1
|
Lian T, Wang X, Li S, Jiang H, Zhang C, Wang H, Jiang L. Comparative Transcriptome Analysis Reveals Mechanisms of Folate Accumulation in Maize Grains. Int J Mol Sci 2022; 23:ijms23031708. [PMID: 35163628 PMCID: PMC8836222 DOI: 10.3390/ijms23031708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/05/2023] Open
Abstract
Previously, the complexity of folate accumulation in the early stages of maize kernel development has been reported, but the mechanisms of folate accumulation are unclear. Two maize inbred lines, DAN3130 and JI63, with different patterns of folate accumulation and different total folate contents in mature kernels were used to investigate the transcriptional regulation of folate metabolism during late stages of kernel formation by comparative transcriptome analysis. The folate accumulation during DAP 24 to mature kernels could be controlled by circumjacent pathways of folate biosynthesis, such as pyruvate metabolism, glutamate metabolism, and serine/glycine metabolism. In addition, the folate variation between these two inbred lines was related to those genes among folate metabolism, such as genes in the pteridine branch, para-aminobenzoate branch, serine/tetrahydrofolate (THF)/5-methyltetrahydrofolate cycle, and the conversion of THF monoglutamate to THF polyglutamate. The findings provided insight into folate accumulation mechanisms during maize kernel formation to promote folate biofortification.
Collapse
Affiliation(s)
- Tong Lian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Plant Genetics, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Xuxia Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Sha Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
| | - Haiyang Jiang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya 572000, China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.W.); (H.J.)
- National Agricultural Science and Technology Center, Chengdu 610213, China
- Correspondence: (H.W.); (L.J.)
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (T.L.); (S.L.); (C.Z.)
- Correspondence: (H.W.); (L.J.)
| |
Collapse
|
2
|
Morris EM, Kitts-Morgan SE, Spangler DM, Ogunade IM, McLeod KR, Harmon DL. Alteration of the Canine Metabolome After a 3-Week Supplementation of Cannabidiol (CBD) Containing Treats: An Exploratory Study of Healthy Animals. Front Vet Sci 2021; 8:685606. [PMID: 34336977 PMCID: PMC8322615 DOI: 10.3389/fvets.2021.685606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Despite the increased interest and widespread use of cannabidiol (CBD) in humans and companion animals, much remains to be learned about its effects on health and physiology. Metabolomics is a useful tool to evaluate changes in the health status of animals and to analyze metabolic alterations caused by diet, disease, or other factors. Thus, the purpose of this investigation was to evaluate the impact of CBD supplementation on the canine plasma metabolome. Sixteen dogs (18.2 ± 3.4 kg BW) were utilized in a completely randomized design with treatments consisting of control and 4.5 mg CBD/kg BW/d. After 21 d of treatment, blood was collected ~2 h after treat consumption. Plasma collected from samples was analyzed using CIL/LC-MS-based untargeted metabolomics to analyze amine/phenol- and carbonyl-containing metabolites. Metabolites that differed - fold change (FC) ≥ 1.2 or ≤ 0.83 and false discovery ratio (FDR) ≤ 0.05 - between the two treatments were identified using a volcano plot. Biomarker analysis based on receiver operating characteristic (ROC) curves was performed to identify biomarker candidates (area under ROC ≥ 0.90) of the effects of CBD supplementation. Volcano plot analysis revealed that 32 amine/phenol-containing metabolites and five carbonyl-containing metabolites were differentially altered (FC ≥ 1.2 or ≤ 0.83, FDR ≤ 0.05) by CBD; these metabolites are involved in the metabolism of amino acids, glucose, vitamins, nucleotides, and hydroxycinnamic acid derivatives. Biomarker analysis identified 24 amine/phenol-containing metabolites and 1 carbonyl-containing metabolite as candidate biomarkers of the effects of CBD (area under ROC ≥ 0.90; P < 0.01). Results of this study indicate that 3 weeks of 4.5 mg CBD/kg BW/d supplementation altered the canine metabolome. Additional work is warranted to investigate the physiological relevance of these changes.
Collapse
Affiliation(s)
- Elizabeth M. Morris
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | | | - Dawn M. Spangler
- College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Ibukun M. Ogunade
- Division of Animal and Nutritional Science, West Virginia University, Morgantown, WV, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - David L. Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Li Y, Yang C, Ahmad H, Maher M, Fang C, Luo J. Benefiting others and self: Production of vitamins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:210-227. [PMID: 33289302 DOI: 10.1111/jipb.13047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Vitamins maintain growth and development in humans, animals, and plants. Because plants serve as essential producers of vitamins, increasing the vitamin contents in plants has become a goal of crop breeding worldwide. Here, we begin with a summary of the functions of vitamins. We then review the achievements to date in elucidating the molecular mechanisms underlying how vitamins are synthesized, transported, and regulated in plants. We also stress the exploration of variation in vitamins by the use of forward genetic approaches, such as quantitative trait locus mapping and genome-wide association studies. Overall, we conclude that exploring the diversity of vitamins could provide new insights into plant metabolism and crop breeding.
Collapse
Affiliation(s)
- Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
4
|
Shohag MJI, Wei Y, Zhang J, Feng Y, Rychlik M, He Z, Yang X. Genetic and physiological regulation of folate in pak choi (Brassica rapa subsp. Chinensis) germplasm. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4914-4929. [PMID: 32639001 PMCID: PMC7410185 DOI: 10.1093/jxb/eraa218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 07/07/2020] [Indexed: 05/21/2023]
Abstract
Folates are one of the essential micronutrients for all living organisms. Due to inadequate dietary intake, folate deficiency remains prevalent in humans. Genetically diverse germplasms can potentially be used as parents in breeding programs and also for understanding the folate regulatory network. Therefore, we investigated the natural genetic diversity of folates and their physiological regulation in pak choi (Brassica rapa subsp. Chinensis) germplasm. The total folate concentration ranged from 52.7 μg 100 gFW-1 to 166.9 μg 100 gFW-1, with 3.2-fold variation. The main folate vitamer was represented by 5-CH3-H4folate, with 4.5-fold variation. The activities of GTP cyclohydrolase I and aminodeoxy chorismate synthase, the first step of folate synthesis, were high in high folate accessions and low in low folate accessions. Analysis of the transcription levels of 11 genes associated with folate metabolism demonstrated that the difference in folate concentrations may be primarily controlled at the post-transcriptional level. A general correlation between total folate and their precursors was observed. Folate diversity and chlorophyll content were tightly regulated through the methyl cycle. The diverse genetic variation in pak choi germplasm indicated the great genetic potential to integrate breeding programs for folate biofortification and unravel the physiological basis of folate homeostasis in planta.
Collapse
Affiliation(s)
- M J I Shohag
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, USA
| | - Yanyan Wei
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
- Cultivation Base of Guangxi Key Laboratory for Agro-Environment and Agro-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Jie Zhang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
- International Research Center for Environmental Membrane Biology, Department of Horticulture, Foshan University, Guangdong, China
| | - Ying Feng
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
| | - Michael Rychlik
- Chair of Analytical Food Chemistry, Technische Universitat Munchen, Lise-Meitner-Str. 34, Freising, Germany
| | - Zhenli He
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, USA
| | - Xiaoe Yang
- Ministry of Education (MOE) Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Hangzhou, China
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL, USA
- Correspondence:
| |
Collapse
|
5
|
Liang Q, Wang K, Liu X, Riaz B, Jiang L, Wan X, Ye X, Zhang C. Improved folate accumulation in genetically modified maize and wheat. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1539-1551. [PMID: 30753561 PMCID: PMC6411382 DOI: 10.1093/jxb/ery453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/13/2018] [Indexed: 05/10/2023]
Abstract
Folates are indispensable co-factors for one-carbon metabolism in all organisms. In humans, suboptimal folate intake results in serious disorders. One promising strategy for improving human folate status is to enhance folate levels in food crops by metabolic engineering. In this study, we cloned two GmGCHI (GTP cyclohydrolase I) genes (Gm8gGCHI and Gm3gGCHI) and one GmADCS (aminodeoxychorismate synthase) gene from soybean, which are responsible for synthesizing the folate precursors pterin and p-aminobenzoate, respectively. We initially confirmed their functions in transgenic Arabidopsis plants and found that Gm8gGCHI increased pterin and folate production more than Gm3gGCHI did. We then co-expressed Gm8gGCHI and GmADCS driven by endosperm-specific promoters in maize and wheat, two major staple crops, to boost their folate metabolic flux. A 4.2-fold and 2.3-fold increase in folate levels were observed in transgenic maize and wheat grains, respectively. To optimize wheat folate enhancement, codon-optimized Gm8gGCHI and tomato LeADCS genes under the control of a wheat endosperm-specific glutenin promoter (1Dx5) were co-transformed. This yielded a 5.6-fold increase in folate in transgenic wheat grains (Gm8gGCHI+/LeADCS+). This two-gene co-expression strategy therefore has the potential to greatly enhance folate levels in maize and wheat, thus improving their nutritional value.
Collapse
Affiliation(s)
- Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ke Wang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoning Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bisma Riaz
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Jiang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Wan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingguo Ye
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
7
|
Wang PM, Choera T, Wiemann P, Pisithkul T, Amador-Noguez D, Keller NP. TrpE feedback mutants reveal roadblocks and conduits toward increasing secondary metabolism in Aspergillus fumigatus. Fungal Genet Biol 2015; 89:102-113. [PMID: 26701311 DOI: 10.1016/j.fgb.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 11/23/2015] [Accepted: 12/05/2015] [Indexed: 12/11/2022]
Abstract
Small peptides formed from non-ribosomal peptide synthetases (NRPS) are bioactive molecules produced by many fungi including the genus Aspergillus. A subset of NRPS utilizes tryptophan and its precursor, the non-proteinogenic amino acid anthranilate, in synthesis of various metabolites such as Aspergillus fumigatus fumiquinazolines (Fqs) produced by the fmq gene cluster. The A. fumigatus genome contains two putative anthranilate synthases - a key enzyme in conversion of anthranilic acid to tryptophan - one beside the fmq cluster and one in a region of co-linearity with other Aspergillus spp. Only the gene found in the co-linear region, trpE, was involved in tryptophan biosynthesis. We found that site-specific mutations of the TrpE feedback domain resulted in significantly increased production of anthranilate, tryptophan, p-aminobenzoate and fumiquinazolines FqF and FqC. Supplementation with tryptophan restored metabolism to near wild type levels in the feedback mutants and suggested that synthesis of the tryptophan degradation product kynurenine could negatively impact Fq synthesis. The second putative anthranilate synthase gene next to the fmq cluster was termed icsA for its considerable identity to isochorismate synthases in bacteria. Although icsA had no impact on A. fumigatus Fq production, deletion and over-expression of icsA increased and decreased respectively aromatic amino acid levels suggesting that IcsA can draw from the cellular chorismate pool.
Collapse
Affiliation(s)
- Pin-Mei Wang
- Ocean College, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | - Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA
| | | | | | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, USA; Department of Bacteriology, University of Wisconsin, Madison, USA.
| |
Collapse
|
8
|
Fedotova MV, Kruchinin SE. Hydration of para-aminobenzoic acid (PABA) and its anion—The view from statistical mechanics. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Camara D, Bisanz C, Barette C, Van Daele J, Human E, Barnard B, Van der Straeten D, Stove CP, Lambert WE, Douce R, Maréchal E, Birkholtz LM, Cesbron-Delauw MF, Dumas R, Rébeillé F. Inhibition of p-aminobenzoate and folate syntheses in plants and apicomplexan parasites by natural product rubreserine. J Biol Chem 2012; 287:22367-76. [PMID: 22577137 DOI: 10.1074/jbc.m112.365833] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Glutamine amidotransferase/aminodeoxychorismate synthase (GAT-ADCS) is a bifunctional enzyme involved in the synthesis of p-aminobenzoate, a central component part of folate cofactors. GAT-ADCS is found in eukaryotic organisms autonomous for folate biosynthesis, such as plants or parasites of the phylum Apicomplexa. Based on an automated screening to search for new inhibitors of folate biosynthesis, we found that rubreserine was able to inhibit the glutamine amidotransferase activity of the plant GAT-ADCS with an apparent IC(50) of about 8 μM. The growth rates of Arabidopsis thaliana, Toxoplasma gondii, and Plasmodium falciparum were inhibited by rubreserine with respective IC(50) values of 65, 20, and 1 μM. The correlation between folate biosynthesis and growth inhibition was studied with Arabidopsis and Toxoplasma. In both organisms, the folate content was decreased by 40-50% in the presence of rubreserine. In both organisms, the addition of p-aminobenzoate or 5-formyltetrahydrofolate in the external medium restored the growth for inhibitor concentrations up to the IC(50) value, indicating that, within this range of concentrations, rubreserine was specific for folate biosynthesis. Rubreserine appeared to be more efficient than sulfonamides, antifolate drugs known to inhibit the invasion and proliferation of T. gondii in human fibroblasts. Altogether, these results validate the use of the bifunctional GAT-ADCS as an efficient drug target in eukaryotic cells and indicate that the chemical structure of rubreserine presents interesting anti-parasitic (toxoplasmosis, malaria) potential.
Collapse
Affiliation(s)
- Djeneb Camara
- Laboratoire de Physiologie Cellulaire Végétale, Commissariat à l'Energie Atomique/CNRS UMR5168/INRA USC1200/Université Joseph Fourier Grenoble I, Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Camara D, Richefeu-Contesto C, Gambonnet B, Dumas R, Rébeillé F. The synthesis of pABA: Coupling between the glutamine amidotransferase and aminodeoxychorismate synthase domains of the bifunctional aminodeoxychorismate synthase from Arabidopsis thaliana. Arch Biochem Biophys 2011; 505:83-90. [DOI: 10.1016/j.abb.2010.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/09/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
|
11
|
Weber APM, Linka N. Connecting the plastid: transporters of the plastid envelope and their role in linking plastidial with cytosolic metabolism. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:53-77. [PMID: 21526967 DOI: 10.1146/annurev-arplant-042110-103903] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plastids have a multitude of functions in eukaryotic cells, ranging from photosynthesis to storage, and a role in essential biosynthetic pathways. All plastids are of either primary or higher-order endosymbiotic origin. That is, either a photosynthetic cyanobacterium was integrated into a mitochondriate eukaryotic host cell (primary endosymbiosis) or a plastid-bearing eukaryotic cell merged with another eukaryotic cell (secondary or higher-order endosymbioses), thereby passing on the plastid between various eukaryotic lineages. For all of these endosymbioses to become functional, it was essential to establish metabolic connections between organelle and host cell. Here, we review the present understanding of metabolite exchange between plastids and the surrounding cytosol in the context of the endosymbiotic origin of plastids in various eukaryotic lineages. We show that only a small number of transporters that can be traced down to the primary endosymbiotic event are conserved between plastids of diverse origins.
Collapse
Affiliation(s)
- Andreas P M Weber
- Institute of Plant Biochemistry, Heinrich-Heine Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | | |
Collapse
|
12
|
Hanson AD, Gregory JF. Folate biosynthesis, turnover, and transport in plants. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:105-25. [PMID: 21275646 DOI: 10.1146/annurev-arplant-042110-103819] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Folates are essential cofactors for one-carbon transfer reactions and are needed in the diets of humans and animals. Because plants are major sources of dietary folate, plant folate biochemistry has long been of interest but progressed slowly until the genome era. Since then, genome-enabled approaches have brought rapid advances: We now know (a) all the plant folate synthesis genes and some genes of folate turnover and transport, (b) certain mechanisms governing folate synthesis, and (c) the subcellular locations of folate synthesis enzymes and of folates themselves. Some of this knowledge has been applied, simply and successfully, to engineer folate-enriched food crops (i.e., biofortification). Much remains to be discovered about folates, however, particularly in relation to homeostasis, catabolism, membrane transport, and vacuolar storage. Understanding these processes, which will require both biochemical and -omics research, should lead to improved biofortification strategies based on transgenic or conventional approaches.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611, USA
| | | |
Collapse
|
13
|
Asensi-Fabado MA, Munné-Bosch S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. TRENDS IN PLANT SCIENCE 2010; 15:582-92. [PMID: 20729129 DOI: 10.1016/j.tplants.2010.07.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/13/2010] [Accepted: 07/22/2010] [Indexed: 05/03/2023]
Abstract
Plant-derived vitamins are of great interest because of their impact on human health. They are essential for metabolism because of their redox chemistry and role as enzymatic cofactors, not only in animals but also in plants. Several vitamins have strong antioxidant potential, including both water-soluble (vitamins B and C) and lipid-soluble (vitamins A, E and K) compounds. Here, we review recent advances in the understanding of antioxidant roles of vitamins and present an overview of their occurrence within the plant kingdom, different organs and subcellular location; their major biosynthetic pathways, including common precursors and competitive pathways; and their antioxidant function. In particular, we discuss novel evidence for, as well as evidence against, a role of B vitamins as important antioxidants.
Collapse
Affiliation(s)
- M Amparo Asensi-Fabado
- Departament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, Avinguda Diagonal 645, E-08028 Barcelona, Spain
| | | |
Collapse
|
14
|
Waller JC, Akhtar TA, Lara-Núñez A, Gregory JF, McQuinn RP, Giovannoni JJ, Hanson AD. Developmental and feedforward control of the expression of folate biosynthesis genes in tomato fruit. MOLECULAR PLANT 2010; 3:66-77. [PMID: 20085893 DOI: 10.1093/mp/ssp057] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Little is known about how plants regulate their folate content, including whether the expression of folate biosynthesis genes is orchestrated during development or modulated by folate levels. Nor is much known about how folate levels impact the expression of other genes. These points were addressed using wild-type tomato fruit and fruit engineered for high folate content. In wild-type fruit, the expression of genes specifying early steps in folate biosynthesis declined during development but that of other genes did not. In engineered fruit overexpressing foreign GTP cyclohydrolase I and aminodeoxychorismate synthase genes, the expression of the respective endogenous genes did not change, but that of three downstream pathway genes-aminodeoxychorismate lyase, dihydroneopterin aldolase, and mitochondrial folylpolyglutamate synthase-respectively increased by up to 7.8-, 2.8-, and 1.7-fold, apparently in response to the build-up of specific folate pathway metabolites. These results indicate that, in fruit, certain folate pathway genes are developmentally regulated and that certain others are subject to feedforward control by pathway intermediates. Microarray analysis showed that only 14 other transcripts (of 11 000 surveyed) increased in abundance by two-fold or more in high-folate fruit, demonstrating that the induction of folate pathway genes is relatively specific.
Collapse
Affiliation(s)
- Jeffrey C Waller
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tyra HM, Linka M, Weber APM, Bhattacharya D. Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 2008; 8:R212. [PMID: 17919328 PMCID: PMC2246286 DOI: 10.1186/gb-2007-8-10-r212] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/23/2007] [Accepted: 10/05/2007] [Indexed: 11/10/2022] Open
Abstract
Analysis of plastid transporter proteins in Arabidopsis suggests a host origin and provides new insights into plastid evolution. Background It is generally accepted that a single primary endosymbiosis in the Plantae (red, green (including land plants), and glaucophyte algae) common ancestor gave rise to the ancestral photosynthetic organelle (plastid). Plastid establishment necessitated many steps, including the transfer and activation of endosymbiont genes that were relocated to the nuclear genome of the 'host' followed by import of the encoded proteins into the organelle. These innovations are, however, highly complex and could not have driven the initial formation of the endosymbiosis. We postulate that the re-targeting of existing host solute transporters to the plastid fore-runner was critical for the early success of the primary endosymbiosis, allowing the host to harvest endosymbiont primary production. Results We tested this model of transporter evolution by conducting a comprehensive analysis of the plastid permeome in Arabidopsis thaliana. Of 137 well-annotated transporter proteins that were initially considered, 83 that are broadly distributed in Plantae were submitted to phylogenetic analysis. Consistent with our hypothesis, we find that 58% of Arabidopsis transporters, including all carbohydrate transporters, are of host origin, whereas only 12% arose from the cyanobacterial endosymbiont. Four transporter genes are derived from a Chlamydia-like source, suggesting that establishment of the primary plastid likely involved contributions from at least two prokaryotic sources. Conclusion Our results indicate that the existing plastid solute transport system shared by Plantae is derived primarily from host genes. Important contributions also came from the cyanobacterial endosymbiont and Chlamydia-like bacteria likely co-resident in the first algae.
Collapse
Affiliation(s)
- Heather M Tyra
- Department of Biological Sciences and Roy J Carver Center for Comparative Genomics, 446 Biology Building, University of Iowa, Iowa City, IA 52242-1324, USA.
| | | | | | | |
Collapse
|
16
|
Strawn MA, Marr SK, Inoue K, Inada N, Zubieta C, Wildermuth MC. Arabidopsis Isochorismate Synthase Functional in Pathogen-induced Salicylate Biosynthesis Exhibits Properties Consistent with a Role in Diverse Stress Responses. J Biol Chem 2007; 282:5919-33. [PMID: 17190832 DOI: 10.1074/jbc.m605193200] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Salicylic acid (SA) is a phytohormone best known for its role in plant defense. It is synthesized in response to diverse pathogens and responsible for the large scale transcriptional induction of defense-related genes and the establishment of systemic acquired resistance. Surprisingly, given its importance in plant defense, an understanding of the underlying enzymology is lacking. In Arabidopsis thaliana, the pathogen-induced accumulation of SA requires isochorismate synthase (AtICS1). Here, we show that AtICS1 is a plastid-localized, stromal protein using chloroplast import assays and immunolocalization. AtICS1 acts as a monofunctional isochorismate synthase (ICS), catalyzing the conversion of chorismate to isochorismate (IC) in a reaction that operates near equilibrium (K(eq) = 0.89). It does not convert chorismate directly to SA (via an IC intermediate) as does Yersinia enterocolitica Irp9. Using an irreversible coupled spectrophotometric assay, we found that AtICS1 exhibits an apparent K(m) of 41.5 mum and k(cat) = 38.7 min(-1) for chorismate. This affinity for chorismate would allow it to successfully compete with other pathogen-induced, chorismate-utilizing enzymes. Furthermore, the biochemical properties of AtICS1 indicate its activity is not regulated by light-dependent changes in stromal pH, Mg(2+), or redox and that it is remarkably active at 4 degrees C consistent with a role for SA in cold-tolerant growth. Finally, our analyses support plastidic synthesis of stress-induced SA with the requirement for one or more additional enzymes responsible for the conversion of IC to SA, because non-enzymatic conversion of IC to SA under physiological conditions was negligible.
Collapse
Affiliation(s)
- Marcus A Strawn
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720-3102, USA
| | | | | | | | | | | |
Collapse
|
17
|
Moulton B, Luisi BS, Fonari MS, Basok SS, Ganin EV, Kravtsov VC. Supramolecular associates of para-aminobenzoic acid with N- and N,O-heterocyclic molecules. NEW J CHEM 2007. [DOI: 10.1039/b618207k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Scott DE, Ciulli A, Abell C. Coenzyme biosynthesis: enzyme mechanism, structure and inhibition. Nat Prod Rep 2007; 24:1009-26. [PMID: 17898895 DOI: 10.1039/b703108b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review highlights five key reactions in vitamin biosynthesis and in particular focuses on their mechanisms and inhibition and insights from structural studies. Each of the enzymes has the potential to be a target for novel antimicrobial agents.
Collapse
Affiliation(s)
- Duncan E Scott
- University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | |
Collapse
|