1
|
Huang L, Zhao B, Wan Y. Disruption of RNA-binding proteins in neurological disorders. Exp Neurol 2024; 385:115119. [PMID: 39709152 DOI: 10.1016/j.expneurol.2024.115119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/30/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
RNA-binding proteins (RBPs) are multifunctional proteins essential for the regulation of RNA processing and metabolism, contributing to the maintenance of cell homeostasis by modulating the expression of target genes. Many RBPs have been associated with neuron-specific processes vital for neuronal development and survival. RBP dysfunction may result in aberrations in RNA processing, which subsequently initiate a cascade of effects. Notably, RBPs are involved in the onset and progression of neurological disorders via diverse mechanisms. Disruption of RBPs not only affects RNA processing, but also promotes the abnormal aggregation of proteins into toxic inclusion bodies, and contributes to immune responses that drive the progression of neurological diseases. In this review, we summarize recent discoveries relating to the roles of RBPs in neurological diseases, discuss their contributions to such conditions, and highlight the unique functions of these RBPs within the nervous system.
Collapse
Affiliation(s)
- Luyang Huang
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Bo Zhao
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China
| | - Youzhong Wan
- Cancer Biology Laboratory, China-Japan Union Hospital of Jilin University, Changchun 130062, Jilin, China.
| |
Collapse
|
2
|
Ciocia A, Mestre-Farràs N, Vicent-Nacht I, Guitart T, Gebauer F. CSDE1: a versatile regulator of gene expression in cancer. NAR Cancer 2024; 6:zcae014. [PMID: 38600987 PMCID: PMC11005786 DOI: 10.1093/narcan/zcae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/13/2024] [Accepted: 03/10/2024] [Indexed: 04/12/2024] Open
Abstract
RNA-binding proteins (RBPs) have garnered significant attention in the field of cancer due to their ability to modulate diverse tumor traits. Once considered untargetable, RBPs have sparked renewed interest in drug development, particularly in the context of RNA-binding modulators of translation. This review focuses on one such modulator, the protein CSDE1, and its pivotal role in regulating cancer hallmarks. We discuss context-specific functions of CSDE1 in tumor development, its mechanisms of action, and highlight features that support its role as a molecular adaptor. Additionally, we discuss the regulation of CSDE1 itself and its potential value as biomarker and therapeutic target.
Collapse
Affiliation(s)
- Annagiulia Ciocia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Neus Mestre-Farràs
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Ignacio Vicent-Nacht
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona, Spain
| |
Collapse
|
3
|
Andreev DE, Niepmann M, Shatsky IN. Elusive Trans-Acting Factors Which Operate with Type I (Poliovirus-like) IRES Elements. Int J Mol Sci 2022; 23:ijms232415497. [PMID: 36555135 PMCID: PMC9778869 DOI: 10.3390/ijms232415497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The phenomenon of internal initiation of translation was discovered in 1988 on poliovirus mRNA. The prototypic cis-acting element in the 5' untranslated region (5'UTR) of poliovirus mRNA, which is able to direct initiation at an internal start codon without the involvement of a cap structure, has been called an IRES (Internal Ribosome Entry Site or Segment). Despite its early discovery, poliovirus and other related IRES elements of type I are poorly characterized, and it is not yet clear which host proteins (a.k.a. IRES trans-acting factors, ITAFs) are required for their full activity in vivo. Here we discuss recent and old results devoted to type I IRESes and provide evidence that Poly(rC) binding protein 2 (PCBP2), Glycyl-tRNA synthetase (GARS), and Cold Shock Domain Containing E1 (CSDE1, also known as UNR) are major regulators of type I IRES activity.
Collapse
Affiliation(s)
- Dmitry E. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Michael Niepmann
- Institute of Biochemistry, Medical Faculty, Justus-Liebig-University, 35392 Giessen, Germany
| | - Ivan N. Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Correspondence:
| |
Collapse
|
4
|
Upstream of N-Ras (Unr/CSDE1) Interacts with NCp7 and Gag, Modulating HIV-1 IRES-Mediated Translation Initiation. Viruses 2022; 14:v14081798. [PMID: 36016420 PMCID: PMC9413769 DOI: 10.3390/v14081798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
The Human Immunodeficiency Virus-1 (HIV-1) nucleocapsid protein (NC) as a mature protein or as a domain of the Gag precursor plays important roles in the early and late phases of the infection. To better understand its roles, we searched for new cellular partners and identified the RNA-binding protein Unr/CSDE1, Upstream of N-ras, whose interaction with Gag and NCp7 was confirmed by co-immunoprecipitation and FRET-FLIM. Unr interaction with Gag was found to be RNA-dependent and mediated by its NC domain. Using a dual luciferase assay, Unr was shown to act as an ITAF (IRES trans-acting factor), increasing the HIV-1 IRES-dependent translation. Point mutations of the HIV-1 IRES in a consensus Unr binding motif were found to alter both the IRES activity and its activation by Unr, suggesting a strong dependence of the IRES on Unr. Interestingly, Unr stimulatory effect is counteracted by NCp7, while Gag increases the Unr-promoted IRES activity, suggesting a differential Unr effect on the early and late phases of viral infection. Finally, knockdown of Unr in HeLa cells leads to a decrease in infection by a non-replicative lentivector, proving its functional implication in the early phase of viral infection.
Collapse
|
5
|
Grzybowska EA, Wakula M. Protein Binding to Cis-Motifs in mRNAs Coding Sequence Is Common and Regulates Transcript Stability and the Rate of Translation. Cells 2021; 10:2910. [PMID: 34831133 PMCID: PMC8616275 DOI: 10.3390/cells10112910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/19/2022] Open
Abstract
Protein binding to the non-coding regions of mRNAs is relatively well characterized and its functionality has been described in many examples. New results obtained by high-throughput methods indicate that binding to the coding sequence (CDS) by RNA-binding proteins is also quite common, but the functions thereof are more obscure. As described in this review, CDS binding has a role in the regulation of mRNA stability, but it has also a more intriguing role in the regulation of translational efficiency. Global approaches, which suggest the significance of CDS binding along with specific examples of CDS-binding RBPs and their modes of action, are outlined here, pointing to the existence of a relatively less-known regulatory network controlling mRNA stability and translation on yet another level.
Collapse
Affiliation(s)
- Ewa A. Grzybowska
- Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland;
| | | |
Collapse
|
6
|
MicroSalmon: A Comprehensive, Searchable Resource of Predicted MicroRNA Targets and 3'UTR Cis-Regulatory Elements in the Full-Length Sequenced Atlantic Salmon Transcriptome. Noncoding RNA 2021; 7:ncrna7040061. [PMID: 34698276 PMCID: PMC8544657 DOI: 10.3390/ncrna7040061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
Complete 3′UTRs unambiguously assigned to specific mRNA isoforms from the Atlantic salmon full-length (FL) transcriptome were collected into a 3′UTRome. miRNA response elements (MREs) and other cis-regulatory motifs were subsequently predicted and assigned to 3′UTRs of all FL-transcripts. The MicroSalmon GitHub repository provides all results. RNAHybrid and sRNAtoolbox tools predicted the MREs. UTRscan and the Teiresias algorithm predicted other 3′UTR cis-acting motifs, both known vertebrate motifs and putative novel motifs. MicroSalmon provides search programs to retrieve all FL-transcripts targeted by a miRNA (median number 1487), all miRNAs targeting an FL-transcript (median number 27), and other cis-acting motifs. As thousands of FL-transcripts may be targets of each miRNA, additional experimental strategies are necessary to reduce the likely true and relevant targets to a number that may be functionally validated. Low-complexity motifs known to affect mRNA decay in vertebrates were over-represented. Many of these were enriched in the terminal end, while purine- or pyrimidine-rich motifs with unknown functions were enriched immediately downstream of the stop codon. Furthermore, several novel complex motifs were over-represented, indicating conservation and putative function. In conclusion, MicroSalmon is an extensive and useful, searchable resource for study of Atlantic salmon transcript regulation by miRNAs and cis-acting 3′UTR motifs.
Collapse
|
7
|
El Khouri E, Ghoumid J, Haye D, Giuliano F, Drevillon L, Briand-Suleau A, De La Grange P, Nau V, Gaillon T, Bienvenu T, Jacquemin-Sablon H, Goossens M, Amselem S, Giurgea I. Wnt/β-catenin pathway and cell adhesion deregulation in CSDE1-related intellectual disability and autism spectrum disorders. Mol Psychiatry 2021; 26:3572-3585. [PMID: 33867523 DOI: 10.1038/s41380-021-01072-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022]
Abstract
Among the genetic factors playing a key role in the etiology of intellectual disabilities (IDs) and autism spectrum disorders (ASDs), several encode RNA-binding proteins (RBPs). In this study, we deciphered the molecular and cellular bases of ID-ASD in a patient followed from birth to the age of 21, in whom we identified a de novo CSDE1 (Cold Shock Domain-containing E1) nonsense variation. CSDE1 encodes an RBP that regulates multiple cellular pathways by monitoring the translation and abundance of target transcripts. Analyses performed on the patient's primary fibroblasts showed that the identified CSDE1 variation leads to haploinsufficiency. We identified through RNA-seq assays the Wnt/β-catenin signaling and cellular adhesion as two major deregulated pathways. These results were further confirmed by functional studies involving Wnt-specific luciferase and substrate adhesion assays. Additional data support a disease model involving APC Down-Regulated-1 (APCDD1) and cadherin-2 (CDH2), two components of the Wnt/β-catenin pathway, CDH2 being also pivotal for cellular adhesion. Our study, which relies on both the deep phenotyping and long-term follow-up of a patient with CSDE1 haploinsufficiency and on ex vivo studies, sheds new light on the CSDE1-dependent deregulated pathways in ID-ASD.
Collapse
Affiliation(s)
- E El Khouri
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - J Ghoumid
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique Clinique, Hôpital Jeanne de Flandre, CHU Lille, Lille, France
| | - D Haye
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - F Giuliano
- Service de Génétique Médicale Centre, Hospitalo-Universitaire de Nice, Nice, France
| | - L Drevillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,CHU Caen Normandie, Caen, France
| | - A Briand-Suleau
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.,Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | | | - V Nau
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - T Gaillon
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - T Bienvenu
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin, INSERM UMR1266 - Institute of Psychiatry and Neuroscience of Paris (IPNP) and University of Paris, Paris, France
| | - H Jacquemin-Sablon
- INSERM UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - M Goossens
- Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France
| | - S Amselem
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France
| | - I Giurgea
- Sorbonne Université, INSERM, Maladies génétiques d'expression pédiatrique, Département de Génétique médicale, Assistance Publique Hôpitaux de Paris, Hôpital Trousseau, Paris, France. .,Département de Génétique, Groupe Hospitalier Henri Mondor, Créteil, France.
| |
Collapse
|
8
|
Péladeau C, Jasmin BJ. Targeting IRES-dependent translation as a novel approach for treating Duchenne muscular dystrophy. RNA Biol 2020; 18:1238-1251. [PMID: 33164678 DOI: 10.1080/15476286.2020.1847894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Internal-ribosomal entry sites (IRES) are translational elements that allow the initiation machinery to start protein synthesis via internal initiation. IRESs promote tissue-specific translation in stress conditions when conventional cap-dependent translation is inhibited. Since many IRES-containing mRNAs are relevant to diseases, this cellular mechanism is emerging as an attractive therapeutic target for pharmacological and genetic modulations. Indeed, there has been growing interest over the past years in determining the therapeutic potential of IRESs for several disease conditions such as cancer, neurodegeneration and neuromuscular diseases including Duchenne muscular dystrophy (DMD). IRESs relevant for DMD have been identified in several transcripts whose protein product results in functional improvements in dystrophic muscles. Together, these converging lines of evidence indicate that activation of IRES-mediated translation of relevant transcripts in DMD muscle represents a novel and appropriate therapeutic strategy for DMD that warrants further investigation, particularly to identify agents that can modulate their activity.
Collapse
Affiliation(s)
- Christine Péladeau
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, and the Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
9
|
Jaud M, Philippe C, Di Bella D, Tang W, Pyronnet S, Laurell H, Mazzolini L, Rouault-Pierre K, Touriol C. Translational Regulations in Response to Endoplasmic Reticulum Stress in Cancers. Cells 2020; 9:cells9030540. [PMID: 32111004 PMCID: PMC7140484 DOI: 10.3390/cells9030540] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
During carcinogenesis, almost all the biological processes are modified in one way or another. Among these biological processes affected, anomalies in protein synthesis are common in cancers. Indeed, cancer cells are subjected to a wide range of stresses, which include physical injuries, hypoxia, nutrient starvation, as well as mitotic, oxidative or genotoxic stresses. All of these stresses will cause the accumulation of unfolded proteins in the Endoplasmic Reticulum (ER), which is a major organelle that is involved in protein synthesis, preservation of cellular homeostasis, and adaptation to unfavourable environment. The accumulation of unfolded proteins in the endoplasmic reticulum causes stress triggering an unfolded protein response in order to promote cell survival or to induce apoptosis in case of chronic stress. Transcription and also translational reprogramming are tightly controlled during the unfolded protein response to ensure selective gene expression. The majority of stresses, including ER stress, induce firstly a decrease in global protein synthesis accompanied by the induction of alternative mechanisms for initiating the translation of mRNA, later followed by a translational recovery. After a presentation of ER stress and the UPR response, we will briefly present the different modes of translation initiation, then address the specific translational regulatory mechanisms acting during reticulum stress in cancers and highlight the importance of translational control by ER stress in tumours.
Collapse
Affiliation(s)
- Manon Jaud
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
| | - Céline Philippe
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Doriana Di Bella
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Weiwei Tang
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Stéphane Pyronnet
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
| | - Henrik Laurell
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
- Inserm UMR1048, I2MC (Institut des Maladies Métaboliques et Cardiovasculaires), BP 84225, CEDEX 04, 31 432 Toulouse, France
| | - Laurent Mazzolini
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- CNRS ERL5294, CRCT, F-31037 Toulouse, France
| | - Kevin Rouault-Pierre
- Barts Cancer Institute, Queen Mary University of London, London E1 4NS, UK; (C.P.); (D.D.B.); (W.T.); (K.R.-P.)
| | - Christian Touriol
- Inserm UMR1037, CRCT (Cancer Research Center of Toulouse), F-31037 Toulouse, France; (M.J.); (S.P.); (L.M.)
- Université Toulouse III Paul-Sabatier, F-31000 Toulouse, France;
- Correspondence:
| |
Collapse
|
10
|
Guo AX, Cui JJ, Wang LY, Yin JY. The role of CSDE1 in translational reprogramming and human diseases. Cell Commun Signal 2020; 18:14. [PMID: 31987048 PMCID: PMC6986143 DOI: 10.1186/s12964-019-0496-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract CSDE1 (cold shock domain containing E1) plays a key role in translational reprogramming, which determines the fate of a number of RNAs during biological processes. Interestingly, the role of CSDE1 is bidirectional. It not only promotes and represses the translation of RNAs but also increases and decreases the abundance of RNAs. However, the mechanisms underlying this phenomenon are still unknown. In this review, we propose a “protein-RNA connector” model to explain this bidirectional role and depict its three versions: sequential connection, mutual connection and facilitating connection. As described in this molecular model, CSDE1 binds to RNAs and cooperates with other protein regulators. CSDE1 connects with different RNAs and their regulators for different purposes. The triple complex of CSDE1, a regulator and an RNA reprograms translation in different directions for each transcript. Meanwhile, a number of recent studies have found important roles for CSDE1 in human diseases. This model will help us to understand the role of CSDE1 in translational reprogramming and human diseases. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Ao-Xiang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, 410078, People's Republic of China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, People's Republic of China.
| |
Collapse
|
11
|
Renshaw MJ, Panagiotou TC, Lavoie BD, Wilde A. CDK11 p58-cyclin L1β regulates abscission site assembly. J Biol Chem 2019; 294:18639-18649. [PMID: 31653703 DOI: 10.1074/jbc.ra119.009107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/10/2019] [Indexed: 01/22/2023] Open
Abstract
Rigorous spatiotemporal regulation of cell division is required to maintain genome stability. The final stage in cell division, when the cells physically separate (abscission), is tightly regulated to ensure that it occurs after cytokinetic events such as chromosome segregation. A key regulator of abscission timing is Aurora B kinase activity, which inhibits abscission and forms the major activity of the abscission checkpoint. This checkpoint prevents abscission until chromosomes have been cleared from the cytokinetic machinery. Here we demonstrate that the mitosis-specific CDK11p58 kinase specifically forms a complex with cyclin L1β that, in late cytokinesis, localizes to the stem body, a structure in the middle of the intercellular bridge that forms between two dividing cells. Depletion of CDK11 inhibits abscission, and rescue of this phenotype requires CDK11p58 kinase activity or inhibition of Aurora B kinase activity. Furthermore, CDK11p58 kinase activity is required for formation of endosomal sorting complex required for transport III filaments at the site of abscission. Combined, these data suggest that CDK11p58 kinase activity opposes Aurora B activity to enable abscission to proceed and result in successful completion of cytokinesis.
Collapse
Affiliation(s)
- Matthew J Renshaw
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Thomas C Panagiotou
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Brigitte D Lavoie
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Andrew Wilde
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada.
| |
Collapse
|
12
|
Anda S, Grallert B. Cell-Cycle-Dependent Regulation of Translation: New Interpretations of Old Observations in Light of New Approaches. Bioessays 2019; 41:e1900022. [PMID: 31210378 DOI: 10.1002/bies.201900022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/29/2019] [Indexed: 12/22/2022]
Abstract
It is a long-standing view that global translation varies during the cell cycle and is much lower in mitosis than in other cell-cycle phases. However, the central papers in the literature are not in agreement about the extent of downregulation in mitosis, ranging from a dramatic decrease to only a marginal reduction. Herein, it is argued that the discrepancy derives from technical challenges. Cell-cycle-dependent variations are most conveniently studied in synchronized cells, but the synchronization methods by themselves often evoke stress responses that, in turn, affect translation rates. Further, it is argued that previously reported cell-cycle-dependent changes in the global translation rate to a large extent reflect responses to the synchronization methods. Recent findings strongly suggest that the global translation rate is not regulated in a cell-cycle-dependent manner. Novel techniques allowing a genome-wide analysis of translational profiles suggest that the extent and importance of selective translational regulation associated with cell-cycle transitions have been underestimated. Therefore, the main question is which messenger RNAs (mRNAs) are translated, rather than whether the global translation rate is decreased.
Collapse
Affiliation(s)
- Silje Anda
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379, Oslo, Norway
| |
Collapse
|
13
|
Hu Y, Zhang M, Tian N, Li D, Wu F, Hu P, Wang Z, Wang L, Hao W, Kang J, Yin B, Zheng Z, Jiang T, Yuan J, Qiang B, Han W, Peng X. The antibiotic clofoctol suppresses glioma stem cell proliferation by activating KLF13. J Clin Invest 2019; 129:3072-3085. [PMID: 31112526 DOI: 10.1172/jci124979] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Gliomas account for approximately 80% of primary malignant tumors in the central nervous system. Despite aggressive therapy, the prognosis of patients remains extremely poor. Glioma stem cells (GSCs) which considered as the potential target of therapy for their crucial role in therapeutic resistance and tumor recurrence, are believed to be key factors for the disappointing outcome. Here, we took advantage of GSCs as the cell model to perform high-throughput drug screening and the old antibiotic, clofoctol, was identified as the most effective compound, showing reduction of colony-formation and induction of apoptosis of GSCs. Moreover, growth of tumors was inhibited obviously in vivo after clofoctol treatment especially in primary patient-derived xenografts (PDXs) and transgenic xenografts. The anticancer mechanisms demonstrated by analyzing related downstream genes and discovering the targeted binding protein revealed that clofoctol exhibited the inhibition of GSCs by upregulation of Kruppel-like factor 13 (KLF13), a tumor suppressor gene, through clofoctol's targeted binding protein, Upstream of N-ras (UNR). Collectively, these data demonstrated that induction of KLF13 expression suppressed growth of gliomas and provided a potential therapy for gliomas targeting GSCs. Importantly, our results also identified the RNA-binding protein UNR as a drug target.
Collapse
Affiliation(s)
- Yan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Meilian Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Ningyu Tian
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Dengke Li
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Fan Wu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Peishan Hu
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Liping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Hao
- National Experimental Demonstration Center of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingting Kang
- National Experimental Demonstration Center of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Yin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Zhi Zheng
- Centralab Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiangang Yuan
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Boqin Qiang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China.,Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
14
|
Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proc Natl Acad Sci U S A 2019; 116:2097-2102. [PMID: 30674674 PMCID: PMC6369741 DOI: 10.1073/pnas.1815767116] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The integrated stress response (ISR) protects cells from a variety of harmful stressors by temporarily halting protein synthesis. However, chronic ISR activation has pathological consequences and is linked to several neurological disorders. Pharmacological inhibition of chronic ISR activity emerges as a powerful strategy to treat ISR-mediated neurodegeneration but is typically linked to adverse effects due to the ISR’s importance for normal cellular function. Paradoxically, the small-molecule ISR inhibitor ISRIB has promising therapeutic potential in vivo without overt side effects. We demonstrate here that ISRIB inhibits low-level ISR activity, but does not affect strong ISR signaling. We thereby provide a plausible mechanism of how ISRIB counteracts toxic chronic ISR activity, without disturbing the cytoprotective effects of a strong acute ISR. Activation of the integrated stress response (ISR) by a variety of stresses triggers phosphorylation of the α-subunit of translation initiation factor eIF2. P-eIF2α inhibits eIF2B, the guanine nucleotide exchange factor that recycles inactive eIF2•GDP to active eIF2•GTP. eIF2 phosphorylation thereby represses translation. Persistent activation of the ISR has been linked to the development of several neurological disorders, and modulation of the ISR promises new therapeutic strategies. Recently, a small-molecule ISR inhibitor (ISRIB) was identified that rescues translation in the presence of P-eIF2α by facilitating the assembly of more active eIF2B. ISRIB enhances cognitive memory processes and has therapeutic effects in brain-injured mice without displaying overt side effects. While using ISRIB to investigate the ISR in picornavirus-infected cells, we observed that ISRIB rescued translation early in infection when P-eIF2α levels were low, but not late in infection when P-eIF2α levels were high. By treating cells with varying concentrations of poly(I:C) or arsenite to induce the ISR, we provide additional proof that ISRIB is unable to inhibit the ISR when intracellular P-eIF2α concentrations exceed a critical threshold level. Together, our data demonstrate that the effects of pharmacological activation of eIF2B are tuned by P-eIF2α concentration. Thus, ISRIB can mitigate undesirable outcomes of low-level ISR activation that may manifest neurological disease but leaves the cytoprotective effects of acute ISR activation intact. The insensitivity of cells to ISRIB during acute ISR may explain why ISRIB does not cause overt toxic side effects in vivo.
Collapse
|
15
|
Mendoza-Topaz C, Yeow I, Riento K, Nichols BJ. BioID identifies proteins involved in the cell biology of caveolae. PLoS One 2018; 13:e0209856. [PMID: 30589899 PMCID: PMC6307745 DOI: 10.1371/journal.pone.0209856] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023] Open
Abstract
The mechanisms controlling the abundance and sub-cellular distribution of caveolae are not well described. A first step towards determining such mechanisms would be identification of relevant proteins that interact with known components of caveolae. Here, we applied proximity biotinylation (BioID) to identify a list of proteins that may interact with the caveolar protein cavin1. Screening of these candidates using siRNA to reduce their expression revealed that one of them, CSDE1, regulates the levels of mRNAs and protein expression for multiple components of caveolae. A second candidate, CD2AP, co-precipitated with cavin1. Caveolar proteins were observed in characteristic and previously un-described linear arrays adjacent to cell-cell junctions in both MDCK cells, and in HeLa cells overexpressing an active form of the small GTPase Rac1. CD2AP was required for the recruitment of caveolar proteins to these linear arrays. We conclude that BioID will be useful in identification of new proteins involved in the cell biology of caveolae, and that interaction between CD2AP and cavin1 may have an important role in regulating the sub-cellular distribution of caveolae.
Collapse
Affiliation(s)
| | - I. Yeow
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - K. Riento
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - B. J. Nichols
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
James CC, Smyth JW. Alternative mechanisms of translation initiation: An emerging dynamic regulator of the proteome in health and disease. Life Sci 2018; 212:138-144. [PMID: 30290184 DOI: 10.1016/j.lfs.2018.09.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/18/2018] [Accepted: 09/27/2018] [Indexed: 01/06/2023]
Abstract
Eukaryotic mRNAs were historically thought to rely exclusively on recognition and binding of their 5' cap by initiation factors to effect protein translation. While internal ribosome entry sites (IRESs) are well accepted as necessary for the cap-independent translation of many viral genomes, there is now recognition that eukaryotic mRNAs also undergo non-canonical modes of translation initiation. Recently, high-throughput assays have identified thousands of mammalian transcripts with translation initiation occurring at non-canonical start codons, upstream of and within protein coding regions. In addition to IRES-mediated events, regulatory mechanisms of translation initiation have been described involving alternate 5' cap recognition, mRNA sequence elements, and ribosome selection. These mechanisms ensure translation of specific mRNAs under conditions where cap-dependent translation is shut down and contribute to pathological states including cardiac hypertrophy and cancer. Such global and gene-specific dynamic regulation of translation presents us with an increasing number of novel therapeutic targets. While these newly discovered modes of translation initiation have been largely studied in isolation, it is likely that several act on the same mRNA and exquisite coordination is necessary to maintain 'normal' translation. In this short review, we summarize the current state of knowledge of these alternative mechanisms of eukaryotic protein translation, their contribution to normal and pathological cell biology, and the potential of targeting translation initiation therapeutically in human disease.
Collapse
Affiliation(s)
- Carissa C James
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA
| | - James W Smyth
- Virginia Tech Carilion Research Institute and School of Medicine, Roanoke, VA, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.
| |
Collapse
|
17
|
Stonyte V, Boye E, Grallert B. Regulation of global translation during the cell cycle. J Cell Sci 2018; 131:jcs.220327. [PMID: 30072440 DOI: 10.1242/jcs.220327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/20/2018] [Indexed: 01/10/2023] Open
Abstract
It is generally accepted that global translation varies during the cell cycle and is low during mitosis. However, addressing this issue is challenging because it involves cell synchronization, which evokes stress responses that, in turn, affect translation rates. Here, we have used two approaches to measure global translation rates in different cell-cycle phases. First, synchrony in different cell-cycle phases was obtained involving the same stress, by using temperature-sensitive mutants. Second, translation and DNA content were measured by flow cytometry in exponentially growing, single cells. We found no major variation in global translation rates through the cell cycle in either fission yeast or mammalian cells. We also measured phosphorylation of eukaryotic initiation factor-2α, an event that is thought to downregulate global translation in mitosis. In contrast with the prevailing view, eIF2α phosphorylation correlated poorly with downregulation of global translation and ectopically induced eIF2α phosphorylation inhibited global translation only at high levels.
Collapse
Affiliation(s)
- Vilte Stonyte
- Department of Radiation Biology, Institute for Cancer Research, Montebello, 0379 Oslo University Hospital, Oslo, Norway
| | - Erik Boye
- Department of Radiation Biology, Institute for Cancer Research, Montebello, 0379 Oslo University Hospital, Oslo, Norway
| | - Beáta Grallert
- Department of Radiation Biology, Institute for Cancer Research, Montebello, 0379 Oslo University Hospital, Oslo, Norway
| |
Collapse
|
18
|
Moore KS, von Lindern M. RNA Binding Proteins and Regulation of mRNA Translation in Erythropoiesis. Front Physiol 2018; 9:910. [PMID: 30087616 PMCID: PMC6066521 DOI: 10.3389/fphys.2018.00910] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/21/2018] [Indexed: 12/12/2022] Open
Abstract
Control of gene expression in erythropoiesis has to respond to signals that may emerge from intracellular processes or environmental factors. Control of mRNA translation allows for relatively rapid modulation of protein synthesis from the existing transcriptome. For instance, the protein synthesis rate needs to be reduced when reactive oxygen species or unfolded proteins accumulate in the cells, but also when iron supply is low or when growth factors are lacking in the environment. In addition, regulation of mRNA translation can be important as an additional layer of control on top of gene transcription, in which RNA binding proteins (RBPs) can modify translation of a set of transcripts to the cell’s actual protein requirement. The 5′ and 3′ untranslated regions of mRNA (5′UTR, 3′UTR) contain binding sites for general and sequence specific translation factors. They also contain secondary structures that may hamper scanning of the 5′UTR by translation complexes or may help to recruit translation factors. In addition, the term 5′UTR is not fully correct because many transcripts contain small open reading frames in their 5′UTR that are translated and contribute to regulation of mRNA translation. It is becoming increasingly clear that the transcriptome only partly predicts the proteome. The aim of this review is (i) to summarize how the availability of general translation initiation factors can selectively regulate transcripts because the 5′UTR contains secondary structures or short translated sequences, (ii) to discuss mechanisms that control the length of the mRNA poly(A) tail in relation to mRNA translation, and (iii) to give examples of sequence specific RBPs and their targets. We focused on transcripts and RBPs required for erythropoiesis. Whereas differentiation of erythroblasts to erythrocytes is orchestrated by erythroid transcription factors, the production of erythrocytes needs to respond to the availability of growth factors and nutrients, particularly the availability of iron.
Collapse
Affiliation(s)
- Kat S Moore
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| | - Marieke von Lindern
- Department of Hematopoiesis, Sanquin Research, and Landsteiner Laboratory, Amsterdam UMC, Amsterdam, Netherlands
| |
Collapse
|
19
|
A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun 2017; 8:1456. [PMID: 29129916 PMCID: PMC5682285 DOI: 10.1038/s41467-017-01744-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 10/11/2017] [Indexed: 12/29/2022] Open
Abstract
While the transcriptional network of human embryonic stem cells (hESCs) has been extensively studied, relatively little is known about how post-transcriptional modulations determine hESC function. RNA-binding proteins play central roles in RNA regulation, including translation and turnover. Here we show that the RNA-binding protein CSDE1 (cold shock domain containing E1) is highly expressed in hESCs to maintain their undifferentiated state and prevent default neural fate. Notably, loss of CSDE1 accelerates neural differentiation and potentiates neurogenesis. Conversely, ectopic expression of CSDE1 impairs neural differentiation. We find that CSDE1 post-transcriptionally modulates core components of multiple regulatory nodes of hESC identity, neuroectoderm commitment and neurogenesis. Among these key pro-neural/neuronal factors, CSDE1 binds fatty acid binding protein 7 (FABP7) and vimentin (VIM) mRNAs, as well as transcripts involved in neuron projection development regulating their stability and translation. Thus, our results uncover CSDE1 as a central post-transcriptional regulator of hESC identity and neurogenesis. Unlike transcriptional regulation of hESC identity, little is known post-transcriptionally. Here, the authors show that the RNA binding protein CSDE1 regulates core components of hESC identity, neurectoderm commitment and neurogenesis to maintain pluripotency and prevent neural differentiation.
Collapse
|
20
|
Lacerda R, Menezes J, Romão L. More than just scanning: the importance of cap-independent mRNA translation initiation for cellular stress response and cancer. Cell Mol Life Sci 2017; 74:1659-1680. [PMID: 27913822 PMCID: PMC11107732 DOI: 10.1007/s00018-016-2428-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/24/2016] [Accepted: 11/29/2016] [Indexed: 12/11/2022]
Abstract
The scanning model for eukaryotic mRNA translation initiation states that the small ribosomal subunit, along with initiation factors, binds at the cap structure at the 5' end of the mRNA and scans the 5' untranslated region (5'UTR) until an initiation codon is found. However, under conditions that impair canonical cap-dependent translation, the synthesis of some proteins is kept by alternative mechanisms that are required for cell survival and stress recovery. Alternative modes of translation initiation include cap- and/or scanning-independent mechanisms of ribosomal recruitment. In most cap-independent translation initiation events there is a direct recruitment of the 40S ribosome into a position upstream, or directly at, the initiation codon via a specific internal ribosome entry site (IRES) element in the 5'UTR. Yet, in some cellular mRNAs, a different translation initiation mechanism that is neither cap- nor IRES-dependent seems to occur through a special RNA structure called cap-independent translational enhancer (CITE). Recent evidence uncovered a distinct mechanism through which mRNAs containing N 6-methyladenosine (m6A) residues in their 5'UTR directly bind eukaryotic initiation factor 3 (eIF3) and the 40S ribosomal subunit in order to initiate translation in the absence of the cap-binding proteins. This review focuses on the important role of cap-independent translation mechanisms in human cells and how these alternative mechanisms can either act individually or cooperate with other cis-acting RNA regulons to orchestrate specific translational responses triggered upon several cellular stress states, and diseases such as cancer. Elucidation of these non-canonical mechanisms reveals the complexity of translational control and points out their potential as prospective novel therapeutic targets.
Collapse
Affiliation(s)
- Rafaela Lacerda
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Juliane Menezes
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
21
|
Wurth L, Papasaikas P, Olmeda D, Bley N, Calvo GT, Guerrero S, Cerezo-Wallis D, Martinez-Useros J, García-Fernández M, Hüttelmaier S, Soengas MS, Gebauer F. UNR/CSDE1 Drives a Post-transcriptional Program to Promote Melanoma Invasion and Metastasis. Cancer Cell 2016; 30:694-707. [PMID: 27908735 DOI: 10.1016/j.ccell.2016.10.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 06/13/2016] [Accepted: 10/03/2016] [Indexed: 12/11/2022]
Abstract
RNA binding proteins (RBPs) modulate cancer progression through poorly understood mechanisms. Here we show that the RBP UNR/CSDE1 is overexpressed in melanoma tumors and promotes invasion and metastasis. iCLIP sequencing, RNA sequencing, and ribosome profiling combined with in silico studies unveiled sets of pro-metastatic factors coordinately regulated by UNR as part of RNA regulons. In addition to RNA steady-state levels, UNR was found to control many of its targets at the level of translation elongation/termination. Key pro-oncogenic targets of UNR included VIM and RAC1, as validated by loss- and gain-of-function studies. Our results identify UNR as an oncogenic modulator of melanoma progression, unravel the underlying molecular mechanisms, and identify potential targets for this therapeutically challenging malignancy.
Collapse
Affiliation(s)
- Laurence Wurth
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Panagiotis Papasaikas
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - David Olmeda
- Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Nadine Bley
- Section Molecular Cell Biology, Institute of Molecular Medicine (IMM), Martin-Luther-University (MLU), 06120 Halle, Germany
| | - Guadalupe T Calvo
- Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Santiago Guerrero
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Daniela Cerezo-Wallis
- Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Javier Martinez-Useros
- Translational Oncology Division, Oncohealth Institute - Health Research Institute - University Hospital "Fundacion Jimenez Diaz", 28040 Madrid, Spain
| | - María García-Fernández
- Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Stefan Hüttelmaier
- Section Molecular Cell Biology, Institute of Molecular Medicine (IMM), Martin-Luther-University (MLU), 06120 Halle, Germany
| | - Maria S Soengas
- Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.
| |
Collapse
|
22
|
Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells. Int J Mol Sci 2016; 17:ijms17071113. [PMID: 27420050 PMCID: PMC4964488 DOI: 10.3390/ijms17071113] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
Abstract
Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds.
Collapse
|
23
|
Kicic A, Stevens PT, Sutanto EN, Kicic-Starcevich E, Ling KM, Looi K, Martinovich KM, Garratt LW, Iosifidis T, Shaw NC, Buckley AG, Rigby PJ, Lannigan FJ, Knight DA, Stick SM. Impaired airway epithelial cell responses from children with asthma to rhinoviral infection. Clin Exp Allergy 2016; 46:1441-1455. [PMID: 27238549 DOI: 10.1111/cea.12767] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 05/21/2016] [Accepted: 05/25/2016] [Indexed: 12/01/2022]
Abstract
BACKGROUND The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood. OBJECTIVE To explore the relationship between apoptotic, innate immune and inflammatory responses to HRV infection in airway epithelial cells (AECs) obtained from children with asthma and non-asthmatic controls. In addition, to test the hypothesis that aberrant repair of epithelium from asthmatics is further dysregulated by HRV infection. METHODS Airway epithelial brushings were obtained from 39 asthmatic and 36 non-asthmatic children. Primary cultures were established and exposed to HRV1b and HRV14. Virus receptor number, virus replication and progeny release were determined. Epithelial cell apoptosis, IFN-β production, inflammatory cytokine release and epithelial wound repair and proliferation were also measured. RESULTS Virus proliferation and release was greater in airway epithelial cells from asthmatics but this was not related to the number of virus receptors. In epithelial cells from asthmatic children, virus infection dampened apoptosis, reduced IFN-β production and increased inflammatory cytokine production. HRV1b infection also inhibited wound repair capacity of epithelial cells isolated from non-asthmatic children and exaggerated the defective repair response seen in epithelial cells from asthmatics. Addition of IFN-β restored apoptosis, suppressed virus replication and improved repair of airway epithelial cells from asthmatics but did not reduce inflammatory cytokine production. CONCLUSIONS Collectively, HRV infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children. The delayed repair is further exaggerated in cells from asthmatic children and is only partially reversed by exogenous IFN-β.
Collapse
Affiliation(s)
- A Kicic
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia. .,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, WA, Australia. .,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia. .,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.
| | - P T Stevens
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - E N Sutanto
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - E Kicic-Starcevich
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - K-M Ling
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - K Looi
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - K M Martinovich
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - L W Garratt
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - T Iosifidis
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - N C Shaw
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia
| | - A G Buckley
- Centre of Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, WA, Australia
| | - P J Rigby
- Centre of Microscopy, Characterisation and Analysis, The University of Western Australia, Nedlands, WA, Australia
| | - F J Lannigan
- School of Medicine, Notre Dame University, Fremantle, WA, Australia
| | - D A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Priority Research Centre for Asthma and Respiratory Disease, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - S M Stick
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth, WA, Australia.,School of Paediatrics and Child Health, The University of Western Australia, Nedlands, WA, Australia.,Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, WA, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia and Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| |
Collapse
|
24
|
Stimulation of translation by human Unr requires cold shock domains 2 and 4, and correlates with poly(A) binding protein interaction. Sci Rep 2016; 6:22461. [PMID: 26936655 PMCID: PMC4776140 DOI: 10.1038/srep22461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/11/2016] [Indexed: 11/09/2022] Open
Abstract
The RNA binding protein Unr, which contains five cold shock domains, has several specific roles in post-transcriptional control of gene expression. It can act as an activator or inhibitor of translation initiation, promote mRNA turnover, or stabilise mRNA. Its role depends on the mRNA and other proteins to which it binds, which includes cytoplasmic poly(A) binding protein 1 (PABP1). Since PABP1 binds to all polyadenylated mRNAs, and is involved in translation initiation by interaction with eukaryotic translation initiation factor 4G (eIF4G), we investigated whether Unr has a general role in translational control. We found that Unr strongly stimulates translation in vitro, and mutation of cold shock domains 2 or 4 inhibited its translation activity. The ability of Unr and its mutants to stimulate translation correlated with its ability to bind RNA, and to interact with PABP1. We found that Unr stimulated the binding of PABP1 to mRNA, and that Unr was required for the stable interaction of PABP1 and eIF4G in cells. siRNA-mediated knockdown of Unr reduced the overall level of cellular translation in cells, as well as that of cap-dependent and IRES-dependent reporters. These data describe a novel role for Unr in regulating cellular gene expression.
Collapse
|
25
|
Identification of Proteins Bound to Dengue Viral RNA In Vivo Reveals New Host Proteins Important for Virus Replication. mBio 2016; 7:e01865-15. [PMID: 26733069 PMCID: PMC4725007 DOI: 10.1128/mbio.01865-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Due to the limited coding capacity of the viral genome and the complexity of the viral life cycle, host cell proteins play essential roles throughout the course of viral infection. Host RNA-binding proteins mediate various aspects of virus replication through their physical interactions with viral RNA. Here we describe a technique designed to identify such interactions in the context of infected cells using UV cross-linking followed by antisense-mediated affinity purification and mass spectrometry. Using this approach, we identified interactions, several of them novel, between host proteins and dengue viral RNA in infected Huh7 cells. Most of these interactions were subsequently validated using RNA immunoprecipitation. Using small interfering RNA (siRNA)-mediated gene silencing, we showed that more than half of these host proteins are likely involved in regulating virus replication, demonstrating the utility of this method in identifying biologically relevant interactions that may not be identified using traditional in vitro approaches. Dengue virus is the most prevalent cause of arthropod-borne infection worldwide. Viral RNA molecules physically interact with cellular RNA-binding proteins (RBPs) throughout the course of infection; the identification of such interactions will lead to the elucidation of the molecular mechanisms of virus replication. Until now, the identification of host proteins bound to dengue viral RNA has been accomplished using in vitro strategies. Here, we used a method for the specific purification of dengue viral ribonucleoprotein (RNP) complexes from infected cells and subsequently identified the associated proteins by mass spectrometry. We then validated a functional role for the majority of these proteins in mediating efficient virus replication. This approach has broad relevance to virology and RNA biology, as it could theoretically be used to purify any viral RNP complex of interest.
Collapse
|
26
|
Abstract
Unr (upstream of N-ras) is a post-transcriptional regulator of gene expression, essential for mammalian development and mutated in many human cancers. The expression of unr is itself regulated at many levels; transcription of unr, which also affects expression of the downstream N-ras gene, is tissue and developmental stage-dependent and is repressed by c-Myc and Max (Myc associated factor X). Alternative splicing gives rise to six transcript variants, which include three different 5′-UTRs. The transcripts are further diversified by the use of three alternative polyadenylation signals, which governs whether AU-rich instability elements are present in the 3′-UTR or not. Translation of at least some unr transcripts can occur by internal initiation and is regulated in a cell-cycle-dependent manner; binding of PTB (polypyrimidine tract-binding protein) and Unr to the 5′-UTR inhibits translation, but these are displaced by heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNPC1/C2) during mitosis to stimulate translation. Finally, Unr is post-translationally modified by phosphorylation and lysine acetylation, although it is not yet known how these modifications affect Unr activity.
Collapse
|
27
|
Silva RC, Dautel M, Di Genova BM, Amberg DC, Castilho BA, Sattlegger E. The Gcn2 Regulator Yih1 Interacts with the Cyclin Dependent Kinase Cdc28 and Promotes Cell Cycle Progression through G2/M in Budding Yeast. PLoS One 2015; 10:e0131070. [PMID: 26176233 PMCID: PMC4503747 DOI: 10.1371/journal.pone.0131070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 05/28/2015] [Indexed: 12/01/2022] Open
Abstract
The Saccharomyces cerevisiae protein Yih1, when overexpressed, inhibits the eIF2 alpha kinase Gcn2 by competing for Gcn1 binding. However, deletion of YIH1 has no detectable effect on Gcn2 activity, suggesting that Yih1 is not a general inhibitor of Gcn2, and has no phenotypic defect identified so far. Thus, its physiological role is largely unknown. Here, we show that Yih1 is involved in the cell cycle. Yeast lacking Yih1 displays morphological patterns and DNA content indicative of a delay in the G2/M phases of the cell cycle, and this phenotype is independent of Gcn1 and Gcn2. Accordingly, the levels of phosphorylated eIF2α, which show a cell cycle-dependent fluctuation, are not altered in cells devoid of Yih1. We present several lines of evidence indicating that Yih1 is in a complex with Cdc28. Yih1 pulls down endogenous Cdc28 in vivo and this interaction is enhanced when Cdc28 is active, suggesting that Yih1 modulates the function of Cdc28 in specific stages of the cell cycle. We also demonstrate, by Bimolecular Fluorescence Complementation, that endogenous Yih1 and Cdc28 interact with each other, confirming Yih1 as a bona fide Cdc28 binding partner. Amino acid substitutions within helix H2 of the RWD domain of Yih1 enhance Yih1-Cdc28 association. Overexpression of this mutant, but not of wild type Yih1, leads to a phenotype similar to that of YIH1 deletion, supporting the view that Yih1 is involved through Cdc28 in the regulation of the cell cycle. We further show that IMPACT, the mammalian homologue of Yih1, interacts with CDK1, the mammalian counterpart of Cdc28, indicating that the involvement with the cell cycle is conserved. Together, these data provide insights into the cellular function of Yih1/IMPACT, and provide the basis for future studies on the role of this protein in the cell cycle.
Collapse
Affiliation(s)
- Richard C. Silva
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Martina Dautel
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Bruno M. Di Genova
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - David C. Amberg
- Department of Biochemistry and Molecular Biology, Upstate Medical University, State University of New York, Syracuse, New York, United States of America
| | - Beatriz A. Castilho
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Evelyn Sattlegger
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| |
Collapse
|
28
|
Abstract
Unr (upstream of N-ras) is a eukaryotic RNA-binding protein that has a number of roles in the post-transcriptional regulation of gene expression. Originally identified as an activator of internal initiation of picornavirus translation, it has since been shown to act as an activator and inhibitor of cellular translation and as a positive and negative regulator of mRNA stability, regulating cellular processes such as mitosis and apoptosis. The different post-transcriptional functions of Unr depend on the identity of its mRNA and protein partners and can vary with cell type and changing cellular conditions. Recent high-throughput analyses of RNA–protein interactions indicate that Unr binds to a large subset of cellular mRNAs, suggesting that Unr may play a wider role in translational responses to cellular signals than previously thought.
Collapse
|
29
|
Zhang C, Zhang M, Wu Q, Peng J, Ruan Y, Gu J. Hepsin inhibits CDK11p58 IRES activity by suppressing unr expression and eIF-2α phosphorylation in prostate cancer. Cell Signal 2015; 27:789-97. [PMID: 25576733 DOI: 10.1016/j.cellsig.2014.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/31/2014] [Indexed: 11/29/2022]
Abstract
Hepsin is a type II transmembrane serine protease frequently overexpressed in prostate cancer (PCa). However, the role of hepsin in PCa remains unclear. In this study, we found that hepsin inhibited the internal ribosome entry site (IRES) activity and expression of CDK11p58, which is associated with cell cycle progression and pro-apoptotic signaling in PCa. Hepsin suppressed CDK11p58 IRES activity in PCa by modulating unr expression and eIF-2α phosphorylation. Further studies revealed that hepsin inhibited the expression of unr by directly binding to unr IRES element and suppressing its activity, and also repressed eIF-2α phosphorylation through down-regulating the expression and phosphorylation of general control non-derepressible-2 (GCN2). Taken together, our data suggest a novel role of hepsin in regulating CDK11p58 IRES activity, and imply that hepsin may act on the machinery of translation to modulate cell cycle progression and survival in PCa cells.
Collapse
Affiliation(s)
- Chunyi Zhang
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingming Zhang
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingyu Wu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jianhao Peng
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Yuanyuan Ruan
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jianxin Gu
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
30
|
Souii A, Ben M'hadheb-Gharbi M, Gharbi J. Role of RNA structure motifs in IRES-dependent translation initiation of the coxsackievirus B3: new insights for developing live-attenuated strains for vaccines and gene therapy. Mol Biotechnol 2014; 55:179-202. [PMID: 23881360 DOI: 10.1007/s12033-013-9674-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Internal ribosome entry site (IRES) elements are highly structured RNA sequences that function to recruit ribosomes for the initiation of translation. In contrast to the canonical cap-binding, the mechanism of IRES-mediated translation initiation is still poorly understood. Translation initiation of the coxsackievirus B3 (CVB3), a causative agent of viral myocarditis, has been shown to be mediated by a highly ordered structure of the 5' untranslated region (5'UTR), which harbors an IRES. Taking into account that efficient initiation of mRNA translation depends on temporally and spatially orchestrated sequence of RNA-protein and RNA-RNA interactions, and that, at present, little is known about these interactions, we aimed to describe recent advances in our understanding of molecular structures and biochemical functions of the translation initiation process. Thus, this review will explore the IRES elements as important RNA structures and the significance of these structures in providing an alternative mechanism of translation initiation of the CVB3 RNA. Since translation initiation is the first intracellular step during the CVB3 infection cycle, the IRES region provides an ideal target for antiviral therapies. Interestingly, the 5' and 3'UTRs represent promising candidates for the study of CVB3 cardiovirulence and provide new insights for developing live-attenuated vaccines.
Collapse
Affiliation(s)
- Amira Souii
- Institut Supérieur de Biotechnologie de Monastir-Université de Monastir, Avenue Tahar Hadded, BP 74, 5000, Monastir, Tunisia
| | | | | |
Collapse
|
31
|
Chan SW. Establishment of chronic hepatitis C virus infection: Translational evasion of oxidative defence. World J Gastroenterol 2014; 20:2785-2800. [PMID: 24659872 PMCID: PMC3961964 DOI: 10.3748/wjg.v20.i11.2785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/03/2013] [Accepted: 01/15/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) causes a clinically important disease affecting 3% of the world population. HCV is a single-stranded, positive-sense RNA virus belonging to the genus Hepacivirus within the Flaviviridae family. The virus establishes a chronic infection in the face of an active host oxidative defence, thus adaptation to oxidative stress is key to virus survival. Being a small RNA virus with a limited genomic capacity, we speculate that HCV deploys a different strategy to evade host oxidative defence. Instead of counteracting oxidative stress, it utilizes oxidative stress to facilitate its own survival. Translation is the first step in the replication of a plus strand RNA virus so it would make sense if the virus can exploit the host oxidative defence in facilitating this very first step. This is particularly true when HCV utilizes an internal ribosome entry site element in translation, which is distinctive from that of cap-dependent translation of the vast majority of cellular genes, thus allowing selective translation of genes under conditions when global protein synthesis is compromised. Indeed, we were the first to show that HCV translation was stimulated by an important pro-oxidant-hydrogen peroxide in hepatocytes, suggesting that HCV is able to adapt to and utilize the host anti-viral response to facilitate its own translation thus allowing the virus to thrive under oxidative stress condition to establish chronicity. Understanding how HCV translation is regulated under oxidative stress condition will advance our knowledge on how HCV establishes chronicity. As chronicity is the initiator step in disease progression this will eventually lead to a better understanding of pathogenicity, which is particularly relevant to the development of anti-virals and improved treatments of HCV patients using anti-oxidants.
Collapse
|
32
|
Martínez-Salas E, Lozano G, Fernandez-Chamorro J, Francisco-Velilla R, Galan A, Diaz R. RNA-binding proteins impacting on internal initiation of translation. Int J Mol Sci 2013; 14:21705-26. [PMID: 24189219 PMCID: PMC3856030 DOI: 10.3390/ijms141121705] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 12/20/2022] Open
Abstract
RNA-binding proteins (RBPs) are pivotal regulators of all the steps of gene expression. RBPs govern gene regulation at the post-transcriptional level by virtue of their capacity to assemble ribonucleoprotein complexes on certain RNA structural elements, both in normal cells and in response to various environmental stresses. A rapid cellular response to stress conditions is triggered at the step of translation initiation. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism activated under conditions that compromise the general translation pathway. IRES elements are cis-acting RNA sequences that recruit the translation machinery using a cap-independent mechanism often assisted by a subset of translation initiation factors and various RBPs. IRES-dependent initiation appears to use different strategies to recruit the translation machinery depending on the RNA organization of the region and the network of RBPs interacting with the element. In this review we discuss recent advances in understanding the implications of RBPs on IRES-dependent translation initiation.
Collapse
Affiliation(s)
- Encarnación Martínez-Salas
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain.
| | | | | | | | | | | |
Collapse
|
33
|
Coldwell MJ, Cowan JL, Vlasak M, Mead A, Willett M, Perry LS, Morley SJ. Phosphorylation of eIF4GII and 4E-BP1 in response to nocodazole treatment: a reappraisal of translation initiation during mitosis. Cell Cycle 2013; 12:3615-28. [PMID: 24091728 DOI: 10.4161/cc.26588] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Translation mechanisms at different stages of the cell cycle have been studied for many years, resulting in the dogma that translation rates are slowed during mitosis, with cap-independent translation mechanisms favored to give expression of key regulatory proteins. However, such cell culture studies involve synchronization using harsh methods, which may in themselves stress cells and affect protein synthesis rates. One such commonly used chemical is the microtubule de-polymerization agent, nocodazole, which arrests cells in mitosis and has been used to demonstrate that translation rates are strongly reduced (down to 30% of that of asynchronous cells). Using synchronized HeLa cells released from a double thymidine block (G 1/S boundary) or the Cdk1 inhibitor, RO3306 (G 2/M boundary), we have systematically re-addressed this dogma. Using FACS analysis and pulse labeling of proteins with labeled methionine, we now show that translation rates do not slow as cells enter mitosis. This study is complemented by studies employing confocal microscopy, which show enrichment of translation initiation factors at the microtubule organizing centers, mitotic spindle, and midbody structure during the final steps of cytokinesis, suggesting that translation is maintained during mitosis. Furthermore, we show that inhibition of translation in response to extended times of exposure to nocodazole reflects increased eIF2α phosphorylation, disaggregation of polysomes, and hyperphosphorylation of selected initiation factors, including novel Cdk1-dependent N-terminal phosphorylation of eIF4GII. Our work suggests that effects on translation in nocodazole-arrested cells might be related to those of the treatment used to synchronize cells rather than cell cycle status.
Collapse
Affiliation(s)
- Mark J Coldwell
- Centre for Biological Sciences; University of Southampton; Southampton, UK
| | | | | | | | | | | | | |
Collapse
|
34
|
Dobson T, Chen J, Krushel LA. Dysregulating IRES-dependent translation contributes to overexpression of oncogenic Aurora A Kinase. Mol Cancer Res 2013; 11:887-900. [PMID: 23661421 DOI: 10.1158/1541-7786.mcr-12-0707] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED Overexpression of the oncoprotein Aurora A kinase occurs in multiple types of cancer, often early during cell transformation. To identify the mechanism(s) contributing to enhanced Aurora A protein expression, a comparison between normal human lung fibroblast and breast epithelial cells to nontumorigenic breast (MCF10A and MCF12A) and tumorigenic breast (MCF-7) and cervical cell lines (HeLa S3) was performed. A subset of these immortalized lines (MCF10A, MCF12A, and HeLa S3) exhibited increased levels of Aurora A protein, independent of tumorigenicity. The increase in Aurora A protein in these immortalized cells was not due to increased transcription/RNA stability, protein half-life, or cap-dependent translation. Assays utilizing monocistronic and dicistronic RNA constructs revealed that the 5'-leader sequence of Aurora A contains an internal ribosomal entry site (IRES), which is regulated in a cell cycle-dependent manner, peaking in G2/M phase. Moreover, IRES activity was increased in the immortalized cell lines in which Aurora A protein expression was also enhanced. Additional studies indicated that the increased internal initiation is specific to the IRES of Aurora A and may be an early event during cancer progression. These results identify a novel mechanism contributing to Aurora A kinase overexpression. IMPLICATIONS The current study indicates that Aurora A kinase contributes to immortalization and tumorigenesis.
Collapse
Affiliation(s)
- Tara Dobson
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX 77030, USA
| | | | | |
Collapse
|
35
|
Yin JY, Dong ZZ, Liu RY, Chen J, Liu ZQ, Zhang JT. Translational regulation of RPA2 via internal ribosomal entry site and by eIF3a. Carcinogenesis 2013; 34:1224-31. [PMID: 23393223 DOI: 10.1093/carcin/bgt052] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RPA2 is a subunit of a trimeric replication protein A (RPA) complex important for DNA repair and replication. Although it is known that RPA activity is regulated by post-translational modification, whether RPA expression is regulated and the mechanism therein is currently unknown. eIF3a, the largest subunit of eIF3, is an important player in translational control and has been suggested to regulate translation of a subset of messenger RNAs important for tumorigenesis, metastasis, cell cycle progression, drug response and DNA repair. In the present study, we show that RPA2 expression is regulated at translational level via internal ribosome entry site (IRES)-mediated initiation in response to DNA damage. We also found that eIF3a suppresses RPA2 synthesis and inhibits its cellular IRES activity by directly binding to the IRES element of RPA2 located at -50 to -150 bases upstream of the translation start site. Taken together, we conclude that RPA2 expression is translationally regulated via IRES and by eIF3a and that this regulation is partly accountable for cellular response to DNA damage and survival.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Department of Pharmacology/Toxicology, IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
36
|
Ruggero D. Translational control in cancer etiology. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012336. [PMID: 22767671 DOI: 10.1101/cshperspect.a012336] [Citation(s) in RCA: 228] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The link between perturbations in translational control and cancer etiology is becoming a primary focus in cancer research. It has now been established that genetic alterations in several components of the translational apparatus underlie spontaneous cancers as well as an entire class of inherited syndromes known as "ribosomopathies" associated with increased cancer susceptibility. These discoveries have illuminated the importance of deregulations in translational control to very specific cellular processes that contribute to cancer etiology. In addition, a growing body of evidence supports the view that deregulation of translational control is a common mechanism by which diverse oncogenic pathways promote cellular transformation and tumor development. Indeed, activation of these key oncogenic pathways induces rapid and dramatic translational reprogramming both by increasing overall protein synthesis and by modulating specific mRNA networks. These translational changes promote cellular transformation, impacting almost every phase of tumor development. This paradigm represents a new frontier in the multihit model of cancer formation and offers significant promise for innovative cancer therapies. Current research, in conjunction with cutting edge technologies, will further enable us to explore novel mechanisms of translational control, functionally identify translationally controlled mRNA groups, and unravel their impact on cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Cancer Center, School of Medicine, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
37
|
Kronja I, Orr-Weaver TL. Translational regulation of the cell cycle: when, where, how and why? Philos Trans R Soc Lond B Biol Sci 2012; 366:3638-52. [PMID: 22084390 DOI: 10.1098/rstb.2011.0084] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Translational regulation contributes to the control of archetypal and specialized cell cycles, such as the meiotic and early embryonic cycles. Late meiosis and early embryogenesis unfold in the absence of transcription, so they particularly rely on translational repression and activation of stored maternal mRNAs. Here, we present examples of cell cycle regulators that are translationally controlled during different cell cycle and developmental transitions in model organisms ranging from yeast to mouse. Our focus also is on the RNA-binding proteins that affect cell cycle progression by recognizing special features in untranslated regions of mRNAs. Recent research highlights the significance of the cytoplasmic polyadenylation element-binding protein (CPEB). CPEB determines polyadenylation status, and consequently translational efficiency, of its target mRNAs in both transcriptionally active somatic cells as well as in transcriptionally silent mature Xenopus oocytes and early embryos. We discuss the role of CPEB in mediating the translational timing and in some cases spindle-localized translation of critical regulators of Xenopus oogenesis and early embryogenesis. We conclude by outlining potential directions and approaches that may provide further insights into the translational control of the cell cycle.
Collapse
Affiliation(s)
- Iva Kronja
- Whitehead Institute and Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
38
|
Elatmani H, Dormoy-Raclet V, Dubus P, Dautry F, Chazaud C, Jacquemin-Sablon H. The RNA-binding protein Unr prevents mouse embryonic stem cells differentiation toward the primitive endoderm lineage. Stem Cells 2012; 29:1504-16. [PMID: 21954113 DOI: 10.1002/stem.712] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The maintenance of embryonic stem cells (ESCs) pluripotency depends on key transcription factors, chromatin remodeling proteins, and microRNAs. The roles of RNA-binding proteins are however poorly understood. We report that the cytoplasmic RNA-binding protein Unr prevents the differentiation of ESCs into primitive endoderm (PrE). We show that unr knockout (unr(-/-) ) ESCs spontaneously differentiate into PrE, and that Unr re-expression in unr(-/-) ESCs reverses this phenotype. Nevertheless, unr(-/-) ESCs retain pluripotency, producing differentiated teratomas, and the differentiated unr(-/-) ESCs coexpress the PrE inducer Gata6 and the pluripotency factors Oct4, Nanog, and Sox2. Interestingly, in the differentiated unr(-/-) ESCs, Nanog and Sox2 exhibit a dual nuclear and cytoplasmic localization. This situation, that has never been reported, likely reflects an early differentiation state toward PrE. Finally, we show that Unr destabilizes Gata6 mRNAs and we propose that the post-transcriptional repression of Gata6 expression by Unr contributes to the stabilization of the ESCs pluripotent state.
Collapse
Affiliation(s)
- Habiba Elatmani
- Physiopathologie du Cancer du Foie, Université de Bordeaux, Physiopathologie du cancer du foie, U1053, Bordeaux, France
| | | | | | | | | | | |
Collapse
|
39
|
Fehr C, Conrad KD, Niepmann M. Differential stimulation of hepatitis C virus RNA translation by microRNA-122 in different cell cycle phases. Cell Cycle 2012; 11:277-85. [PMID: 22189820 DOI: 10.4161/cc.11.2.18699] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hepatitis C virus (HCV) replicates preferentially in the liver, and in most cases the HCV infection becomes chronic and often results in hepatocellular carcinoma. When the HCV plus-strand RNA genome has been delivered to the cytosol of the infected cell, its translation is directed by the Internal Ribosome Entry Site (IRES) in the 5'-untranslated region (5'-UTR) of the viral RNA. Thereby, IRES activity is modulated by several host factors. In particular, the liver-specific microRNA-122 (miR-122) interacts with two target sites in the HCV 5'-UTR and stimulates HCV translation, thereby most likely contributing to HCV liver tropism. Here we show that HCV IRES-dependent translation efficiency in the hepatoma cell line Huh7 is highest during the G₀ and G₁ phases of the cell cycle but significantly drops during the S phase and even more in the G₂/M phase. The superimposed stimulation of HCV translation by ectopic miR-122 works best during the G₀, G₁ and G₂/M phases but is lower during the S phase. However, the levels of Ago2 protein do not substantially change during cell cycle phases, indicating that other cellular factors involved in HCV translation stimulation by miR-122 may be differentially expressed in different cell cycle phases. Moreover, the levels of endogenously expressed miR-122 in Huh7 cells are lowest in the S phase, indicating that the predominant G₀/G₁ state of non-dividing hepatocytes in the liver facilitates high expression of the HCV genome and stimulation by miR-122, with yet unknown factors involved in the differential extent of stimulation by miR-122.
Collapse
Affiliation(s)
- Carmen Fehr
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Giessen, Germany
| | | | | |
Collapse
|
40
|
Ribosomal deficiencies in Diamond-Blackfan anemia impair translation of transcripts essential for differentiation of murine and human erythroblasts. Blood 2011; 119:262-72. [PMID: 22058113 DOI: 10.1182/blood-2011-06-358200] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Diamond-Blackfan anemia (DBA) is associated with developmental defects and profound anemia. Mutations in genes encoding a ribosomal protein of the small (e.g., RPS19) or large (e.g., RPL11) ribosomal subunit are found in more than half of these patients. The mutations cause ribosomal haploinsufficiency, which reduces overall translation efficiency of cellular mRNAs. We reduced the expression of Rps19 or Rpl11 in mouse erythroblasts and investigated mRNA polyribosome association, which revealed deregulated translation initiation of specific transcripts. Among these were Bag1, encoding a Hsp70 cochaperone, and Csde1, encoding an RNA-binding protein, and both were expressed at increased levels in erythroblasts. Their translation initiation is cap independent and starts from an internal ribosomal entry site, which appeared sensitive to knockdown of Rps19 or Rpl11. Mouse embryos lacking Bag1 die at embryonic day 13.5, with reduced erythroid colony forming cells in the fetal liver, and low Bag1 expression impairs erythroid differentiation in vitro. Reduced expression of Csde1 impairs the proliferation and differentiation of erythroid blasts. Protein but not mRNA expression of BAG1 and CSDE1 was reduced in erythroblasts cultured from DBA patients. Our data suggest that impaired internal ribosomal entry site-mediated translation of mRNAs expressed at increased levels in erythroblasts contributes to the erythroid phenotype of DBA.
Collapse
|
41
|
Stumpf CR, Ruggero D. The cancerous translation apparatus. Curr Opin Genet Dev 2011; 21:474-83. [PMID: 21543223 PMCID: PMC3481834 DOI: 10.1016/j.gde.2011.03.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 03/25/2011] [Indexed: 01/04/2023]
Abstract
Deregulations in translational control are critical features of cancer initiation and progression. Activation of key oncogenic pathways promotes rapid and dramatic translational reprogramming, not simply by increasing overall protein synthesis, but also by modulating specific mRNA networks that promote cellular transformation. Additionally, ribosomopathies caused by mutations in ribosome components alter translational regulation leading to specific pathological features, including cancer susceptibility. Exciting advances in our understanding of translational control in cancer have illuminated a striking specificity innate to the translational apparatus. Characterizing this specificity will provide novel insights into how cells normally utilize translational control to modulate gene expression, how it is deregulated in cancer, and how these processes can be targeted to develop new cancer therapies.
Collapse
Affiliation(s)
- Craig R. Stumpf
- School of Medicine and Department of Urology, Helen Diller Family, Comprehensive Cancer Center, University of California, San Francisco, Helen, Diller Family Cancer Research Building Room 386, 1450 3rd Street, San Francisco, CA 94158-3110
| | - Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family, Comprehensive Cancer Center, University of California, San Francisco, Helen, Diller Family Cancer Research Building Room 386, 1450 3rd Street, San Francisco, CA 94158-3110
| |
Collapse
|
42
|
Komar AA, Hatzoglou M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 2011; 10:229-40. [PMID: 21220943 DOI: 10.4161/cc.10.2.14472] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Translation of cellular mRNAs via initiation at Internal Ribosome Entry Sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.
| | | |
Collapse
|
43
|
Wilmes A, Chan A, Rawson P, William Jordan T, Miller JH. Paclitaxel effects on the proteome of HL-60 promyelocytic leukemic cells: comparison to peloruside A. Invest New Drugs 2010; 30:121-9. [PMID: 20862516 DOI: 10.1007/s10637-010-9540-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 09/09/2010] [Indexed: 11/27/2022]
Abstract
Paclitaxel (Taxol®), a drug used to treat solid tumors of the breast, ovary and lung, stabilizes microtubules and arrests cells in G(2)/M of the cell cycle. Using two-dimensional differential in-gel electrophoresis (DIGE), we examined the proteomic response of a human HL-60 promyeloid leukemic cell line to paclitaxel. Our intention was to compare the effects of paclitaxel to those of a new-generation microtubule-stabilizing agent, peloruside A, investigated in an earlier study. In response to 100 nM paclitaxel treatment for 24 h, 21 identified proteins changed in abundance, with 13 increases and 8 decreases. In addition, 21 other unidentified proteins were also changed by treatment with paclitaxel. Using Western blotting, the transcription factor c-Myc was shown to be reduced in abundance by both drugs. Our results showed both differences and similarities at the single protein level between paclitaxel and peloruside A, although the same general classes of proteins: cytoskeletal, nucleic acid binding, stress, and apoptotic proteins, changed following exposure. The proteomic response to paclitaxel was more extensive than the response to an equipotent dose of peloruside A.
Collapse
Affiliation(s)
- Anja Wilmes
- Centre for Biodiscovery and School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | |
Collapse
|
44
|
Mihailovich M, Militti C, Gabaldón T, Gebauer F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays 2010; 32:109-18. [PMID: 20091748 DOI: 10.1002/bies.200900122] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cold shock domain (CSD)-containing proteins have been found in all three domains of life and function in a variety of processes that are related, for the most part, to post-transcriptional gene regulation. The CSD is an ancient beta-barrel fold that serves to bind nucleic acids. The CSD is structurally and functionally similar to the S1 domain, a fold with otherwise unrelated primary sequence. The flexibility of the CSD/S1 domain for RNA recognition confers an enormous functional versatility to the proteins that contain them. This review summarizes the current knowledge on eukaryotic CSD/S1 domain-containing proteins with a special emphasis on UNR (upstream of N-ras), a member of this family with multiple copies of the CSD.
Collapse
Affiliation(s)
- Marija Mihailovich
- Gene Regulation Programme, Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | | | | | | |
Collapse
|
45
|
Abstract
Deregulation in different steps of translational control is an emerging mechanism for cancer formation. One example of an oncogene with a direct role in control of translation is the Myc transcription factor. Myc directly increases protein synthesis rates by controlling the expression of multiple components of the protein synthetic machinery, including ribosomal proteins and initiation factors of translation, Pol III and rDNA. However, the contribution of Myc-dependent increases in protein synthesis toward the multistep process leading to cancer has remained unknown. Recent evidence strongly suggests that Myc oncogenic signaling may monopolize the translational machinery to elicit cooperative effects on cell growth, cell cycle progression, and genome instability as a mechanism for cancer initiation. Moreover, new genetic tools to restore aberrant increases in protein synthesis control are now available, which should enable the dissection of important mechanisms in cancer that rely on the translational machinery.
Collapse
Affiliation(s)
- Davide Ruggero
- School of Medicine and Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California 94158, USA.
| |
Collapse
|
46
|
Van Der Kelen K, Beyaert R, Inzé D, De Veylder L. Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 2009; 44:143-68. [PMID: 19604130 DOI: 10.1080/10409230902882090] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translational control mechanisms are, besides transcriptional control and mRNA stability, the most determining for final protein levels. A large number of accessory factors that assist the ribosome during initiation, elongation, and termination of translation are required for protein synthesis. Cap-dependent translational control occurs mainly during the initiation step, involving eukaryotic initiation factors (eIFs) and accessory proteins. Initiation is affected by various stimuli that influence the phosphorylation status of both eIF4E and eIF2 and through binding of 4E-binding proteins to eIF4E, which finally inhibits cap- dependent translation. Under conditions where cap-dependent translation is hampered, translation of transcripts containing an internal ribosome entry site can still be supported in a cap-independent manner. An interesting example of translational control is the switch between cap-independent and cap-dependent translation during the eukaryotic cell cycle. At the G1-to-S transition, translation occurs predominantly in a cap-dependent manner, while during the G2-to-M transition, cap-dependent translation is inhibited and transcripts are predominantly translated through a cap-independent mechanism.
Collapse
|
47
|
Dysregulation of ribosome biogenesis and translational capacity is associated with tumor progression of human breast cancer cells. PLoS One 2009; 4:e7147. [PMID: 19779612 PMCID: PMC2744998 DOI: 10.1371/journal.pone.0007147] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 08/05/2009] [Indexed: 12/21/2022] Open
Abstract
Protein synthesis is a fundamental cell process and ribosomes - particularly through the ribosomal RNA that display ribozyme activity - are the main effectors of this process. Ribosome biogenesis is a very complex process involving transcriptional as well as many post-transcriptional steps to produce functional ribosomes. It is now well demonstrated that ribosome production is enhanced in cancer cells and that ribosome biogenesis plays a crucial role in tumor progression. However, at present there is an important lack of data to determine whether the entire process of ribosome biogenesis and ribosome assembly is modified during tumor progression and what could be the potential impact on the dysregulation of translational control that is observed in cancer cells. In breast cancer cells displaying enhanced aggressivity, both in vitro and in vivo, we have analyzed the major steps of ribosome biogenesis and the translational capacity of the resulting ribosome. We show that increased tumorigenicity was associated with modifications of nucleolar morphology and profound quantitative and qualitative alterations in ribosomal biogenesis and function. Specifically cells with enhanced tumor aggressivity displayed increased synthesis of 45S pre-rRNA, with activation of an alternative preRNA synthetic pathway containing a 43S precursor and enhanced post-transcriptional methylation of specifc sites located in the 28S rRNA. While the global translational activity was not modified, IRES-initiated translation, notably that of p53 mRNA, was less efficient and the control of translational fidelity was importantly reduced in cells with increased aggressivity. These results suggest that acquisition of enhanced tumor aggressivity can be associated with profound qualitative alterations in ribosomal control, leading to reduced quality control of translation in cancer cells
Collapse
|
48
|
The hnRNA-binding proteins hnRNP L and PTB are required for efficient translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. Mol Cell Biol 2009; 29:2899-912. [PMID: 19273590 DOI: 10.1128/mcb.01774-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The response to amino acid starvation involves the global decrease of protein synthesis and an increase in the translation of some mRNAs that contain an internal ribosome entry site (IRES). It was previously shown that translation of the mRNA for the arginine/lysine amino acid transporter Cat-1 increases during amino acid starvation via a mechanism that utilizes an IRES in the 5' untranslated region of the Cat-1 mRNA. It is shown here that polypyrimidine tract binding protein (PTB) and an hnRNA binding protein, heterogeneous nuclear ribonucleoprotein L (hnRNP L), promote the efficient translation of Cat-1 mRNA during amino acid starvation. Association of both proteins with Cat-1 mRNA increased during starvation with kinetics that paralleled that of IRES activation, although the levels and subcellular distribution of the proteins were unchanged. The sequence CUUUCU within the Cat-1 IRES was important for PTB binding and for the induction of translation during amino acid starvation. Binding of hnRNP L to the IRES or the Cat-1 mRNA in vivo was independent of PTB binding but was not sufficient to increase IRES activity or Cat-1 mRNA translation during amino acid starvation. In contrast, binding of PTB to the Cat-1 mRNA in vivo required hnRNP L. A wider role of hnRNP L in mRNA translation was suggested by the decrease of global protein synthesis in cells with reduced hnRNP L levels. It is proposed that PTB and hnRNP L are positive regulators of Cat-1 mRNA translation via the IRES under stress conditions that cause a global decrease of protein synthesis.
Collapse
|
49
|
Wang X, Rao RP, Kosakowska-Cholody T, Masood MA, Southon E, Zhang H, Berthet C, Nagashim K, Veenstra TK, Tessarollo L, Acharya U, Acharya JK. Mitochondrial degeneration and not apoptosis is the primary cause of embryonic lethality in ceramide transfer protein mutant mice. ACTA ACUST UNITED AC 2009; 184:143-58. [PMID: 19139267 PMCID: PMC2615084 DOI: 10.1083/jcb.200807176] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Ceramide transfer protein (CERT) functions in the transfer of ceramide from the endoplasmic reticulum (ER) to the Golgi. In this study, we show that CERT is an essential gene for mouse development and embryonic survival and, quite strikingly, is critical for mitochondrial integrity. CERT mutant embryos accumulate ceramide in the ER but also mislocalize ceramide to the mitochondria, compromising their function. Cells in mutant embryos show abnormal dilation of the ER and degenerating mitochondria. These subcellular changes manifest as heart defects and cause severely compromised cardiac function and embryonic death around embryonic day 11.5. In spite of ceramide accumulation, CERT mutant mice do not die as a result of enhanced apoptosis. Instead, cell proliferation is impaired, and expression levels of cell cycle–associated proteins are altered. Individual cells survive, perhaps because cell survival mechanisms are activated. Thus, global compromise of ER and mitochondrial integrity caused by ceramide accumulation in CERT mutant mice primarily affects organogenesis rather than causing cell death via apoptotic pathways.
Collapse
Affiliation(s)
- Xin Wang
- Laboratory of Cell and Developmental Signaling, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Contribution of internal initiation to translation of cellular mRNAs containing IRESs. Biochem Soc Trans 2008; 36:694-7. [DOI: 10.1042/bst0360694] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A broad range of cellular stresses lead to the inhibition of translation. Despite this, some cellular mRNAs are selectively translated under these conditions. It is widely supposed that cap-independent internal initiation may maintain efficient translation of particular cellular mRNAs under a variety of stresses and other special conditions when cap-dependent protein synthesis is impaired. However, in spite of a large number of reports focused on the investigation of the regulation of IRES (internal ribosome entry site) activity in different tissues and under various stresses, only rarely is the real efficiency of IRES-driven translation in comparison with cap-dependent translation evaluated. When precisely measured, the efficiencies of candidate IRESs in most cases appeared to be very low and not sufficient to compensate for the reduction of cap-dependent initiation under stresses. The usually low efficiency of internal initiation of translation is inconsistent with postulated biological roles of IRESs.
Collapse
|