1
|
Singh S, Singh J, Varshney U. Lamotrigine-mediated rescue of RsgA-deficient Escherichia coli reveals another role of IF2 in ribosome biogenesis. J Bacteriol 2024; 206:e0011924. [PMID: 38837341 PMCID: PMC11270870 DOI: 10.1128/jb.00119-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024] Open
Abstract
RsgA (small ribosomal subunit, 30S, GTPase), a late-stage biogenesis factor, releases RbfA from 30S-RbfA complex. Escherichia coli ΔrsgA (deleted for rsgA) shows a slow growth phenotype and an increased accumulation of 17S rRNA (precursor of 16S rRNA) and the ribosomal subunits. Here, we show that the rescue of the ΔrsgA strain by multicopy infB (IF2) is enhanced by simultaneous overexpression of initiator tRNA (i-tRNA), suggesting a role of initiation complex formation in growth rescue. The synergistic effect of IF2/i-tRNA is accompanied by increased processing of 17S rRNA (to 16S), and protection of the 16S rRNA 3'-minor domain. Importantly, we show that an IF2-binding anticonvulsant drug, lamotrigine (Ltg), also rescues the ΔrsgA strain growth. The rescue is accompanied by increased processing of 17S rRNA, protection of the 3'-minor domain of 16S rRNA, and increased 70S ribosomes in polysome profiles. However, Ltg becomes inhibitory to the ΔrsgA strain whose growth was already rescued by an L83R mutation in rbfA. Interestingly, like wild-type infB, overproduction of LtgRinfB alleles (having indel mutations in their domain II) also rescues the ΔrsgA strain (independent of Ltg). Our observations suggest the dual role of IF2 in rescuing the ΔrsgA strain. First, together with i-tRNA, IF2 facilitates the final steps of processing of 17S rRNA. Second, a conformer of IF2 functionally compensates for RsgA, albeit poorly, during 30S biogenesis. IMPORTANCE RsgA is a late-stage ribosome biogenesis factor. Earlier, infB (IF2) was isolated as a multicopy suppressor of the Escherichia coli ΔrsgA strain. How IF2 rescued the strain growth remained unclear. This study reveals that (i) the multicopy infB-mediated growth rescue of E. coli ΔrsgA and the processing of 17S precursor to 16S rRNA in the strain are enhanced upon simultaneous overexpression of initiator tRNA and (ii) a conformer of IF2, whose occurrence increases when IF2 is overproduced or when E. coli ΔrsgA is treated with Ltg (an anticonvulsant drug that binds to domain II of IF2), compensates for the function of RsgA. Thus, this study reveals yet another role of IF2 in ribosome biogenesis.
Collapse
Affiliation(s)
- Sudhir Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Jitendra Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
2
|
Maksimova E, Kravchenko O, Korepanov A, Stolboushkina E. Protein Assistants of Small Ribosomal Subunit Biogenesis in Bacteria. Microorganisms 2022; 10:microorganisms10040747. [PMID: 35456798 PMCID: PMC9032327 DOI: 10.3390/microorganisms10040747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/16/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Ribosome biogenesis is a fundamental and multistage process. The basic steps of ribosome assembly are the transcription, processing, folding, and modification of rRNA; the translation, folding, and modification of r-proteins; and consecutive binding of ribosomal proteins to rRNAs. Ribosome maturation is facilitated by biogenesis factors that include a broad spectrum of proteins: GTPases, RNA helicases, endonucleases, modification enzymes, molecular chaperones, etc. The ribosome assembly factors assist proper rRNA folding and protein–RNA interactions and may sense the checkpoints during the assembly to ensure correct order of this process. Inactivation of these factors is accompanied by severe growth phenotypes and accumulation of immature ribosomal subunits containing unprocessed rRNA, which reduces overall translation efficiency and causes translational errors. In this review, we focus on the structural and biochemical analysis of the 30S ribosomal subunit assembly factors RbfA, YjeQ (RsgA), Era, KsgA (RsmA), RimJ, RimM, RimP, and Hfq, which take part in the decoding-center folding.
Collapse
Affiliation(s)
| | | | - Alexey Korepanov
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| | - Elena Stolboushkina
- Correspondence: (A.K.); (E.S.); Tel.: +7-925-7180670 (A.K.); +7-915-4791359 (E.S.)
| |
Collapse
|
3
|
Li J, Han L, Chen N, Zhu C, Gao Y, Shi X, Xu C, Hikichi Y, Zhang Y, Ohnishi K. Functional Characterization of RsRsgA for Ribosome Biosynthesis and Expression of the Type III Secretion System in Ralstonia solanacearum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:972-981. [PMID: 32240066 DOI: 10.1094/mpmi-10-19-0294-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
RsgA plays an important role in maturation of 30S subunit in many bacteria that assists in the release of RbfA from the 30S subunit during a late stage of ribosome biosynthesis. Here, we genetically characterized functional roles of RsgA in Ralstonia solanacearum, hereafter designated RsRsgA. Deletion of R. solanacearum rsgA or rbfA resulted in distinct deficiency of 16S ribosomal RNA, significantly slowed growth in broth medium, and diminished growth in nutrient-limited medium, which are similar as phenotypes of rsgA mutants and rbfA mutants of Escherichia coli and other bacteria. Our gene-expression studies revealed that RsRsgA is important for expression of genes encoding the type III secretion system (T3SS) (a pathogenicity determinant of R. solanacearum) both in vitro and in planta. Compared with the wild-type R. solanacearum strain, proliferation of the rsgA and rbfA mutants in tobacco leaves was significantly impaired, while they failed to migrate into tobacco xylem vessels from infiltrated leaves, and hence, these two mutants failed to cause any bacterial wilt disease in tobacco plants. It was further revealed that rsgA expression was highly enhanced under nutrient-limited conditions compared with that in broth medium and RsRsgA affects T3SS expression through the PrhN-PrhG-HrpB pathway. Moreover, expression of a subset of type III effectors was substantially impaired in the rsgA mutant, some of which are responsible for R. solanacearum GMI1000 elicitation of a hypersensitive response (HR) in tobacco leaves, while RsRsgA is not required for HR elicitation of GMI1000 in tobacco leaves. All these results provide novel insights into understanding various biological functions of RsgA proteins and complex regulation on the T3SS in R. solanacearum.
Collapse
Affiliation(s)
- Jiaman Li
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Liangliang Han
- College of Resources and Environment, Southwest University, Chongqing, China
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Nan Chen
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, China
| | - Chao Zhu
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yuwei Gao
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Chongqing, China
| | - Changzheng Xu
- College of Life Science, Southwest University, Chongqing, China
| | - Yasufumi Hikichi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| | - Yong Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Key Laboratory of Efficient Utilization of Soil and Fertilizer Resources, Chongqing, China
| | - Kouhei Ohnishi
- Faculty of Agriculture and Marine Science, Kochi University, Kochi, Japan
| |
Collapse
|
4
|
Rocchio S, Santorelli D, Rinaldo S, Franceschini M, Malatesta F, Imperi F, Federici L, Travaglini-Allocatelli C, Di Matteo A. Structural and functional investigation of the Small Ribosomal Subunit Biogenesis GTPase A (RsgA) from Pseudomonas aeruginosa. FEBS J 2019; 286:4245-4260. [PMID: 31199072 DOI: 10.1111/febs.14959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 01/16/2023]
Abstract
The Small Ribosomal Subunit Biogenesis GTPase A (RsgA) is a bacterial assembly factor involved in the late stages of the 30S subunit maturation. It is a multidomain GTPase in which the central circularly permutated GTPase domain is flanked by an OB domain and a Zn-binding domain. All three domains participate in the interaction with the 30S particle thus ensuring an efficient coupling between catalytic activity and biological function. In vivo studies suggested the relevance of rsgA in bacterial growth and cellular viability, but other pleiotropic roles of RsgA are also emerging. Here, we report the 3D structure of RsgA from Pseudomonas aeruginosa (PaRsgA) in the GDP-bound form. We also report a biophysical and biochemical characterization of the protein in both the GDP-bound and its nucleotide-free form. In particular, we report a kinetic analysis of the RsgA binding to GTP and GDP. We found that PaRsgA is able to bind both nucleotides with submicromolar affinity. The higher affinity towards GDP (KD = 0.011 μm) with respect to GTP (KD = 0.16 μm) is mainly ascribed to a smaller GDP dissociation rate. Our results confirm that PaRsgA, like most other GTPases, has a weak intrinsic enzymatic activity (kCAT = 0.058 min-1 ). Finally, the biological role of RsgA in P. aeruginosa was investigated, allowing us to conclude that rsgA is dispensable for P. aeruginosa growth but important for drug resistance and virulence in an animal infection model. DATABASES: Coordinates and structure factors for the protein structure described in this manuscript have been deposited in the Protein Data Bank (https://www.rcsb.org) with the accession code 6H4D.
Collapse
Affiliation(s)
- Serena Rocchio
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy.,Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| | - Daniele Santorelli
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Serena Rinaldo
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Mimma Franceschini
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | - Francesco Malatesta
- Dipartimento di Scienze Biochimiche, "A Rossi Fanelli"- Sapienza Università di Roma, Italy
| | - Francesco Imperi
- Dipartimento di Scienze, Università Roma Tre, Italy.,Dipartimento di Biologia e Biotecnologie Charles Darwin, Laboratorio affiliato all'Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Italy
| | - Luca Federici
- Ce.S.I.-MeT Centro di Scienze dell'Invecchiamento e Medicina Traslazionale, Università "G. d'Annunzio" di Chieti, Italy.,Dipartimento di Scienze Mediche, Orali e Biotecnologiche - Università "G. d'Annunzio" di Chieti, Italy
| | | | - Adele Di Matteo
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, Roma, Italy
| |
Collapse
|
5
|
Richts B, Rosenberg J, Commichau FM. A Survey of Pyridoxal 5'-Phosphate-Dependent Proteins in the Gram-Positive Model Bacterium Bacillus subtilis. Front Mol Biosci 2019; 6:32. [PMID: 31134210 PMCID: PMC6522883 DOI: 10.3389/fmolb.2019.00032] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
The B6 vitamer pyridoxal 5′-phosphate (PLP) is a co-factor for proteins and enzymes that are involved in diverse cellular processes. Therefore, PLP is essential for organisms from all kingdoms of life. Here we provide an overview about the PLP-dependent proteins from the Gram-positive soil bacterium Bacillus subtilis. Since B. subtilis serves as a model system in basic research and as a production host in industry, knowledge about the PLP-dependent proteins could facilitate engineering the bacteria for biotechnological applications. The survey revealed that the majority of the PLP-dependent proteins are involved in metabolic pathways like amino acid biosynthesis and degradation, biosynthesis of antibacterial compounds, utilization of nucleotides as well as in iron and carbon metabolism. Many PLP-dependent proteins participate in de novo synthesis of the co-factors biotin, folate, heme, and NAD+ as well as in cell wall metabolism, tRNA modification, regulation of gene expression, sporulation, and biofilm formation. A surprisingly large group of PLP-dependent proteins (29%) belong to the group of poorly characterized proteins. This review underpins the need to characterize the PLP-dependent proteins of unknown function to fully understand the “PLP-ome” of B. subtilis.
Collapse
Affiliation(s)
- Björn Richts
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Jonathan Rosenberg
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, University of Goettingen, Göttingen, Germany
| |
Collapse
|
6
|
A bacterial checkpoint protein for ribosome assembly moonlights as an essential metabolite-proofreading enzyme. Nat Commun 2019; 10:1526. [PMID: 30948730 PMCID: PMC6449344 DOI: 10.1038/s41467-019-09508-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/13/2019] [Indexed: 01/20/2023] Open
Abstract
In eukaryotes, adventitious oxidation of erythrose-4-phosphate, an intermediate of the pentose phosphate pathway (PPP), generates 4-phosphoerythronate (4PE), which inhibits 6-phosphogluconate dehydrogenase. 4PE is detoxified by metabolite-proofreading phosphatases such as yeast Pho13. Here, we report that a similar function is carried out in Bacillus subtilis by CpgA, a checkpoint protein known to be important for ribosome assembly, cell morphology and resistance to cell wall-targeting antibiotics. We find that ΔcpgA cells are intoxicated by glucose or other carbon sources that feed into the PPP, and that CpgA has high phosphatase activity with 4PE. Inhibition of 6-phosphogluconate dehydrogenase (GndA) leads to intoxication by 6-phosphogluconate, a potent inhibitor of phosphoglucose isomerase (PGI). The coordinated shutdown of PPP and glycolysis leads to metabolic gridlock. Overexpression of GndA, PGI, or yeast Pho13 suppresses glucose intoxication of ΔcpgA cells, but not cold sensitivity, a phenotype associated with ribosome assembly defects. Our results suggest that CpgA is a multifunctional protein, with genetically separable roles in ribosome assembly and metabolite proofreading. Adventitious oxidation of erythrose-4-phosphate generates 4-phosphoerythronate, which is detoxified by metabolite-proofreading phosphatases in eukaryotes. Here, Sachla & Helmann show that a similar function is carried out in Bacillus subtilis by a checkpoint protein involved in ribosome assembly.
Collapse
|
7
|
Sengupta S, Mondal A, Dutta D, Parrack P. HflX protein protects Escherichia coli from manganese stress. J Biosci 2018; 43:1001-1013. [PMID: 30541959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ribosome-binding GTPase HflX is required for manganese homeostasis in E. coli. While under normal conditions ΔhflX cells behave like wild type E. coli with respect to growth pattern and morphology, deletion of hflX makes E. coli cells extremely sensitive to manganese, characterized by arrested cell growth and filamentation. Here we demonstrate that upon complementation by hflX, manganese stress is relieved. In phenotypic studies done in a manganese-rich environment, ΔhflX cells were highly sensitive to antibiotics that bind the penicillin binding protein 3 (PBP3), suggesting that the manganese stress led to impaired peptidoglycan biosynthesis. An irregular distribution of dark bands of constriction along filaments, delocalization of the dark bands from midcell towards poles and subpoles, lack of septum formation and arrested cell division were observed in ΔhflX cells under manganese stress. However, chromosome replication and segregation of nucleoids were unaffected under these conditions, as observed from confocal microscopy imaging and FACS studies. We conclude that absence of HflX leads to manganese accumulation in E. coli cells, affecting cell septum formation, probably by modulating the activity of the cell division protein PBP3 (FtsI), a major component of the divisome apparatus. We propose that HflX acts as a gatekeeper, regulating the influx of manganese into the cell.
Collapse
Affiliation(s)
- Sandeepan Sengupta
- Department of Biochemistry, Bose Institute, P-1/12, C.I.T. Scheme VIIM, Kolkata 700 054, India
| | | | | | | |
Collapse
|
8
|
Janowski M, Zoschke R, Scharff LB, Martinez Jaime S, Ferrari C, Proost S, Ng Wei Xiong J, Omranian N, Musialak-Lange M, Nikoloski Z, Graf A, Schöttler MA, Sampathkumar A, Vaid N, Mutwil M. AtRsgA from Arabidopsis thaliana is important for maturation of the small subunit of the chloroplast ribosome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:404-420. [PMID: 30044525 DOI: 10.1111/tpj.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 05/24/2023]
Abstract
Plastid ribosomes are very similar in structure and function to the ribosomes of their bacterial ancestors. Since ribosome biogenesis is not thermodynamically favorable under biological conditions it requires the activity of many assembly factors. Here we have characterized a homolog of bacterial RsgA in Arabidopsis thaliana and show that it can complement the bacterial homolog. Functional characterization of a strong mutant in Arabidopsis revealed that the protein is essential for plant viability, while a weak mutant produced dwarf, chlorotic plants that incorporated immature pre-16S ribosomal RNA into translating ribosomes. Physiological analysis of the mutant plants revealed smaller, but more numerous, chloroplasts in the mesophyll cells, reduction of chlorophyll a and b, depletion of proplastids from the rib meristem and decreased photosynthetic electron transport rate and efficiency. Comparative RNA sequencing and proteomic analysis of the weak mutant and wild-type plants revealed that various biotic stress-related, transcriptional regulation and post-transcriptional modification pathways were repressed in the mutant. Intriguingly, while nuclear- and chloroplast-encoded photosynthesis-related proteins were less abundant in the mutant, the corresponding transcripts were increased, suggesting an elaborate compensatory mechanism, potentially via differentially active retrograde signaling pathways. To conclude, this study reveals a chloroplast ribosome assembly factor and outlines the transcriptomic and proteomic responses of the compensatory mechanism activated during decreased chloroplast function.
Collapse
Affiliation(s)
- Marcin Janowski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Lars B Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Silvia Martinez Jaime
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Jonathan Ng Wei Xiong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | | | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl- Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
9
|
Sengupta S, Mondal A, Dutta D, Parrack P. HflX protein protects Escherichia coli from manganese stress. J Biosci 2018. [DOI: 10.1007/s12038-018-9807-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
López-Alonso JP, Kaminishi T, Kikuchi T, Hirata Y, Iturrioz I, Dhimole N, Schedlbauer A, Hase Y, Goto S, Kurita D, Muto A, Zhou S, Naoe C, Mills DJ, Gil-Carton D, Takemoto C, Himeno H, Fucini P, Connell SR. RsgA couples the maturation state of the 30S ribosomal decoding center to activation of its GTPase pocket. Nucleic Acids Res 2017; 45:6945-6959. [PMID: 28482099 PMCID: PMC5499641 DOI: 10.1093/nar/gkx324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/19/2017] [Indexed: 01/18/2023] Open
Abstract
During 30S ribosomal subunit biogenesis, assembly factors are believed to prevent accumulation of misfolded intermediate states of low free energy that slowly convert into mature 30S subunits, namely, kinetically trapped particles. Among the assembly factors, the circularly permuted GTPase, RsgA, plays a crucial role in the maturation of the 30S decoding center. Here, directed hydroxyl radical probing and single particle cryo-EM are employed to elucidate RsgA΄s mechanism of action. Our results show that RsgA destabilizes the 30S structure, including late binding r-proteins, providing a structural basis for avoiding kinetically trapped assembly intermediates. Moreover, RsgA exploits its distinct GTPase pocket and specific interactions with the 30S to coordinate GTPase activation with the maturation state of the 30S subunit. This coordination validates the architecture of the decoding center and facilitates the timely release of RsgA to control the progression of 30S biogenesis.
Collapse
Affiliation(s)
- Jorge Pedro López-Alonso
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Tatsuya Kaminishi
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Takeshi Kikuchi
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Yuya Hirata
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Idoia Iturrioz
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Neha Dhimole
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Andreas Schedlbauer
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Yoichi Hase
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Daisuke Kurita
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Akira Muto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Shu Zhou
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Chieko Naoe
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Deryck J Mills
- Max Planck Institute of Biophysics, Department of Structural Biology, Max-von-Laue-Straße 3, D-60438 Frankfurt am Main, Germany
| | - David Gil-Carton
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Chie Takemoto
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technology, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hyouta Himeno
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | - Paola Fucini
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Sean R Connell
- Molecular Recognition and Host-Pathogen Interactions, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain.,IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| |
Collapse
|
11
|
ppGpp negatively impacts ribosome assembly affecting growth and antimicrobial tolerance in Gram-positive bacteria. Proc Natl Acad Sci U S A 2016; 113:E1710-9. [PMID: 26951678 DOI: 10.1073/pnas.1522179113] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The stringent response is a survival mechanism used by bacteria to deal with stress. It is coordinated by the nucleotides guanosine tetraphosphate and pentaphosphate [(p)ppGpp], which interact with target proteins to promote bacterial survival. Although this response has been well characterized in proteobacteria, very little is known about the effectors of this signaling system in Gram-positive species. Here, we report on the identification of seven target proteins for the stringent response nucleotides in the Gram-positive bacterium Staphylococcus aureus We demonstrate that the GTP synthesis enzymes HprT and Gmk bind with a high affinity, leading to an inhibition of GTP production. In addition, we identified five putative GTPases--RsgA, RbgA, Era, HflX, and ObgE--as (p)ppGpp target proteins. We show that RsgA, RbgA, Era, and HflX are functional GTPases and that their activity is promoted in the presence of ribosomes but strongly inhibited by the stringent response nucleotides. By characterizing the function of RsgA in vivo, we ascertain that this protein is involved in ribosome assembly, with an rsgA deletion strain, or a strain inactivated for GTPase activity, displaying decreased growth, a decrease in the amount of mature 70S ribosomes, and an increased level of tolerance to antimicrobials. We additionally demonstrate that the interaction of ppGpp with cellular GTPases is not unique to the staphylococci, as homologs from Bacillus subtilis and Enterococcus faecalis retain this ability. Taken together, this study reveals ribosome inactivation as a previously unidentified mechanism through which the stringent response functions in Gram-positive bacteria.
Collapse
|
12
|
Bloodworth RAM, Zlitni S, Brown ED, Cardona ST. An electron transfer flavoprotein is essential for viability and its depletion causes a rod-to-sphere change in Burkholderia cenocepacia. MICROBIOLOGY-SGM 2015; 161:1909-1920. [PMID: 26253539 DOI: 10.1099/mic.0.000156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Essential gene studies often reveal novel essential functions for genes with dispensable homologues in other species. This is the case with the widespread family of electron transfer flavoproteins (ETFs), which are required for the metabolism of specific substrates or for symbiotic nitrogen fixation in some bacteria. Despite these non-essential functions high-throughput screens have identified ETFs as putatively essential in several species. In this study, we constructed a conditional expression mutant of one of the ETFs in Burkholderia cenocepacia, and demonstrated that its expression is essential for growth on both complex media and a variety of single-carbon sources. We further demonstrated that the two subunits EtfA and EtfB interact with each other, and that cells depleted of ETF are non-viable and lack redox potential. These cells also transition from the short rods characteristic of Burkholderia cenocepacia to small spheres independently of MreB. The putative membrane partner ETF dehydrogenase also induced the same rod-to-sphere change. We propose that the ETF of Burkholderia cenocepacia is a novel antibacterial target.
Collapse
Affiliation(s)
| | - Soumaya Zlitni
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Eric D Brown
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Canada.,Department of Medical Microbiology & Infectious Disease, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
13
|
Bharat A, Brown ED. Phenotypic investigations of the depletion of EngA in Escherichia coli are consistent with a role in ribosome biogenesis. FEMS Microbiol Lett 2014; 353:26-32. [PMID: 24822275 DOI: 10.1111/1574-6968.12403] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The EngA protein is a conserved and essential bacterial GTPase of largely enigmatic function. While most investigations of EngA have suggested a role in ribosome assembly, the protein has also been implicated in diverse elements of physiology including chromosome segregation, cell division, and cell cycle control. Here, we have probed additional phenotypes related to ribosome biogenesis on depletion of EngA in Escherichia coli to better understand its role in the cell. Depletion of EngA resulted in cold-sensitive growth and stimulation of a ribosomal rRNA promoter, both phenotypes associated with the disruption of ribosome biogenesis in bacteria. Among antibiotics that inhibit translation, depletion of EngA resulted in sensitization to the aminoglycoside class of antibiotics. EngA bound the alarmone ppGpp with equally high affinity as it bound GDP. These data offer additional support for a role in ribosome biogenesis for EngA, possibly in maturation of the A-site of the 50S subunit.
Collapse
|
14
|
Impairment of ribosome maturation or function confers salt resistance on Escherichia coli cells. PLoS One 2013; 8:e65747. [PMID: 23741511 PMCID: PMC3669203 DOI: 10.1371/journal.pone.0065747] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 04/26/2013] [Indexed: 11/19/2022] Open
Abstract
We found that loss of integrity of the ribosome by removal of a putative ribosome maturation factor or a ribosomal protein conferred salt tolerance on Escherichia coli cells. Some protein synthesis inhibitors including kasugamycin and chloramphenicol also had a similar effect, although kasugamycin affected neither 16S rRNA maturation nor subunit association into a 70S ribosome. Thus, salt tolerance is a common feature of cells in which maturation or function of the ribosome is impaired. In these cells, premature induction of an alternative sigma factor, σ(E), by salt stress was observed. These results suggest the existence of a yet-unknown stress response pathway mediated by the bacterial ribosome.
Collapse
|
15
|
Abstract
The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
16
|
Pompeo F, Freton C, Wicker-Planquart C, Grangeasse C, Jault JM, Galinier A. Phosphorylation of CpgA protein enhances both its GTPase activity and its affinity for ribosome and is crucial for Bacillus subtilis growth and morphology. J Biol Chem 2012; 287:20830-8. [PMID: 22544754 DOI: 10.1074/jbc.m112.340331] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In Bacillus subtilis, the ribosome-associated GTPase CpgA is crucial for growth and proper morphology and was shown to be phosphorylated in vitro by the Ser/Thr protein kinase PrkC. To further understand the function of the Escherichia coli RsgA ortholog, CpgA, we first demonstrated that its GTPase activity is stimulated by its association with the 30 S ribosomal subunit. Then the role of CpgA phosphorylation was analyzed. A single phosphorylated residue, threonine 166, was identified by mass spectrometry. Phosphoablative replacement of this residue in CpgA induces a decrease of both its affinity for the 30 S ribosomal subunit and its GTPase activity, whereas a phosphomimetic replacement has opposite effects. Furthermore, cells expressing a nonphosphorylatable CpgA protein present the morphological and growth defects similar to those of a cpgA-deleted strain. Altogether, our results suggest that CpgA phosphorylation on Thr-166 could modulate its ribosome-induced GTPase activity. Given the role of PrkC in B. subtilis spore germination, we propose that CpgA phosphorylation is a key regulatory process that is essential for B. subtilis development.
Collapse
Affiliation(s)
- Frédérique Pompeo
- Laboratoire de Chimie Bactérienne, FR 3479, CNRS, Aix-Marseille Université, 13402 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
17
|
Achila D, Gulati M, Jain N, Britton RA. Biochemical characterization of ribosome assembly GTPase RbgA in Bacillus subtilis. J Biol Chem 2012; 287:8417-23. [PMID: 22267738 DOI: 10.1074/jbc.m111.331322] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ribosome biogenesis GTPase A protein RbgA is involved in the assembly of the large ribosomal subunit in Bacillus subtilis, and homologs of RbgA are implicated in the biogenesis of mitochondrial, chloroplast, and cytoplasmic ribosomes in archaea and eukaryotes. The precise function of how RbgA contributes to ribosome assembly is not understood. Defects in RbgA give rise to a large ribosomal subunit that is immature and migrates at 45 S in sucrose density gradients. Here, we report a detailed biochemical analysis of RbgA and its interaction with the ribosome. We found that RbgA, like most other GTPases, exhibits a very slow k(cat) (14 h(-1)) and has a high K(m) (90 μM). Homology modeling of the RbgA switch I region using the K-loop GTPase MnmE as a template suggested that RbgA requires K(+) ions for GTPase activity, which was confirmed experimentally. Interaction with 50 S subunits, but not 45 S intermediates, increased GTPase activity by ∼55-fold. Stable association with 50 S subunits and 45 S intermediates was nucleotide-dependent, and GDP did not support strong interaction with either of the subunits. GTP and guanosine 5'-(β,γ-imido)triphosphate (GMPPNP) were sufficient to promote association with the 45 S intermediate, whereas only GMPPNP was able to support binding to the 50 S subunit, presumably due to the stimulation of GTP hydrolysis. These results support a model in which RbgA promotes a late step in ribosome biogenesis and that one role of GTP hydrolysis is to stimulate dissociation of RbgA from the ribosome.
Collapse
Affiliation(s)
- David Achila
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
18
|
Jomaa A, Stewart G, Mears JA, Kireeva I, Brown ED, Ortega J. Cryo-electron microscopy structure of the 30S subunit in complex with the YjeQ biogenesis factor. RNA (NEW YORK, N.Y.) 2011; 17:2026-38. [PMID: 21960487 PMCID: PMC3198595 DOI: 10.1261/rna.2922311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Accepted: 08/26/2011] [Indexed: 05/22/2023]
Abstract
YjeQ is a protein broadly conserved in bacteria containing an N-terminal oligonucleotide/oligosaccharide fold (OB-fold) domain, a central GTPase domain, and a C-terminal zinc-finger domain. YjeQ binds tightly and stoichiometrically to the 30S subunit, which stimulates its GTPase activity by 160-fold. Despite growing evidence for the involvement of the YjeQ protein in bacterial 30S subunit assembly, the specific function and mechanism of this protein remain unclear. Here, we report the costructure of YjeQ with the 30S subunit obtained by cryo-electron microscopy. The costructure revealed that YjeQ interacts simultaneously with helix 44, the head and the platform of the 30S subunit. This binding location of YjeQ in the 30S subunit suggests a chaperone role in processing of the 3' end of the rRNA as well as in mediating the correct orientation of the main domains of the 30S subunit. In addition, the YjeQ binding site partially overlaps with the interaction site of initiation factors 2 and 3, and upon binding, YjeQ covers three inter-subunit bridges that are important for the association of the 30S and 50S subunits. Hence, our structure suggests that YjeQ may assist in ribosome maturation by preventing premature formation of the translation initiation complex and association with the 50S subunit. Together, these results support a role for YjeQ in the late stages of 30S maturation.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Geordie Stewart
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Jason A. Mears
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Inga Kireeva
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Eric D. Brown
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
| | - Joaquin Ortega
- Department of Biochemistry and Biomedical Sciences and Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, L8N3Z5, Canada
- Corresponding author.E-mail .
| |
Collapse
|
19
|
Structural basis for the function of a small GTPase RsgA on the 30S ribosomal subunit maturation revealed by cryoelectron microscopy. Proc Natl Acad Sci U S A 2011; 108:13100-5. [PMID: 21788480 DOI: 10.1073/pnas.1104645108] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The bacterial RsgA, a circularly permutated GTPase, whose GTPase activity is dependent on the 30S ribosomal subunit, is a late-stage ribosome biogenesis factor involved in the 30S subunit maturation. The role of RsgA is to release another 30S biogenesis factor, RbfA, from the mature 30S subunit in a GTP-dependent manner. Using cryoelectron microscopy, we have determined the structure of the 30S subunit bound with RsgA in the presence of GMPPNP at subnanometer resolution. In the structure, RsgA binds to the central part of the 30S subunit, close to the decoding center, in a position that is incompatible with multiple biogenesis factors, all three translation initiation factors, as well as A-, P-site tRNAs and the 50S subunit. Further structural analysis not only provides a structural model for the RsgA-dependent release of RbfA from the nascent 30S subunit, but also indicates RsgA's role in the ribosomal protein assembly, to promote some tertiary binding protein incorporation. Moreover, together with available biochemical and genetic data, our results suggest that RsgA might be a general checkpoint protein in the late stage of the 30S subunit biogenesis, whose function is not only to release biogenesis factors (e.g., RbfA) from the nascent 30S subunit, but also to block the association of initiation factors to the premature 30S subunit.
Collapse
|
20
|
Understanding ribosome assembly: the structure of in vivo assembled immature 30S subunits revealed by cryo-electron microscopy. RNA 2011; 17:697-709. [PMID: 21303937 PMCID: PMC3062180 DOI: 10.1261/rna.2509811] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Four decades after early in vitro assembly studies demonstrated that ribosome assembly is a controlled process, our understanding of ribosome assembly is still incomplete. Just as structure determination has been so important to understanding ribosome function, so too will it be critical to sorting out the assembly process. Here, we used a viable deletion in the yjeQ gene, a recognized ribosome assembly factor, to isolate and structurally characterize immature 30S subunits assembled in vivo. These small ribosome subunits contained unprocessed 17S rRNA and lacked some late ribosomal proteins. Cryo-electron microscopy reconstructions revealed that the presence of precursor sequences in the rRNA induces a severe distortion in the 3′ minor domain of the subunit involved in the decoding of mRNA and interaction with the large ribosome subunit. These findings suggest that rRNA processing events induce key local conformational changes directing the structure toward the mature assembly. We concluded that rRNA processing, folding, and the entry of tertiary r-proteins are interdependent events in the late stages of 30S subunit assembly. In addition, we demonstrate how studies of emerging assembly factors in ribosome biogenesis can help to elucidate the path of subunit assembly in vivo.
Collapse
|
21
|
Im CH, Hwang SM, Son YS, Heo JB, Bang WY, Suwastika IN, Shiina T, Bahk JD. Nuclear/nucleolar GTPase 2 proteins as a subfamily of YlqF/YawG GTPases function in pre-60S ribosomal subunit maturation of mono- and dicotyledonous plants. J Biol Chem 2011; 286:8620-8632. [PMID: 21205822 DOI: 10.1074/jbc.m110.200816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The YlqF/YawG families are important GTPases involved in ribosome biogenesis, cell proliferation, or cell growth, however, no plant homologs have yet to be characterized. Here we isolated rice (Oryza sativa) and Arabidopsis nuclear/nucleolar GTPase 2 (OsNug2 and AtNug2, respectively) that belong to the YawG subfamily and characterized them for pre-60S ribosomal subunit maturation. They showed typical intrinsic YlqF/YawG family GTPase activities in bacteria and yeasts with k(cat) values 0.12 ± 0.007 min(-1) (n = 6) and 0.087 ± 0.002 min(-1) (n = 4), respectively, and addition of 60S ribosomal subunits stimulated their activities in vitro. In addition, OsNug2 rescued the lethality of the yeast nug2 null mutant through recovery of 25S pre-rRNA processing. By yeast two-hybrid screening five clones, including a putative one of 60S ribosomal proteins, OsL10a, were isolated. Subcellular localization and pulldown assays resulted in that the N-terminal region of OsNug2 is sufficient for nucleolar/nuclear targeting and association with OsL10a. OsNug2 is physically associated with pre-60S ribosomal complexes highly enriched in the 25S, 5.8S, and 5S rRNA, and its interaction was stimulated by exogenous GTP. Furthermore, the AtNug2 knockdown mutant constructed by the RNAi method showed defective growth on the medium containing cycloheximide. Expression pattern analysis revealed that the distribution of AtNug2 mainly in the meristematic region underlies its potential role in active plant growth. Finally, it is concluded that Nug2/Nog2p GTPase from mono- and didicotyledonous plants is linked to the pre-60S ribosome complex and actively processed 27S into 25S during the ribosomal large subunit maturation process, i.e. prior to export to the cytoplasm.
Collapse
Affiliation(s)
- Chak Han Im
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Sung Min Hwang
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Young Sim Son
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Jae Bok Heo
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - Woo Young Bang
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | - I Nengah Suwastika
- the Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan, and
| | - Takashi Shiina
- the Graduate School of Human and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo-ku, Kyoto 606-8522, Japan
| | - Jeong Dong Bahk
- From the Division of Applied Life Sciences (BK21), Graduate School of Gyeongsang National University, Jinju 660-701, Korea,.
| |
Collapse
|
22
|
Goto S, Kato S, Kimura T, Muto A, Himeno H. RsgA releases RbfA from 30S ribosome during a late stage of ribosome biosynthesis. EMBO J 2010; 30:104-14. [PMID: 21102555 DOI: 10.1038/emboj.2010.291] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 10/28/2010] [Indexed: 11/09/2022] Open
Abstract
RsgA is a 30S ribosomal subunit-binding GTPase with an unknown function, shortage of which impairs maturation of the 30S subunit. We identified multiple gain-of-function mutants of Escherichia coli rbfA, the gene for a ribosome-binding factor, that suppress defects in growth and maturation of the 30S subunit of an rsgA-null strain. These mutations promote spontaneous release of RbfA from the 30S subunit, indicating that cellular disorders upon depletion of RsgA are due to prolonged retention of RbfA on the 30S subunit. We also found that RsgA enhances release of RbfA from the mature 30S subunit in a GTP-dependent manner but not from a precursor form of the 30S subunit. These findings indicate that the function of RsgA is to release RbfA from the 30S subunit during a late stage of ribosome biosynthesis. This is the first example of the action of a GTPase on the bacterial ribosome assembly described at the molecular level.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Japan
| | | | | | | | | |
Collapse
|
23
|
Anand B, Surana P, Prakash B. Deciphering the catalytic machinery in 30S ribosome assembly GTPase YqeH. PLoS One 2010; 5:e9944. [PMID: 20376346 PMCID: PMC2848588 DOI: 10.1371/journal.pone.0009944] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 03/04/2010] [Indexed: 11/23/2022] Open
Abstract
Background YqeH, a circularly permuted GTPase (cpGTPase), which is conserved across bacteria and eukaryotes including humans is important for the maturation of small (30S) ribosomal subunit in Bacillus subtilis. Recently, we have shown that it binds 30S in a GTP/GDP dependent fashion. However, the catalytic machinery employed to hydrolyze GTP is not recognized for any of the cpGTPases, including YqeH. This is because they possess a hydrophobic substitution in place of a catalytic glutamine (present in Ras-like GTPases). Such GTPases were categorized as HAS-GTPases and were proposed to follow a catalytic mechanism, different from the Ras-like proteins. Methodology/Principal Findings MnmE, another HAS-GTPase, but not circularly permuted, utilizes a potassium ion and water mediated interactions to drive GTP hydrolysis. Though the G-domain of MnmE and YqeH share only ∼25% sequence identity, the conservation of characteristic sequence motifs between them prompted us to probe GTP hydrolysis machinery in YqeH, by employing homology modeling in conjunction with biochemical experiments. Here, we show that YqeH too, uses a potassium ion to drive GTP hydrolysis and stabilize the transition state. However, unlike MnmE, it does not dimerize in the transition state, suggesting alternative ways to stabilize switches I and II. Furthermore, we identify a potential catalytic residue in Asp-57, whose recognition, in the absence of structural information, was non-trivial due to the circular permutation in YqeH. Interestingly, when compared with MnmE, helix α2 that presents Asp-57 is relocated towards the N-terminus in YqeH. An analysis of the YqeH homology model, suggests that despite such relocation, Asp-57 may facilitate water mediated catalysis, similarly as the catalytic Glu-282 of MnmE. Indeed, an abolished catalysis by D57I mutant supports this inference. Conclusions/Significance An uncommon means to achieve GTP hydrolysis utilizing a K+ ion has so far been demonstrated only for MnmE. Here, we show that YqeH also utilizes a similar mechanism. While the catalytic machinery is similar in both, mechanistic differences may arise based on the way they are deployed. It appears that K+ driven mechanism emerges as an alternative theme to stabilize the transition state and hydrolyze GTP in a subset of GTPases, such as the HAS-GTPases.
Collapse
Affiliation(s)
- Baskaran Anand
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Parag Surana
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Balaji Prakash
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
24
|
Cooper EL, García-Lara J, Foster SJ. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability. BMC Microbiol 2009; 9:266. [PMID: 20021644 PMCID: PMC2811118 DOI: 10.1186/1471-2180-9-266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 12/18/2009] [Indexed: 12/25/2022] Open
Abstract
Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP) of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.
Collapse
Affiliation(s)
- Elizabeth L Cooper
- Department of Molecular Biology and Microbiology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
25
|
Pavlendová N, Muchová K, Barák I. Expression of Escherichia coli Min system in Bacillus subtilis and its effect on cell division. FEMS Microbiol Lett 2009; 302:58-68. [PMID: 19903201 DOI: 10.1111/j.1574-6968.2009.01832.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In both rod-shaped Bacillus subtilis and Escherichia coli cells, Min proteins are involved in the regulation of division septa formation. In E. coli, dynamic oscillation of MinCD inhibitory complex and MinE, a topological specificity protein, prevents improper polar septation. However, in B. subtilis no MinE is present and no oscillation of Min proteins can be observed. The function of MinE is substituted by that of an unrelated DivIVA protein, which targets MinCD to division sites and retains them at the cell poles. We inspected cell division when the E. coli Min system was introduced into B. subtilis cells. Expression of these heterologous Min proteins resulted in cell elongation. We demonstrate here that E. coli MinD can partially substitute for the function of its B. subtilis protein counterpart. Moreover, E. coli MinD was observed to have similar helical localization as B. subtilis MinD.
Collapse
Affiliation(s)
- Nad'a Pavlendová
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Science, Bratislava, Slovakia
| | | | | |
Collapse
|
26
|
Hase Y, Yokoyama S, Muto A, Himeno H. Removal of a ribosome small subunit-dependent GTPase confers salt resistance on Escherichia coli cells. RNA (NEW YORK, N.Y.) 2009; 15:1766-1774. [PMID: 19620234 PMCID: PMC2743055 DOI: 10.1261/rna.1687309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Accepted: 06/03/2009] [Indexed: 05/28/2023]
Abstract
RsgA is a unique GTP hydrolytic protein in which GTPase activity is significantly enhanced by the small ribosomal subunit. Deletion of RsgA causes slow cell growth as well as defects in subunit assembly of the ribosome and 16S rRNA processing, suggesting its involvement in maturation of the small subunit. In this study, we found that removal of RsgA or inactivation of its ribosome small subunit-dependent GTPase activity provides Escherichia coli cells with resistance to high salt stress. Salt stress suppressed the defects in subunit assembly of the ribosome and processing of 16S rRNA as well as truncation of the 3' end of 16S rRNA in RsgA-deletion cells. In contrast, salt stress transiently impaired subunit assembly of the ribosome and processing of 16S rRNA and induced 3' truncation of 16S rRNA in wild-type cells. These results suggest that the action of RsgA on the ribosome, which usually facilitates maturation of the small subunit, disturbs it under a salt stress condition. Consistently, there was a drastic but transient decrease in the intracellular amount of RsgA after salt shock. Salt shock would make the pathway of maturation of the ribosome small subunit RsgA independent.
Collapse
Affiliation(s)
- Yoichi Hase
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | | | |
Collapse
|
27
|
Rosby R, Cui Z, Rogers E, deLivron MA, Robinson VL, DiMario PJ. Knockdown of the Drosophila GTPase nucleostemin 1 impairs large ribosomal subunit biogenesis, cell growth, and midgut precursor cell maintenance. Mol Biol Cell 2009; 20:4424-34. [PMID: 19710426 DOI: 10.1091/mbc.e08-06-0592] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mammalian nucleostemin (NS) is a nucleolar guanosine triphosphate-binding protein implicated in cell cycle progression, stem cell proliferation, and ribosome assembly. Drosophila melanogaster contains a four-member nucleostemin family (NS1-4). NS1 is the closest orthologue to human NS; it shares 33% identity and 67% similarity with human NS. We show that NS1 has intrinsic GTPase and ATPase activity and that it is present within nucleoli of most larval and adult cells. Endogenous NS1 and lightly expressed green fluorescent protein (GFP)-NS1 enrich within the nucleolar granular regions as expected, whereas overexpressed GFP-NS1 localized throughout the nucleolus and nucleoplasm, and to several transcriptionally active interbands of polytene chromosomes. Severe overexpression correlated with the appearance of melanotic tumors and larval/pupal lethality. Depletion of 60% of NS1 transcripts also lead to larval and pupal lethality. NS1 protein depletion>95 correlated with the loss of imaginal island (precursor) cells in the larval midgut and to an apparent block in the nucleolar release of large ribosomal subunits in terminally differentiated larval midgut polyploid cells. Ultrastructural examination of larval Malpighian tubule cells depleted for NS1 showed a loss of cytoplasmic ribosomes and a concomitant appearance of cytoplasmic preautophagosomes and lysosomes. We interpret the appearance of these structures as indicators of cell stress response.
Collapse
Affiliation(s)
- Raphyel Rosby
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA
| | | | | | | | | | | |
Collapse
|
28
|
Circularly permuted GTPase YqeH binds 30S ribosomal subunit: Implications for its role in ribosome assembly. Biochem Biophys Res Commun 2009; 386:602-6. [PMID: 19540197 PMCID: PMC2741578 DOI: 10.1016/j.bbrc.2009.06.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 06/15/2009] [Indexed: 01/06/2023]
Abstract
YqeH, a circularly permuted GTPase, is conserved among bacteria and eukaryotes including humans. It was shown to be essential for the assembly of small ribosomal (30S) subunit in bacteria. However, whether YqeH interacts with 30S ribosome and how it may participate in 30S assembly are not known. Here, using co-sedimentation experiments, we report that YqeH co-associates with 30S ribosome in the GTP-bound form. In order to probe whether YqeH functions as RNA chaperone in 30S assembly, we assayed for strand dissociation and annealing activity. While YqeH does not exhibit these activities, it binds a non-specific single and double-stranded RNA, which unlike the 30S binding is independent of GTP/GDP binding and does not affect intrinsic GTP hydrolysis rates. Further, S5, a ribosomal protein which participates during the initial stages of 30S assembly, was found to promote GTP hydrolysis and RNA binding activities of YqeH.
Collapse
|
29
|
Characterization of a serine/threonine kinase involved in virulence of Staphylococcus aureus. J Bacteriol 2009; 191:4070-81. [PMID: 19395491 DOI: 10.1128/jb.01813-08] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is a common human cutaneous and nasal commensal and a major life-threatening pathogen. Adaptation to the different environments encountered inside and outside the host is a crucial requirement for survival and colonization. We identified and characterized a eukaryotic-like serine/threonine kinase with three predicted extracellular PASTA domains (SA1063, or Stk1) and its associated phosphatase (SA1062, or Stp1) in S. aureus. Biochemical analyses revealed that Stk1 displays autokinase activity on threonine and serine residues and is localized to the membrane. Stp1 is a cytoplasmic protein with manganese-dependent phosphatase activity toward phosphorylated Stk1. In-frame deletions of the stk1 and stp1 genes were constructed in S. aureus strain 8325-4. Phenotypic analyses of the mutants revealed reduced growth of the stk1 mutant in RPMI 1640 defined medium that was restored when adenine was added to the medium. Furthermore, the stk1 mutant displayed increased resistance to Triton X-100 and to fosfomycin, suggesting modifications in cell wall metabolism. The stk1 mutant was tested for virulence in a mouse pyelonephritis model and found to be strongly reduced for survival in the kidneys (approximately 2-log-unit decrease) compared to the parental strain. Renal histopathological analyses showed severe inflammatory lesions in mice infected with the parental S. aureus SH1000 strain, whereas the Deltastk1 mutant led to only minimal renal lesions. These results confirm the important role of Stk1 for full expression of S. aureus pathogenesis and suggest that phosphorylation levels controlled by stk1 are essential in controlling bacterial survival within the host.
Collapse
|
30
|
Tomar SK, Dhimole N, Chatterjee M, Prakash B. Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Nucleic Acids Res 2009; 37:2359-70. [PMID: 19246542 PMCID: PMC2673443 DOI: 10.1093/nar/gkp107] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
EngA, a unique GTPase containing a KH-domain preceded by two consecutive G-domains, displays distinct nucleotide binding and hydrolysis activities. So far, Escherichia coli EngA is reported to bind the 50S ribosomal subunit in the guanosine-5'-trihosphate (GTP) bound state. Here, for the first time, using mutations that allow isolating the activities of the two G-domains, GD1 and GD2, we show that apart from 50S, EngA also binds the 30S and 70S subunits. We identify that the key requirement for any EngA-ribosome association is GTP binding to GD2. In this state, EngA displays a weak 50S association, which is further stabilized when GD1 too binds GTP. Exchanging bound GTP with guanosine-5'-diphosphate (GDP), at GD1, results in interactions with 50S, 30S and 70S. Therefore, it appears that GD1 employs GTP hydrolysis as a means to regulate the differential specificity of EngA to either 50S alone or to 50S, 30S and 70S subunits. Furthermore, using constructs lacking either GD1 or both GD1 and GD2, we infer that GD1, when bound to GTP and GDP, adopts distinct conformations to mask or unmask the 30S binding site on EngA. Our results suggest a model where distinct nucleotide-bound states of the two G-domains regulate formation of specific EngA-ribosome complexes.
Collapse
Affiliation(s)
- Sushil Kumar Tomar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | | | | |
Collapse
|
31
|
Jain N, Dhimole N, Khan AR, De D, Tomar SK, Sajish M, Dutta D, Parrack P, Prakash B. E. coli HflX interacts with 50S ribosomal subunits in presence of nucleotides. Biochem Biophys Res Commun 2008; 379:201-5. [PMID: 19109926 PMCID: PMC2686079 DOI: 10.1016/j.bbrc.2008.12.072] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 12/08/2008] [Indexed: 11/01/2022]
Abstract
HflX is a GTP binding protein of unknown function. Based on the presence of the hflX gene in hflA operon, HflX was believed to be involved in the lytic-lysogenic decision during phage infection in Escherichia coli. We find that E. coli HflX binds 16S and 23S rRNA - the RNA components of 30S and 50S ribosomal subunits. Here, using purified ribosomal subunits, we show that HflX specifically interacts with the 50S. This finding is in line with the homology of HflX to GTPases involved in ribosome biogenesis. However, HflX-50S interaction is not limited to a specific nucleotide-bound state of the protein, and the presence of any of the nucleotides GTP/GDP/ATP/ADP is sufficient. In this respect, HflX is different from other GTPases. While E. coli HflX binds and hydrolyses both ATP and GTP, only the GTP hydrolysis activity is stimulated by 50S binding. This work uncovers interesting attributes of HflX in ribosome binding.
Collapse
Affiliation(s)
- Nikhil Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Sudhamsu J, Lee GI, Klessig DF, Crane BR. The structure of YqeH. An AtNOS1/AtNOA1 ortholog that couples GTP hydrolysis to molecular recognition. J Biol Chem 2008; 283:32968-76. [PMID: 18801747 PMCID: PMC2583316 DOI: 10.1074/jbc.m804837200] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/08/2008] [Indexed: 01/10/2023] Open
Abstract
AtNOS1/AtNOA1 was identified as a nitric oxide-generating enzyme in plants, but that function has recently been questioned. To resolve issues surrounding AtNOA1 activity, we report the biochemical properties and a 2.36 A resolution crystal structure of a bacterial AtNOA1 ortholog (YqeH). Geobacillus YqeH fused to a putative AtNOA1 leader peptide complements growth and morphological defects of Atnoa1 mutant plants. YqeH does not synthesize nitric oxide from L-arginine but rather hydrolyzes GTP. The YqeH structure reveals a circularly permuted GTPase domain and an unusual C-terminal beta-domain. A small N-terminal domain, disordered in the structure, binds zinc. Structural homology among the C-terminal domain, the RNA-binding regulator TRAP, and the hypoxia factor pVHL define a recognition module for peptides and nucleic acids. TRAP residues important for RNA binding are conserved by the YqeH C-terminal domain, whose positioning is coupled to GTP hydrolysis. YqeH and AtNOA1 probably act as G-proteins that regulate nucleic acid recognition and not as nitric-oxide synthases.
Collapse
Affiliation(s)
- Jawahar Sudhamsu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
33
|
Kimura T, Takagi K, Hirata Y, Hase Y, Muto A, Himeno H. Ribosome-small-subunit-dependent GTPase interacts with tRNA-binding sites on the ribosome. J Mol Biol 2008; 381:467-77. [PMID: 18588897 DOI: 10.1016/j.jmb.2008.06.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/03/2008] [Accepted: 06/07/2008] [Indexed: 10/21/2022]
Abstract
RsgA (ribosome-small-subunit-dependent GTPase A, also known as YjeQ) is a unique GTPase in that guanosine triphosphate hydrolytic activity is activated by the small subunit of the ribosome. Disruption of the gene for RsgA from the genome affects the growth of cells, the subunit association of the ribosome, and the maturation of 16S rRNA. To study the interaction of Escherichia coli RsgA with the ribosome, chemical modifications using dimethylsulfate and kethoxal were performed on the small subunit in the presence or in the absence of RsgA. The chemical reactivities at G530, A790, G925, G926, G966, C1054, G1339, G1405, A1413, and A1493 in 16S rRNA were reduced, while those at A532, A923, G1392, A1408, A1468, and A1483 were enhanced, by the addition of RsgA, together with 5'-guanylylimidodiphosphate. Among them, the chemical reactivities at A532, A790, A923, G925, G926, C1054, G1392, A1413, A1468, A1483, and A1493 were not changed when RsgA was added together with GDP. These results indicate that the binding of RsgA induces conformational changes around the A site, P site, and helix 44, and that guanosine triphosphate hydrolysis induces partial conformational restoration, especially in the head, to dissociate RsgA from the small subunit. RsgA has the capacity to coexist with mRNA in the ribosome while it promotes dissociation of tRNA from the ribosome.
Collapse
Affiliation(s)
- Takatsugu Kimura
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki, Aomori 036-8561, Japan
| | | | | | | | | | | |
Collapse
|
34
|
The GTPase CpgA is implicated in the deposition of the peptidoglycan sacculus in Bacillus subtilis. J Bacteriol 2008; 190:3786-90. [PMID: 18344364 DOI: 10.1128/jb.01994-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Depletion of the Bacillus subtilis GTPase CpgA produces abnormal cell shapes, nonuniform deposition of cell wall, and five- to sixfold accumulation of peptidoglycan precursors. Nevertheless, the inherent structure of the cell wall appeared mostly unchanged. The results are consistent with CpgA being involved in coordinating normal peptidoglycan deposition.
Collapse
|
35
|
Genetic interaction screens with ordered overexpression and deletion clone sets implicate the Escherichia coli GTPase YjeQ in late ribosome biogenesis. J Bacteriol 2008; 190:2537-45. [PMID: 18223068 DOI: 10.1128/jb.01744-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Escherichia coli protein YjeQ is a circularly permuted GTPase that is broadly conserved in bacteria. An emerging body of evidence, including cofractionation and in vitro binding to the ribosome, altered polysome profiles after YjeQ depletion, and stimulation of GTPase activity by ribosomes, suggests that YjeQ is involved in ribosome function. The growth of strains lacking YjeQ in culture is severely compromised. Here, we probed the cellular function of YjeQ with genetic screens of ordered E. coli genomic libraries for suppressors and enhancers of the slow-growth phenotype of a delta yjeQ strain. Screening for suppressors using an ordered library of 374 clones overexpressing essential genes and genes associated with ribosome function revealed that two GTPases, Era and initiation factor 2, ameliorated the growth and polysome defects of the delta yjeQ strain. In addition, seven bona fide enhancers of slow growth were identified (delta tgt, delta ksgA, delta ssrA, delta rimM, delta rluD, delta trmE/mnmE, and delta trmU/mnmA) among 39 deletions (in genes associated with ribosome function) that we constructed in the delta yjeQ genetic background. Taken in context, our work is most consistent with the hypothesis that YjeQ has a role in late 30S subunit biogenesis.
Collapse
|
36
|
Loh PC, Morimoto T, Matsuo Y, Oshima T, Ogasawara N. The GTP-binding protein YqeH participates in biogenesis of the 30S ribosome subunit in Bacillus subtilis. Genes Genet Syst 2008; 82:281-9. [PMID: 17895579 DOI: 10.1266/ggs.82.281] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial genome sequencing has revealed a novel family of P-loop GTPases that are often essential for growth. Accumulating evidence suggests that these proteins are involved in biogenesis of the 30S or 50S ribosomal subunits. YqeH is a member of this Obg/Era GTPase family, with its function remains to be uncovered. Here, we present results showing that YqeH is involved in the 30S subunit biogenesis in Bacillus subtilis. We observed a reduction in the 70S ribosome and accumulation of the free 50S subunit in YqeH-depleted cells. Interestingly, no free 30S subunit accumulation was evident. Consistent with the theory that YqeH is involved in 30S subunit biogenesis, a precursor of 16S rRNA and its degradation products were detected. Additionally, the reduction of free 30S subunit was not observed in Era-depleted cells. YqeH overexpression did not compensate for growth defects in mutants devoid of Era and vice versa. Moreover, in vitro GTPase analyses showed that YqeH possessed high intrinsic GTPase activity. In contrast, Era showed slow GTPase activity, which was enhanced by the 30S ribosomal subunit. Our findings strongly suggest that YqeH and Era function at distinct checkpoints during 30S subunit assembly. B. subtilis yqeH is classified as an essential gene due to the inability of the IPTG-dependent P(spac)-yqeH mutant to grow on LB or PAB agar plates in the absence of IPTG. However, in our experiments, the P(spac)-yqeH mutant grew in PAB liquid medium without IPTG supplementation, albeit at an impaired rate. This finding raises the interesting possibility that YqeH participates in assembly of the 30S ribosomal subunit as well as other cellular functions essential for growth on solid media.
Collapse
Affiliation(s)
- Pek Chin Loh
- Graduate School of Information Science, Nara Institute of Science and Technology, Japan
| | | | | | | | | |
Collapse
|
37
|
Abstract
YsxC is a small GTPase of Bacillus subtilis with essential but still unknown function, although recent works have suggested that it might be involved in ribosome biogenesis. Here, purified YsxC overexpressed in Escherichia coli was found to be partly associated with high-molecular-weight material, most likely rRNA, and thus eluted from gel filtration as a large complex. In addition, purification of ribosomes from an E. coli strain overexpressing YsxC allowed the copurification of the YsxC protein. Purified YsxC was shown to bind preferentially to the 50S subunit of B. subtilis ribosomes; this interaction was modulated by nucleotides and was stronger in the presence of a nonhydrolyzable GTP analogue than with GTP. Far-Western blotting analysis performed with His(6)-YsxC and ribosomal proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that YsxC interacted with at least four ribosomal proteins from the 50S subunit. Two of these putative protein partners were identified by mass spectrometry as L1 and L3, while the third reactive band in the one-dimensional gel contained L6 and L10. The fourth band that reacted with YsxC contained a mixture of three proteins, L7/L12, L23, and L27, suggesting that at least one of them binds to YsxC. Coimmobilization assays confirmed that L1, L6, and L7/L12 interact with YsxC. Together, these results suggest that YsxC plays a role in ribosome assembly.
Collapse
|
38
|
Nichols CE, Johnson C, Lamb HK, Lockyer M, Charles IG, Hawkins AR, Stammers DK. Structure of the ribosomal interacting GTPase YjeQ from the enterobacterial species Salmonella typhimurium. Acta Crystallogr Sect F Struct Biol Cryst Commun 2007; 63:922-8. [PMID: 18007041 PMCID: PMC2339746 DOI: 10.1107/s1744309107048609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 10/03/2007] [Indexed: 05/13/2023]
Abstract
The YjeQ class of P-loop GTPases assist in ribosome biogenesis and also bind to the 30S subunit of mature ribosomes. YjeQ ribosomal binding is GTP-dependent and thought to specifically direct protein synthesis, although the nature of the upstream signal causing this event in vivo is as yet unknown. The attenuating effect of YjeQ mutants on bacterial growth in Escherichia coli makes it a potential target for novel antimicrobial agents. In order to further explore the structure and function of YjeQ, the isolation, crystallization and structure determination of YjeQ from the enterobacterial species Salmonella typhimurium (StYjeQ) is reported. Whilst the overall StYjeQ fold is similar to those of the previously reported Thematoga maritima and Bacillus subtilis orthologues, particularly the GTPase domain, there are larger differences in the three OB folds. Although the zinc-finger secondary structure is conserved, significant sequence differences alter the nature of the external surface in each case and may reflect varying signalling pathways. Therefore, it may be easier to develop YjeQ-specific inhibitors that target the N- and C-terminal regions, disrupting the metabolic connectivity rather than the GTPase activity. The availability of coordinates for StYjeQ will provide a significantly improved basis for threading Gram-negative orthologue sequences and in silico compound-screening studies, with the potential for the development of species-selective drugs.
Collapse
Affiliation(s)
- C. E. Nichols
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| | - C. Johnson
- Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - H. K. Lamb
- Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - M. Lockyer
- Arrow Therapeutics Ltd, Britannia House, Trinity Street, Borough, London SE1 1DA, England
| | - I. G. Charles
- The Wolfson Institute for Biomedical Research, The Cruciform Building, University College London, Gower Street, London WC1E 6BT, England
| | - A. R. Hawkins
- Institute of Cell and Molecular Biosciences, Catherine Cookson Building, Medical School, Framlington Place, Newcastle University, Newcastle-upon-Tyne NE2 4HH, England
| | - D. K. Stammers
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, England
| |
Collapse
|
39
|
Abstract
GTPases are a universally conserved class of regulatory proteins involved in such diverse cellular functions as signal transduction, translation, cytoskeleton formation, and intracellular transport. GTPases are also required for ribosome assembly in eukaryotes and bacteria, where they present themselves as possible regulatory molecules. Strikingly, in bacteria they represent the largest class of essential assembly factors. A review of their common structural, biochemical and genetic interactions is presented and integrated with models for their function in ribosome assembly.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109-1055, USA.
| |
Collapse
|
40
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
41
|
Hunt A, Rawlins JP, Thomaides HB, Errington J. Functional analysis of 11 putative essential genes in Bacillus subtilis. MICROBIOLOGY-SGM 2007; 152:2895-2907. [PMID: 17005971 DOI: 10.1099/mic.0.29152-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Systematic inactivation of Bacillus subtilis genes has previously revealed that 271 are indispensable for growth. In the present study, 11 of these (yacA, ydiB, ydiC, ykqC, ylaN, yloQ, ymdA, yneS, yqeI, yqjK and ywlC) were identified as genes encoding proteins of unknown function. By analysing the effects of protein depletion, and examining the subcellular localization of these proteins, a start has been made in elucidating their functions. It was found that four of these genes (ydiB, yloQ, yqeI and ywlC) were not required for B. subtilis viability. Analysis of the localization of YkqC suggests that it co-localizes with ribosomes, and it is proposed that it is involved in processing either rRNA or specific mRNAs when they are associated with the ribosome. The results suggest that other novel essential proteins may be involved in lipid synthesis and control of cell wall synthesis.
Collapse
Affiliation(s)
- Alison Hunt
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Joy P Rawlins
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Helena B Thomaides
- Prolysis Ltd, Oxford University Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire OX5 1PF, UK
| | - Jeff Errington
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| |
Collapse
|
42
|
Schaefer L, Uicker WC, Wicker-Planquart C, Foucher AE, Jault JM, Britton RA. Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis. J Bacteriol 2006; 188:8252-8. [PMID: 16997968 PMCID: PMC1698177 DOI: 10.1128/jb.01213-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GTPases have been demonstrated to be necessary for the proper assembly of the ribosome in bacteria and eukaryotes. Here, we show that the essential GTPases YphC and YsxC are required for large ribosomal subunit biogenesis in Bacillus subtilis. Sucrose density gradient centrifugation of large ribosomal subunits isolated from YphC-depleted cells and YsxC-depleted cells indicates that they are similar to the 45S intermediate previously identified in RbgA-depleted cells. The sedimentation of the large-subunit intermediate isolated from YphC-depleted cells was identical to the intermediate found in RbgA-depleted cells, while the intermediate isolated from YsxC-depleted cells sedimented slightly slower than 45S, suggesting that it is a novel intermediate. Analysis of the protein composition of the large-subunit intermediates isolated from either YphC-depleted cells or YsxC-depleted cells indicated that L16 and L36 are missing. Purified YphC and YsxC are able to interact with the ribosome in vitro, supporting a direct role for these two proteins in the assembly of the 50S subunit. Our results indicate that, as has been demonstrated for Saccharomyces cerevisiae ribosome biogenesis, bacterial 50S ribosome assembly requires the function of multiple essential GTPases.
Collapse
Affiliation(s)
- Laura Schaefer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
43
|
Bharat A, Jiang M, Sullivan SM, Maddock JR, Brown ED. Cooperative and critical roles for both G domains in the GTPase activity and cellular function of ribosome-associated Escherichia coli EngA. J Bacteriol 2006; 188:7992-6. [PMID: 16963571 PMCID: PMC1636305 DOI: 10.1128/jb.00959-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To probe the cellular phenotype and biochemical function associated with the G domains of Escherichia coli EngA (YfgK, Der), mutations were created in the phosphate binding loop of each. Neither an S16A nor an S217A variant of G domain 1 or 2, respectively, was able to support growth of an engA conditional null. Polysome profiles of EngA-depleted cells were significantly altered, and His(6)-EngA was found to cofractionate with the 50S ribosomal subunit. The variants were unable to complement the abnormal polysome profile and were furthermore significantly impacted with respect to in vitro GTPase activity. Together, these observations suggest that the G domains have a cooperative function in ribosome stability and/or biogenesis.
Collapse
Affiliation(s)
- Amrita Bharat
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | | | | | | | | |
Collapse
|
44
|
Campbell TL, Henderson J, Heinrichs DE, Brown ED. The yjeQ gene is required for virulence of Staphylococcus aureus. Infect Immun 2006; 74:4918-21. [PMID: 16861682 PMCID: PMC1539590 DOI: 10.1128/iai.00258-06] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene products required for in vivo growth and survival of Staphylococcus aureus and other pathogens represent new targets for antimicrobial chemotherapy. In this study we created a Staphylococcus aureus yjeQ deletion strain and tested its virulence using a mouse kidney abscess infection model. The yjeQ deletion strain was compromised for growth in vitro and severely attenuated for virulence. We concluded that yjeQ is an attractive and novel new drug target.
Collapse
Affiliation(s)
- Tracey L Campbell
- Antimicrobial Research Centre, Department of Biochemistry and Biomedical Sciences, McMaster University, 1200 Main St. West, Hamilton, Ontario, Canada L8N 3Z5
| | | | | | | |
Collapse
|
45
|
Hwang J, Inouye M. The tandem GTPase, Der, is essential for the biogenesis of 50S ribosomal subunits in Escherichia coli. Mol Microbiol 2006; 61:1660-72. [PMID: 16930151 DOI: 10.1111/j.1365-2958.2006.05348.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A unique GTP-binding protein, Der contains two consecutive GTP-binding domains at the N-terminal region and its homologues are highly conserved in eubacteria but not in archaea and eukaryotes. In the present paper, we demonstrate that Der is one of the essential GTPases in Escherichia coli and that the growth rate correlates with the amount of Der in the cell. Interestingly, both GTP-binding domains are required at low temperature for cell growth, while at high temperature either one of the two domains is dispensable. Result of the sucrose density gradient experiment suggests that Der interacts specifically with 50S ribosomal subunits only in the presence of a GTP analogue, GMPPNP. The depletion of Der accumulates 50S and 30S ribosomal subunits with a concomitant reduction of polysomes and 70S ribosomes. Notably, Der-depleted cells accumulate precursors of both 23S and 16S rRNAs. Moreover, at lower Mg2+ concentration, 50S ribosomal subunits from Der-depleted cells are further dissociated into aberrant 50S ribosomal subunits; however, 30S subunits are stable. It was revealed that the aberrant 50S subunits, 40S subunits, contain less ribosomal proteins with significantly reduced amounts of L9 and L18. These results suggest that Der is a novel 50S ribosome-associated factor involved in the biogenesis and stability of 50S ribosomal subunits. We propose that Der plays a pivotal role in ribosome biogenesis possibly through interaction with rRNA or rRNA/r-protein complex.
Collapse
Affiliation(s)
- Jihwan Hwang
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
46
|
Anand B, Verma SK, Prakash B. Structural stabilization of GTP-binding domains in circularly permuted GTPases: implications for RNA binding. Nucleic Acids Res 2006; 34:2196-205. [PMID: 16648363 PMCID: PMC1450330 DOI: 10.1093/nar/gkl178] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
GTP hydrolysis by GTPases requires crucial residues embedded in a conserved G-domain as sequence motifs G1–G5. However, in some of the recently identified GTPases, the motif order is circularly permuted. All possible circular permutations were identified after artificially permuting the classical GTPases and subjecting them to profile Hidden Markov Model searches. This revealed G4–G5–G1–G2–G3 as the only possible circular permutation that can exist in nature. It was also possible to recognize a structural rationale for the absence of other permutations, which either destabilize the invariant GTPase fold or disrupt regions that provide critical residues for GTP binding and hydrolysis, such as Switch-I and Switch-II. The circular permutation relocates Switch-II to the C-terminus and leaves it unfastened, thus affecting GTP binding and hydrolysis. Stabilizing this region would require the presence of an additional domain following Switch-II. Circularly permuted GTPases (cpGTPases) conform to such a requirement and always possess an ‘anchoring’ C-terminal domain. There are four sub-families of cpGTPases, of which three possess an additional domain N-terminal to the G-domain. The biochemical function of these domains, based on available experimental reports and domain recognition analysis carried out here, are suggestive of RNA binding. The features that dictate RNA binding are unique to each subfamily. It is possible that RNA-binding modulates GTP binding or vice versa. In addition, phylogenetic analysis indicates a closer evolutionary relationship between cpGTPases and a set of universally conserved bacterial GTPases that bind the ribosome. It appears that cpGTPases are RNA-binding proteins possessing a means to relate GTP binding to RNA binding.
Collapse
Affiliation(s)
| | | | - Balaji Prakash
- To whom correspondence should be addressed. Tel: +91 512 2594013; Fax: +91 512 2594010;
| |
Collapse
|
47
|
Brown ED. Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 2006; 83:738-46. [PMID: 16333325 DOI: 10.1139/o05-162] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Establishing the roles of conserved gene products in bacteria is of fundamental importance to our understanding of the core protein complement necessary to sustain cellular life. P-loop GTPases and related ATPases represent an abundant and remarkable group of proteins in bacteria that, in many cases, have evaded characterization. Here, efforts aimed at understanding the cellular function of a group of 8 conserved, poorly characterized genes encoding P-loop GTPases, era, obg, trmE, yjeQ, engA, yihA, hflX, ychF, and a related ATPase, yjeE, are reviewed in considerable detail. While concrete cellular roles remain elusive for all of these genes and considerable pleiotropy has plagued their study, experiments to date have frequently implicated the ribosome. In the case of era, obg, yjeQ, and engA, the evidence is most consistent with roles in ribosome biogenesis, though the prediction is necessarily putative. While the protein encoded in trmE clearly has a catalytic function in tRNA modification, the participation of its GTPase domain remains obscure, as do the functions of the remaining proteins. A full understanding of the cellular functions of all of these important proteins remains the goal of ongoing studies of cellular phenotype and protein biochemistry.
Collapse
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
48
|
Cladière L, Hamze K, Madec E, Levdikov VM, Wilkinson AJ, Holland IB, Séror SJ. The GTPase, CpgA(YloQ), a putative translation factor, is implicated in morphogenesis in Bacillus subtilis. Mol Genet Genomics 2006; 275:409-20. [PMID: 16485133 DOI: 10.1007/s00438-006-0097-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 12/23/2005] [Indexed: 10/25/2022]
Abstract
YloQ, from Bacillus subtilis, was identified previously as an essential nucleotide-binding protein of unknown function. YloQ was successfully over-expressed in Escherichia coli in soluble form. The purified protein displayed a low GTPase activity similar to that of other small bacterial GTPases such as Bex/Era. Based on the demonstrated GTPase activity and the unusual order of the yloQ G motifs, we now designate this protein as CpgA (circularly permuted GTPase). An unexpected property of this low abundance GTPase was the demonstration, using gel filtration and ultracentrifugation analysis, that the protein formed stable dimers, dependent upon the concentration of YloQ(CpgA), but independent of GTP. In order to investigate function, cpgA was placed under the control of the pspac promotor in the B. subtilis chromosome. When grown in E or Spizizen medium in the absence of IPTG, the rate of growth was significantly reduced. A large proportion of the cells exhibited a markedly perturbed morphology, with the formation of swollen, bent or 'curly' shapes. To confirm that this was specifically due to depleted CpgA a plasmid-borne cpgA under pxyl control was introduced. This restored normal cell shape and growth rate, even in the absence of IPTG, provided xylose was present. The crystal structure of CpgA(YloQ) suggests a role as a translation initiation factor and we discuss the possibility that CpgA is involved in the translation of a subset of proteins, including some required for shape maintenance.
Collapse
Affiliation(s)
- Lionel Cladière
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR CNRS 8621, Bâtiment 409, 91405 Orsay Cedex, France
| | | | | | | | | | | | | |
Collapse
|