominent features of PD. Although persuasive, new developments in the past few years have in fact raised serious questions about the link between the UPS and PD. Here I review current thoughts and controversies about their relationship and discuss whether strategies aimed at mitigating UPS dysfunction could represent rational ways to intervene in the disease. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).
Collapse
Affiliation(s)
- Kah-Leong Lim
- Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore.
| | | |
Collapse
|
30
|
Nury D, Doucet C, Coux O. Roles and potential therapeutic targets of the ubiquitin proteasome system in muscle wasting. BMC BIOCHEMISTRY 2007; 8 Suppl 1:S7. [PMID: 18047744 PMCID: PMC2106371 DOI: 10.1186/1471-2091-8-s1-s7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle wasting, characterized by the loss of protein mass in myofibers, is in most cases largely due to the activation of intracellular protein degradation by the ubiquitin proteasome system (UPS). During the last decade, mechanisms contributing to this activation have been unraveled and key mediators of this process identified. Even though much remains to be understood, the available information already suggests screens for new compounds inhibiting these mechanisms and highlights the potential for pharmaceutical drugs able to treat muscle wasting when it becomes deleterious. This review presents an overview of the main pathways contributing to UPS activation in muscle and describes the present state of efforts made to develop new strategies aimed at blocking or slowing muscle wasting. Publication history: Republished from Current BioData's Targeted Proteins database (TPdb; ).
Collapse
Affiliation(s)
- David Nury
- CRBM-CNRS UMR5237, IFR22, 1919 route de Mende, 34000 Montpellier, France.
| | | | | |
Collapse
|
31
|
Menconi M, Fareed M, O'Neal P, Poylin V, Wei W, Hasselgren PO. Role of glucocorticoids in the molecular regulation of muscle wasting. Crit Care Med 2007; 35:S602-8. [PMID: 17713416 DOI: 10.1097/01.ccm.0000279194.11328.77] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review glucocorticoid-regulated molecular mechanisms of muscle wasting. DESIGN Review of recent literature describing the role of glucocorticoids in the regulation of proteolytic mechanisms, transcription factors, and nuclear cofactors in skeletal muscle during various catabolic conditions. MAIN RESULTS Catabolic doses of glucocorticoids induce muscle atrophy both in vivo and in vitro by stimulating protein breakdown and inhibiting protein synthesis. Signaling pathways that regulate muscle protein synthesis at the translational level are inhibited by glucocorticoids. Glucocorticoids increase the expression and activity of the ubiquitin-proteasome pathway, a major proteolytic mechanism of muscle atrophy. The expression and activity of muscle wasting-related transcription factors, including C/EBPbeta and delta and Forkhead box O 1, 3, and 4, as well as the nuclear cofactor p300, are up-regulated by glucocorticoid excess. CONCLUSIONS Muscle wasting in various catabolic conditions is, at least in part, regulated by glucocorticoids. The role of glucocorticoids in muscle wasting is complex and reflects regulation at the molecular level of multiple mechanisms influencing both synthesis and degradation of muscle proteins.
Collapse
Affiliation(s)
- Michael Menconi
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
32
|
Vegiopoulos A, Herzig S. Glucocorticoids, metabolism and metabolic diseases. Mol Cell Endocrinol 2007; 275:43-61. [PMID: 17624658 DOI: 10.1016/j.mce.2007.05.015] [Citation(s) in RCA: 339] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 05/14/2007] [Accepted: 05/17/2007] [Indexed: 12/14/2022]
Abstract
Since the discovery of the beneficial effects of adrenocortical extracts for treating adrenal insufficiency more than 80 years ago, glucocorticoids (GC) and their cognate, intracellular receptor, the glucocorticoid receptor (GR) have been characterized as critical components of the delicate hormonal control system that determines energy homeostasis in mammals. Whereas physiological levels of GCs are required for proper metabolic control, excessive GC action has been tied to a variety of pandemic metabolic diseases, such as type II diabetes and obesity. Highlighted by its importance for human health, the investigation of molecular mechanisms of GC/GR action has become a major focus in biomedical research. In particular, the understanding of tissue-specific functions of the GC-GR pathway has been proven to be of substantial value for the identification of novel therapeutic options in the treatment of severe metabolic disorders. Therefore, this review focuses on the role of the GC-GR axis for metabolic homeostasis and dysregulation, emphasizing tissue-specific functions of GCs in the control of energy metabolism.
Collapse
|
33
|
Oben J, Enonchong E, Kuate D, Mbanya D, Thomas TC, Hildreth DJ, Ingolia TD, Tempesta MS. The effects of ProAlgaZyme novel algae infusion on metabolic syndrome and markers of cardiovascular health. Lipids Health Dis 2007; 6:20. [PMID: 17803818 PMCID: PMC2034560 DOI: 10.1186/1476-511x-6-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/05/2007] [Indexed: 01/09/2023] Open
Abstract
Background Metabolic Syndrome, or Syndrome X, is characterized by a set of metabolic and lipid imbalances that greatly increases the risk of developing diabetes and cardiovascular disease. The syndrome is highly prevalent in the United States and worldwide, and treatments are in high demand. ProAlgaZyme, a novel and proprietary freshwater algae infusion in purified water, has been the subject of several animal studies and has demonstrated low toxicity even with chronic administration at elevated doses. The infusion has been used historically for the treatment of several inflammatory and immune disorders in humans and is considered well-tolerated. Here, the infusion is evaluated for its effects on the cardiovascular risk factors present in metabolic syndrome in a randomized double-blind placebo-controlled study involving 60 overweight and obese persons, ages 25–60. All participants received four daily oral doses (1 fl oz) of ProAlgaZyme (N = 22) or water placebo (N = 30) for a total of 10 weeks, and were encouraged to maintain their normal levels of physical activity. Blood sampling and anthropometric measurements were taken at the beginning of the study period and after 4, 8 and 10 weeks of treatment. Eight participants did not complete the study. Results ProAlgaZyme brought about statistically significant (p < 0.001) reductions in the following: weight, body fat, total cholesterol, LDL-cholesterol, triglycerides, C-reactive protein and fasting blood glucose levels, accompanied by a significant (p < 0.001) increase in HDL-cholesterol levels over the 10-week study period. The infusion was well-tolerated and no side effects were noted. Conclusion ProAlgaZyme (4 fl oz daily) consumption resulted in significant reductions in weight and blood glucose levels, while significantly improving serum lipid profiles and reducing markers of inflammation, thus improving cardiovascular risk factors in overweight and obese subjects over a course of 10 weeks with an absence of adverse side effects. Trial Registration US ClinicalTrials.gov NCT00489333
Collapse
Affiliation(s)
- Julius Oben
- Laboratory of Nutrition and Nutritional Biochemistry, Department of Biochemistry, BP 812, University of Yaoundé I, Yaoundé, Cameroon
| | - Ebangha Enonchong
- Laboratory of Nutrition and Nutritional Biochemistry, Department of Biochemistry, BP 812, University of Yaoundé I, Yaoundé, Cameroon
| | - Dieudonne Kuate
- Laboratory of Nutrition and Nutritional Biochemistry, Department of Biochemistry, BP 812, University of Yaoundé I, Yaoundé, Cameroon
| | - Dora Mbanya
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Cameroon
| | - Tiffany C Thomas
- Health Enhancement Products, Inc. 7740 East Evans Road, Scottsdale, AZ USA
| | - DeWall J Hildreth
- Health Enhancement Products, Inc. 7740 East Evans Road, Scottsdale, AZ USA
| | - Thomas D Ingolia
- Health Enhancement Products, Inc. 7740 East Evans Road, Scottsdale, AZ USA
| | - Michael S Tempesta
- Health Enhancement Products, Inc. 7740 East Evans Road, Scottsdale, AZ USA
| |
Collapse
|
34
|
Segaud F, Combaret L, Neveux N, Attaix D, Cynober L, Moinard C. Effects of ornithine alpha-ketoglutarate on protein metabolism in Yoshida sarcoma-bearing rats. Clin Nutr 2007; 26:624-30. [PMID: 17590483 DOI: 10.1016/j.clnu.2007.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/29/2007] [Accepted: 05/09/2007] [Indexed: 11/16/2022]
Abstract
BACKGROUND & AIMS Ornithine alpha-ketoglutarate (OKG) is recognized to improve nutritional status in various catabolic states, such as burn injury, trauma, and sepsis. However, in wasting diseases, such as induced by cancer, the data are scarce and the precise mechanisms by which OKG acts on protein metabolism are still unclear. The aim of this study was to evaluate the ability of OKG to affect protein metabolism in an aggressive model of cancer and to modulate the ubiquitin-proteasome-dependent pathway, which in skeletal muscle is the critical degradative pathway implicated in many catabolic states, including cancer-associated cachexia. METHODS Experiments were carried out in Yoshida sarcoma-bearing and healthy pair-fed rats. Three groups of 16 young male rats were studied during 9 days following tumor implantation: two groups of tumor-bearing rats fed a balanced regimen enriched with either OKG (5 g/kg body weight/day, OKG-K) or an isonitrogenous mixture of non-essential amino acids (C-K), and one group of healthy pair-fed rats (PF). RESULTS As expected, Yoshida sarcoma induced muscle atrophy, decreased nitrogen balance, enhanced 3-methylhistidine (3-MH) excretion and increased mRNA levels for ubiquitin and 14-kDa ubiquitin-conjugating enzyme E2. OKG supplementation did not improve muscle mass or protein balance and did not reduce enhanced 3-MH excretion in Yoshida sarcoma-bearing rats. Furthermore, OKG did not suppress in the cancer rats the enhanced expression of ubiquitin and 14-kDa E2, despite OKG decreased by 23% the ubiquitination rate in cancer rats (OKG-K vs. C-K, P<0.05). CONCLUSIONS These data suggest that OKG action is not universal; i.e. depending upon the model under study. In the circumstances, OKG did not counteract the increase in ubiquitin-proteasome-dependent proteolysis observed in Yoshida sarcoma-bearing rats.
Collapse
Affiliation(s)
- Frédéric Segaud
- Laboratoire de Biologie de la Nutrition EA 2498, Faculté de Pharmacie, Université Paris Descartes, 4 Avenue de l'Observatoire, 75270 Paris, Cedex 06, France
| | | | | | | | | | | |
Collapse
|
35
|
Demasi MAA, Montor WR, Ferreira GB, Pimenta DC, Labriola L, Sogayar MC. Differential proteomic analysis of the anti-proliferative effect of glucocorticoid hormones in ST1 rat glioma cells. J Steroid Biochem Mol Biol 2007; 103:137-48. [PMID: 17127050 DOI: 10.1016/j.jsbmb.2006.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Accepted: 08/17/2006] [Indexed: 02/02/2023]
Abstract
Glucocorticoid hormones (GCs) exert a potent anti-proliferative activity on several cell types. The classic molecular mechanism of GCs involves modulation of the activity of the glucocorticoids receptor, a transcriptional regulator. However, the anti-proliferative effect of GCs may also involve modulation of processes such as translation, subcellular localization and post-translational modifications, which are not reflected at the mRNA level. To investigate these potential effects of GCs, we employed the proteomic approach (two-dimensional electrophoresis and mass spectrometry) and the ST1 cells, obtained from the C6 rat glioma cell line, as a model. GC treatment leads ST1 cells to a complete transformed-to-normal phenotypic reversion and loss of their tumorigenic potential. By comparing sets of 2D nuclear protein profiles of ST1 cells treated (or not) with hydrocortisone (Hy), 13 polypeptides displaying >or=two-fold difference in abundance upon Hy treatment were found. Five of these polypeptides were identified by peptide mass fingerprinting, including Annexin 2 (ANX2), hnRNP A3 and Ubiquitin. Evidence obtained by Western blot analysis indicates that ANX2 is present in the nucleus and has its subcellular localization modulated by GC-treatment of ST1 cells. Our findings indicate complementary mechanisms contributing to the regulation of gene expression associated with ST1 cells' response to GCs.
Collapse
Affiliation(s)
- Marcos A A Demasi
- Instituto de Química, Universidade de São Paulo, 05508-900 SP, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
36
|
Small BC, Murdock CA, Waldbieser GC, Peterson BC. Reduction in channel catfish hepatic growth hormone receptor expression in response to food deprivation and exogenous cortisol. Domest Anim Endocrinol 2006; 31:340-56. [PMID: 16423501 DOI: 10.1016/j.domaniend.2005.12.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 12/14/2005] [Accepted: 12/14/2005] [Indexed: 11/22/2022]
Abstract
The objective of this study was to assess the effects of food deprivation and exogenous cortisol administration on somatic growth of channel catfish, Ictalurus punctatus, and examine the resultant changes in circulating insulin-like growth factor-I (IGF-I) concentrations and growth hormone receptor (GHR) gene expression. Integral to this objective, we report the isolation, sequence, and characterization of channel catfish GHR. Sequence analysis and characterization results indicate sequence identity and tissue distribution similar to GHRs in other teleost fish and several functional characteristics conserved in known vertebrate GHRs. The effects of food deprivation and dietary exogenous cortisol administration were assessed as part of a 4-week study. Growth was significantly reduced after 4 weeks in cortisol-fed fish compared to fed-control fish, and fasting resulted in weight loss. At the end of the 4-week study, both IGF-I plasma concentrations and hepatic GHR mRNA abundance were significantly reduced in fasted and cortisol-fed catfish. Levels of hepatic GHR mRNA were positively correlated to circulating IGF-I levels. These results suggest that a reduction in hepatic GHR gene expression might serve as a mechanism for the reduction of circulating IGF-I and growth in channel catfish during periods of food deprivation and stress.
Collapse
Affiliation(s)
- Brian C Small
- USDA/ARS, Catfish Genetics Research Unit, Thad Cochran National Warmwater Aquaculture Center, P.O. Box 38, Stoneville, MS 38776, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW Recent clinical and mechanistic studies have shown that increased proteolysis is a major determinant of muscle wasting in numerous catabolic states and of alterations in myopathies or dystrophies. The implications of these observations for improving muscle mass and function are discussed. RECENT FINDINGS Several proteolytic systems (i.e. the ubiquitin-proteasome system, the lysosomal, the Ca-dependent, and the caspase systems) are responsible for muscle wasting. The Ca-dependent and caspase systems may initiate myofibrillar proteolysis. The ubiquitin-proteasome system is believed to degrade actin and myosin heavy chain and, consequently, plays a major role in muscle wasting. Multiple steps in the ubiquitin-proteasome system (ubiquitination, deubiquitination, proteasome activities) are upregulated in muscle wasting diseases. Few key components of the ubiquitin-proteasome system that are strictly necessary for muscle wasting have been so far characterized. Recent studies have led to the elucidation of various signaling pathways of the ubiquitin-proteasome system that are activated in muscle wasting conditions. SUMMARY Although the precise role of the different muscle proteolytic machineries is still largely unknown, current studies are leading to new pharmacologic approaches that can be useful in blocking or partially preventing muscle wasting or improving muscle function in human patients.
Collapse
Affiliation(s)
- Sophie Ventadour
- National Institute for Agricultural Research and Human Nutrition Research Centre of Clermont-Ferrand, Human Nutrition Unit, UMR 1019, Ceyrat, France
| | | |
Collapse
|
38
|
Oben J, Kuate D, Agbor G, Momo C, Talla X. The use of a Cissus quadrangularis formulation in the management of weight loss and metabolic syndrome. Lipids Health Dis 2006; 5:24. [PMID: 16948861 PMCID: PMC1570348 DOI: 10.1186/1476-511x-5-24] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 09/02/2006] [Indexed: 12/20/2022] Open
Abstract
Aim Once considered a problem of developed countries, obesity and obesity-related complications (such as metabolic syndrome) are rapidly spreading around the globe. The purpose of the present study was to investigate the use of a Cissus quadrangularis formulation in the management of metabolic syndrome, particularly weight loss and central obesity. Methods The study was a randomized, double-blind, placebo-controlled design involving 123 overweight and obese persons (47.2% male; 52.8% female; ages 19–50). The 92 obese (BMI >30) participants were randomized into three groups; placebo, formulation/no diet, and formulation/diet (2100–2200 calories/day). The 31 overweight participants (BMI = 25–29) formed a fourth (no diet) treatment group. All participants received two daily doses of the formulation or placebo and remained on a normal or calorie-controlled diet for 8 weeks. Results At the end of the trial period, statistically significant net reductions in weight and central obesity, as well as in fasting blood glucose, total cholesterol, LDL-cholesterol, triglycerides, and C-reactive protein were observed in participants who received the formulation, regardless of diet. Conclusion Cissus quadrangularis formulation appears to be useful in the management of weight loss and metabolic syndrome.
Collapse
Affiliation(s)
- Julius Oben
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Dieudonne Kuate
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Gabriel Agbor
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
- Institute of Medical Research & Medicinal Plant studies, Yaounde, Cameroon
| | - Claudia Momo
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| | - Xavio Talla
- Department of Biochemistry, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
39
|
Ottenheijm CAC, Heunks LMA, Li YP, Jin B, Minnaard R, van Hees HWH, Dekhuijzen PNR. Activation of the ubiquitin-proteasome pathway in the diaphragm in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2006; 174:997-1002. [PMID: 16917114 PMCID: PMC2648103 DOI: 10.1164/rccm.200605-721oc] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
RATIONALE Studies show that the myosin content of the diaphragm in patients with mild to moderate chronic obstructive pulmonary disease (COPD) is reduced, compromising diaphragm contractile performance. The mechanisms for reduced contractile protein content are unknown. In the present study we hypothesized that the loss of contractile protein content is associated with activation of the ubiquitin-proteasome pathway in the diaphragm of patients with mild to moderate COPD. METHODS Proteolytic activity of isolated 20S proteasomes was determined in diaphragm biopsies from patients with and without COPD (predicted mean FEV1, 66 and 93%, respectively). In addition, we determined 20S proteasome subunit C8 protein levels by means of Western blotting, ubiquitin-ligase mRNA levels by means of real-time polymerase chain reaction, and caspase-3 activity by determining the hydrolysis of fluorogenic substrates. RESULTS The 20S proteasome activity was about threefold increased in the diaphragm of patients with COPD. C8 protein levels were not significantly different between COPD and non-COPD diaphragm, indicating increased specific activity of individual proteasomes, rather than an increased number of proteasomes. mRNA levels of the muscle-specific ubiquitin-ligase MAFbx were significantly higher in diaphragm from patients with COPD compared with patients without COPD. Caspase-3-mediated cleavage of actomyosin complexes is considered an initial step in muscle wasting, yielding fragments that can be degraded by the ubiquitin-proteasome pathway. In line with the increased ubiquitin-proteasome activity, caspase-3 activity was higher in diaphragm homogenates from patients with COPD. CONCLUSIONS The present study is the first to demonstrate increased activity of the ubiquitin-proteasome pathway in COPD diaphragm. Importantly, these changes occur in patients with only mild to moderate COPD (Global Initiative for Chronic Obstructive Lung Disease stage I/II).
Collapse
Affiliation(s)
- Coen A C Ottenheijm
- Department of Pulmonary Diseases, 454, Radboud University Nijmegen Medical Center, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Stratford FLL, Chondrogianni N, Trougakos IP, Gonos ES, Rivett AJ. Proteasome response to interferon-gamma is altered in senescent human fibroblasts. FEBS Lett 2006; 580:3989-94. [PMID: 16806194 DOI: 10.1016/j.febslet.2006.06.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 06/12/2006] [Accepted: 06/12/2006] [Indexed: 11/18/2022]
Abstract
We have investigated immunoproteasomes in human fibroblasts during replicative senescence. Unlike levels of constitutive proteasome catalytic subunits and 26S proteasome regulatory subunits, levels of immunosubunits did not decrease dramatically in senescent cells. However, the induction of immunosubunits by interferon-gamma (IFN-gamma) was lost in senescent cells. In contrast, levels of the 11S proteasome regulator, PA28, were increased by IFN-gamma even in senescent cells, and both immunosubunits and PA28 increased with the reversible growth arrest in confluent cell cultures. The results highlight differences in the mechanisms of regulation of immunoproteasomes compared to constitutive proteasomes and in the irreversible growth arrest of senescent cells compared to reversible contact-induced growth arrest.
Collapse
Affiliation(s)
- Fiona L L Stratford
- Department of Biochemistry, University of Bristol, School of Medical Sciences, Bristol, BS8 1TD, United Kingdom
| | | | | | | | | |
Collapse
|
41
|
McNaught KSP, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease. Neurobiol Aging 2006; 27:530-45. [PMID: 16207501 DOI: 10.1016/j.neurobiolaging.2005.08.012] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/25/2005] [Accepted: 08/20/2005] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a slowly progressive, age-related, neurodegenerative disorder. The cause and mechanism of neuronal death have been elusive. However, recent genetic, postmortem and experimental evidence show that protein accumulation and aggregation are prominent occurrences in both sporadic and familial PD. The relevance of these events to other cellular and biochemical changes, and to the neurodegenerative process, is being unraveled. It is increasingly evident that one or a combination of defects, including mutations, oxidative stress, mitochondrial impairment and dysfunction of the ubiquitin-proteasome system, lead to an excess production and aggregation of abnormal proteins in PD. In this respect, altered protein handling appears to be a central factor in the pathogenic process occurring in the various hereditary and sporadic forms of PD. This suggests that manipulation of proteolytic systems is a rational approach in the development of neuroprotective therapies that could modify the pathological course of PD.
Collapse
Affiliation(s)
- Kevin St P McNaught
- Department of Neurology, Mount Sinai School of Medicine, Annenberg 14-73, One Gustave L. Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
42
|
Abstract
Increasing genetic, pathological, and experimental evidence suggest that neurodegeneration in both familial and sporadic forms of Parkinson's disease (PD) may be related to a defect in the capacity of the ubiquitin-proteasome system (UPS) to clear unwanted proteins, resulting in protein accumulation, aggregation, and cytotoxicity. This concept is supported by in vitro and in vivo laboratory experiments which show that inhibition of UPS function can cause neurodegeneration coupled with the formation of Lewy body-like inclusions. This hypothesis could account for the presence of protein aggregates and Lewy bodies in PD, the other biochemical features seen in the disorder, and the age-related vulnerability of the substantia nigra pars compacta. It also suggests novel targets for putative neuroprotective therapies for PD.
Collapse
Affiliation(s)
- C Warren Olanow
- Department of Neurology, Mount Sinai School of Medicine, New York, New York10029, USA.
| | | |
Collapse
|
43
|
Hansen MJ, Gualano RC, Bozinovski S, Vlahos R, Anderson GP. Therapeutic prospects to treat skeletal muscle wasting in COPD (chronic obstructive lung disease). Pharmacol Ther 2006; 109:162-72. [PMID: 16154635 DOI: 10.1016/j.pharmthera.2005.06.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 06/21/2005] [Indexed: 11/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an incurable group of lung diseases characterised by progressive airflow limitation and loss of lung function, which lead to profound disability. It is mostly caused by cigarette smoke. Although COPD is one of the most prevalent diseases worldwide and its incidence is increasing, current therapies do little to improve the condition. Much current research focuses on strategies to halt the accelerated rate of decline in lung function that occurs in the disease. However, as most symptoms occur when the lungs are already extensively and irreversibly damaged, it is uncertain whether an agent able to slow or halt decline in lung function would actually provide relief to COPD patients. As lung function worsens, systemic comorbidities contribute markedly to disability. Loss of lean body mass (skeletal muscle) has recently been identified as a major determinant of disability in COPD and an independent predictor of mortality. In contrast to lung structure damage, skeletal muscle retains regenerative capacity in COPD. In this review, we discuss mechanisms of wasting in COPD, focusing on therapeutic strategies that might improve the health and productive life expectancy of COPD patients by improving skeletal muscle mass and function. Single or combination approaches exploiting the suppression of procatabolic inflammatory mediators, inhibition of ubiquitin ligases, repletion of anabolic hormones and growth factors, inhibition of myoblast apoptosis, remediation of systemic oxidative stress and promotion of repair, and regeneration via stimulation of satellite cell differentiation hold considerable therapeutic promise.
Collapse
Affiliation(s)
- Michelle J Hansen
- Lung Disease Research Laboratory, Department of Pharmacology, Cooperative Research Centre for Chronic Inflammatory Diseases, The University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
44
|
Combaret L, Dardevet D, Rieu I, Pouch MN, Béchet D, Taillandier D, Grizard J, Attaix D. A leucine-supplemented diet restores the defective postprandial inhibition of proteasome-dependent proteolysis in aged rat skeletal muscle. J Physiol 2005; 569:489-99. [PMID: 16195315 PMCID: PMC1464228 DOI: 10.1113/jphysiol.2005.098004] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/02/2005] [Accepted: 09/26/2005] [Indexed: 01/07/2023] Open
Abstract
We tested the hypothesis that skeletal muscle ubiquitin-proteasome-dependent proteolysis is dysregulated in ageing in response to feeding. In Experiment 1 we measured rates of proteasome-dependent proteolysis in incubated muscles from 8- and 22-month-old rats, proteasome activities, and rates of ubiquitination, in the postprandial and postabsorptive states. Peptidase activities of the proteasome decreased in the postabsorptive state in 22-month-old rats compared with 8-month-old animals, while the rate of ubiquitination was not altered. Furthermore, the down-regulation of in vitro proteasome-dependent proteolysis that prevailed in the postprandial state in 8-month-old rats was defective in 22-month-old rats. Next, we tested the hypothesis that the ingestion of a 5% leucine-supplemented diet may correct this defect. Leucine supplementation restored the postprandial inhibition of in vitro proteasome-dependent proteolysis in 22-month-old animals, by down-regulating both rates of ubiquitination and proteasome activities. In Experiment 2, we verified that dietary leucine supplementation had long-lasting effects by comparing 8- and 22-month-old rats that were fed either a leucine-supplemented diet or an alanine-supplemented diet for 10 days. The inhibited in vitro proteolysis was maintained in the postprandial state in the 22-month-old rats fed the leucine-supplemented diet. Moreover, elevated mRNA levels for ubiquitin, 14-kDa ubiquitin-conjugating enzyme E2, and C2 and X subunits of the 20S proteasome that were characteristic of aged muscle were totally suppressed in 22-month-old animals chronically fed the leucine-supplemented diet, demonstrating an in vivo effect. Thus the defective postprandial down-regulation of in vitro proteasome-dependent proteolysis in 22-month-old rats was restored in animals chronically fed a leucine-supplemented diet.
Collapse
Affiliation(s)
- Lydie Combaret
- Human Nutrition Research Centre of Clermont-Ferrand and Institut National de la Recherche Agronomique, Nutrition and Protein Metabolism Unit, 63122 Ceyrat, France
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Attaix D, Mosoni L, Dardevet D, Combaret L, Mirand PP, Grizard J. Altered responses in skeletal muscle protein turnover during aging in anabolic and catabolic periods. Int J Biochem Cell Biol 2005; 37:1962-73. [PMID: 15905114 DOI: 10.1016/j.biocel.2005.04.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 03/15/2005] [Accepted: 04/12/2005] [Indexed: 12/25/2022]
Abstract
One of the most important effects of aging is sarcopenia, which is associated with impaired locomotion and general weakness. In addition, there is increased susceptibility to illness in aging, which often results in muscle wasting episodes. In such instances, the mobilization of muscle proteins provides free amino acids that are used for energetic purpose, the synthesis of acute phase proteins, and the immune response. However, since muscle protein mass is already depleted, the ability of the aged organism to recover from stress is impaired. Therefore, elucidating the mechanisms that result in sarcopenia is of obvious importance. Age-related changes in protein synthesis and proteolysis are rather small and our current methodology does not enable one to establish unequivocally whether sarcopenia results from depressed protein synthesis, increased proteolysis or both. By contrast, in anabolic and catabolic periods, a number of dysregulations in muscle protein turnover became clearly apparent. The aim of this review is to provide an overview of such altered responses to nutrients and catabolic treatments, which may ultimately contribute to explain sarcopenia. This includes impaired recovery in catabolic states, impaired anabolic effects of nutrients, in particular leucine, and a lack of regulation of the ubiquitin-proteasome proteolytic system. These alterations are discussed with respect to modifications in the insulin/IGF-1 axis and glucocorticoid related effects.
Collapse
Affiliation(s)
- Didier Attaix
- Human Nutrition Research Center of Clermont-Ferrand, Institut National de la Recherche Agronomique, Nutrition and Protein Metabolism Unit, 63122 Ceyrat, France.
| | | | | | | | | | | |
Collapse
|
46
|
Minnaard R, Wagenmakers AJM, Combaret L, Attaix D, Drost MR, van Kranenburg GP, Schaart G, Hesselink MKC. Ubiquitin-proteasome-dependent proteolytic activity remains elevated after zymosan-induced sepsis in rats while muscle mass recovers. Int J Biochem Cell Biol 2005; 37:2217-25. [PMID: 15955721 DOI: 10.1016/j.biocel.2005.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 04/29/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
We studied the role of the ubiquitin-proteasome system in rat skeletal muscle during sepsis and subsequent recovery. Sepsis was induced with intraperitoneal zymosan injections. This model allows one to study a sustained and reversible catabolic phase and mimics the events that prevail in septic and subsequently recovering patients. In addition, the role of the ubiquitin-proteasome system during muscle recovery is poorly documented. There was a trend for increased ubiquitin-conjugate formation in the muscle wasting phase, which was abolished during the recovery phase. The trypsin- and chymotrypsin-like peptidase activities of the 20S proteasome peaked at day 6 following zymosan injection (i.e. when both muscle mass and muscle fiber cross-sectional area were reduced the most), but remained elevated when muscle mass and muscle fiber cross-sectional area were recovering (11 days). This clearly suggests a role for the ubiquitin-proteasome pathway in the muscle remodeling and/or recovery process. Protein levels of 19S complex and 20S proteasome subunits did not increase throughout the study, pointing to alternative mechanisms regulating proteasome activities. Overall these data support a role for ubiquitin-proteasome dependent proteolysis in the zymosan septic model, in both the catabolic and muscle recovery phases.
Collapse
Affiliation(s)
- R Minnaard
- Nutrition and Toxicology Research Institute Maastricht, Department of Movement Sciences, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
The ubiquitin–proteasome system (UPS) is believed to degrade the major contractile skeletal muscle proteins and plays a major role in muscle wasting. Different and multiple events in the ubiquitination, deubiquitination and proteolytic machineries are responsible for the activation of the system and subsequent muscle wasting. However, other proteolytic enzymes act upstream (possibly m-calpain, cathepsin L, and/or caspase 3) and downstream (tripeptidyl-peptidase II and aminopeptidases) of the UPS, for the complete breakdown of the myofibrillar proteins into free amino acids. Recent studies have identified a few critical proteins that seem necessary for muscle wasting {i.e. the MAFbx (muscle atrophy F-box protein, also called atrogin-1) and MuRF-1 [muscle-specific RING (really interesting new gene) finger 1] ubiquitin–protein ligases}. The characterization of their signalling pathways is leading to new pharmacological approaches that can be useful to block or partially prevent muscle wasting in human patients.
Collapse
|
48
|
Hellwig-Bürgel T, Stiehl DP, Wagner AE, Metzen E, Jelkmann W. Review: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactions. J Interferon Cytokine Res 2005; 25:297-310. [PMID: 15957953 DOI: 10.1089/jir.2005.25.297] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a dimeric transcriptional complex that has been recognized primarily for its role in the maintenance of oxygen and energy homoeostasis. The HIF-1alpha subunit is O(2) labile and is degraded by the proteasome following prolyl-hydroxylation and ubiquitination in normoxic cells. The present review summarizes evidence that HIF-1 is also involved in immune reactions. Immunomodulatory peptides, including interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha), stimulate HIF-1 dependent gene expression even in normoxic cells. Both the hypoxic and the cytokine-induced activation of HIF-1 involve the phosphatidylinositol- 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) signaling pathways. In addition, heat shock proteins (HSP) and other cofactors interact with HIF-1 subunits. HIF-1 increases the transcription of several genes for proteins that promote blood flow and inflammation, including vascular endothelial growth factor (VEGF), heme oxygenase-1, endothelial and inducible nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2). The pharmacologic activation of the HIF-1 complex can be desirable in ischemic and inflammatory disorders. In contrast, HIF-1 blockade may be beneficial to prevent tumor angiogenesis and tumor growth.
Collapse
|
49
|
Manoli I, Le H, Alesci S, McFann KK, Su YA, Kino T, Chrousos GP, Blackman MR. Monoamine oxidase-A is a major target gene for glucocorticoids in human skeletal muscle cells. FASEB J 2005; 19:1359-61. [PMID: 15946989 DOI: 10.1096/fj.04-3660fje] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Skeletal myopathy is a common complication of endogenous and exogenous glucocorticoid excess, yet its pathogenetic mechanisms remain unclear. There is accumulating evidence that mitochondrial dysfunction and oxidative stress are involved in this process. To explore the glucocorticoid-induced transcriptional adaptations that may affect mitochondrial function in skeletal muscle, we studied gene expression profiles in dexamethasone-treated primary human skeletal myocytes using a cDNA microarray, which contains 501 mitochondria-related genes. We found that monoamine oxidase A (MAO-A) was the most significantly up-regulated gene. MAO-A is the primary enzyme metabolizing catecholamines and dietary amines, and its role in skeletal muscle remains largely unexplored. Dexamethasone induced dose- and time-dependent increases of MAO-A gene and protein expression, while its effects on MAO-B were minimal. Both the glucocorticoid receptor (GR) and the Sp1 transcription factor were required for dexamethasone-induced MAO-A mRNA expression, as blockade of the GR with RU 486 or ablation of Sp1 binding with mithramycin abrogated MAO-A mRNA induction. The observed dexamethasone effect was biologically functional, as this steroid significantly increased MAO-mediated hydrogen peroxide production. We suggest that MAO-A-mediated oxidative stress can lead to cell damage, representing a novel pathogenetic mechanism for glucocorticoid-induced myopathy and a potential target for therapeutic intervention.
Collapse
MESH Headings
- Adolescent
- Adult
- Cells, Cultured
- Dexamethasone/toxicity
- Dose-Response Relationship, Drug
- Gene Expression Regulation, Enzymologic/drug effects
- Humans
- Hydrogen Peroxide/metabolism
- Male
- Monoamine Oxidase/biosynthesis
- Monoamine Oxidase/genetics
- Monoamine Oxidase Inhibitors/pharmacology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscular Diseases/chemically induced
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Receptors, Glucocorticoid/physiology
- Sp1 Transcription Factor/physiology
- Transcriptional Activation
Collapse
Affiliation(s)
- Irini Manoli
- Endocrine Section, Laboratory of Clinical Investigation, NCCAM, NIH, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rieu I, Sornet C, Grizard J, Dardevet D. Glucocorticoid excess induces a prolonged leucine resistance on muscle protein synthesis in old rats. Exp Gerontol 2005; 39:1315-21. [PMID: 15489054 DOI: 10.1016/j.exger.2004.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 05/18/2004] [Accepted: 06/08/2004] [Indexed: 11/21/2022]
Abstract
This experiment was undertaken to examine leucine responsiveness of muscle protein synthesis during dexamethasone treatment and the subsequent recovery in young (4-5 weeks), adult (10-11 months) and old rats (21-22 months). Rats received dexamethasone in their drinking water. The dose and length of the treatment was adapted in order to generate the same muscle atrophy. Protein synthesis was assessed in vitro by incorporation of radiolabelled phenylalanine into proteins at the end of the treatment and after 3 or 7-day recovery. Results showed that dexamethasone did not alter muscle protein synthesis stimulation by leucine in young rats. In contrast, muscles from adult and old rats became totally resistant to leucine. Furthermore, the recovery of leucine responsiveness after dexamethasone withdrawal was slowed down in old rats when compared to younger rats. We concluded that glucocorticoids exert their catabolic action in adult and old rats partly through antagonising the stimulatory effect of leucine and may contribute to sarcopenia in old rats.
Collapse
Affiliation(s)
- Isabelle Rieu
- Unité de Nutrition et Métabolisme Protéique, Human Nutrition Research Centre of Clermont-Ferrand, Institut National de la Recherche Agronomique, Saint Genes Champanelle, 63122 Ceyrat, France.
| | | | | | | |
Collapse
|