1
|
ElNaggar MH, Abdelmohsen UR, Abdel Bar FM, Kamer AA, Bringmann G, Elekhnawy E. Investigation of bioactive components responsible for the antibacterial and anti-biofilm activities of Caroxylon volkensii by LC-QTOF-MS/MS analysis and molecular docking. RSC Adv 2024; 14:11388-11399. [PMID: 38595719 PMCID: PMC11002840 DOI: 10.1039/d4ra01646g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Caroxylon volkensii is a wild desert plant of the family Amaranthaceae. This study represents the first report of the metabolomic profiling of C. volkensii by liquid chromatography quadrupole-time-of-flight tandem mass spectrometry (LC-QTOF-MS/MS). The dereplication study of its secondary metabolites led to the characterization of 66 known compounds. These compounds include catecholamines, tyramine derivatives, phenolic acids, triterpenoids, flavonoids, and others. A new tyramine derivative, alongside other known compounds, was reported for the first time in the Amaranthaceae family. The new derivative and the first-reported compounds were putatively identified through MS/MS fragmentation data. Given the notorious taxonomical challenges within the genus Salsola, to which C. volkensii previously belonged, our study could offer a valuable insight into its chemical fingerprint and phylogenetic relationship to different Salsola species. The antibacterial potential of C. volkensii methanolic extract (CVM) against Pseudomonas aeruginosa was screened. The minimum inhibitory concentration (MIC) of CVM ranged from 32 to 256 μg mL-1. The anti-quorum sensing potential of CVM resulted in a decrease in the percentage of strong and moderate biofilm-forming isolates from 47.83% to 17.39%. It revealed a concentration-dependent inhibitory activity on violacein formation by Chromobacterium violaceum. Moreover, CVM exhibited an in vivo protective potential against the killing capacity of P. aeruginosa isolates. A molecular docking study revealed that the quorum-sensing inhibitory effect of CVM can be attributed to the binding of tyramine conjugates, ethyl-p-digallate, and isorhamnetin to the transcriptional global activator LasR.
Collapse
Affiliation(s)
- Mai H ElNaggar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University 33516 Kafrelsheikh Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University 61111 New Minia Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University 61519 Minia Egypt
| | - Fatma M Abdel Bar
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Amal Abo Kamer
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University Tanta 31527 Egypt
| |
Collapse
|
2
|
Dilshad R, Khan KUR, Ahmad S, Shaik Mohammad AA, Sherif AE, Rao H, Ahmad M, Ghalloo BA, Begum MY. Phytochemical characterization of Typha domingensis and the assessment of therapeutic potential using in vitro and in vivo biological activities and in silico studies. Front Chem 2023; 11:1273191. [PMID: 38025070 PMCID: PMC10663946 DOI: 10.3389/fchem.2023.1273191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Typha domingensis, a medicinal plant with significant traditional importance for curing various human diseases, has potentially bioactive compounds but was less explored previously. Therefore, this study aims to investigate the therapeutic potential of T. domingensis by evaluating the phytochemical profile through high-performance liquid chromatography (HPLC) techniques and its biological activities (in vitro and in vivo) from the methanolic extract derived from the entire plant (TDME). The secondary metabolite profile of TDME regulated by reverse phase ultra-high-performance liquid chromatography-mass spectrometry (RP-UHPLC-MS) revealed some bioactive compounds by -ve and +ve modes of ionization. The HPLC quantification study showed the precise quantity of polyphenols (p-coumaric acid, 207.47; gallic acid, 96.25; and kaempferol, 95.78 μg/g extract). The enzyme inhibition assays revealed the IC50 of TDME as 44.75 ± 0.51, 52.71 ± 0.01, and 67.19 ± 0.68 µgmL-1, which were significant compared to their respective standards (indomethacin, 18.03 ± 0.12; quercetin, 4.11 ± 0.01; and thiourea, 8.97 ± 0.11) for lipoxygenase, α-glucosidase, and urease, respectively. Safety was assessed by in vitro hemolysis (4.25% ± 0.16% compared to triton × 100, 93.51% ± 0.36%), which was further confirmed (up to 10 g/kg) by an in vivo model of rats. TDME demonstrated significant (p < 0.05) potential in analgesic activity by hot plate and tail immersion tests and anti-inflammatory activity by the carrageenan-induced hind paw edema model. Pain latency decreased significantly, and the anti-inflammatory effect increased in a dose-dependent way. Additionally, in silico molecular docking revealed that 1,3,4,5-tetracaffeoylquinic acid and formononetin 7-O-glucoside-6″-O-malonate possibly contribute to enzyme inhibitory activities due to their higher binding affinities compared to standard inhibitors. An in silico absorption, distribution, metabolism, excretion, and toxicological study also predicted the pharmacokinetics and safety of the chosen compounds identified from TDME. To sum up, it was shown that TDME contains bioactive chemicals and has strong biological activities. The current investigations on T. domingensis could be extended to explore its potential applications in nutraceutical industries and encourage the isolation of novel molecules with anti-inflammatory and analgesic effects.
Collapse
Affiliation(s)
- Rizwana Dilshad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Kashif-ur-Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Saeed Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Asmaa E. Sherif
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdul Aziz, Al-Khar, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Huma Rao
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Maqsood Ahmad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Bilal Ahmad Ghalloo
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - M. Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
3
|
Yang L, Ji C, Li Y, Hu F, Zhang F, Zhang H, Li L, Ren J, Wang Z, Qiu Y. Natural Potent NAAA Inhibitor Atractylodin Counteracts LPS-Induced Microglial Activation. Front Pharmacol 2020; 11:577319. [PMID: 33117168 PMCID: PMC7565389 DOI: 10.3389/fphar.2020.577319] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/08/2020] [Indexed: 12/19/2022] Open
Abstract
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme that inhibits the degradation of palmitoylethanolamide (PEA), an endogenous lipid that induces analgesic, anti-inflammation, and anti-multiple sclerosis through PPARα activation. Only a few potent NAAA inhibitors have been reported to date, which is mainly due to the restricted substrate-binding site of NAAA. Here, we established a high-throughput fluorescence-based assay for NAAA inhibitor screening. Several new classes of NAAA inhibitors were discovered from a small library of natural products. One of these is atractylodin, a polyethylene alkyne compound from the root of Atractylodes lancea (Thunb) DC., which significantly inhibits NAAA activity and has an IC50 of 2.81 µM. Kinetic analyses and dialysis assays suggested that atractylodin engages in competitive inhibition via reversible reaction to the enzyme. Docking assays revealed that atractylodin occupies the catalytic cavity of NAAA, where the atractylodin furan head group has a hydrophobic-related interaction with the backbone of the Trp181 and Leu152 residues of human NAAA. Further investigation indicated that atractylodin significantly increases PEA and OEA levels and dose-dependently inhibits LPS-induced nitrate, TNF-α, IL-1β, and IL-6 pro-inflammatory cytokine release in BV-2 microglia. Our results show that atractylodin elevates cellular PEA levels and inhibits microglial activation by inhibiting NAAA activity, which in turn could contribute to NAAA functional research.
Collapse
Affiliation(s)
- Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chunyan Ji
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Yitian Li
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Fan Hu
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Fang Zhang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Haiping Zhang
- Center for High Performance Computing, Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Long Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, China
| | - Jie Ren
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| | - Zhaokai Wang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yan Qiu
- Eye Institute of Xiamen University, Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Piomelli D, Scalvini L, Fotio Y, Lodola A, Spadoni G, Tarzia G, Mor M. N-Acylethanolamine Acid Amidase (NAAA): Structure, Function, and Inhibition. J Med Chem 2020; 63:7475-7490. [PMID: 32191459 DOI: 10.1021/acs.jmedchem.0c00191] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is an N-terminal cysteine hydrolase primarily found in the endosomal-lysosomal compartment of innate and adaptive immune cells. NAAA catalyzes the hydrolytic deactivation of palmitoylethanolamide (PEA), a lipid-derived peroxisome proliferator-activated receptor-α (PPAR-α) agonist that exerts profound anti-inflammatory effects in animal models. Emerging evidence points to NAAA-regulated PEA signaling at PPAR-α as a critical control point for the induction and the resolution of inflammation and to NAAA itself as a target for anti-inflammatory medicines. The present Perspective discusses three key aspects of this hypothesis: the role of NAAA in controlling the signaling activity of PEA; the structural bases for NAAA function and inhibition by covalent and noncovalent agents; and finally, the potential value of NAAA-targeting drugs in the treatment of human inflammatory disorders.
Collapse
Affiliation(s)
- Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States.,Department of Biological Chemistry and Molecular Biology, University of California, Irvine, California 92697-4625, United States
| | - Laura Scalvini
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Yannick Fotio
- Department of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
| | - Alessio Lodola
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Piazza Rinascimento 6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università degli Studi di Parma, Parco Area delle Scienze 27/A, I- 43124 Parma, Italy
| |
Collapse
|
5
|
Molecular mechanism of activation of the immunoregulatory amidase NAAA. Proc Natl Acad Sci U S A 2018; 115:E10032-E10040. [PMID: 30301806 DOI: 10.1073/pnas.1811759115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Palmitoylethanolamide is a bioactive lipid that strongly alleviates pain and inflammation in animal models and in humans. Its signaling activity is terminated through degradation by N-acylethanolamine acid amidase (NAAA), a cysteine hydrolase expressed at high levels in immune cells. Pharmacological inhibitors of NAAA activity exert profound analgesic and antiinflammatory effects in rodent models, pointing to this protein as a potential target for therapeutic drug discovery. To facilitate these efforts and to better understand the molecular mechanism of action of NAAA, we determined crystal structures of this enzyme in various activation states and in complex with several ligands, including both a covalent and a reversible inhibitor. Self-proteolysis exposes the otherwise buried active site of NAAA to allow catalysis. Formation of a stable substrate- or inhibitor-binding site appears to be conformationally coupled to the interaction of a pair of hydrophobic helices in the enzyme with lipid membranes, resulting in the creation of a linear hydrophobic cavity near the active site that accommodates the ligand's acyl chain.
Collapse
|
6
|
Vago R, Bettiga A, Salonia A, Ciuffreda P, Ottria R. Development of new inhibitors for N-acylethanolamine-hydrolyzing acid amidase as promising tool against bladder cancer. Bioorg Med Chem 2016; 25:1242-1249. [PMID: 28062195 DOI: 10.1016/j.bmc.2016.12.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 01/01/2023]
Abstract
The endocannabinoid system is a signaling system involved in a wide range of biological effects. Literature strongly suggests the endocannabinoid system role in the pathogenesis of cancer and that its pharmacological activation produces therapeutic benefits. Last research promotes the endocannabinoid system modulation by inhibition of endocannabinoids hydrolytic enzymes instead of direct activation of endocannabinoid receptors to avoid detrimental effects on cognition and motor control. Here we report the identification of N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitors able to reduce cell proliferation and migration and cause cell death on different bladder cancer cell lines. These molecules were designed, synthesized and characterized and active compounds were selected by a fluorescence high-throughput screening method set-up on human recombinant NAAA that also allows to characterize the mechanism of inhibition. Together our results suggest an important role for NAAA in cell migration and in inducing tumor cell death promoting this enzyme as pharmacological target against bladder cancer.
Collapse
Affiliation(s)
- Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, Italy; Università Vita-Salute San Raffaele, Via Olgettina 60, Milano, Italy.
| | - Arianna Bettiga
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, Italy.
| | - Andrea Salonia
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Hospital, Via Olgettina 60, Milan, Italy; Università Vita-Salute San Raffaele, Via Olgettina 60, Milano, Italy.
| | - Pierangela Ciuffreda
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Via G.B. Grassi 74, Università degli Studi di Milano, Italy.
| | - Roberta Ottria
- Dipartimento di Scienze Biomediche e Cliniche "Luigi Sacco", Via G.B. Grassi 74, Università degli Studi di Milano, Italy.
| |
Collapse
|
7
|
Tuo W, Leleu-Chavain N, Spencer J, Sansook S, Millet R, Chavatte P. Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors. J Med Chem 2016; 60:4-46. [DOI: 10.1021/acs.jmedchem.6b00538] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Wei Tuo
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Natascha Leleu-Chavain
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Régis Millet
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| | - Philippe Chavatte
- Université de Lille, Inserm, CHU Lille, U995,
LIRIC, Lille Inflammation Research International Center, F-59000 Lille, France
| |
Collapse
|
8
|
Iannotti FA, Di Marzo V, Petrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog Lipid Res 2016; 62:107-28. [DOI: 10.1016/j.plipres.2016.02.002] [Citation(s) in RCA: 235] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 01/25/2016] [Accepted: 02/26/2016] [Indexed: 12/19/2022]
|
9
|
Pontis S, Ribeiro A, Sasso O, Piomelli D. Macrophage-derived lipid agonists of PPAR-αas intrinsic controllers of inflammation. Crit Rev Biochem Mol Biol 2015; 51:7-14. [DOI: 10.3109/10409238.2015.1092944] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Romeo E, Ponzano S, Armirotti A, Summa M, Bertozzi F, Garau G, Bandiera T, Piomelli D. Activity-Based Probe for N-Acylethanolamine Acid Amidase. ACS Chem Biol 2015; 10:2057-2064. [PMID: 26102511 DOI: 10.1021/acschembio.5b00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid signaling molecules that includes oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). Among the reported NAAA inhibitors, α-amino-β-lactone (3-aminooxetan-2-one) derivatives have been shown to prevent FAE hydrolysis in innate-immune and neural cells and to reduce reactions to inflammatory stimuli. Recently, we disclosed two potent and selective NAAA inhibitors, the compounds ARN077 (5-phenylpentyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate) and ARN726 (4-cyclohexylbutyl-N-[(S)-2-oxoazetidin-3-yl]carbamate). The former is active in vivo by topical administration in rodent models of hyperalgesia and allodynia, while the latter exerts systemic anti-inflammatory effects in mouse models of lung inflammation. In the present study, we designed and validated a derivative of ARN726 as the first activity-based protein profiling (ABPP) probe for the in vivo detection of NAAA. The newly synthesized molecule 1 is an effective in vitro and in vivo click-chemistry activity based probe (ABP), which is able to capture the catalytically active form of NAAA in Human Embryonic Kidney 293 (HEK293) cells overexpressing human NAAA as well as in rat lung tissue. Competitive ABPP with 1 confirmed that ARN726 and ARN077 inhibit NAAA in vitro and in vivo. Compound 1 is a useful new tool to identify activated NAAA both in vitro and in vivo and to investigate the physiological and pathological roles of this enzyme.
Collapse
Affiliation(s)
- Elisa Romeo
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Stefano Ponzano
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Andrea Armirotti
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Maria Summa
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Fabio Bertozzi
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Gianpiero Garau
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Tiziano Bandiera
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Daniele Piomelli
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
- Departments
of Anatomy and Neurobiology, Pharmacology, and Biological Chemistry, University of California, 3216 Gillespie Neuroscience Facility, Irvine, California 92697-4621, United States
| |
Collapse
|
11
|
Potential analgesic effects of a novel N-acylethanolamine acid amidase inhibitor F96 through PPAR-α. Sci Rep 2015; 5:13565. [PMID: 26310614 PMCID: PMC4550851 DOI: 10.1038/srep13565] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/30/2015] [Indexed: 01/01/2023] Open
Abstract
Pharmacological blockade of N-acylethanolamine acid amidase (NAAA) activity is an available approach for inflammation and pain control through restoring the ability of endogenous PEA. But the recently reported NAAA inhibitors suffer from the chemical and biological unstable properties, which restrict functions of NAAA inhibition in vivo. It is still unrevealed whether systematic inhibition of NAAA could modulate PEA-mediated pain signalings. Here we reported an oxazolidinone imide compound 3-(6-phenylhexanoyl) oxazolidin-2-one (F96), which potently and selectively inhibited NAAA activity (IC50 = 270 nM). Intraperitoneal (i.p.) injection of F96 (3–30 mg/kg) dose-dependently reduced ear edema and restored PEA levels of ear tissues in 12-O-Tetradecanoylphorbol-13-acetate (TPA) induced ear edema models. Furthermore, F96 inhibited acetic acid-induced writhing and increased spared nerve injury induced tactile allodynia thresholds in a dose-dependent manner. Pharmacological effects of F96 (10 mg/kg, i.p.) on various animal models were abolished in PPAR-α−/− mice, and were prevented by PPAR-α antagonist MK886 but not by canabinoid receptor type 1 (CB1) antagonist Rimonabant nor canabinoid receptor type 2 (CB2) antagonist SR144528. Zebrafish embryos experiments showed better security and lower toxicity for F96 than ibuprofen. These results revealed that F96 might be useful in treating inflammatory and neuropathic pain by NAAA inhibition depending on PPAR-α receptors.
Collapse
|
12
|
Ribeiro A, Pontis S, Mengatto L, Armirotti A, Chiurchiù V, Capurro V, Fiasella A, Nuzzi A, Romeo E, Moreno-Sanz G, Maccarrone M, Reggiani A, Tarzia G, Mor M, Bertozzi F, Bandiera T, Piomelli D. A Potent Systemically Active N-Acylethanolamine Acid Amidase Inhibitor that Suppresses Inflammation and Human Macrophage Activation. ACS Chem Biol 2015; 10:1838-46. [PMID: 25874594 DOI: 10.1021/acschembio.5b00114] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fatty acid ethanolamides such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA) are lipid-derived mediators that potently inhibit pain and inflammation by ligating type-α peroxisome proliferator-activated receptors (PPAR-α). These bioactive substances are preferentially degraded by the cysteine hydrolase, N-acylethanolamine acid amidase (NAAA), which is highly expressed in macrophages. Here, we describe a new class of β-lactam derivatives that are potent, selective, and systemically active inhibitors of intracellular NAAA activity. The prototype of this class deactivates NAAA by covalently binding the enzyme's catalytic cysteine and exerts profound anti-inflammatory effects in both mouse models and human macrophages. This agent may be used to probe the functions of NAAA in health and disease and as a starting point to discover better anti-inflammatory drugs.
Collapse
Affiliation(s)
- Alison Ribeiro
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Silvia Pontis
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Luisa Mengatto
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Andrea Armirotti
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Valerio Chiurchiù
- European
Center for Brain Research, Fondazione Santa Lucia, via del Fosso
di Fiorano 64/65, 00143 Rome, Italy
| | - Valeria Capurro
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Annalisa Fiasella
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Andrea Nuzzi
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Elisa Romeo
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Guillermo Moreno-Sanz
- Department
of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
| | - Mauro Maccarrone
- Department
of Anatomy and Neurobiology, University of California, Irvine, California 92697-4625, United States
- Campus Bio-Medico University of Rome, via Alvaro del Portillo 21, 00128, Rome, Italy
| | - Angelo Reggiani
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Giorgio Tarzia
- Department
of Biomolecular Science, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Marco Mor
- Pharmaceutical
Department, University of Parma, I-43100 Parma, Italy
| | - Fabio Bertozzi
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Tiziano Bandiera
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
| | - Daniele Piomelli
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego
30, 16163 Genoa, Italy
- Departments
of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
13
|
Ponzano S, Berteotti A, Petracca R, Vitale R, Mengatto L, Bandiera T, Cavalli A, Piomelli D, Bertozzi F, Bottegoni G. Synthesis, Biological Evaluation, and 3D QSAR Study of 2-Methyl-4-oxo-3-oxetanylcarbamic Acid Esters as N-Acylethanolamine Acid Amidase (NAAA) Inhibitors. J Med Chem 2014; 57:10101-11. [DOI: 10.1021/jm501455s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Stefano Ponzano
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Anna Berteotti
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Rita Petracca
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Romina Vitale
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Luisa Mengatto
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Tiziano Bandiera
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Andrea Cavalli
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
- Department
of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro
6, I-40126 Bologna, Italy
| | - Daniele Piomelli
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
- Department
of Anatomy and Neurobiology, Department of
Pharmacology, and Department of Biological
Chemistry, University of California—Irvine, Irvine, California 92697-4621, United States
| | - Fabio Bertozzi
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| | - Giovanni Bottegoni
- Drug
Discovery and Development, Istituto Italiano di Tecnologia, Via Morego
30, I-16163 Genova, Italy
| |
Collapse
|
14
|
Diacerein is a potent and selective inhibitor of palmitoylethanolamide inactivation with analgesic activity in a rat model of acute inflammatory pain. Pharmacol Res 2014; 91:9-14. [PMID: 25447594 DOI: 10.1016/j.phrs.2014.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/03/2014] [Accepted: 10/24/2014] [Indexed: 10/24/2022]
Abstract
Palmitoylethanolamide (PEA) is produced by mammalian cells from its biosynthetic precursor, N-palmitoyl-phosphatidyl-ethanolamine, and inactivated by enzymatic hydrolysis to palmitic acid and ethanolamine. Apart from fatty acid amide hydrolase (FAAH), the N-acylethanolamine-hydrolyzing acid amidase (NAAA), a lysosomal enzyme, was also shown to catalyze the hydrolysis of PEA and to limit its analgesic and anti-inflammatory action. Here we report the finding of a new potential inhibitor of NAAA, EPT4900 (4,5-diacetyloxy-9,10-dioxo-anthracene-2-carboxylic acid, diacerein). EPT4900 exhibited a high inhibitory activity on human recombinant NAAA over-expressed in HEK293 cells (HEK-NAAA cells). EPT4900 selectively increased the levels of PEA in intact HEK-NAAA cells, and inhibited inflammation as well as hyperalgesia in rats treated with an intraplantar injection of carrageenan. This latter effect was accompanied by elevation of PEA endogenous levels in the paw skin.
Collapse
|
15
|
Fiasella A, Nuzzi A, Summa M, Armirotti A, Tarozzo G, Tarzia G, Mor M, Bertozzi F, Bandiera T, Piomelli D. 3-Aminoazetidin-2-one derivatives as N-acylethanolamine acid amidase (NAAA) inhibitors suitable for systemic administration. ChemMedChem 2014; 9:1602-14. [PMID: 24828120 PMCID: PMC4224963 DOI: 10.1002/cmdc.201300546] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/03/2014] [Indexed: 12/23/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is a cysteine hydrolase that catalyzes the hydrolysis of endogenous lipid mediators such as palmitoylethanolamide (PEA). PEA has been shown to exert anti-inflammatory and antinociceptive effects in animals by engaging peroxisome proliferator-activated receptor α (PPAR-α). Thus, preventing PEA degradation by inhibiting NAAA may provide a novel approach for the treatment of pain and inflammatory states. Recently, 3-aminooxetan-2-one compounds were identified as a class of highly potent NAAA inhibitors. The utility of these compounds is limited, however, by their low chemical and plasma stabilities. In the present study, we synthesized and tested a series of N-(2-oxoazetidin-3-yl)amides as a novel class of NAAA inhibitors with good potency and improved physicochemical properties, suitable for systemic administration. Moreover, we elucidated the main structural features of 3-aminoazetidin-2-one derivatives that are critical for NAAA inhibition.
Collapse
Affiliation(s)
- Annalisa Fiasella
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I–16163 Genova (Italy), Fax: +39–010–71781228
| | - Andrea Nuzzi
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I–16163 Genova (Italy), Fax: +39–010–71781228
| | - Maria Summa
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I–16163 Genova (Italy), Fax: +39–010–71781228
| | - Andrea Armirotti
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I–16163 Genova (Italy), Fax: +39–010–71781228
| | - Glauco Tarozzo
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I–16163 Genova (Italy), Fax: +39–010–71781228
| | - Giorgio Tarzia
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino „Carlo Bo“, Piazza del Rinascimento 6, I-61029 Urbino (Italy)
| | - Marco Mor
- Dipartimento di Farmacia, Università degli Studi di Parma, Viale della Scienze 27/A, I-43124 Parma (Italy)
| | - Fabio Bertozzi
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I–16163 Genova (Italy), Fax: +39–010–71781228
| | - Tiziano Bandiera
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I–16163 Genova (Italy), Fax: +39–010–71781228
| | - Daniele Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I–16163 Genova (Italy), Fax: +39–010–71781228
- Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, 3216 Gillespie Neuroscience Facility Irvine, California 92697–4621 (United States)
| |
Collapse
|
16
|
Alhouayek M, Muccioli GG. Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today 2014; 19:1632-9. [PMID: 24952959 DOI: 10.1016/j.drudis.2014.06.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/18/2014] [Accepted: 06/10/2014] [Indexed: 01/07/2023]
Abstract
Palmitoylethanolamide (PEA) is a peroxisome proliferator-activated receptor alpha (PPAR-α) ligand that exerts anti-inflammatory, analgesic and neuroprotective actions. PEA is synthetized from phospholipids through the sequential actions of N-acyltransferase and N-acylphosphatidylethanolamine-preferring phospholipase D (NAPE-PLD), and its actions are terminated by its hydrolysis by two enzymes, fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolysing acid amidase (NAAA). Here, we review the impact of PEA administration in inflammatory and neurodegenerative settings and the differential role of FAAH and NAAA in controlling PEA levels. Recent studies with NAAA inhibitors put forth this enzyme as capable of increasing PEA levels in vivo in inflammatory processes, and identified it as an interesting target for drug discovery research. Thus, PEA hydrolysis inhibitors could constitute potential therapeutic alternatives in chronic inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier 72, B1.72.01, B-1200 Bruxelles, Belgium.
| |
Collapse
|
17
|
Bandiera T, Ponzano S, Piomelli D. Advances in the discovery of N-acylethanolamine acid amidase inhibitors. Pharmacol Res 2014; 86:11-7. [PMID: 24798679 DOI: 10.1016/j.phrs.2014.04.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/23/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is a cysteine amidase that hydrolyzes saturated or monounsaturated fatty acid ethanolamides, such as palmitoylethanolamide (PEA) and oleoylethanolamide (OEA). PEA has been shown to exert analgesic and anti-inflammatory effects by engaging peroxisome proliferator-activated receptor-α. Like other fatty acid ethanolamides, PEA is not stored in cells, but produced on demand from cell membrane precursors, and its actions are terminated by intracellular hydrolysis by either fatty acid amide hydrolase or NAAA. Endogenous levels of PEA and OEA have been shown to decrease during inflammation. Modulation of the tissue levels of PEA by inhibition of enzymes responsible for the breakdown of this lipid mediator may represent therefore a new therapeutic strategy for the treatment of pain and inflammation. While a large number of inhibitors of fatty acid amide hydrolase have been discovered, few compounds have been reported to inhibit NAAA activity. Here, we describe the most representative NAAA inhibitors and briefly highlight their pharmacological profile. A recent study has shown that a NAAA inhibitor attenuated heat hyperalgesia and mechanical allodynia caused by local inflammation or nerve damage in animal models of pain and inflammation. This finding encourages further exploration of the pharmacology of NAAA inhibitors.
Collapse
Affiliation(s)
- Tiziano Bandiera
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy.
| | - Stefano Ponzano
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
| | - Daniele Piomelli
- Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy; Departments of Anatomy and Neurobiology, Pharmacology and Biological Chemistry, University of California, Irvine 92697-4625, USA.
| |
Collapse
|
18
|
Rahman IAS, Tsuboi K, Uyama T, Ueda N. New players in the fatty acyl ethanolamide metabolism. Pharmacol Res 2014; 86:1-10. [PMID: 24747663 DOI: 10.1016/j.phrs.2014.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 12/13/2022]
Abstract
Fatty acyl ethanolamides represent a class of endogenous bioactive lipid molecules and are generally referred to as N-acylethanolamines (NAEs). NAEs include palmitoylethanolamide (anti-inflammatory and analgesic substance), oleoylethanolamide (anorexic substance), and anandamide (endocannabinoid). The endogenous levels of NAEs are mainly regulated by enzymes responsible for their biosynthesis and degradation. In mammalian tissues, the major biosynthetic pathway starts from glycerophospholipids and is composed of two enzyme reactions. The first step is N-acylation of ethanolamine phospholipids catalyzed by Ca(2+)-dependent N-acyltransferase and the second step is the release of NAEs from N-acylated ethanolamine phospholipids by N-acylphosphatidylethanolamine (NAPE)-hydrolyzing phospholipase D (NAPE-PLD). As for the degradation of NAEs, fatty acid amide hydrolase plays the central role. However, recent studies strongly suggest the involvement of other enzymes in the NAE metabolism. These enzymes include members of the HRAS-like suppressor family (also called phospholipase A/acyltransferase family), which were originally discovered as tumor suppressors but can function as Ca(2+)-independent NAPE-forming N-acyltransferases; multiple enzymes involved in the NAPE-PLD-independent multi-step pathways to generate NAE from NAPE, which came to light by the analysis of NAPE-PLD-deficient mice; and a lysosomal NAE-hydrolyzing acid amidase as a second NAE hydrolase. These newly recognized enzymes may become the targets for the development of new therapeutic drugs. Here, we focus on recent enzymological findings in this area.
Collapse
Affiliation(s)
- Iffat Ara Sonia Rahman
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
19
|
Vitale R, Ottonello G, Petracca R, Bertozzi SM, Ponzano S, Armirotti A, Berteotti A, Dionisi M, Cavalli A, Piomelli D, Bandiera T, Bertozzi F. Synthesis, Structure-Activity, and Structure-Stability Relationships of 2-Substituted-N-(4-oxo-3-oxetanyl)N-Acylethanolamine Acid Amidase (NAAA) Inhibitors. ChemMedChem 2014; 9:323-36. [DOI: 10.1002/cmdc.201300416] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Indexed: 12/23/2022]
|
20
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: enzymes. Br J Pharmacol 2013; 170:1797-867. [PMID: 24528243 PMCID: PMC3892293 DOI: 10.1111/bph.12451] [Citation(s) in RCA: 415] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
21
|
Ponzano S, Bertozzi F, Mengatto L, Dionisi M, Armirotti A, Romeo E, Berteotti A, Fiorelli C, Tarozzo G, Reggiani A, Duranti A, Tarzia G, Mor M, Cavalli A, Piomelli D, Bandiera T. Synthesis and structure-activity relationship (SAR) of 2-methyl-4-oxo-3-oxetanylcarbamic acid esters, a class of potent N-acylethanolamine acid amidase (NAAA) inhibitors. J Med Chem 2013; 56:6917-34. [PMID: 23991897 DOI: 10.1021/jm400739u] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
N-Acylethanolamine acid amidase (NAAA) is a lysosomal cysteine hydrolase involved in the degradation of saturated and monounsaturated fatty acid ethanolamides (FAEs), a family of endogenous lipid agonists of peroxisome proliferator-activated receptor-α, which include oleoylethanolamide (OEA) and palmitoylethanolamide (PEA). The β-lactone derivatives (S)-N-(2-oxo-3-oxetanyl)-3-phenylpropionamide (2) and (S)-N-(2-oxo-3-oxetanyl)-biphenyl-4-carboxamide (3) inhibit NAAA, prevent FAE hydrolysis in activated inflammatory cells, and reduce tissue reactions to pro-inflammatory stimuli. Recently, our group disclosed ARN077 (4), a potent NAAA inhibitor that is active in vivo by topical administration in rodent models of hyperalgesia and allodynia. In the present study, we investigated the structure-activity relationship (SAR) of threonine-derived β-lactone analogues of compound 4. The main results of this work were an enhancement of the inhibitory potency of β-lactone carbamate derivatives for NAAA and the identification of (4-phenylphenyl)-methyl-N-[(2S,3R)-2-methyl-4-oxo-oxetan-3-yl]carbamate (14q) as the first single-digit nanomolar inhibitor of intracellular NAAA activity (IC50 = 7 nM on both rat NAAA and human NAAA).
Collapse
Affiliation(s)
- Stefano Ponzano
- Drug Discovery and Development, Istituto Italiano di Tecnologia , Via Morego 30, I-16163 Genova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ueda N, Tsuboi K, Uyama T. Metabolism of endocannabinoids and related N-acylethanolamines: canonical and alternative pathways. FEBS J 2013; 280:1874-94. [PMID: 23425575 DOI: 10.1111/febs.12152] [Citation(s) in RCA: 171] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 01/14/2013] [Accepted: 01/23/2013] [Indexed: 12/31/2022]
Abstract
Endocannabinoids are endogenous ligands of the cannabinoid receptors CB1 and CB2. Two arachidonic acid derivatives, arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol, are considered to be physiologically important endocannabinoids. In the known metabolic pathway in mammals, anandamide and other bioactive N-acylethanolamines, such as palmitoylethanolamide and oleoylethanolamide, are biosynthesized from glycerophospholipids by a combination of Ca(2+)-dependent N-acyltransferase and N-acyl-phosphatidylethanolamine-hydrolyzing phospholipase D, and are degraded by fatty acid amide hydrolase. However, recent studies have shown the involvement of other enzymes and pathways, which include the members of the tumor suppressor HRASLS family (the phospholipase A/acyltransferase family) functioning as Ca(2+)-independent N-acyltransferases, N-acyl-phosphatidylethanolamine-hydrolyzing phospholipaseD-independent multistep pathways via N-acylated lysophospholipid, and N-acylethanolamine-hydrolyzing acid amidase, a lysosomal enzyme that preferentially hydrolyzes palmitoylethanolamide. Although their physiological significance is poorly understood, these new enzymes/pathways may serve as novel targets for the development of therapeutic drugs. For example, selective N-acylethanolamine-hydrolyzing acid amidase inhibitors are expected to be new anti-inflammatory and analgesic drugs. In this minireview, we focus on advances in the understanding of these enzymes/pathways. In addition, recent findings on 2-arachidonoylglycerol metabolism are described.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan.
| | | | | |
Collapse
|
23
|
Peroxisome proliferator-activated receptor α mediates acute effects of palmitoylethanolamide on sensory neurons. J Neurosci 2012; 32:12735-43. [PMID: 22972997 DOI: 10.1523/jneurosci.0130-12.2012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The amplitude of the depolarization-evoked Ca2+ transient is larger in dorsal root ganglion (DRG) neurons from tumor-bearing mice compared with that of neurons from naive mice, and the change is mimicked by coculturing DRG neurons with the fibrosarcoma cells used to generate the tumors (Khasabova et al., 2007). The effect of palmitoylethanolamide (PEA), a ligand for the peroxisome proliferator-activated receptor α (PPARα), was determined on the evoked-Ca2+ transient in the coculture condition. The level of PEA was reduced in DRG cells from tumor-bearing mice as well as those cocultured with fibrosarcoma cells. Pretreatment with PEA, a synthetic PPARα agonist (GW7647), or ARN077, an inhibitor of the enzyme that hydrolyzes PEA, acutely decreased the amplitude of the evoked Ca2+ transient in small DRG neurons cocultured with fibrosarcoma cells. The PPARα antagonist GW6471 blocked the effect of each. In contrast, the PPARα agonist was without effect in the control condition, but the antagonist increased the amplitude of the Ca2+ transient, suggesting that PPARα receptors are saturated by endogenous ligand under basal conditions. Effects of drugs on mechanical sensitivity in vivo paralleled their effects on DRG neurons in vitro. Local injection of ARN077 decreased mechanical hyperalgesia in tumor-bearing mice, and the effect was blocked by GW6471. These data support the conclusion that the activity of DRG neurons is rapidly modulated by PEA through a PPARα-dependent mechanism. Moreover, agents that increase the activity of PPARα may provide a therapeutic strategy to reduce tumor-evoked pain.
Collapse
|
24
|
Li Y, Yang L, Chen L, Zhu C, Huang R, Zheng X, Qiu Y, Fu J. Design and synthesis of potent N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitor as anti-inflammatory compounds. PLoS One 2012; 7:e43023. [PMID: 22916199 PMCID: PMC3423427 DOI: 10.1371/journal.pone.0043023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 07/16/2012] [Indexed: 12/24/2022] Open
Abstract
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal enzyme involved in biological deactivation of N-palmitoylethanolamide (PEA), which exerts anti-inflammatory and analgesic effects through the activation of nuclear receptor peroxisome proliferator-activated receptor-alpha (PPAR-α). To develop selective and potent NAAA inhibitors, we designed and synthesized a series of derivatives of 1-pentadecanyl-carbonyl pyrrolidine (compound 1), a general amidase inhibitor. Structure activity relationship (SAR) studies have identified a compound 16, 1-(2-Biphenyl-4-yl)ethyl-carbonyl pyrrolidine, which has shown the highest inhibition on NAAA activity (IC50 = 2.12±0.41 µM) and is characterized as a reversible and competitive NAAA inhibitor. Computational docking analysis and mutagenesis study revealed that compound 16 interacted with Asparagine 209 (Asn209) residue flanking the catalytic pocket of NAAA so as to block the substrate entrance. In vitro pharmacological studies demonstrated that compound 16 dose-dependently reduced mRNA expression levels of iNOS and IL-6, along with an increase of intracellular PEA levels, in mouse macrophages with lipopolysaccharides (LPS) induced inflammation. Our study discovered a novel NAAA inhibitor, compound 16, that could serve as a potential anti-inflammatory agent.
Collapse
Affiliation(s)
- Yuhang Li
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Longhe Yang
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Ling Chen
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Chenggang Zhu
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Rui Huang
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Xiao Zheng
- Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China
| | - Yan Qiu
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
- * E-mail: (JF); (YQ)
| | - Jin Fu
- Department of Medical Sciences, Medical College, Xiamen University, Xiamen, Fujian, China
- Drug Discovery and Development, Italian Institute of Technology, Genoa, Italy
- * E-mail: (JF); (YQ)
| |
Collapse
|
25
|
Turunen PM, Jäntti MH, Kukkonen JP. OX1 orexin/hypocretin receptor signaling through arachidonic acid and endocannabinoid release. Mol Pharmacol 2012; 82:156-67. [PMID: 22550093 DOI: 10.1124/mol.112.078063] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We showed previously that OX(1) orexin receptor stimulation produced a strong (3)H overflow response from [(3)H]arachidonic acid (AA)-labeled cells. Here we addressed this issue with a novel set of tools and methods, to distinguish the enzyme pathways responsible for this response. CHO-K1 cells heterologously expressing human OX(1) receptors were used as a model system. By using selective pharmacological inhibitors, we showed that, in orexin-A-stimulated cells, the AA-derived radioactivity was released as two distinct components, i.e., free AA and the endocannabinoid 2-arachidonoyl glycerol (2-AG). Two orexin-activated enzymatic cascades are responsible for this response: cytosolic phospholipase A(2) (cPLA(2)) and diacylglycerol lipase; the former cascade is responsible for part of the AA release, whereas the latter is responsible for all of the 2-AG release and part of the AA release. Essentially only diacylglycerol released by phospholipase C but not by phospholipase D was implicated as a substrate for 2-AG production, although both phospholipases were strongly activated. The 2-AG released acted as a potent paracrine messenger through cannabinoid CB(1) receptors in an artificial cell-cell communication assay that was developed. The cPLA(2) cascade, in contrast, was involved in the activation of orexin receptor-operated Ca(2+) influx. 2-AG was also released upon OX(1) receptor stimulation in recombinant HEK-293 and neuro-2a cells. The results directly show, for the first time, that orexin receptors are able to generate potent endocannabinoid signals in addition to arachidonic acid signals, which may explain the proposed orexin-cannabinoid interactions (e.g., in neurons).
Collapse
Affiliation(s)
- Pauli M Turunen
- Biochemistry and Cell Biology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
26
|
Lipophilic amines as potent inhibitors of N-acylethanolamine-hydrolyzing acid amidase. Bioorg Med Chem 2012; 20:3658-65. [DOI: 10.1016/j.bmc.2012.03.065] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/09/2012] [Accepted: 03/10/2012] [Indexed: 01/11/2023]
|
27
|
Tai T, Tsuboi K, Uyama T, Masuda K, Cravatt BF, Houchi H, Ueda N. Endogenous molecules stimulating N-acylethanolamine-hydrolyzing acid amidase (NAAA). ACS Chem Neurosci 2012; 3:379-85. [PMID: 22860206 DOI: 10.1021/cn300007s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/03/2023] Open
Abstract
Fatty acid amide hydrolase (FAAH) plays the central role in the degradation of bioactive N-acylethanolamines such as the endocannabinoid arachidonoylethanolamide (anandamide) in brain and peripheral tissues. A lysosomal enzyme referred to as N-acylethanolamine-hydrolyzing acid amidase (NAAA) catalyzes the same reaction with preference to palmitoylethanolamide, an endogenous analgesic and neuroprotective substance, and is therefore expected as a potential target of therapeutic drugs. In the in vitro assays thus far performed, the maximal activity of NAAA was achieved in the presence of both nonionic detergent (Triton X-100 or Nonidet P-40) and the SH reagent dithiothreitol. However, endogenous molecules that might substitute for these synthetic compounds remain poorly understood. Here, we examined stimulatory effects of endogenous phospholipids and thiol compounds on recombinant NAAA. Among different phospholipids tested, choline- or ethanolamine-containing phospholipids showed potent effects, and 1 mM phosphatidylcholine increased NAAA activity by 6.6-fold. Concerning endogenous thiol compounds, dihydrolipoic acid at 0.1-1 mM was the most active, causing 8.5-9.0-fold stimulation. These results suggest that endogenous phospholipids and dihydrolipoic acid may contribute in keeping NAAA active in lysosomes. Even in the presence of phosphatidylcholine and dihydrolipoic acid, however, the preferential hydrolysis of palmitoylethanolamide was unaltered. We also investigated a possible compensatory induction of NAAA mRNA in brain and other tissues of FAAH-deficient mice. However, NAAA expression levels in all the tissues examined were not significantly altered from those in wild-type mice.
Collapse
Affiliation(s)
- Tatsuya Tai
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
- Department
of Pharmacy, Kagawa University Hospital, Miki, Kagawa 761-0793,
Japan
| | - Kazuhito Tsuboi
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| | - Toru Uyama
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| | - Kim Masuda
- Department of Chemical
Physiology, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Benjamin F. Cravatt
- Department of Chemical
Physiology, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Hitoshi Houchi
- Department
of Pharmacy, Kagawa University Hospital, Miki, Kagawa 761-0793,
Japan
| | - Natsuo Ueda
- Department
of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa
761-0793, Japan
| |
Collapse
|
28
|
Duranti A, Tontini A, Antonietti F, Vacondio F, Fioni A, Silva C, Lodola A, Rivara S, Solorzano C, Piomelli D, Tarzia G, Mor M. N-(2-Oxo-3-oxetanyl)carbamic Acid Esters as N-Acylethanolamine Acid Amidase Inhibitors: Synthesis and Structure–Activity and Structure–Property Relationships. J Med Chem 2012; 55:4824-36. [DOI: 10.1021/jm300349j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Andrea Duranti
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento
6, I-61029 Urbino, Italy
| | - Andrea Tontini
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento
6, I-61029 Urbino, Italy
| | - Francesca Antonietti
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento
6, I-61029 Urbino, Italy
| | - Federica Vacondio
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A, I-43124 Parma, Italy
| | - Alessandro Fioni
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A, I-43124 Parma, Italy
| | - Claudia Silva
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A, I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A, I-43124 Parma, Italy
| | - Silvia Rivara
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A, I-43124 Parma, Italy
| | - Carlos Solorzano
- Department of Pharmacology, University of California, Irvine, 360 MSRII, California
92697-4625, United States
| | - Daniele Piomelli
- Department of Pharmacology, University of California, Irvine, 360 MSRII, California
92697-4625, United States
- Department of Drug Discovery
and Development, Italian Institute of Technology, via Morego 30, I-16163 Genova, Italy
| | - Giorgio Tarzia
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento
6, I-61029 Urbino, Italy
| | - Marco Mor
- Dipartimento Farmaceutico, Università degli Studi di Parma, Viale G. P.
Usberti 27/A, I-43124 Parma, Italy
| |
Collapse
|
29
|
Armirotti A, Romeo E, Ponzano S, Mengatto L, Dionisi M, Karacsonyi C, Bertozzi F, Garau G, Tarozzo G, Reggiani A, Bandiera T, Tarzia G, Mor M, Piomelli D. β-Lactones Inhibit N-acylethanolamine Acid Amidase by S-Acylation of the Catalytic N-Terminal Cysteine. ACS Med Chem Lett 2012; 3:422-6. [PMID: 24900487 DOI: 10.1021/ml300056y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
The cysteine amidase N-acylethanolamine acid amidase (NAAA) is a member of the N-terminal nucleophile class of enzymes and a potential target for anti-inflammatory drugs. We investigated the mechanism of inhibition of human NAAA by substituted β-lactones. We characterized pharmacologically a representative member of this class, ARN077, and showed, using high-resolution liquid chromatography-tandem mass spectrometry, that this compound forms a thioester bond with the N-terminal catalytic cysteine in human NAAA.
Collapse
Affiliation(s)
- Andrea Armirotti
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Elisa Romeo
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Stefano Ponzano
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Luisa Mengatto
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Mauro Dionisi
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Claudia Karacsonyi
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Fabio Bertozzi
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Gianpiero Garau
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Glauco Tarozzo
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Angelo Reggiani
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Tiziano Bandiera
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
| | - Giorgio Tarzia
- Dipartimento
di Scienze Biomolecolari, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento
6, I-61029 Urbino, Italy
| | - Marco Mor
- Pharmaceutical
Department, University of Parma, 43124
Parma, Italy
| | - Daniele Piomelli
- Department of Drug
Discovery and Development, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
- Departments of Pharmacology, University of California, Irvine, 360 MSRII, California 92697-4625,
United States
| |
Collapse
|
30
|
Hamtiaux L, Masquelier J, Muccioli GG, Bouzin C, Feron O, Gallez B, Lambert DM. The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action. BMC Cancer 2012; 12:92. [PMID: 22429826 PMCID: PMC3364151 DOI: 10.1186/1471-2407-12-92] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 03/19/2012] [Indexed: 11/10/2022] Open
Abstract
Background The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated. Methods We investigated the cytotoxicity of endocannabinoids and their hydrolysis inhibitors on the murine B16 melanoma cell line using a MTT test. Enzyme and receptor expression was measured by RT-PCR and enzymatic degradation of endocannabinoids using radiolabeled substrates. Cell death was assessed by Annexin-V/Propidium iodine staining. Tumors were induced in C57BL/6 mice by s.c. flank injection of B16 melanoma cells. Mice were injected i.p. for six days with vehicle or treatment, and tumor size was measured each day and weighted at the end of the treatment. Haematoxylin-Eosin staining and TUNEL assay were performed to quantify necrosis and apoptosis in the tumor and endocannabinoid levels were quantified by HPLC-MS. Tube formation assay and CD31 immunostaining were used to evaluate the antiangiogenic effects of the treatments. Results The N-arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol and N- palmitoylethanolamine (PEA) reduced viability of B16 cells. The association of PEA with the fatty acid amide hydrolase (FAAH) inhibitor URB597 considerably reduced cell viability consequently to an inhibition of PEA hydrolysis and an increase of PEA levels. The increase of cell death observed with this combination of molecules was confirmed in vivo where only co-treatment with both PEA and URB597 led to decreased melanoma progression. The antiproliferative action of the treatment was associated with an elevation of PEA levels and larger necrotic regions in the tumor. Conclusions This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the advantage of associating endocannabinoids with enzymatic hydrolysis inhibitors. This may contribute to the improvement of long-term palliation or cure of melanoma.
Collapse
Affiliation(s)
- Laurie Hamtiaux
- Medicinal Chemistry, Cannabinoid and Endocannabinoid Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
31
|
Tsuboi K, Ueda N. [Enzymes involved in the degradation of N-acylethanolamines functioning as lipid mediators]. Nihon Yakurigaku Zasshi 2011; 138:8-12. [PMID: 21747202 DOI: 10.1254/fpj.138.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
|
32
|
Simultaneous measurement of three N-acylethanolamides in human bio-matrices using ultra performance liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 2010; 398:2089-97. [PMID: 20835819 DOI: 10.1007/s00216-010-4103-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/14/2010] [Accepted: 08/05/2010] [Indexed: 10/19/2022]
Abstract
Endocannabinoids including N-acylethanolamides (NAEs) are a family of lipid-related signaling molecules implicated in many physiological and disease states which elicit their activities via the cannabinoid receptors. Anandamide (N-arachidonoylethanolamine, AEA) is the most characterized endocannabinoid and has been detected in many tissues and bio-fluids including human plasma and the central nervous system. The endocannabinoid-like NAEs, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) are described as entourage compounds because they illicit similar physiological effects to AEA but have little or no affinity for cannabinoid receptors. As entourage compounds, levels of these NAEs can greatly influence the efficacy of AEA yet there are few studies which measure these compounds in bio-fluids. Here we describe a rapid, highly sensitive, specific and highly reproducible ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the analysis of AEA, OEA, and PEA in human bio-fluids including plasma, serum, breast milk, and amniotic fluids. This validated method using deuterated (AEA-d(8), OEA-d(2), and PEA-d(4)) internal standards, represents an improvement over previous analyses in terms of run time (4 min), limit of detection (0.9 fmol on column for AEA and PEA and 4.4 fmol on column for OEA), precision (relative standard deviations of peak areas: 3.1% (AEA), 2.9% (OEA), and 5.4% (PEA) for 133 fmol on column) and accuracy (95.1-104.9%). The sensitivity and precision of the validated method described here suggests that this method is suitable for the analysis of AEA, OEA, and PEA in clinical samples and may be utilized for the investigation of bio-matrices containing limited amounts of NAEs.
Collapse
|
33
|
Solorzano C, Antonietti F, Duranti A, Tontini A, Rivara S, Lodola A, Vacondio F, Tarzia G, Piomelli D, Mor M. Synthesis and structure-activity relationships of N-(2-oxo-3-oxetanyl)amides as N-acylethanolamine-hydrolyzing acid amidase inhibitors. J Med Chem 2010; 53:5770-81. [PMID: 20604568 PMCID: PMC2932887 DOI: 10.1021/jm100582w] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The fatty acid ethanolamides (FAEs) are a family of bioactive lipid mediators that include the endogenous agonist of peroxisome proliferator-activated receptor-alpha, palmitoylethanolamide (PEA). FAEs are hydrolyzed intracellularly by either fatty acid amide hydrolase or N-acylethanolamine-hydrolyzing acid amidase (NAAA). Selective inhibition of NAAA by (S)-N-(2-oxo-3-oxetanyl)-3-phenylpropionamide [(S)-OOPP, 7a] prevents PEA degradation in mouse leukocytes and attenuates responses to proinflammatory stimuli. Starting from the structure of 7a, a series of beta-lactones was prepared and tested on recombinant rat NAAA to explore structure-activity relationships (SARs) for this class of inhibitors and improve their in vitro potency. Following the hypothesis that these compounds inhibit NAAA by acylation of the catalytic cysteine, we identified several requirements for recognition at the active site and obtained new potent inhibitors. In particular, (S)-N-(2-oxo-3-oxetanyl)biphenyl-4-carboxamide (7h) was more potent than 7a at inhibiting recombinant rat NAAA activity (7a, IC(50) = 420 nM; 7h, IC(50) = 115 nM) in vitro and at reducing carrageenan-induced leukocyte infiltration in vivo.
Collapse
Affiliation(s)
- Carlos Solorzano
- Department of Pharmacology, University of California, Irvine, 360 MSRII, Irvine CA 92697-4625, USA
| | - Francesca Antonietti
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento 6, I-61029 Urbino, Italy
| | - Andrea Duranti
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento 6, I-61029 Urbino, Italy
| | - Andrea Tontini
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento 6, I-61029 Urbino, Italy
| | - Silvia Rivara
- Dipartimento Farmaceutico, Università degli Studi di Parma, viale G. P. Usberti 27/A I-43124 Parma, Italy
| | - Alessio Lodola
- Dipartimento Farmaceutico, Università degli Studi di Parma, viale G. P. Usberti 27/A I-43124 Parma, Italy
| | - Federica Vacondio
- Dipartimento Farmaceutico, Università degli Studi di Parma, viale G. P. Usberti 27/A I-43124 Parma, Italy
| | - Giorgio Tarzia
- Dipartimento di Scienze del Farmaco e della Salute, Università degli Studi di Urbino “Carlo Bo”, Piazza del Rinascimento 6, I-61029 Urbino, Italy
| | - Daniele Piomelli
- Department of Pharmacology, University of California, Irvine, 360 MSRII, Irvine CA 92697-4625, USA
- Department of Drug Discovery and Development, Italian Institute of Technology, via Morego 30, I-16163 Genova, Italy
| | - Marco Mor
- Dipartimento Farmaceutico, Università degli Studi di Parma, viale G. P. Usberti 27/A I-43124 Parma, Italy
| |
Collapse
|
34
|
Ueda N, Tsuboi K, Uyama T. N-acylethanolamine metabolism with special reference to N-acylethanolamine-hydrolyzing acid amidase (NAAA). Prog Lipid Res 2010; 49:299-315. [PMID: 20152858 DOI: 10.1016/j.plipres.2010.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
N-acylethanolamines (NAEs) constitute a class of bioactive lipid molecules present in animal and plant tissues. Among the NAEs, N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine attract much attention due to cannabimimetic activity as an endocannabinoid, anti-inflammatory and analgesic activities, and anorexic activity, respectively. In mammalian tissues, NAEs are formed from glycerophospholipids through the phosphodiesterase-transacylation pathway consisting of Ca(2+)-dependent N-acyltransferase and N-acylphosphatidylethanolamine-hydrolyzing phospholipase D. Recent studies revealed the presence of alternative pathways and enzymes responsible for the NAE formation. As for the degradation of NAEs, fatty acid amide hydrolase (FAAH), which hydrolyzes NAEs to fatty acids and ethanolamine, plays a central role. However, a lysosomal enzyme referred to as NAE-hydrolyzing acid amidase (NAAA) also catalyzes the same reaction and may be a new target for the development of therapeutic drugs. In this article we discuss recent progress in the studies on the enzymes involved in the biosynthesis and degradation of NAEs with special reference to NAAA.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa, Japan
| | | | | |
Collapse
|
35
|
Saturnino C, Petrosino S, Ligresti A, Palladino C, Martino GD, Bisogno T, Marzo VD. Synthesis and biological evaluation of new potential inhibitors of N-acylethanolamine hydrolyzing acid amidase. Bioorg Med Chem Lett 2010; 20:1210-3. [DOI: 10.1016/j.bmcl.2009.11.134] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 11/26/2009] [Accepted: 11/30/2009] [Indexed: 11/25/2022]
|
36
|
N-palmitoyl-ethanolamine: Biochemistry and new therapeutic opportunities. Biochimie 2010; 92:724-7. [PMID: 20096327 DOI: 10.1016/j.biochi.2010.01.006] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/12/2010] [Indexed: 12/22/2022]
Abstract
Although its presence in mammalian tissues has been known since the 1960s, N-palmitoyl-ethanolamine (PEA) has emerged only recently among other bioactive N-acylethanolamines as an important local pro-homeostatic mediator which, due to its chemical stability, can be also administered exogenously as the active principle of current anti-inflammatory and analgesic preparations (e.g. Normast, Pelvilen). Much progress has been made towards the understanding of the mechanisms regulating both the tissue levels of PEA under physiological and pathological conditions, and its pharmacological actions. Here we review these new developments in PEA biochemistry and pharmacology, and discuss novel potential indications for the therapeutic use of this compound and of synthetic tools that selectively retard its catabolism, such as the inhibitors of the recently cloned N-acylethanolamine-hydrolyzing acid amidase.
Collapse
|
37
|
|
38
|
ENZYMES. Br J Pharmacol 2009. [DOI: 10.1111/j.1476-5381.2009.00506.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
39
|
Ueda N, Tsuboi K, Lambert DM. A second N-acylethanolamine hydrolase in mammalian tissues. Neuropharmacology 2009; 48:1079-85. [PMID: 15910884 DOI: 10.1016/j.neuropharm.2004.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 11/30/2004] [Accepted: 12/21/2004] [Indexed: 11/24/2022]
Abstract
It is widely accepted that fatty acid amide hydrolase (FAAH) plays a central role in the hydrolysis of anandamide. However, we found a second N-acylethanolamine hydrolase in animal tissues which hydrolyzed anandamide at acidic pH. This "acid amidase" was first detected with the particulate fraction of human megakaryoblastic CMK cells, and was solubilized by freezing and thawing without detergent. The enzyme was distinguishable from FAAH in terms of (1) the optimal activity at pH 5, (2) stimulation by dithiothreitol, (3) low sensitivity to two FAAH inhibitors (methyl arachidonyl fluorophosphonate and phenylmethylsulfonyl fluoride), and (4) high content in lung, spleen and macrophages of rat. The acid amidase purified from rat lung was the most active with N-palmitoylethanolamine among various long-chain N-acylethanolamines. To develop specific inhibitors for this enzyme, we screened various analogues of N-palmitoylethanolamine. Among the tested compounds, N-cyclohexanecarbonylpentadecylamine was the most potent inhibitor which does-dependently inhibited the enzyme with an IC(50) value of 4.5 microM without inhibiting FAAH at concentrations up to 100 microM. The inhibitor was a useful tool to distinguish the acid amidase from FAAH with rat basophilic leukemia (RBL-1) cells that express both the enzymes.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | | | | |
Collapse
|
40
|
Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol 2009; 78:553-60. [PMID: 19413995 DOI: 10.1016/j.bcp.2009.04.024] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/23/2009] [Accepted: 04/27/2009] [Indexed: 02/06/2023]
Abstract
Anandamide and the other N-acylethanolamines, e.g. oleoylethanolamide (OEA), palmitoylethanolamide (PEA), and linoleoylethanolamide (LEA), may be formed by several enzymatic pathways from their precursors, which are the N-acylated ethanolamine phospholipids. The exact enzymatic pathways involved in their biosynthesis in specific tissues are not clarified. It has been suggested that endogenous anandamide could stimulate food intake by activation of cannabinoid receptors in the brain and/or in the intestinal tissue. On the other hand, endogenous OEA and PEA have been suggested to inhibit food intake by acting on receptors in the intestine. At present, there is no clear role for endogenous anandamide in controlling food intake via cannabinoid receptors, neither centrally nor in the gastrointestinal tract. However, OEA, PEA and perhaps also LEA may be involved in regulation of food intake by selective prolongation of feeding latency and post-meal interval. These N-acylethanolamines seem to be formed locally in the intestine, where they can activate PPARalpha located in close proximity to their site of synthesis. The rapid onset of OEA response and its reliance on an intact vagus nerve suggests that activation of PPARalpha does not result in formation of a transcription-dependent signal but must rely on an unidentified non-genomic signal that translates to activation of vagal afferents. Whether GPR119, TRPV1 and/or intestinal ceramide levels also contribute to the anorectic and weight-reducing effect of exogenous OEA is less clear. Prolonged intake of dietary fat (45 energy%) may promote over-consumption of food by decreasing the endogenous levels of OEA, PEA and LEA in the intestine.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Pharmacology & Pharmacotherapy, Faculty of Pharmaceutical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
41
|
Alexander SPH, Kendall DA. The life cycle of the endocannabinoids: formation and inactivation. Curr Top Behav Neurosci 2009; 1:3-35. [PMID: 21104378 DOI: 10.1007/978-3-540-88955-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this chapter, we summarise the current thinking about the nature of endocannabinoids. In describing the life cycle of these agents, we highlight the synthetic and catabolic enzymes suggested to be involved. For each of these, we provide a systematic analysis of information on sequence, subcellular and cellular distribution, as well as physiological and pharmacological substrates, enhancers and inhibitors, together with brief descriptions of the impact of manipulating enzyme levels through genetic mechanisms (dealt with in more detail in the chapter "Genetic Models of the Endocannabinoid System" by Monory and Lutz, this volume). In addition, we describe experiments investigating the stimulation of endocannabinoid synthesis and release in intact cell systems.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical School, Queens Medical Centre, Nottingham, UK.
| | | |
Collapse
|
42
|
Abstract
Pharmacological and biochemical investigations on the endocannabinoid system are facilitated by the availability of compounds which interact with its constituents in specific and understandable ways. This chapter describes the main representatives of several classes of chemicals employed as pharmacological tools in this field, focusing on small organic compounds having, where possible, a drug-like structure. Many compounds having different intrinsic activity and selectivity towards the G-protein coupled receptors (GPCR) CB₁ and CB₂ are now available and are currently employed in research protocols. Recently, allosteric ligands for CB₁ receptor and selective ligands for GPR55, a newly characterised GPCR, have also been described in the literature. As for compounds affecting endocannabinoid levels in living tissues, many classes of selective and, in some cases, drug-like inhibitors of FAAH are available, while only compounds with poor selectivity or in vivo activity are known to inhibit other enzymes involved in endocannabinoid catabolism, such as NAAA or MGL, and in endocannabinoid biosynthesis.
Collapse
Affiliation(s)
- Marco Mor
- Dipartimento Farmaceutico, Università degli Studi di Parma, viale G. P. Usberti 27/A Campus Universitario, Parma, I-43100, Italy.
| | | |
Collapse
|
43
|
Wood JT, Williams JS, Pandarinathan L, Courville A, Keplinger MR, Janero DR, Vouros P, Makriyannis A, Lammi-Keefe CJ. Comprehensive profiling of the human circulating endocannabinoid metabolome: clinical sampling and sample storage parameters. Clin Chem Lab Med 2008; 46:1289-95. [PMID: 18611105 DOI: 10.1515/cclm.2008.242] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Endogenous cannabinoid-receptor ligands (endocannabinoids) and over a dozen related metabolites now comprise the "endocannabinoid metabolome". The diverse (patho)physiological roles of endocannabinoids, the predictive/diagnostic utility of systemic endocannabinoid levels, and the growing interest in endocannabinoid-related pharmacotherapeutics mandate a valid clinical protocol for processing human blood that does not jeopardize profiling of the circulating endocannabinoid metabolome. METHODS We systematically evaluated the potential effect of pre-analytical variables associated with phlebotomy and sample handling/work-up on the human-blood endocannabinoid metabolome as quantified by state-of-the-art liquid chromatography-mass spectrometry. RESULTS Neither subject posture during phlebotomy nor moderate activity beforehand influenced the blood levels of the 15 endocannabinoid-system lipids quantified. Storage of fresh blood at 4 degrees C selectively enhanced ethanolamide concentrations artifactually without affecting monoglycerides and nonesterified fatty acids, such as arachidonic acid. In marked contrast, ethanolamides and monoglycerides remained stable through three plasma freeze/thaw cycles, whereas plasma arachidonic acid content increased, probably a reflection of ongoing metabolism. CONCLUSIONS Class- and compound-selective pre-analytical influences on circulating human endocannabinoid levels necessitate immediate plasma preparation from fresh blood and prompt plasma apportioning and snap-freezing. Repeated plasma thawing and refreezing should be avoided. This protocol ensures sample integrity for evaluating the circulating endocannabinoid metabolome in the clinical setting.
Collapse
Affiliation(s)
- JodiAnne T Wood
- Center for Drug Discovery, Northeastern University, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ahn K, McKinney MK, Cravatt BF. Enzymatic pathways that regulate endocannabinoid signaling in the nervous system. Chem Rev 2008; 108:1687-707. [PMID: 18429637 DOI: 10.1021/cr0782067] [Citation(s) in RCA: 417] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kay Ahn
- Pfizer Global Research and Development, Groton, Connecticut 06340, USA.
| | | | | |
Collapse
|
45
|
Alexander SPH, Kendall DA. The complications of promiscuity: endocannabinoid action and metabolism. Br J Pharmacol 2007; 152:602-23. [PMID: 17876303 PMCID: PMC2190010 DOI: 10.1038/sj.bjp.0707456] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 08/15/2007] [Accepted: 08/16/2007] [Indexed: 01/27/2023] Open
Abstract
In this review, we present our understanding of the action and metabolism of endocannabinoids and related endogenous molecules. It is clear that the interactions between the multiple endocannabinoid-like molecules (ECLs) are highly complex, both at the level of signal transduction and metabolism. Thus, ECLs are a group of ligands active at 7-transmembrane and nuclear receptors, as well as transmitter-gated and ion channels. ECLs and their metabolites can converge on common endpoints (either metabolic or signalling) through contradictory or reinforcing pathways. We highlight the complexity of the endocannabinoid system, based on the promiscuous nature of ECLs and their metabolites, as well as the synthetic modulators of the endocannabinoid system.
Collapse
Affiliation(s)
- S P H Alexander
- School of Biomedical Sciences and Institute of Neuroscience, University of Nottingham Medical School, Nottingham NG7 7LP, UK.
| | | |
Collapse
|
46
|
Abstract
Bioactive N-acylethanolamines, including the endocannabinoid anandamide and anti-inflammatory N-palmitoylethanolamine, are hydrolyzed to fatty acids and ethanolamine in animal tissues by the catalysis of fatty acid amide hydrolase (FAAH). We recently cloned cDNA of N-acylethanolamine-hydrolyzing acid amidase (NAAA), another enzyme catalyzing the same reaction, from human, rat, and mouse. NAAA reveals no sequence homology with FAAH and belongs to the choloylglycine hydrolase family. The most striking catalytic property of NAAA is pH optimum at 4.5-5, which is consistent with its immunocytochemical localization in lysosomes. In rat, NAAA is highly expressed in lung, spleen, thymus, and intestine. Notably, the expression level of NAAA is exceptionally high in rat alveolar macrophages. The primary structure of NAAA exhibits 33-35% amino acid identity to that of acid ceramidase, a lysosomal enzyme hydrolyzing ceramide to fatty acid and sphingosine. NAAA actually showed a low, but detectable ceramide-hydrolyzing activity, while acid ceramidase hydrolyzed N-lauroylethanolamine. Thus, NAAA is a novel lysosomal hydrolase, which is structurally and functionally similar to acid ceramidase. These results suggest a unique role of NAAA in the degradation of N-acylethanolamines.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | |
Collapse
|
47
|
Labar G, Bauvois C, Muccioli GG, Wouters J, Lambert DM. Disulfiram is an inhibitor of human purified monoacylglycerol lipase, the enzyme regulating 2-arachidonoylglycerol signaling. Chembiochem 2007; 8:1293-7. [PMID: 17579916 DOI: 10.1002/cbic.200700139] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Monoacylglycerol lipase (MAGL) is a key enzyme responsible for the termination of endocannabinoid signaling. Its crucial role in 2-arachidonoylglycerol (2-AG) metabolism, together with the numerous pharmacological properties mediated by this endocannabinoid, emphasize the interest in MAGL as therapeutic target, along with the need to design potent and selective inhibitors. Meanwhile, the complexity of 2-AG degradation pathways underscores the need to use a purified source of enzyme in evaluation studies of new inhibitors. We report here the first heterologous expression and purification of human MAGL. A highly pure protein was obtained and allowed us to measure the affinity of several MAGL inhibitors for the human enzyme. Importantly, disulfiram (tetraethylthiuram disulfide), a compound used to treat alcoholism, and other disulfide-containing compounds were shown to inhibit MAGL with good potency, likely through an interaction with cysteine residues.
Collapse
Affiliation(s)
- Geoffray Labar
- Unité de Chimie pharmaceutique et de Radiopharmacie, Ecole de Pharmacie, Faculté de Médecine, Université catholique de Louvain, Avenue E. Mounier 73.40 1200 Bruxelles, Belgium
| | | | | | | | | |
Collapse
|
48
|
Vandevoorde S, Lambert DM. The Multiple Pathways of Endocannabinoid Metabolism: A Zoom Out. Chem Biodivers 2007; 4:1858-81. [PMID: 17712823 DOI: 10.1002/cbdv.200790156] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Séverine Vandevoorde
- Unité de chimie pharmaceutique et radiopharmacie, UCL/CMFA 7340, Avenue E. Mounier, B-1200 Brussels.
| | | |
Collapse
|
49
|
Wise LE, Cannavacciulo R, Cravatt BF, Martin BF, Lichtman AH. Evaluation of fatty acid amides in the carrageenan-induced paw edema model. Neuropharmacology 2007; 54:181-8. [PMID: 17675189 PMCID: PMC2200792 DOI: 10.1016/j.neuropharm.2007.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/02/2007] [Accepted: 06/11/2007] [Indexed: 01/27/2023]
Abstract
While it has long been recognized that Delta(9)-tetrahydrocannabinol (THC), the primary psychoactive constituent of cannabis, and other cannabinoid receptor agonists possess anti-inflammatory properties, their well known CNS effects have dampened enthusiasm for therapeutic development. On the other hand, genetic deletion of fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of fatty acid amides, including endogenous cannabinoid N-arachidonoyl ethanolamine (anandamide; AEA), N-palmitoyl ethanolamine (PEA), N-oleoyl ethanolamine (OEA), and oleamide, also elicits anti-edema, but does not produce any apparent cannabinoid effects. The purpose of the present study was to investigate whether exogenous administration of FAAs would augment the anti-inflammatory phenotype of FAAH (-/-) mice in the carrageenan model. Thus, we evaluated the effects of the FAAs AEA, PEA, OEA, and oleamide in wild-type and FAAH (-/-) mice. For comparison, we evaluated the anti-edema effects of THC, dexamethasone (DEX), a synthetic glucocorticoid, diclofenac (DIC), a nonselective cyclooxygenase (COX) inhibitor, in both genotypes. A final study determined if tolerance to the anti-edema effects of PEA occurs after repeated dosing. PEA, THC, DEX, DIC elicited significant decreases in carrageenan-induced paw edema in wild-type mice. In contrast OEA produced a less reliable anti-edema effect than these other drugs, and AEA and oleamide failed to produce any significant decreases in paw edema. Moreover, none of the agents evaluated augmented the anti-edema phenotype of FAAH (-/-) mice, suggesting that maximal anti-edema effects had already been established. PEA was the most effective FAA in preventing paw edema and its effects did not undergo tolerance. While the present findings do not support a role for AEA in preventing carrageenan-induced edema, PEA administration and FAAH blockade elicited anti-edema effects of an equivalent magnitude as produced by THC, DEX, and DIC in this assay.
Collapse
Affiliation(s)
- Laura E. Wise
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
| | - Roberta Cannavacciulo
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Billy F. Martin
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
| | - Aron H. Lichtman
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 410 North 12th Street, PO Box 980613, Richmond, VA 23298, USA
- *Corresponding Author Aron H. Lichtman, , Phone: 804.828.8480, Fax: 804.828.2117
| |
Collapse
|
50
|
Tsuboi K, Zhao LY, Okamoto Y, Araki N, Ueno M, Sakamoto H, Ueda N. Predominant expression of lysosomal N-acylethanolamine-hydrolyzing acid amidase in macrophages revealed by immunochemical studies. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:623-32. [PMID: 17462942 DOI: 10.1016/j.bbalip.2007.03.005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/06/2007] [Accepted: 03/08/2007] [Indexed: 11/18/2022]
Abstract
Bioactive N-acylethanolamines, including anandamide (an endocannabinoid), N-palmitoylethanolamine (an anti-inflammatory substance), and N-oleoylethanolamine (an anorexic substance) are enzymatically hydrolyzed to fatty acids and ethanolamine. Fatty acid amide hydrolase plays a major role in this reaction. In addition, we cloned cDNA of an isozyme termed "N-acylethanolamine-hydrolyzing acid amidase (NAAA)" [K. Tsuboi, Y.-X. Sun, Y. Okamoto, N. Araki, T. Tonai, N. Ueda, Molecular characterization of N-acylethanolamine-hydrolyzing acid amidase, a novel member of the choloylglycine hydrolase family with structural and functional similarity to acid ceramidase, J. Biol. Chem. 280 (2005) 11082-11092]. Previous biochemical analyses suggested the expression of NAAA in macrophage cells and various rat tissues including lung and brain. To clarify the physiological significance of NAAA, here we immunochemically studied NAAA for the first time. We developed an antibody specific for rat NAAA, and by Western blotting revealed that NAAA is glycosylated and subjected to specific proteolysis. In alveolar macrophages isolated from rat lung, NAAA was immunocytochemically localized in lysosomes. In the whole lung tissue, only alveolar macrophages were immunostained for NAAA. Conformably, the mRNA and protein levels and activity of NAAA in alveolar macrophages were much higher than those in the whole lung tissue. In brain, intraventricular macrophages were positively stained with anti-NAAA antibody, while microglia appeared to be negative. These results strongly suggested the importance of macrophages as an expression site of NAAA in rat tissues.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|