1
|
Cao L, Tian W, Zhao Y, Song P, Zhao J, Wang C, Liu Y, Fang H, Liu X. Gene Mutations in Gastrointestinal Stromal Tumors: Advances in Treatment and Mechanism Research. Glob Med Genet 2024; 11:251-262. [PMID: 39176108 PMCID: PMC11341198 DOI: 10.1055/s-0044-1789204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Although gastrointestinal stromal tumors (GISTs) has been reported in patients of all ages, its diagnosis is more common in elders. The two most common types of mutation, receptor tyrosine kinase (KIT) and platelet-derived growth factor receptor a (PDGFRA) mutations, hold about 75 and 15% of GISTs cases, respectively. Tumors without KIT or PDGFRA mutations are known as wild type (WT)-GISTs, which takes up for 15% of all cases. WT-GISTs have other genetic alterations, including mutations of the succinate dehydrogenase and serine-threonine protein kinase BRAF and neurofibromatosis type 1. Other GISTs without any of the above genetic mutations are named "quadruple WT" GISTs. More types of rare mutations are being reported. These mutations or gene fusions were initially thought to be mutually exclusive in primary GISTs, but recently it has been reported that some of these rare mutations coexist with KIT or PDGFRA mutations. The treatment and management differ according to molecular subtypes of GISTs. Especially for patients with late-stage tumors, developing a personalized chemotherapy regimen based on mutation status is of great help to improve patient survival and quality of life. At present, imatinib mesylate is an effective first-line drug for the treatment of unresectable or metastatic recurrent GISTs, but how to overcome drug resistance is still an important clinical problem. The effectiveness of other drugs is being further evaluated. The progress in the study of relevant mechanisms also provides the possibility to develop new targets or new drugs.
Collapse
Affiliation(s)
- Lei Cao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Wencong Tian
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yongjie Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Peng Song
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Jia Zhao
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Chuntao Wang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Yanhong Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Hong Fang
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| | - Xingqiang Liu
- Department of General Surgery, Tianjin Union Medical Center, Tianjin, People's Republic of China
| |
Collapse
|
2
|
Cilloni D, Maffeo B, Savi A, Danzero AC, Bonuomo V, Fava C. Detection of KIT Mutations in Systemic Mastocytosis: How, When, and Why. Int J Mol Sci 2024; 25:10885. [PMID: 39456668 PMCID: PMC11507058 DOI: 10.3390/ijms252010885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/28/2024] Open
Abstract
More than 90% of patients affected by mastocytosis are characterized by a somatic point mutation of KIT, which induces ligand-independent activation of the receptor and downstream signal triggering, ultimately leading to mast cell accumulation and survival. The most frequent mutation is KIT p.D816V, but other rarer mutations can also be found. These mutations often have a very low variant allele frequency (VAF), well below the sensitivity of common next-generation sequencing (NGS) methods used in routine diagnostic panels. Highly sensitive methods are developing for detecting mutations. This review summarizes the current indications on the recommended methods and on how to manage and interpret molecular data for the diagnosis and follow-up of patients with mastocytosis.
Collapse
Affiliation(s)
- Daniela Cilloni
- Department of Clinical and Biological Sciences, University of Turin, Mauriziano Hospital, 10128 Turin, Italy; (B.M.); (A.S.); (A.C.D.); (V.B.); (C.F.)
| | | | | | | | | | | |
Collapse
|
3
|
Gao X, Carpenter RS, Boulais PE, Zhang D, Marlein CR, Li H, Smith M, Chung DJ, Maryanovich M, Will B, Steidl U, Frenette PS. Regulation of the hematopoietic stem cell pool by C-Kit-associated trogocytosis. Science 2024; 385:eadp2065. [PMID: 39116219 PMCID: PMC11533977 DOI: 10.1126/science.adp2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/14/2024] [Indexed: 08/10/2024]
Abstract
Hematopoietic stem cells (HSCs) are routinely mobilized from the bone marrow (BM) to the blood circulation for clinical transplantation. However, the precise mechanisms by which individual stem cells exit the marrow are not understood. This study identified cell-extrinsic and molecular determinants of a mobilizable pool of blood-forming stem cells. We found that a subset of HSCs displays macrophage-associated markers on their cell surface. Although fully functional, these HSCs are selectively niche-retained as opposed to stem cells lacking macrophage markers, which exit the BM upon forced mobilization. Macrophage markers on HSCs could be acquired through direct transfer by trogocytosis, regulated by receptor tyrosine-protein kinase C-Kit (CD117), from BM-resident macrophages in mouse and human settings. Our study provides proof of concept that adult stem cells utilize trogocytosis to rapidly establish and activate function-modulating molecular mechanisms.
Collapse
Affiliation(s)
- Xin Gao
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Wisconsin Blood Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Randall S. Carpenter
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Philip E. Boulais
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dachuan Zhang
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Christopher R. Marlein
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huihui Li
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Matthew Smith
- Wisconsin Blood Cancer Research Institute, Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David J. Chung
- Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maria Maryanovich
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine–Montefiore Health System, Bronx, NY, USA
| | - Britta Will
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine–Montefiore Health System, Bronx, NY, USA
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Studies, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ulrich Steidl
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Comprehensive Cancer Center, Albert Einstein College of Medicine–Montefiore Health System, Bronx, NY, USA
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul S. Frenette
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
4
|
Zhang S, Zhang L, Zhang D, Guo Y, Gao Y, Jiang Z, Li S, Liu A, Cao X, Tian J, Zhao S, Yu Y, Yang W, Bai R, Huang L, Yan H, Zhao H, Sun J. Four and a half LIM domains 2 (FHL2) attenuates tumorigenesis of gastrointestinal stromal tumors (GISTs) by negatively regulating KIT signaling. Mol Carcinog 2024; 63:1334-1348. [PMID: 38629424 DOI: 10.1002/mc.23727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/26/2024] [Accepted: 04/01/2024] [Indexed: 06/12/2024]
Abstract
Gastrointestinal stromal tumors (GISTs) are predominately induced by KIT mutants. In this study, we found that four and a half LIM domains 2 (FHL2) was highly expressed in GISTs and KIT signaling dramatically increased FHL2 transcription while FHL2 inhibited KIT transcription. In addition, our results showed that FHL2 associated with KIT and increased the ubiquitination of both wild-type KIT and primary KIT mutants in GISTs, leading to decreased expression and activation of KIT although primary KIT mutants were less inhibited by FHL2 than wild-type KIT. In the animal experiments, loss of FHL2 expression in mice carrying germline KIT/V558A mutation which can develop GISTs resulted in increased tumor growth, but increased sensitivity of GISTs to imatinib treatment which is used as the first-line targeted therapy of GISTs, suggesting that FHL2 plays a role in the response of GISTs to KIT inhibitor. Unlike wild-type KIT and primary KIT mutants, we further found that FHL2 didn't alter the expression and activation of drug-resistant secondary KIT mutants. Taken together, our results indicated that FHL2 acts as the negative feedback of KIT signaling in GISTs while primary KIT mutants are less sensitive and secondary KIT mutants are resistant to the inhibition of FHL2.
Collapse
Affiliation(s)
- Shaoting Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Liangying Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Dan Zhang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yue Guo
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yisha Gao
- Department of Pathology, The First Affiliated Hospital of Naval Military Medical University, Shanghai, China
| | - Zongying Jiang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Shujing Li
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Anbu Liu
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Xu Cao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jinhai Tian
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Sien Zhao
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Yu
- Department of Emergency, The General Hospital of Ningxia Medical University, Yinchuan, China
| | - Wei Yang
- Department of Gastroenterology, Ningxia Hospital of Integrated Traditional Chinese and Western Medicine, Yinchuan, China
| | - Ru Bai
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ling Huang
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Hongli Yan
- Department of Laboratory Medicine, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Hui Zhao
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Kunming Institute of Zoology - The Chinese University of Hong Kong (KIZ-CUHK) Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Branch of CAS Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jianmin Sun
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology Center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
5
|
Chen H, Bai Y, Kobayashi M, Xiao S, Barajas S, Cai W, Chen S, Miao J, Meke FN, Yao C, Yang Y, Strube K, Satchivi O, Sun J, Rönnstrand L, Croop JM, Boswell HS, Jia Y, Liu H, Li LS, Altman JK, Eklund EA, Sukhanova M, Ji P, Tong W, Band H, Huang DT, Platanias LC, Zhang ZY, Liu Y. PRL2 Phosphatase Promotes Oncogenic KIT Signaling in Leukemia Cells through Modulating CBL Phosphorylation. Mol Cancer Res 2024; 22:94-103. [PMID: 37756563 PMCID: PMC10841656 DOI: 10.1158/1541-7786.mcr-23-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/13/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Receptor tyrosine kinase KIT is frequently activated in acute myeloid leukemia (AML). While high PRL2 (PTP4A2) expression is correlated with activation of SCF/KIT signaling in AML, the underlying mechanisms are not fully understood. We discovered that inhibition of PRL2 significantly reduces the burden of oncogenic KIT-driven leukemia and extends leukemic mice survival. PRL2 enhances oncogenic KIT signaling in leukemia cells, promoting their proliferation and survival. We found that PRL2 dephosphorylates CBL at tyrosine 371 and inhibits its activity toward KIT, leading to decreased KIT ubiquitination and enhanced AKT and ERK signaling in leukemia cells. IMPLICATIONS Our studies uncover a novel mechanism that fine-tunes oncogenic KIT signaling in leukemia cells and will likely identify PRL2 as a novel therapeutic target in AML with KIT mutations.
Collapse
Affiliation(s)
- Hongxia Chen
- Department of Hematology, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Medicine, Northwestern University, Chicago, USA
- School of Medicine, Chongqing University, Chongqing, China
| | - Yunpeng Bai
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Michihiro Kobayashi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Shiyu Xiao
- Department of Medicine, Northwestern University, Chicago, USA
| | - Sergio Barajas
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Wenjie Cai
- Department of Medicine, Northwestern University, Chicago, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Sisi Chen
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jinmin Miao
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Frederick Nguele Meke
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Chonghua Yao
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yuxia Yang
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
- Department of Medical Genetics, Peking University Health Science Center, Beijing, China
| | - Katherine Strube
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Odelia Satchivi
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - Jianmin Sun
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research and Lund Stem Cell Center, Lund University, Lund, Sweden
| | - James M. Croop
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, USA
| | - H. Scott Boswell
- Department of Medicine, Indiana University School of Medicine, Indianapolis, USA
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University, Chicago, USA
| | - Huiping Liu
- Department of Pharmacology, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Loretta S. Li
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K. Altman
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| | - Elizabeth A. Eklund
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | | | - Peng Ji
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Pathology, Northwestern University, Chicago, USA
| | - Wei Tong
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Hamid Band
- Department of Genetics, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Danny T. Huang
- Cancer Research UK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leonidas C. Platanias
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
- Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Center for Cancer Research, and Institute for Drug Discovery, Purdue University, West Lafayette, USA
| | - Yan Liu
- Department of Medicine, Northwestern University, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center, Chicago, USA
| |
Collapse
|
6
|
Ren JG, Xing B, Lv K, O’Keefe RA, Wu M, Wang R, Bauer KM, Ghazaryan A, Burslem GM, Zhang J, O’Connell RM, Pillai V, Hexner EO, Philips MR, Tong W. RAB27B controls palmitoylation-dependent NRAS trafficking and signaling in myeloid leukemia. J Clin Invest 2023; 133:e165510. [PMID: 37317963 PMCID: PMC10266782 DOI: 10.1172/jci165510] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/24/2023] [Indexed: 06/16/2023] Open
Abstract
RAS mutations are among the most prevalent oncogenic drivers in cancers. RAS proteins propagate signals only when associated with cellular membranes as a consequence of lipid modifications that impact their trafficking. Here, we discovered that RAB27B, a RAB family small GTPase, controlled NRAS palmitoylation and trafficking to the plasma membrane, a localization required for activation. Our proteomic studies revealed RAB27B upregulation in CBL- or JAK2-mutated myeloid malignancies, and its expression correlated with poor prognosis in acute myeloid leukemias (AMLs). RAB27B depletion inhibited the growth of CBL-deficient or NRAS-mutant cell lines. Strikingly, Rab27b deficiency in mice abrogated mutant but not WT NRAS-mediated progenitor cell growth, ERK signaling, and NRAS palmitoylation. Further, Rab27b deficiency significantly reduced myelomonocytic leukemia development in vivo. Mechanistically, RAB27B interacted with ZDHHC9, a palmitoyl acyltransferase that modifies NRAS. By regulating palmitoylation, RAB27B controlled c-RAF/MEK/ERK signaling and affected leukemia development. Importantly, RAB27B depletion in primary human AMLs inhibited oncogenic NRAS signaling and leukemic growth. We further revealed a significant correlation between RAB27B expression and sensitivity to MEK inhibitors in AMLs. Thus, our studies presented a link between RAB proteins and fundamental aspects of RAS posttranslational modification and trafficking, highlighting future therapeutic strategies for RAS-driven cancers.
Collapse
Affiliation(s)
- Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bowen Xing
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaosheng Lv
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biochemistry, School of Medicine at the Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Rachel A. O’Keefe
- Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Mengfang Wu
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ruoxing Wang
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kaylyn M. Bauer
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Arevik Ghazaryan
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Ryan M. O’Connell
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Vinodh Pillai
- Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elizabeth O. Hexner
- Division of Hematology and Oncology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark R. Philips
- Department of Medicine and Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, New York, USA
| | - Wei Tong
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
Lee HJ, Lee J, Yang MJ, Kim YC, Hong SP, Kim JM, Hwang GS, Koh GY. Endothelial cell-derived stem cell factor promotes lipid accumulation through c-Kit-mediated increase of lipogenic enzymes in brown adipocytes. Nat Commun 2023; 14:2754. [PMID: 37179330 PMCID: PMC10183046 DOI: 10.1038/s41467-023-38433-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Active thermogenesis in the brown adipose tissue (BAT) facilitating the utilization of lipids and glucose is critical for maintaining body temperature and reducing metabolic diseases, whereas inactive BAT accumulates lipids in brown adipocytes (BAs), leading to BAT whitening. Although cellular crosstalk between endothelial cells (ECs) and adipocytes is essential for the transport and utilization of fatty acid in BAs, the angiocrine roles of ECs mediating this crosstalk remain poorly understood. Using single-nucleus RNA sequencing and knock-out male mice, we demonstrate that stem cell factor (SCF) derived from ECs upregulates gene expressions and protein levels of the enzymes for de novo lipogenesis, and promotes lipid accumulation by activating c-Kit in BAs. In the early phase of lipid accumulation induced by denervation or thermoneutrality, transiently expressed c-Kit on BAs increases the protein levels of the lipogenic enzymes via PI3K and AKT signaling. EC-specific SCF deletion and BA-specific c-Kit deletion attenuate the induction of the lipogenic enzymes and suppress the enlargement of lipid droplets in BAs after denervation or thermoneutrality in male mice. These data provide insight into SCF/c-Kit signaling as a regulator that promotes lipid accumulation through the increase of lipogenic enzymes in BAT when thermogenesis is inhibited.
Collapse
Affiliation(s)
- Hyuek Jong Lee
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
| | - Jueun Lee
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea
| | - Myung Jin Yang
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Chan Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jung Mo Kim
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul, 03760, Republic of Korea.
- Colleage of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
8
|
Sheikh E, Tran T, Vranic S, Levy A, Bonfil RD. Role and significance of c-KIT receptor tyrosine kinase in cancer: A review. Bosn J Basic Med Sci 2022; 22:683-698. [PMID: 35490363 PMCID: PMC9519160 DOI: 10.17305/bjbms.2021.7399] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/16/2022] Open
Abstract
c-kit is a classical proto-oncogene that encodes a receptor tyrosine kinase (RTK) that responds to stem cell factor (SCF). C-KIT signaling is a critical regulator of cell proliferation, survival, and migration and is implicated in several physiological processes, including pigmentation, hematopoiesis and gut movement. Accumulating evidence suggests that dysregulated c-KIT function, caused by either overexpression or mutations in c-kit, promotes tumor development and progression in various human cancers. In this review, we discuss the most important structural and biological features of c-KIT, as well as insights into the activation of intracellular signaling pathways following SCF binding to this RTK. We then illustrate how different c-kit alterations are associated with specific human cancers and describe recent studies that highlight the contribution of c-KIT to cancer stemness, epithelial-mesenchymal transition and progression to metastatic disease in different experimental models. The impact of tyrosine kinase inhibitors in treating c-KIT-positive tumors and limitations due to their propensity to develop drug resistance are summarized. Finally, we appraise the potential of novel therapeutic approaches targeting c-KIT more selectively while minimizing toxicity to normal tissue.
Collapse
Affiliation(s)
- Emana Sheikh
- OMS-III, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States
| | - Tony Tran
- OMS-III, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States
| | - Semir Vranic
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Arkene Levy
- Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States
| | - R. Daniel Bonfil
- Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida, United States
| |
Collapse
|
9
|
Kim KH, Kim JO, Park JY, Seo MD, Park SG. Antibody-Drug Conjugate Targeting c-Kit for the Treatment of Small Cell Lung Cancer. Int J Mol Sci 2022; 23:ijms23042264. [PMID: 35216379 PMCID: PMC8875948 DOI: 10.3390/ijms23042264] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths. Small cell lung cancer (SCLC) accounts for 15–25% of all lung cancers. It exhibits a rapid doubling time and a high degree of invasiveness. Additionally, overexpression of c-Kit occurs in 70% of SCLC patients. In this study, we evaluated an antibody-drug conjugate (ADC) that targets c-Kit, which is a potential therapeutic agent for SCLC. First, we generated and characterized 4C9, a fully human antibody that targets c-Kit and specifically binds to SCLC cells expressing c-Kit with a binding affinity of KD = 5.5 × 10−9 M. Then, we developed an ADC using DM1, a microtubule inhibitor, as a payload. 4C9-DM1 efficiently induced apoptosis in SCLC with an IC50 ranging from 158 pM to 4 nM. An in vivo assay using a xenograft mouse model revealed a tumor growth inhibition (TGI) rate of 45% (3 mg/kg) and 59% (5 mg/kg) for 4C9-DM1 alone. Combination treatment with 4C9-DM1 plus carboplatin/etoposide or lurbinectedin resulted in a TGI rate greater than 90% compared with the vehicle control. Taken together, these results indicate that 4C9-DM1 is a potential therapeutic agent for SCLC treatment.
Collapse
Affiliation(s)
- Kwang-Hyeok Kim
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
| | - Jin-Ock Kim
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
| | - Jeong-Yang Park
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
| | - Min-Duk Seo
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
| | - Sang Gyu Park
- College of Pharmacy, Ajou University, 206 World Cup-ro, Yeongtong-gu, Suwon-si 16499, Korea; (K.-H.K.); (J.-O.K.); (J.-Y.P.); (M.-D.S.)
- Novelty Nobility, 227 Unjung-ro, Seongnam-si 13477, Korea
- Correspondence: ; Tel.: +82-31-219-3491
| |
Collapse
|
10
|
Ledoux J, Trouvé A, Tchertanov L. The Inherent Coupling of Intrinsically Disordered Regions in the Multidomain Receptor Tyrosine Kinase KIT. Int J Mol Sci 2022; 23:ijms23031589. [PMID: 35163518 PMCID: PMC8835827 DOI: 10.3390/ijms23031589] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
RTK KIT regulates a variety of crucial cellular processes via its cytoplasmic domain (CD), which is composed of the tyrosine kinase domain, crowned by the highly flexible domains—the juxtamembrane region, kinase insertion domain, and C-tail, which are key recruitment regions for downstream signalling proteins. To prepare a structural basis for the characterization of the interactions of KIT with its signalling proteins (KIT INTERACTOME), we generated the 3D model of the full-length CD attached to the transmembrane helix. This generic model of KIT in inactive state was studied by molecular dynamics simulation under conditions mimicking the natural environment of KIT. With the accurate atomistic description of the multidomain KIT dynamics, we explained its intrinsic (intra-domain) and extrinsic (inter-domain) disorder and represented the conformational assemble of KIT through free energy landscapes. Strongly coupled movements within each domain and between distant domains of KIT prove the functional interdependence of these regions, described as allosteric regulation, a phenomenon widely observed in many proteins. We suggested that KIT, in its inactive state, encodes all properties of the active protein and its post-transduction events.
Collapse
|
11
|
Napolitano A, Thway K, Smith MJ, Huang PH, Jones RL. KIT Exon 9-Mutated Gastrointestinal Stromal Tumours: Biology and Treatment. Chemotherapy 2022; 67:81-90. [PMID: 34983047 DOI: 10.1159/000521751] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/27/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND The majority of gastroinstestinal stromal tumours (GISTs) harbour oncogenic mutations in the gene encoding for the tyrosine kinase KIT. The most common mutations are found in exon 11, followed by mutations in exon 9. The latter mutations are associated more frequently with GISTs in extra-gastric locations and with a more aggressive clinical behaviour. SUMMARY Here, we review the unique and often poorly recognised molecular, biological and clinical characteristics that differentiate KIT exon 9-mutant GISTs from other GIST subtypes. In particular, KIT exon 9 mutations are associated to KIT mutants with retained sensitivity to stimulation by stem cell factor and localisation to the cell membrane. Moreover, KIT exon 9-mutant GISTs display significant activation of KIT-independent oncogenic pathways. These characteristics may explain the limited activity of the tyrosine kinase inhibitor imatinib in the adjuvant setting in KIT exon 9-mutant GISTs, as well as their lower sensitivity to standard dose imatinib in the advanced setting. In contranst, the multi-tyrosine kinase inhibitor sunitinib displays better activity in KIT-exon 9 mutant GISTs compared to others. Key Messages. KIT exon 9-mutant GISTs represent a subtype of GIST disctinct from others GISTs, including the more common KIT exon 11-mutant GISTs. A better understanding of the molecular biology and clinical behaviour of KIT exon 9-mutant GISTs may help identify more improved treatment options.
Collapse
Affiliation(s)
- Andrea Napolitano
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Khin Thway
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Myles J Smith
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| | - Paul H Huang
- The Institute of Cancer Research, London, United Kingdom
| | - Robin L Jones
- Sarcoma Unit, Royal Marsden NHS Foundation Trust, London, United Kingdom
- The Institute of Cancer Research, London, United Kingdom
| |
Collapse
|
12
|
Phosphoproteomic Characterization of Primary AML Samples and Relevance for Response Toward FLT3-inhibitors. Hemasphere 2021; 5:e606. [PMID: 34136754 PMCID: PMC8202661 DOI: 10.1097/hs9.0000000000000606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/20/2021] [Indexed: 11/26/2022] Open
|
13
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
14
|
Hong Y, Keylock A, Jensen B, Jacques TS, Ogunbiyi O, Omoyinmi E, Saunders D, Mallick AA, Tooley M, Newbury-Ecob R, Rankin J, Williams HJ, Ganesan V, Brogan PA, Eleftheriou D. Cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma gene. NEUROLOGY-GENETICS 2020; 6:e448. [PMID: 32637631 PMCID: PMC7323481 DOI: 10.1212/nxg.0000000000000448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022]
Abstract
Objective To report a series of patients with cerebral arteriopathy associated with heterozygous variants in the casitas B-lineage lymphoma (CBL) gene and examine the functional role of the identified mutant Cbl protein. We hypothesized that mutated Cbl fails to act as a negative regulator of the RAS-mitogen-activated protein kinases (MAPK) signaling pathway, resulting in enhanced vascular fibroblast proliferation and migration and enhanced angiogenesis and collateral vessel formation. Methods We performed whole-exome sequencing in 11 separate families referred to Great Ormond Street Hospital, London, with suspected genetic cause for clinical presentation with severe progressive cerebral arteriopathy. Results We identified heterozygous variants in the CBL gene in 5 affected cases from 3 families. We show that impaired CBL-mediated degradation of cell surface tyrosine kinase receptors and dysregulated intracellular signaling through the RAS-MAPK pathway contribute to the pathogenesis of the observed arteriopathy. Mutated CBL failed to control the angiogenic signal relay of vascular endothelial growth factor receptor 2, leading to prolonged tyrosine kinase signaling, thus driving angiogenesis and collateral vessel formation. Mutant Cbl promoted myofibroblast migration and proliferation contributing to vascular occlusive disease; these effects were abrogated following treatment with a RAF-RAS-MAPK pathway inhibitor. Conclusions We provide a possible mechanism for the arteriopathy associated with heterozygous CBL variants. Identification of the key role for the RAS-MAPK pathway in CBL-mediated cerebral arteriopathy could facilitate identification of novel or repurposed druggable targets for treating these patients and may also provide therapeutic clues for other cerebral arteriopathies.
Collapse
Affiliation(s)
- Ying Hong
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Annette Keylock
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Barbara Jensen
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Thomas S Jacques
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Olumide Ogunbiyi
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Ebun Omoyinmi
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Dawn Saunders
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Andrew A Mallick
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Madeleine Tooley
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Ruth Newbury-Ecob
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Julia Rankin
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Hywel J Williams
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Vijeya Ganesan
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Paul A Brogan
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| | - Despina Eleftheriou
- UCL Great Ormond Street Institute of Child Health (Y.H., A.K., B.J., T.S.J., E.O., D.S., V.G., P.A.B., D.E.); Histopathology Department (O.O.), Great Ormond Street Hospital, London; Paediatric Neurology Department (A.A.M.), and Genetics Department (M.T., R.N.-E.), Bristol Royal Hospital for Children; Genetics Department (J.R.), Royal Devon and Exeter NHS Foundation Trust, Exeter; Centre for Translational Omics-GOSgene (H.J.W.), UCL GOS Institute of Child Health; and Centre for Adolescent Rheumatology Versus Arthritis (D.E.), London, United Kingdom
| |
Collapse
|
15
|
Kazi JU, Rönnstrand L. FMS-like Tyrosine Kinase 3/FLT3: From Basic Science to Clinical Implications. Physiol Rev 2019; 99:1433-1466. [PMID: 31066629 DOI: 10.1152/physrev.00029.2018] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
FMS-like tyrosine kinase 3 (FLT3) is a receptor tyrosine kinase that is expressed almost exclusively in the hematopoietic compartment. Its ligand, FLT3 ligand (FL), induces dimerization and activation of its intrinsic tyrosine kinase activity. Activation of FLT3 leads to its autophosphorylation and initiation of several signal transduction cascades. Signaling is initiated by the recruitment of signal transduction molecules to activated FLT3 through binding to specific phosphorylated tyrosine residues in the intracellular region of FLT3. Activation of FLT3 mediates cell survival, cell proliferation, and differentiation of hematopoietic progenitor cells. It acts in synergy with several other cytokines to promote its biological effects. Deregulated FLT3 activity has been implicated in several diseases, most prominently in acute myeloid leukemia where around one-third of patients carry an activating mutant of FLT3 which drives the disease and is correlated with poor prognosis. Overactivity of FLT3 has also been implicated in autoimmune diseases, such as rheumatoid arthritis. The observation that gain-of-function mutations of FLT3 can promote leukemogenesis has stimulated the development of inhibitors that target this receptor. Many of these are in clinical trials, and some have been approved for clinical use. However, problems with acquired resistance to these inhibitors are common and, furthermore, only a fraction of patients respond to these selective treatments. This review provides a summary of our current knowledge regarding structural and functional aspects of FLT3 signaling, both under normal and pathological conditions, and discusses challenges for the future regarding the use of targeted inhibition of these pathways for the treatment of patients.
Collapse
Affiliation(s)
- Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| | - Lars Rönnstrand
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University , Lund , Sweden ; Lund Stem Cell Center, Department of Laboratory Medicine, Lund University , Lund , Sweden ; and Division of Oncology, Skåne University Hospital , Lund , Sweden
| |
Collapse
|
16
|
Hwang CC, Igase M, Okuda M, Coffey M, Noguchi S, Mizuno T. Reovirus changes the expression of anti-apoptotic and proapoptotic proteins with the c-kit downregulation in canine mast cell tumor cell lines. Biochem Biophys Res Commun 2019; 517:233-237. [PMID: 31345575 DOI: 10.1016/j.bbrc.2019.07.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022]
Abstract
Although reovirus has reached phase II and III clinical trials in human cancers, the exact mechanism of reovirus oncolysis is still not completely understood. Previously, we have shown that canine mast cell tumor (MCT) cell lines were highly susceptible to reovirus, as compared with other kinds of canine cancer cell lines. In this study, we showed that reovirus infection not only led to the dephosphorylation but also downregulation of c-kit in four canine MCT cell lines, where c-kit activation is required for proliferation. Consistent with c-kit dysregulation, downstream signaling of c-kit, the level of Ras-GTP and phosphorylation of all the downstream effectors of Ras (Raf, MEK, and ERK) and Akt decreased in all the cell lines after reovirus infection, except for Akt in one of cell lines. Pro-apoptotic and anti-apoptotic proteins such as Bim, Bad and Mcl-1 were also altered by reovirus infection in these cell lines. In short, reovirus infection degraded c-kit in all the canine MCT cell lines, leading to the downregulation of downstream signaling of c-kit, which may relate to the cell death induced by reovirus.
Collapse
Affiliation(s)
- Chung Chew Hwang
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Masaru Okuda
- Laboratory of Veterinary Internal Medicine, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Matt Coffey
- Oncolytics Biotech Inc, Calgary, Alberta, Canada
| | - Shunsuke Noguchi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
17
|
SRC-like adaptor protein 2 (SLAP2) is a negative regulator of KIT-D816V-mediated oncogenic transformation. Sci Rep 2018; 8:6405. [PMID: 29686302 PMCID: PMC5913247 DOI: 10.1038/s41598-018-24743-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 04/04/2018] [Indexed: 12/03/2022] Open
Abstract
KIT is a receptor tyrosine kinase (RTK) involved in several cellular processes such as regulation of proliferation, survival and differentiation of early hematopoietic cells, germ cells and melanocytes. Activation of KIT results in phosphorylation of tyrosine residues in the receptor, and recruitment of proteins that mediate downstream signaling and also modulate receptor signaling. Here we show that the SRC-like adaptor protein 2 (SLAP2) binds to wild-type KIT in a ligand-dependent manner and is furthermore found constitutively associated with the oncogenic mutant KIT-D816V. Peptide fishing analysis mapped pY568 and pY570 as potential SLAP2 association sites in KIT, which overlaps with the SRC binding sites in KIT. Expression of SLAP2 in cells expressing the transforming mutant KIT-D816V led to reduced cell viability and reduced colony formation. SLAP2 also partially blocked phosphorylation of several signal transduction molecules downstream of KIT such as AKT, ERK, p38 and STAT3. Finally, SLAP2 expression enhanced ubiquitination of KIT and its subsequent degradation. Taken together, our data demonstrate that SLAP2 negatively modulates KIT-D816V-mediated transformation by enhancing degradation of the receptor.
Collapse
|
18
|
Puverel S, Kiris E, Singh S, Klarmann KD, Coppola V, Keller JR, Tessarollo L. RanBPM (RanBP9) regulates mouse c-Kit receptor level and is essential for normal development of bone marrow progenitor cells. Oncotarget 2018; 7:85109-85123. [PMID: 27835883 PMCID: PMC5341297 DOI: 10.18632/oncotarget.13198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 10/26/2016] [Indexed: 01/22/2023] Open
Abstract
c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.
Collapse
Affiliation(s)
- Sandrine Puverel
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Erkan Kiris
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Satyendra Singh
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Kimberly D Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Vincenzo Coppola
- The Ohio State University, Department of Cancer, Biology and Genetics, Wexner Medical Center and James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA.,Basic Science Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, NCI, Frederick, MD 21702, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, NCI, Frederick, MD 21702, USA
| |
Collapse
|
19
|
Internal tandem duplication mutations in the tyrosine kinase domain of FLT3 display a higher oncogenic potential than the activation loop D835Y mutation. Ann Hematol 2018; 97:773-780. [PMID: 29372308 PMCID: PMC5876274 DOI: 10.1007/s00277-018-3245-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 11/03/2022]
Abstract
Acute myeloid leukemia (AML) remains the most common form of acute leukemia among adults and accounts for a large number of leukemia-related deaths. Mutations in FMS-like tyrosine kinase 3 (FLT3) is one of the most prevalent findings in this heterogeneous disease. The major types of mutations in FLT3 can be categorized as internal tandem duplications (ITD) and point mutations. Recent studies suggest that ITDs not only occur in the juxtamembrane region as originally described, but also in the kinase domain. Although the juxtamembrane ITDs have been well characterized, the tyrosine kinase domain ITDs have not yet been thoroughly studied due to their recent discovery. For this reason, we compared ITD mutations in the juxtamembrane domain with those in the tyrosine kinase domain, as well as with the most common activating point mutation in the tyrosine kinase domain, D835Y. The purpose of this study was to understand whether it is the nature of the mutation or the location of the mutation that plays the main role in leukemogenesis. The various FLT3 mutants were expressed in the murine pro-B cell line Ba/F3 and examined for their capacity to form colonies in semisolid medium. The size and number of colonies formed by Ba/F3 cells expressing either the internal tandem duplication within juxtamembrane domain of the receptor (JMD-ITD) or the tyrosine kinase domain (TKD)-ITD were indistinguishable, while Ba/F3 cells expressing D835Y/FLT3 failed to form colonies. Cell proliferation and cell survival was also significantly higher in TKD-ITD expressing cells, compared to cells expressing D835Y/FLT3. Furthermore, TKD-ITD is capable of inducing phosphorylation of STAT5, while D835Y/FLT3 fails to induce tyrosine phosphorylation of STAT5. Other signal transduction pathways such as the RAS/ERK and the PI3K/AKT pathways were activated to the same level in TKD-ITD cells as compared to D835Y/FLT3 expressing cells. Taken together, our data suggest that TKD-ITD displays similar oncogenic potential to the JMD-ITD but a higher oncogenic potential than the D835Y point mutation.
Collapse
|
20
|
Kobayashi M, Kuroki S, Kurita S, Miyamoto R, Tani H, Tamura K, Bonkobara M. A decrease in ubiquitination and resulting prolonged life-span of KIT underlies the KIT overexpression-mediated imatinib resistance of KIT mutation-driven canine mast cell tumor cells. Oncol Rep 2017; 38:2543-2550. [DOI: 10.3892/or.2017.5865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/19/2017] [Indexed: 11/06/2022] Open
|
21
|
Da Silva L, Fonseca-Alves CE, Thompson JJ, Foster RA, Wood GA, Amorim RL, Coomber BL. Pilot assessment of vascular endothelial growth factor receptors and trafficking pathways in recurrent and metastatic canine subcutaneous mast cell tumours. Vet Med Sci 2017; 3:146-155. [PMID: 29067211 PMCID: PMC5645839 DOI: 10.1002/vms3.66] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Canine subcutaneous mast cell tumour (scMCT) shows less aggressive biological behaviour than cutaneous MCT. Vascular endothelial growth factor receptor 2 (VEGFR2) is expressed by neoplastic cells in canine scMCT, but the relevance of this signalling pathway for disease pathobiology is not clear. The objective of this study was to quantify VEGF‐A, VEGFR2, pVEGFR2, the VEGF co‐receptor Neuropilin 1 (NRP‐1) and the E3 ubiquitin protein ligase c‐Cbl in canine scMCT, and to evaluate their association with disease outcome. Immunohistochemical staining for biomarkers was quantified from 14 cases of canine scMCT using manual and computer‐assisted methods. Kaplan–Meier curves were generated for disease‐free survival (DFS) and compared using Mantel–Cox log‐rank analysis. Cases with high levels of neoplastic cell VEGFR2, pVEGFR2 or c‐CBL immunoreactivity had significantly reduced DFS. All cases displayed neoplastic cells positive for VEGF‐A, which was significantly associated with pVEGFR2 immunoreactivity. There were also significant positive correlations between VEGFR2 and pVEGFR2, and between c‐CBL and pVEGFR2 levels. This pilot study demonstrates the potential utility of these markers in a subset of scMCT in dogs.
Collapse
Affiliation(s)
- Lucas Da Silva
- Department of Biomedical SciencesUniversity of GuelphGuelphOntarioCanada
| | - Carlos E Fonseca-Alves
- Department of Veterinary ClinicUniversity of São Paulo State -UNESPBotucatuSão PauloBrazil
| | - Jennifer J Thompson
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Robert A Foster
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Geoffrey A Wood
- Department of PathobiologyOntario Veterinary CollegeUniversity of GuelphGuelphOntarioCanada
| | - Renee L Amorim
- Department of Veterinary ClinicUniversity of São Paulo State -UNESPBotucatuSão PauloBrazil
| | - Brenda L Coomber
- Department of Biomedical SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
22
|
Hara Y, Obata Y, Horikawa K, Tasaki Y, Suzuki K, Murata T, Shiina I, Abe R. M-COPA suppresses endolysosomal Kit-Akt oncogenic signalling through inhibiting the secretory pathway in neoplastic mast cells. PLoS One 2017; 12:e0175514. [PMID: 28403213 PMCID: PMC5389679 DOI: 10.1371/journal.pone.0175514] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/27/2017] [Indexed: 01/28/2023] Open
Abstract
Gain-of-function mutations in Kit receptor tyrosine kinase result in the development of a variety of cancers, such as mast cell tumours, gastrointestinal stromal tumours (GISTs), acute myeloid leukemia, and melanomas. The drug imatinib, a selective inhibitor of Kit, is used for treatment of mutant Kit-positive cancers. However, mutations in the Kit kinase domain, which are frequently found in neoplastic mast cells, confer an imatinib resistance, and cancers expressing the mutants can proliferate in the presence of imatinib. Recently, we showed that in neoplastic mast cells that endogenously express an imatinib-resistant Kit mutant, Kit causes oncogenic activation of the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) pathway and the signal transducer and activator of transcription 5 (STAT5) but only on endolysosomes and on the endoplasmic reticulum (ER), respectively. Here, we show a strategy for inhibition of the Kit-PI3K-Akt pathway in neoplastic mast cells by M-COPA (2-methylcoprophilinamide), an inhibitor of this secretory pathway. In M-COPA-treated cells, Kit localization in the ER is significantly increased, whereas endolysosomal Kit disappears, indicating that M-COPA blocks the biosynthetic transport of Kit from the ER. The drug greatly inhibits oncogenic Akt activation without affecting the association of Kit with PI3K, indicating that ER-localized Kit-PI3K complex is unable to activate Akt. Importantly, M-COPA but not imatinib suppresses neoplastic mast cell proliferation through inhibiting anti-apoptotic Akt activation. Results of our M-COPA treatment assay show that Kit can activate Erk not only on the ER but also on other compartments. Furthermore, Tyr568/570, Tyr703, Tyr721, and Tyr936 in Kit are phosphorylated on the ER, indicating that these five tyrosine residues are all phosphorylated before mutant Kit reaches the plasma membrane (PM). Our study provides evidence that Kit is tyrosine-phosphorylated soon after synthesis on the ER but is unable to activate Akt and also demonstrates that M-COPA is efficacious for growth suppression of neoplastic mast cells.
Collapse
Affiliation(s)
- Yasushi Hara
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yuuki Obata
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
- * E-mail:
| | - Keita Horikawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Yasutaka Tasaki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Kyohei Suzuki
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Takatsugu Murata
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Isamu Shiina
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
23
|
Nadeau SA, An W, Mohapatra BC, Mushtaq I, Bielecki TA, Luan H, Zutshi N, Ahmad G, Storck MD, Sanada M, Ogawa S, Band V, Band H. Structural Determinants of the Gain-of-Function Phenotype of Human Leukemia-associated Mutant CBL Oncogene. J Biol Chem 2017; 292:3666-3682. [PMID: 28082680 DOI: 10.1074/jbc.m116.772723] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Indexed: 01/19/2023] Open
Abstract
Mutations of the tyrosine kinase-directed ubiquitin ligase CBL cause myeloid leukemias, but the molecular determinants of the dominant leukemogenic activity of mutant CBL oncogenes are unclear. Here, we first define a gain-of-function attribute of the most common leukemia-associated CBL mutant, Y371H, by demonstrating its ability to increase proliferation of hematopoietic stem/progenitor cells (HSPCs) derived from CBL-null and CBL/CBL-B-null mice. Next, we express second-site point/deletion mutants of CBL-Y371H in CBL/CBL-B-null HSPCs or the cytokine-dependent human leukemic cell line TF-1 to show that individual or combined Tyr → Phe mutations of established phosphotyrosine residues (Tyr-700, Tyr-731, and Tyr-774) had little impact on the activity of the CBL-Y371H mutant in HSPCs, and the triple Tyr → Phe mutant was only modestly impaired in TF-1 cells. In contrast, intact tyrosine kinase-binding (TKB) domain and proline-rich region (PRR) were critical in both cell models. PRR deletion reduced the stem cell factor (SCF)-induced hyper-phosphorylation of the CBL-Y371H mutant and the c-KIT receptor and eliminated the sustained p-ERK1/2 and p-AKT induction by SCF. GST fusion protein pulldowns followed by phospho-specific antibody array analysis identified distinct CBL TKB domains or PRR-binding proteins that are phosphorylated in CBL-Y371H-expressing TF-1 cells. Our results support a model of mutant CBL gain-of-function in which mutant CBL proteins effectively compete with the remaining wild type CBL-B and juxtapose TKB domain-associated PTKs with PRR-associated signaling proteins to hyper-activate signaling downstream of hematopoietic growth factor receptors. Elucidation of mutant CBL domains required for leukemogenesis should facilitate targeted therapy approaches for patients with mutant CBL-driven leukemias.
Collapse
Affiliation(s)
- Scott A Nadeau
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Wei An
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Bhopal C Mohapatra
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Biochemistry and Molecular Biology
| | - Insha Mushtaq
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | | | - Haitao Luan
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy
| | - Neha Zutshi
- From the Eppley Institute for Research in Cancer and Allied Diseases.,Pathology and Microbiology, College of Medicine, and
| | - Gulzar Ahmad
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Matthew D Storck
- From the Eppley Institute for Research in Cancer and Allied Diseases
| | - Masashi Sanada
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Seishi Ogawa
- the Department of Pathology and Tumor Biology, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Vimla Band
- From the Eppley Institute for Research in Cancer and Allied Diseases.,the Departments of Genetics, Cell Biology and Anatomy.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| | - Hamid Band
- From the Eppley Institute for Research in Cancer and Allied Diseases, .,the Departments of Genetics, Cell Biology and Anatomy.,Biochemistry and Molecular Biology.,Pathology and Microbiology, College of Medicine, and.,the Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198 and
| |
Collapse
|
24
|
Ke H, Kazi JU, Zhao H, Sun J. Germline mutations of KIT in gastrointestinal stromal tumor (GIST) and mastocytosis. Cell Biosci 2016; 6:55. [PMID: 27777718 PMCID: PMC5070372 DOI: 10.1186/s13578-016-0120-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023] Open
Abstract
Somatic mutations of KIT are frequently found in mastocytosis and gastrointestinal stromal tumor (GIST), while germline mutations of KIT are rare, and only found in few cases of familial GIST and mastocytosis. Although ligand-independent activation is the common feature of KIT mutations, the phenotypes mediated by various germline KIT mutations are different. Germline KIT mutations affect different tissues such as interstitial cells of Cajal (ICC), mast cells or melanocytes, and thereby lead to GIST, mastocytosis, or abnormal pigmentation. In this review, we summarize germline KIT mutations in familial mastocytosis and GIST and discuss the possible cellular context dependent transforming activity of KIT mutations.
Collapse
Affiliation(s)
- Hengning Ke
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 People's Republic of China ; Translational Cancer Lab, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Hui Zhao
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, People's Republic of China
| | - Jianmin Sun
- Department of Pathogen Biology and Immunology, School of Basic Medical Sciences, Ningxia Medical University, No. 1160 Shengli Street, Yinchuan, 750004 People's Republic of China ; Division of Translational Cancer Research, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
25
|
Drube S, Weber F, Göpfert C, Loschinski R, Rothe M, Boelke F, Diamanti MA, Löhn T, Ruth J, Schütz D, Häfner N, Greten FR, Stumm R, Hartmann K, Krämer OH, Dudeck A, Kamradt T. TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases. Oncotarget 2016; 6:28833-50. [PMID: 26353931 PMCID: PMC4745695 DOI: 10.18632/oncotarget.5008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | | | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Boelke
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Tobias Löhn
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Julia Ruth
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Dagmar Schütz
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, Jena, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Ralf Stumm
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Anne Dudeck
- Institute for Immunology, Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
26
|
Distinct cellular properties of oncogenic KIT receptor tyrosine kinase mutants enable alternative courses of cancer cell inhibition. Proc Natl Acad Sci U S A 2016; 113:E4784-93. [PMID: 27482095 DOI: 10.1073/pnas.1610179113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Large genomic sequencing analysis as part of precision medicine efforts revealed numerous activating mutations in receptor tyrosine kinases, including KIT. Unfortunately, a single approach is not effective for inhibiting cancer cells or treating cancers driven by all known oncogenic KIT mutants. Here, we show that each of the six major KIT oncogenic mutants exhibits different enzymatic, cellular, and dynamic properties and responds distinctly to different KIT inhibitors. One class of KIT mutants responded well to anti-KIT antibody treatment alone or in combination with a low dose of tyrosine kinase inhibitors (TKIs). A second class of KIT mutants, including a mutant resistant to imatinib treatment, responded well to a combination of TKI with anti-KIT antibodies or to anti-KIT toxin conjugates, respectively. We conclude that the preferred choice of precision medicine treatments for cancers driven by activated KIT and other RTKs may rely on clear understanding of the dynamic properties of oncogenic mutants.
Collapse
|
27
|
Xu Q, Malecka KL, Fink L, Jordan EJ, Duffy E, Kolander S, Peterson JR, Dunbrack RL. Identifying three-dimensional structures of autophosphorylation complexes in crystals of protein kinases. Sci Signal 2015; 8:rs13. [PMID: 26628682 DOI: 10.1126/scisignal.aaa6711] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an "autophosphorylation complex." We developed and applied a structural bioinformatics method to identify all such autophosphorylation complexes in x-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which five complexes had not previously been described in the publications describing the crystal structures. These five complexes consist of tyrosine residues in the N-terminal juxtamembrane regions of colony-stimulating factor 1 receptor (CSF1R, Tyr(561)) and ephrin receptor A2 (EPHA2, Tyr(594)), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr(394)) and insulin-like growth factor 1 receptor (IGF1R, Tyr(1166)), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser(142)). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore, we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro(447) to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets.
Collapse
Affiliation(s)
- Qifang Xu
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Kimberly L Malecka
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Lauren Fink
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - E Joseph Jordan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin Duffy
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Samuel Kolander
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Jeffrey R Peterson
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Roland L Dunbrack
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
28
|
Le Gall M, Crépin R, Neiveyans M, Auclair C, Fan Y, Zhou Y, Marks JD, Pèlegrin A, Poul MA. Neutralization of KIT Oncogenic Signaling in Leukemia with Antibodies Targeting KIT Membrane Proximal Domain 5. Mol Cancer Ther 2015; 14:2595-605. [PMID: 26358753 DOI: 10.1158/1535-7163.mct-15-0321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/20/2015] [Indexed: 01/09/2023]
Abstract
KIT is a cell surface tyrosine kinase receptor whose ligand stem cell factor (SCF) triggers homodimerization and activation of downstream effector pathways involved in cell survival, proliferation, homing, or differentiation. KIT-activating mutations are major oncogenic drivers in subsets of acute myeloid leukemia (AML), in mast cell leukemia, and in gastrointestinal stromal tumors (GIST). The overexpression of SCF and/or wild-type (WT) KIT is also observed in a number of cancers, including 50% of AML and small cell lung cancer. The use of tyrosine kinase inhibitors (TKI) in these pathologies is, however, hampered by initial or acquired resistance following treatment. Using antibody phage display, we obtained two antibodies (2D1 and 3G1) specific for the most membrane proximal extracellular immunoglobulin domain (D5) of KIT, which is implicated in KIT homodimerization. Produced as single chain variable antibody fragments fused to the Fc fragment of a human IgG1, bivalent 2D1-Fc and 3G1-Fc inhibited KIT-dependent growth of leukemic cell lines expressing WT KIT (UT7/Epo) or constitutively active KIT mutants, including the TKI imatinib-resistant KIT D816V mutant (HMC1.2 cell line). In all models, either expressing WT KIT or mutated KIT, 2D1 and 3G1-Fc induced KIT internalization and sustained surface downregulation. However, interestingly, KIT degradation was only observed in leukemic cell lines with oncogenic KIT, a property likely to limit the toxicity of these antibodies in patients. These fully human antibody formats may represent therapeutic tools to target KIT signaling in leukemia or GIST, and to bypass TKI resistance of certain KIT mutants.
Collapse
Affiliation(s)
- Marianne Le Gall
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France. Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Ronan Crépin
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Madeline Neiveyans
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Christian Auclair
- Laboratoire de Biologie et Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure de Cachan, Cachan, France
| | - Yongfeng Fan
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - Yu Zhou
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - James D Marks
- Department of Anesthesia, University of California, San Francisco, San Francisco, California
| | - André Pèlegrin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Marie-Alix Poul
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France. INSERM, U1194, Montpellier, France. Université de Montpellier, Montpellier, France. Institut Régional du Cancer de Montpellier, Montpellier, France.
| |
Collapse
|
29
|
Xiang J, Yan S, Li SH, Li XJ. Postnatal loss of hap1 reduces hippocampal neurogenesis and causes adult depressive-like behavior in mice. PLoS Genet 2015; 11:e1005175. [PMID: 25875952 PMCID: PMC4398408 DOI: 10.1371/journal.pgen.1005175] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 03/25/2015] [Indexed: 12/11/2022] Open
Abstract
Depression is a serious mental disorder that affects a person’s mood, thoughts, behavior, physical health, and life in general. Despite our continuous efforts to understand the disease, the etiology of depressive behavior remains perplexing. Recently, aberrant early life or postnatal neurogenesis has been linked to adult depressive behavior; however, genetic evidence for this is still lacking. Here we genetically depleted the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions. Depletion of Hap1 in the early postnatal period, but not later life, led to a depressive-like phenotype when the mice reached adulthood. Deletion of Hap1 in adult mice rendered the mice more susceptible to stress-induced depressive-like behavior. Furthermore, early Hap1 depletion impaired postnatal neurogenesis in the dentate gyrus (DG) of the hippocampus and reduced the level of c-kit, a protein expressed in neuroproliferative zones of the rodent brain and that is stabilized by Hap1. Importantly, stereotaxically injected adeno-associated virus (AAV) that directs the expression of c-kit in the hippocampus promoted postnatal hippocampal neurogenesis and ameliorated the depressive-like phenotype in conditional Hap1 KO mice, indicating a link between postnatal-born hippocampal neurons and adult depression. Our results demonstrate critical roles for Hap1 and c-kit in postnatal neurogenesis and adult depressive behavior, and also suggest that genetic variations affecting postnatal neurogenesis may lead to adult depression. Although the majority of the neurons in the brain are generated during embryonic stage, new neurons are continuously being produced postnatally, and at a much lower rate in adulthood. As postnatal neurogenesis is a key component of the brain maturation process that creates dynamic ‘wirings’ in the brain necessary for an individual to grow, learn, and cope with the external world, attenuated postnatal neurogenesis may affect an individual’s mental stability, rendering a higher susceptibility to depression later in life. In the current study, we genetically ablated the expression of huntingtin-associated protein 1 (Hap1) in mice at various ages or in selective brain regions, and found that early loss of Hap1 significantly reduces postnatal hippocampal neurogenesis, and leads to adult depressive-like behavior. We also found c-kit as an effector to mediate the neurogenesis defect and adult depressive-like phenotype in mice lacking Hap1. The results provide the first genetic evidence to demonstrate the importance of postnatal neurogenesis in adult depression, and may offer new avenues in the prevention and treatment of depression. Our study also has potential implications to other adult-onset mental disorders.
Collapse
Affiliation(s)
- Jianxing Xiang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Sen Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shi-Hua Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail: (SHL); (XJL)
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SHL); (XJL)
| |
Collapse
|
30
|
Feng ZC, Riopel M, Popell A, Wang R. A survival Kit for pancreatic beta cells: stem cell factor and c-Kit receptor tyrosine kinase. Diabetologia 2015; 58:654-65. [PMID: 25643653 DOI: 10.1007/s00125-015-3504-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
Abstract
The interactions between c-Kit and its ligand, stem cell factor (SCF), play an important role in haematopoiesis, pigmentation and gametogenesis. c-Kit is also found in the pancreas, and recent studies have revealed that c-Kit marks a subpopulation of highly proliferative pancreatic endocrine cells that may harbour islet precursors. c-Kit governs and maintains pancreatic endocrine cell maturation and function via multiple signalling pathways. In this review we address the importance of c-Kit signalling within the pancreas, including its profound role in islet morphogenesis, islet vascularisation, and beta cell survival and function. We also discuss the impact of c-Kit signalling in pancreatic disease and the use of c-Kit as a potential target for the development of cell-based and novel drug therapies in the treatment of diabetes.
Collapse
Affiliation(s)
- Zhi-Chao Feng
- Children's Health Research Institute, Victoria Research Laboratories, Room A5-140, 800 Commissioners Road East, London, ON, Canada, N6C 2V5
| | | | | | | |
Collapse
|
31
|
Ainsua-Enrich E, Serrano-Candelas E, Álvarez-Errico D, Picado C, Sayós J, Rivera J, Martín M. The adaptor 3BP2 is required for KIT receptor expression and human mast cell survival. THE JOURNAL OF IMMUNOLOGY 2015; 194:4309-18. [PMID: 25810396 DOI: 10.4049/jimmunol.1402887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/20/2015] [Indexed: 01/08/2023]
Abstract
SH3-binding protein 2 (3BP2) is a cytoplasmic adaptor protein that acts as a positive regulator in mast cell FcεRI-dependent signaling. The KIT receptor whose ligand is the stem cell factor is necessary for mast cell development, proliferation, and survival as well as for optimal IgE-dependent signal. Activating mutations in KIT have been associated with several diseases including mastocytosis. In the present work, we found that 3BP2 silencing impairs KIT signaling pathways, thus affecting phosphoinositide 3-kinase and MAPK pathways in human mast cells (huMCs) from HMC-1, LAD2 (huMC lines), and CD34(+)-derived mast cells. Unexpectedly, silencing of 3BP2 reduces KIT expression in normal huMCs as well as in HMC-1 cells where KIT is mutated, thus increasing cellular apoptosis and caspase-3/7 activity. 3BP2 silencing reduces KIT transcription expression levels. Interestingly, 3BP2 silencing decreased microphthalmia-associated transcription factor (MITF) expression, a transcription factor involved in KIT expression. Reconstitution of 3BP2 in knockdown cells leads to reversal of KIT expression as well as survival phenotype. Accordingly MITF reconstitution enhances KIT expression levels in 3BP2-silenced cells. Moreover, downregulation of KIT expression by miRNA-221 overexpression or the proteasome inhibitor bortezomib also reduced 3BP2 and MITF expression. Furthermore, KIT tyrosine activity inhibition reduced 3BP2 and MITF expression, demonstrating again a tight and reciprocal relationship between these molecules. Taken together, our results show that 3BP2 regulates huMC survival and participates in KIT-mediated signal transduction by directly controlling KIT receptor expression, suggesting its potential as a therapeutic target in mast cell-mediated inflammatory diseases and deregulated KIT disorders.
Collapse
Affiliation(s)
- Erola Ainsua-Enrich
- Biochemistry Unit, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; Laboratori d'Immunoallèrgia Respiratòria Clínica i Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Eva Serrano-Candelas
- Biochemistry Unit, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; Laboratori d'Immunoallèrgia Respiratòria Clínica i Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Damiana Álvarez-Errico
- Biochemistry Unit, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; Laboratori d'Immunoallèrgia Respiratòria Clínica i Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - César Picado
- Laboratori d'Immunoallèrgia Respiratòria Clínica i Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain; Networking Research Center on Respiratory Diseases, Institute of Health Carlos III, 28029 Madrid, Spain
| | - Joan Sayós
- Immunobiology Group, Molecular Biology and Biochemistry Research Center for Nanomedicine, Nanomedicine Program, Vall d'Hebrón Research Institute, Autonomous University of Barcelona, 08035 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine, Institute of Health Carlos III, 28029 Madrid, Spain; and
| | - Juan Rivera
- Molecular Immunology Section, Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Margarita Martín
- Biochemistry Unit, Faculty of Medicine, University of Barcelona, 08036 Barcelona, Spain; Laboratori d'Immunoallèrgia Respiratòria Clínica i Experimental, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain;
| |
Collapse
|
32
|
Mutually exclusive mutations of KIT and RAS are associated with KIT mRNA expression and chromosomal instability in primary intracranial pure germinomas. Acta Neuropathol 2014; 127:911-25. [PMID: 24452629 DOI: 10.1007/s00401-014-1247-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/14/2014] [Indexed: 01/13/2023]
Abstract
Intracranial germ cell tumors (iGCTs) are the second most common brain tumors among children under 15 in Japan. The pathogenesis of iGCTs is largely unexplored. Although a subset of iGCTs is known to have KIT mutation, its impact on the biology and patients' survival has not been established. In this study, we investigated genes involved in the KIT signaling pathway. 65 iGCTs (30 pure germinomas, 14 teratomas, 18 mixed GCTs, 2 yolk sac tumors, 1 choriocarcinoma) were screened for mutation of KIT, KRAS, NRAS, HRAS, BRAF, PDGFRA, and IDH1 by direct sequencing. KIT expression was examined by immunohistochemistry and quantitative PCR. Chromosomal status was analyzed by array-comparative genomic hybridization (aCGH). Somatic mutations were detected only in KIT and RAS, which were frequently observed in pure germinomas (60.0 %), but rare in non-germinomatous GCTs (NGGCTs) (8.6 %). All KIT/RAS mutations were mutually exclusive. Regardless of the mutation status or mRNA expression, the KIT protein was expressed in all germinomas, while only in 54.3 % of NGGCTs. Amplification of KIT was found in one pure germinoma by aCGH. In pure germinomas, high expression of KIT mRNA was associated with the presence of KIT/RAS alterations and severe chromosomal instability. Our results indicate that alterations of the KIT signaling pathway play an important role in the development of germinomas. Pure germinomas may develop through two distinct pathogeneses: one with KIT/RAS alterations, elevated KIT mRNA expression and severe chromosomal instability, and the other through yet an unidentified mechanism without any of the above abnormalities.
Collapse
|
33
|
Shin JY, Hu W, Naramura M, Park CY. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. ACTA ACUST UNITED AC 2014; 211:217-31. [PMID: 24446491 PMCID: PMC3920569 DOI: 10.1084/jem.20131128] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
c-Kitlo HSCs exhibit enhanced self-renewal and long-term reconstitution potential and give rise to c-Kithi HSCs that have a megakaryocytic bias. Hematopoietic stem cells (HSCs) are heterogeneous with respect to their self-renewal, lineage, and reconstitution potentials. Although c-Kit is required for HSC function, gain and loss-of-function c-Kit mutants suggest that even small changes in c-Kit signaling profoundly affect HSC function. Herein, we demonstrate that even the most rigorously defined HSCs can be separated into functionally distinct subsets based on c-Kit activity. Functional and transcriptome studies show HSCs with low levels of surface c-Kit expression (c-Kitlo) and signaling exhibit enhanced self-renewal and long-term reconstitution potential compared with c-Kithi HSCs. Furthermore, c-Kitlo and c-Kithi HSCs are hierarchically organized, with c-Kithi HSCs arising from c-Kitlo HSCs. In addition, whereas c-Kithi HSCs give rise to long-term lymphomyeloid grafts, they exhibit an intrinsic megakaryocytic lineage bias. These functional differences between c-Kitlo and c-Kithi HSCs persist even under conditions of stress hematopoiesis induced by 5-fluorouracil. Finally, our studies show that the transition from c-Kitlo to c-Kithi HSC is negatively regulated by c-Cbl. Overall, these studies demonstrate that HSCs exhibiting enhanced self-renewal potential can be isolated based on c-Kit expression during both steady state and stress hematopoiesis. Moreover, they provide further evidence that the intrinsic functional heterogeneity previously described for HSCs extends to the megakaryocytic lineage.
Collapse
Affiliation(s)
- Joseph Y Shin
- Human Oncology and Pathogenesis Program and 2 Department of Pathology and 3 Department of Laboratory Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | | | | | | |
Collapse
|
34
|
Heldin CH, Lennartsson J. Structural and functional properties of platelet-derived growth factor and stem cell factor receptors. Cold Spring Harb Perspect Biol 2013; 5:a009100. [PMID: 23906712 DOI: 10.1101/cshperspect.a009100] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The receptors for platelet-derived growth factor (PDGF) and stem cell factor (SCF) are members of the type III class of PTK receptors, which are characterized by five Ig-like domains extracellularly and a split kinase domain intracellularly. The receptors are activated by ligand-induced dimerization, leading to autophosphorylation on specific tyrosine residues. Thereby the kinase activities of the receptors are activated and docking sites for downstream SH2 domain signal transduction molecules are created; activation of these pathways promotes cell growth, survival, and migration. These receptors mediate important signals during the embryonal development, and control tissue homeostasis in the adult. Their overactivity is seen in malignancies and other diseases involving excessive cell proliferation, such as atherosclerosis and fibrotic diseases. In cancer, mutations of PDGF and SCF receptors-including gene fusions, point mutations, and amplifications-drive subpopulations of certain malignancies, such as gastrointestinal stromal tumors, chronic myelomonocytic leukemia, hypereosinophilic syndrome, glioblastoma, acute myeloid leukemia, mastocytosis, and melanoma.
Collapse
Affiliation(s)
- Carl-Henrik Heldin
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden.
| | | |
Collapse
|
35
|
Phung B, Steingrímsson E, Rönnstrand L. Differential activity of c-KIT splice forms is controlled by extracellular peptide insert length. Cell Signal 2013; 25:2231-8. [PMID: 23880320 DOI: 10.1016/j.cellsig.2013.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/17/2013] [Accepted: 07/12/2013] [Indexed: 11/29/2022]
Abstract
Understanding receptor activation is important for disease intervention. Activation of the receptor tyrosine kinase c-KIT is involved in numerous diseases including melanoma, mastocytosis, multiple myeloma and gastrointestinal stromal tumors. To better understand the regulation of activation, we studied the two c-KIT isoforms, c-KIT(-) and c-KIT(+), which differ by a tetrapeptide insert GNNK, located in the extracellular juxtamembrane domain of the c-KIT(+) isoform. This region is important for regulating receptor activation. Here we show that the consecutive elimination of one amino acid at a time from the GNNK tetrapeptide insert gradually increases receptor tyrosine phosphorylation, ubiquitination, internalization and downstream MAP kinase-ERK activation. Successively decreasing the insert length progressively improves cell survival during drug treatment. Our results indicate that the length of the tetrapeptide fine-tunes receptor activity, thus providing deeper insight into c-KIT activation.
Collapse
Affiliation(s)
- Bengt Phung
- Experimental Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Wallenberg Laboratory, Inga Marie Nilssons gata 53, SE-205 02 Malmö, Sweden.
| | | | | |
Collapse
|
36
|
Agarwal S, Kazi JU, Rönnstrand L. Phosphorylation of the activation loop tyrosine 823 in c-Kit is crucial for cell survival and proliferation. J Biol Chem 2013; 288:22460-8. [PMID: 23803604 DOI: 10.1074/jbc.m113.474072] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The receptor tyrosine kinase c-Kit, also known as the stem cell factor receptor, plays a key role in several developmental processes. Activating mutations in c-Kit lead to alteration of these cellular processes and have been implicated in many human cancers such as gastrointestinal stromal tumors, acute myeloid leukemia, testicular seminomas and mastocytosis. Regulation of the catalytic activity of several kinases is known to be governed by phosphorylation of tyrosine residues in the activation loop of the kinase domain. However, in the case of c-Kit phosphorylation of Tyr-823 has been demonstrated to be a late event that is not required for kinase activation. However, because phosphorylation of Tyr-823 is a ligand-activated event, we sought to investigate the functional consequences of Tyr-823 phosphorylation. By using a tyrosine-to-phenylalanine mutant of tyrosine 823, we investigated the impact of Tyr-823 on c-Kit signaling. We demonstrate here that Tyr-823 is crucial for cell survival and proliferation and that mutation of Tyr-823 to phenylalanine leads to decreased sustained phosphorylation and ubiquitination of c-Kit as compared with the wild-type receptor. Furthermore, the mutated receptor was, upon ligand-stimulation, quickly internalized and degraded. Phosphorylation of the E3 ubiquitin ligase Cbl was transient, followed by a substantial reduction in phosphorylation of downstream signaling molecules such as Akt, Erk, p38, Shc, and Gab2. Thus, we propose that activation loop tyrosine 823 is crucial for activation of both the MAPK and PI3K pathways and that its disruption leads to a destabilization of the c-Kit receptor and decreased survival of cells.
Collapse
Affiliation(s)
- Shruti Agarwal
- Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, 20502 Malmö, Sweden
| | | | | |
Collapse
|
37
|
D'allard D, Gay J, Descarpentries C, Frisan E, Adam K, Verdier F, Floquet C, Dubreuil P, Lacombe C, Fontenay M, Mayeux P, Kosmider O. Tyrosine kinase inhibitors induce down-regulation of c-Kit by targeting the ATP pocket. PLoS One 2013; 8:e60961. [PMID: 23637779 PMCID: PMC3634048 DOI: 10.1371/journal.pone.0060961] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/15/2013] [Indexed: 12/12/2022] Open
Abstract
The stem cell factor receptor (SCF) c-Kit plays a pivotal role in regulating cell proliferation and survival in many cell types. In particular, c-Kit is required for early amplification of erythroid progenitors, while it must disappear from cell surface for the cell entering the final steps of maturation in an erythropoietin-dependent manner. We initially observed that imatinib (IM), an inhibitor targeting the tyrosine kinase activity of c-Kit concomitantly down-regulated the expression of c-Kit and accelerated the Epo-driven differentiation of erythroblasts in the absence of SCF. We investigated the mechanism by which IM or related masitinib (MA) induce c-Kit down-regulation in the human UT-7/Epo cell line. We found that the down-regulation of c-Kit in the presence of IM or MA was inhibited by a pre-incubation with methyl-β-cyclodextrin suggesting that c-Kit was internalized in the absence of ligand. By contrast to SCF, the internalization induced by TKI was independent of the E3 ubiquitin ligase c-Cbl. Furthermore, c-Kit was degraded through lysosomal, but not proteasomal pathway. In pulse-chase experiments, IM did not modulate c-Kit synthesis or maturation. Analysis of phosphotyrosine peptides in UT-7/Epo cells treated or not with IM show that IM did not modify overall tyrosine phosphorylation in these cells. Furthermore, we showed that a T670I mutation preventing the full access of IM to the ATP binding pocket, did not allow the internalization process in the presence of IM. Altogether these data show that TKI-induced internalization of c-Kit is linked to a modification of the integrity of ATP binding pocket.
Collapse
Affiliation(s)
- Diane D'allard
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
| | - Julie Gay
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Clotilde Descarpentries
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Emilie Frisan
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Kevin Adam
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
| | - Frederique Verdier
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
| | - Célia Floquet
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
| | - Patrice Dubreuil
- INSERM, U1068, CRCM, Centre de Référence des Mastocytoses-CEREMAST; Institut Paoli-Calmettes, Marseille; Aix-Marseille Université; CNRS, UMR7258, Marseille, France
| | - Catherine Lacombe
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Broca-Cochin-Hôtel-Dieu, Service d'Hématologie Biologique, Paris, France
| | - Michaela Fontenay
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Broca-Cochin-Hôtel-Dieu, Service d'Hématologie Biologique, Paris, France
| | - Patrick Mayeux
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
- Proteomic Platform of the Paris Descartes University (3P5), Paris, France
| | - Olivier Kosmider
- Institut Cochin, Département d'Immunologie-Hématologie, Paris, France
- INSERM U1016, Paris, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, Paris, France
- Université Paris Descartes, Faculté de Médecine, Paris, France
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- LABEX (Laboratoire d'Excellence) GR-Ex, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Broca-Cochin-Hôtel-Dieu, Service d'Hématologie Biologique, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Bachet JB, Tabone-Eglinger S, Dessaux S, Besse A, Brahimi-Adouane S, Emile JF, Blay JY, Alberti L. Gene expression patterns of hemizygous and heterozygous KIT mutations suggest distinct oncogenic pathways: a study in NIH3T3 cell lines and GIST samples. PLoS One 2013; 8:e61103. [PMID: 23593401 PMCID: PMC3625162 DOI: 10.1371/journal.pone.0061103] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/05/2013] [Indexed: 12/18/2022] Open
Abstract
Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways.
Collapse
Affiliation(s)
- Jean-Baptiste Bachet
- EA4340 'Epidémiologie et Oncogénèse des tumeurs digestives', Faculté de médecine PIFO, UVSQ, Guyancourt, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Haglund K, Dikic I. The role of ubiquitylation in receptor endocytosis and endosomal sorting. J Cell Sci 2013; 125:265-75. [PMID: 22357968 DOI: 10.1242/jcs.091280] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the modification of receptors with ubiquitin. This post-translational modification can promote receptor endocytosis and targets receptors for lysosomal degradation, thereby ensuring termination of receptor signaling. In this Commentary, we review the roles of ubiquitylation in receptor endocytosis and degradative endosomal sorting by drawing on the epidermal growth factor receptor (EGFR) as a well-studied example. Furthermore, we elaborate on the molecular basis of ubiquitin recognition along the endocytic pathway through compartment-specific ubiquitin-binding proteins and highlight how endocytic sorting machineries control these processes. In addition, we discuss the importance of ubiquitin-dependent receptor endocytosis for the maintenance of cellular homeostasis and in the prevention of diseases such as cancer.
Collapse
Affiliation(s)
- Kaisa Haglund
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway.
| | | |
Collapse
|
40
|
Kon S, Minegishi N, Tanabe K, Watanabe T, Funaki T, Wong WF, Sakamoto D, Higuchi Y, Kiyonari H, Asano K, Iwakura Y, Fukumoto M, Osato M, Sanada M, Ogawa S, Nakamura T, Satake M. Smap1 deficiency perturbs receptor trafficking and predisposes mice to myelodysplasia. J Clin Invest 2013; 123:1123-37. [PMID: 23434593 DOI: 10.1172/jci63711] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
The formation of clathrin-coated vesicles is essential for intracellular membrane trafficking between subcellular compartments and is triggered by the ARF family of small GTPases. We previously identified SMAP1 as an ARF6 GTPase-activating protein that functions in clathrin-dependent endocytosis. Because abnormalities in clathrin-dependent trafficking are often associated with oncogenesis, we targeted Smap1 in mice to examine its physiological and pathological significance. Smap1-deficent mice exhibited healthy growth, but their erythroblasts showed enhanced transferrin endocytosis. In mast cells cultured in SCF, Smap1 deficiency did not affect the internalization of c-KIT but impaired the sorting of internalized c-KIT from multivesicular bodies to lysosomes, resulting in intracellular accumulation of undegraded c-KIT that was accompanied by enhanced activation of ERK and increased cell growth. Interestingly, approximately 50% of aged Smap1-deficient mice developed anemia associated with morphologically dysplastic cells of erythroid-myeloid lineage, which are hematological abnormalities similar to myelodysplastic syndrome (MDS) in humans. Furthermore, some Smap1-deficient mice developed acute myeloid leukemia (AML) of various subtypes. Collectively, to our knowledge these results provide the first evidence in a mouse model that the deregulation of clathrin-dependent membrane trafficking may be involved in the development of MDS and subsequent AML.
Collapse
Affiliation(s)
- Shunsuke Kon
- Department of Molecular Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kazi JU, Agarwal S, Sun J, Bracco E, Rönnstrand L. Src-Like Adaptor Protein (SLAP) differentially regulates normal and oncogenic c-Kit signaling. J Cell Sci 2013; 127:653-62. [DOI: 10.1242/jcs.140590] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The Src-Like Adaptor Protein (SLAP) is an adaptor protein sharing considerable structural homology with Src. SLAP is expressed in variety of cells regulating receptor tyrosine kinase signaling by direct association. In this report, we show that SLAP associates with both wild-type and oncogenic c-Kit (c-Kit-D816V). The association involves SLAP SH2 domain and receptor phosphotyrosine residues different from those mediating Src interaction. Association of SLAP triggers c-Kit ubiquitination which, in turn, is followed by receptor degradation. Although SLAP depletion potentiates c-Kit downstream signaling by stabilizing the receptor, it remains non-functional in c-Kit-D816V signaling. Ligand-stimulated c-Kit or c-Kit-D816V did not alter membrane localization of SLAP. Interestingly oncogenic c-Kit-D816V, but not wild-type c-Kit, phosphorylates SLAP on Y120, Y258 and Y273 residues. Physical interaction between c-Kit-D816V and SLAP is mandatory for the phosphorylation to take place. Although tyrosine phosphorylated SLAP does not affect c-Kit-D816V signaling, mutation of these tyrosine sites to phenylalanine can restore SLAP activity. Taken together the data demonstrate that SLAP negatively regulates wild-type c-Kit signaling, but not its oncogenic counterpart, indicating a possible mechanism by which the oncogenic c-Kit bypasses the normal cellular negative feedback control.
Collapse
|
42
|
Polzer H, Janke H, Schmid D, Hiddemann W, Spiekermann K. Casitas B-lineage lymphoma mutants activate AKT to induce transformation in cooperation with class III receptor tyrosine kinases. Exp Hematol 2012; 41:271-80.e4. [PMID: 23127761 DOI: 10.1016/j.exphem.2012.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 10/05/2012] [Accepted: 10/26/2012] [Indexed: 02/04/2023]
Abstract
In addition to overexpression and the occurrence of activating mutations, receptors can be aberrantly activated by impaired downregulation. In this study, we show that an oncogenic mutant of the ubiquitin ligase casitas B-lineage lymphoma (CBL; CBLΔexon8), which is found in acute myeloid leukemia patients, predominantly cooperates with receptor tyrosine kinase (RTK) class III receptors (PDGFRA, PDGFRB, KIT, and FLT3), but not with non-class III RTKs or cytokine receptors, to induce IL-3-independent growth of Ba/F3 cells. In cells coexpressing RTK class III/CBLΔexon8, receptor internalization was delayed, and cells were protected from apoptosis after cytokine withdrawal. Ligand-stimulated Ba/F3 cells and acute myeloid leukemia cell lines coexpressing the CBL deletion mutant and FLT3 showed enhanced AKT phosphorylation. Combined pharmacologic inhibition of the PI3K/AKT pathway and FLT3 had an additive effect on cell proliferation. The transforming potential of the CBL mutant was completely abolished by the mutation of the CBL PTB domain and was decreased by the mutation of tyrosines 589 and 591 in the juxtamembrane domain of FLT3. A constitutively active AKT1 mutant (E17K) recapitulated the phenotype induced by the CBL deletion mutant in Ba/F3 cells. This study reveals FLT3-CBL interaction sites and the AKT pathway as critical mediators of transformation by oncogenic CBL mutants.
Collapse
Affiliation(s)
- Harald Polzer
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
43
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:122-39. [PMID: 23085373 DOI: 10.1016/j.bbamcr.2012.10.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/05/2012] [Accepted: 10/08/2012] [Indexed: 12/20/2022]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mohapatra B, Ahmad G, Nadeau S, Zutshi N, An W, Scheffe S, Dong L, Feng D, Goetz B, Arya P, Bailey TA, Palermo N, Borgstahl GEO, Natarajan A, Raja SM, Naramura M, Band V, Band H. Protein tyrosine kinase regulation by ubiquitination: critical roles of Cbl-family ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA 2012. [PMID: 23085373 DOI: 10.1016/j.bbamcr] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Protein tyrosine kinases (PTKs) coordinate a broad spectrum of cellular responses to extracellular stimuli and cell-cell interactions during development, tissue homeostasis, and responses to environmental challenges. Thus, an understanding of the regulatory mechanisms that ensure physiological PTK function and potential aberrations of these regulatory processes during diseases such as cancer are of broad interest in biology and medicine. Aside from the expected role of phospho-tyrosine phosphatases, recent studies have revealed a critical role of covalent modification of activated PTKs with ubiquitin as a critical mechanism of their negative regulation. Members of the Cbl protein family (Cbl, Cbl-b and Cbl-c in mammals) have emerged as dominant "activated PTK-selective" ubiquitin ligases. Structural, biochemical and cell biological studies have established that Cbl protein-dependent ubiquitination targets activated PTKs for degradation either by facilitating their endocytic sorting into lysosomes or by promoting their proteasomal degradation. This mechanism also targets PTK signaling intermediates that become associated with Cbl proteins in a PTK activation-dependent manner. Cellular and animal studies have established that the relatively broadly expressed mammalian Cbl family members Cbl and Cbl-b play key physiological roles, including their critical functions to prevent the transition of normal immune responses into autoimmune disease and as tumor suppressors; the latter function has received validation from human studies linking mutations in Cbl to human leukemia. These newer insights together with embryonic lethality seen in mice with a combined deletion of Cbl and Cbl-b genes suggest an unappreciated role of the Cbl family proteins, and by implication the ubiquitin-dependent control of activated PTKs, in stem/progenitor cell maintenance. Future studies of existing and emerging animal models and their various cell lineages should help test the broader implications of the evolutionarily-conserved Cbl family protein-mediated, ubiquitin-dependent, negative regulation of activated PTKs in physiology and disease.
Collapse
Affiliation(s)
- Bhopal Mohapatra
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lennartsson J, Rönnstrand L. Stem Cell Factor Receptor/c-Kit: From Basic Science to Clinical Implications. Physiol Rev 2012; 92:1619-49. [DOI: 10.1152/physrev.00046.2011] [Citation(s) in RCA: 485] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Stem cell factor (SCF) is a dimeric molecule that exerts its biological functions by binding to and activating the receptor tyrosine kinase c-Kit. Activation of c-Kit leads to its autophosphorylation and initiation of signal transduction. Signaling proteins are recruited to activated c-Kit by certain interaction domains (e.g., SH2 and PTB) that specifically bind to phosphorylated tyrosine residues in the intracellular region of c-Kit. Activation of c-Kit signaling has been found to mediate cell survival, migration, and proliferation depending on the cell type. Signaling from c-Kit is crucial for normal hematopoiesis, pigmentation, fertility, gut movement, and some aspects of the nervous system. Deregulated c-Kit kinase activity has been found in a number of pathological conditions, including cancer and allergy. The observation that gain-of-function mutations in c-Kit can promote tumor formation and progression has stimulated the development of therapeutics agents targeting this receptor, e.g., the clinically used inhibitor imatinib mesylate. Also other clinically used multiselective kinase inhibitors, for instance, sorafenib and sunitinib, have c-Kit included in their range of targets. Furthermore, loss-of-function mutations in c-Kit have been observed and shown to give rise to a condition called piebaldism. This review provides a summary of our current knowledge regarding structural and functional aspects of c-Kit signaling both under normal and pathological conditions, as well as advances in the development of low-molecular-weight molecules inhibiting c-Kit function.
Collapse
Affiliation(s)
- Johan Lennartsson
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lars Rönnstrand
- Ludwig Institute for Cancer Research, Uppsala University, Uppsala, Sweden; and Experimental Clinical Chemistry, Wallenberg Laboratory, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
46
|
Singh VK, Munro K, Jia Z. A novel calmodulin-β-PIX interaction and its implication in receptor tyrosine kinase regulation. Cell Signal 2012; 24:1790-6. [PMID: 22588125 DOI: 10.1016/j.cellsig.2012.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/07/2012] [Accepted: 05/08/2012] [Indexed: 11/26/2022]
Abstract
Calmodulin (CaM), a ubiquitous calcium-binding protein, regulates numerous cellular processes, primarily in response to calcium flux. We have identified and characterized a novel interaction between CaM and β-p21-activated kinase interacting exchange factor (β-PIX), a putative guanine exchange factor implicated in cell signaling, using affinity pull-down assays, co-immunoprecipitation, co-localization and circular dichroism studies. Fluorescence-based titration and isothermal titration calorimetry experiments revealed a Ca(2+)-dependent binding mechanism (K(D)≤10μM). Further, we show that CaM participates in a multi-protein complex involving β-PIX and E3 ubiquitin ligase c-Cbl (casitas B-cell lymphoma), which may play a critical role in receptor tyrosine kinase regulation and downstream signaling.
Collapse
Affiliation(s)
- Vinay K Singh
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | | | |
Collapse
|
47
|
p85β regulatory subunit of class IA PI3 kinase negatively regulates mast cell growth, maturation, and leukemogenesis. Blood 2012; 119:3951-61. [PMID: 22378847 DOI: 10.1182/blood-2011-05-355602] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that loss of p85α inhibits the growth and maturation of mast cells, whereas loss of p85β enhances this process. Whereas restoring the expression of p85α in P85α(-/-) cells restores these functions, overexpression of p85β has the opposite effect. Consistently, overexpression of p85β in WT mast cells represses KIT-induced proliferation and IL-3-mediated maturation by inhibiting the expression of Microphthalmia transcription factor. Because p85α and p85β differ in their N-terminal sequences, chimeric proteins consisting of amino or carboxy-terminal of p85α and/or p85β do not rescue the growth defects of p85α(-/-) cells, suggesting cooperation between these domains for normal mast cell function. Loss of p85β impaired ligand induced KIT receptor internalization and its overexpression enhanced this process, partly because of increased binding of c-Cbl to p85β relative to p85α. In vivo, loss of p85β resulted in increased mast cells, and bone marrow transplantation of cells overexpressing p85β resulted in significant reduction in some tissue mast cells. Overexpression of p85β suppressed the growth of oncogenic KIT-expressing cells in vitro and prolonged the survival of leukemic mice in vivo. Thus, p85α and p85β differentially regulate SCF and oncogenic KIT-induced signals in myeloid lineage-derived mast cells.
Collapse
|
48
|
Kar G, Keskin O, Nussinov R, Gursoy A. Human proteome-scale structural modeling of E2-E3 interactions exploiting interface motifs. J Proteome Res 2012; 11:1196-207. [PMID: 22149024 PMCID: PMC3285560 DOI: 10.1021/pr2009143] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ubiquitination is crucial for many cellular processes such as protein degradation, DNA repair, transcription regulation, and cell signaling. Ubiquitin attachment takes place via a sequential enzymatic cascade involving ubiquitin activation (by E1 enzymes), ubiquitin conjugation (by E2 enzymes), and ubiquitin substrate tagging (by E3 enzymes). E3 ligases mediate ubiquitin transfer from E2s to substrates and as such confer substrate specificity. Although E3s can interact and function with numerous E2s, it is still unclear how they choose which E2 to use. Identifying all E2 partners of an E3 is essential for inferring the principles guiding E2 selection by an E3. Here we model the interactions of E3 and E2 proteins in a large, proteome-scale strategy based on interface structural motifs, which allows elucidation of (1) which E3s interact with which E2s in the human ubiquitination pathway and (2) how they interact with each other. Interface analysis of E2-E3 complexes reveals that loop L1 of E2s is critical for binding; the residue in the sixth position in loop L1 is widely utilized as an interface hot spot and appears indispensible for E2 interactions. Other loop L1 residues also confer specificity on the E2-E3 interactions: HECT E3s are in contact with the residue in the second position in loop L1 of E2s, but this is not the case for the RING finger type E3s. Our modeled E2-E3 complexes illuminate how slight sequence variations in E2 residues may contribute to specificity in E3 binding. These findings may be important for discovering drug candidates targeting E3s, which have been implicated in many diseases.
Collapse
Affiliation(s)
- Gozde Kar
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ozlem Keskin
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| | - Ruth Nussinov
- Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Sackler Inst. Of Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Attila Gursoy
- Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Rumelifeneri Yolu, 34450 Sariyer Istanbul, Turkey
| |
Collapse
|
49
|
Phung B, Sun J, Schepsky A, Steingrimsson E, Rönnstrand L. C-KIT signaling depends on microphthalmia-associated transcription factor for effects on cell proliferation. PLoS One 2011; 6:e24064. [PMID: 21887372 PMCID: PMC3161112 DOI: 10.1371/journal.pone.0024064] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
The development of melanocytes is regulated by the tyrosine kinase receptor c-KIT and the basic-helix-loop-helix-leucine zipper transcription factor Mitf. These essential melanocyte survival regulators are also well known oncogenic factors in malignant melanoma. Despite their importance, not much is known about the regulatory mechanisms and signaling pathways involved. In this study, we therefore sought to identify the signaling pathways and mechanisms involved in c-KIT mediated regulation of Mitf. We report that c-KIT stimulation leads to the activation of Mitf specifically through the c-KIT phosphorylation sites Y721 (PI3 kinase binding site), Y568 and Y570 (Src binding site). Our study not only confirms the involvement of Ras-Erk signaling pathway in the activation of Mitf, but also establishes that Src kinase binding to Y568 and Y570 of c-KIT is required. Using specific inhibitors we observe and verify that c-KIT induced activation of Mitf is dependent on PI3-, Akt-, Src-, p38- or Mek kinases. Moreover, the proliferative effect of c-KIT is dependent on Mitf in HEK293T cells. In contrast, c-KIT Y568F and Y721F mutants are less effective in driving cell proliferation, compared to wild type c-KIT. Our results reveal novel mechanisms by which c-KIT signaling regulates Mitf, with implications for understanding both melanocyte development and melanoma.
Collapse
Affiliation(s)
- Bengt Phung
- Wallenberg Laboratory, Experimental Clinical Chemistry, Department of Laboratory Medicine, Lund University, Skåne University Hospital, Malmö, Sweden.
| | | | | | | | | |
Collapse
|
50
|
Kim SY, Kang JJ, Lee HH, Kang JJ, Kim B, Kim CG, Park TK, Kang H. Mechanism of activation of human c-KIT kinase by internal tandem duplications of the juxtamembrane domain and point mutations at aspartic acid 816. Biochem Biophys Res Commun 2011; 410:224-8. [DOI: 10.1016/j.bbrc.2011.05.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
|