1
|
Moonwiriyakit A, Dinsuwannakol S, Sontikun J, Timpratueang K, Muanprasat C, Khemawoot P. Fine particulate matter PM2.5 and its constituent, hexavalent chromium induce acute cytotoxicity in human airway epithelial cells via inflammasome-mediated pyroptosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104416. [PMID: 38492761 DOI: 10.1016/j.etap.2024.104416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/14/2024] [Indexed: 03/18/2024]
Abstract
PM2.5-induced airway injury contributes to an increased rate of respiratory morbidity. However, the relationship between PM2.5 toxicants and acute cytotoxic effects remains poorly understood. This study aimed to investigate the mechanisms of PM2.5- and its constituent-induced cytotoxicity in human airway epithelial cells. Exposure to PM2.5 resulted in dose-dependent cytotoxicity within 24 h. Among the PM2.5 constituents examined, Cr(VI) at the dose found in PM2.5 exhibited cytotoxic effects. Both PM2.5 and Cr(VI) cause necrosis while also upregulating the expression of proinflammatory cytokine transcripts. Interestingly, exposure to the conditioned PM, obtained from adsorption in the Cr(VI)-reducing agents, FeSO4 and EDTA, showed a decrease in cytotoxicity. Furthermore, PM2.5 mechanistically enhances programmed pyroptosis through the activation of NLRP3/caspase-1/Gasdermin D pathway and increase of IL-1β. These pyroptosis markers were reduced when exposure to conditioned PM. These findings provide a deeper understanding of mechanisms underlying PM2.5 and Cr(VI) in acute airway toxicity.
Collapse
Affiliation(s)
- Aekkacha Moonwiriyakit
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand.
| | - Sasiwimol Dinsuwannakol
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Jenjira Sontikun
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Kanokphorn Timpratueang
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
| |
Collapse
|
2
|
Wang L, Bayanbold K, Zhao L, Wang Y, Adamcakova-Dodd A, Thorne PS, Yang H, Jiang BH, Liu LZ. Redox sensitive miR-27a/b/Nrf2 signaling in Cr(VI)-induced carcinogenesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151118. [PMID: 34718002 PMCID: PMC9387726 DOI: 10.1016/j.scitotenv.2021.151118] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/14/2021] [Accepted: 10/17/2021] [Indexed: 05/27/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known carcinogen that can cause several types of cancer including lung cancer. NF-E2-related factor 2 (Nrf2), the redox sensitive transcription factor, can protect normal cells from a variety of toxicants and carcinogens by inducing the expression of cellular protective genes and maintaining redox balance. However, Nrf2 also protects cancer cells from radio- and chemo-therapies and facilitates cancer progression. Although Cr(VI) treatment has been demonstrated to upregulate Nrf2 expression, the mechanisms for Nrf2 regulation upon chronic Cr(VI) exposure remain to be elucidated. We found that Nrf2 was upregulated in BEAS-2B cells exposed to Cr(VI) from 1 to 5 months, and also in Cr(VI)-induced transformed (Cr-T) cells with Cr(VI) treatment for 6 months. We showed that KEAP1, the classic negative regulator of Nrf2, was downregulated after Cr(VI) exposure for 4 months, suggesting that Nrf2 induction by Cr(VI) treatment is through KEAP1 decrease at late stage. To further decipher the mechanisms of Nrf2 upregulation at early stage of Cr(VI) exposure, we demonstrated that miR-27a and miR-27b were redox sensitive miRNAs, since reactive oxygen species (ROS) scavengers induced miR-27a/b expression. After Cr(VI) exposure for 1 month, the expression levels of miR-27a/b was dramatically decreased. The changes of miR-27a/b and their target Nrf2 were confirmed in vivo by mouse model intranasally exposed to Cr(VI) for 12 weeks. Nrf2 was a direct target of miR-27a/b, which acted as tumor suppressors in vitro and in vivo to inhibit tumorigenesis and cancer development of Cr-T cells. The results suggested that the inhibition of miR-27a/b was responsible for Nrf2 upregulation at both early stage and late stage of Cr(VI) exposure. This novel regulation of Nrf2 upon chronic Cr(VI) exposure through redox-regulated miR-27a/b will provide potential targets for preventing and treating Cr(VI)-induced carcinogenesis in the future.
Collapse
Affiliation(s)
- Lin Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States; Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Khaliunaa Bayanbold
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States; Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Lei Zhao
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Yifang Wang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States
| | - Hushan Yang
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States.
| | - Ling-Zhi Liu
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, PA, United States.
| |
Collapse
|
3
|
Zhang Z, Costa M. p62 functions as a signal hub in metal carcinogenesis. Semin Cancer Biol 2021; 76:267-278. [PMID: 33894381 PMCID: PMC9161642 DOI: 10.1016/j.semcancer.2021.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/06/2021] [Accepted: 04/15/2021] [Indexed: 12/13/2022]
Abstract
A number of metals are toxic and carcinogenic to humans. Reactive oxygen species (ROS) play an important role in metal carcinogenesis. Oxidative stress acts as the converging point among various stressors with ROS being the main intracellular signal transducer. In metal-transformed cells, persistent expression of p62 and erythroid 2-related factor 2 (Nrf2) result in apoptosis resistance, angiogenesis, inflammatory microenvironment, and metabolic reprogramming, contributing to overall mechanism of metal carcinogenesis. Autophagy, a conserved intracellular process, maintains cellular homeostasis by facilitating the turnover of protein aggregates, cellular debris, and damaged organelles. In addition to being a substrate of autophagy, p62 is also a crucial molecule in a myriad of cellular functions and in molecular events, which include oxidative stress, inflammation, apoptosis, cell proliferation, metabolic reprogramming, that modulate cell survival and tumor growth. The multiple functions of p62 are appreciated by its ability to interact with several key components involved in various oncogenic pathways. This review summarizes the current knowledge and progress in studies of p62 and metal carcinogenesis with emphasis on oncogenic pathways related to oxidative stress, inflammation, apoptosis, and metabolic reprogramming.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, 341 East 25th Street, New York, NY 10010, USA.
| |
Collapse
|
4
|
Abstract
Chromium (Cr) is a common element in the Earth’s crust. It may exist in different oxidation states, Cr(0), Cr(III) and Cr(VI), with Cr(III) and Cr(VI) being relatively stable and largely predominant. Chromium’s peculiarity is that its behavior relies on its valence state. Cr(III) is a trace element in humans and plays a major role in glucose and fat metabolism. The beneficial effects of Cr(III) in obesity and types 2 diabetes are known. It has been long considered an essential element, but now it has been reclassified as a nutritional supplement. On the other hand, Cr(VI) is a human carcinogen and exposure to it occurs both in occupational and environmental contexts. It induces also epigenetic effects on DNA, histone tails and microRNA; its toxicity seems to be related to its higher mobility in soil and swifter penetration through cell membranes than Cr(III). The microorganisms Acinetobacter sp. Cr1 and Pseudomonas sp. Cr13 have been suggested as a promising agent for bioremediation of Cr(VI). This review intends to underline the important role of Cr(III) for human health and the dangerousness of Cr(VI) as a toxic element. The dual and opposing roles of this metal make it particularly interesting. An overview of the recent literature is reported in support.
Collapse
|
5
|
Chen QY, Murphy A, Sun H, Costa M. Molecular and epigenetic mechanisms of Cr(VI)-induced carcinogenesis. Toxicol Appl Pharmacol 2019; 377:114636. [PMID: 31228494 DOI: 10.1016/j.taap.2019.114636] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/11/2022]
Abstract
Chromium (Cr) is a naturally occurring metallic element found in the Earth's crust. While trivalent chromium ([Cr(III)] is considered non-carcinogenic, hexavalent chromium [Cr(VI)] has long been established as an IARC class I human carcinogen, known to induce cancers of the lung. Current literature suggests that Cr(VI) is capable of inducing carcinogenesis through both genetic and epigenetic mechanisms. Although much has been learned about the molecular etiology of Cr(VI)-induced lung carcinogenesis, more remains to be explored. In particular, the explicit epigenetic alterations induced by Cr(VI) in lung cancer including histone modifications and miRNAs, remain understudied. Through comprehensive review of available literature found between 1973 and 2019, this article provides a summary of updated understanding of the molecular mechanisms of Cr(VI)-carcinogenesis. In addition, this review identifies potential research gaps in the areas of histone modifications and miRNAs, which may prompt new niches for future research.
Collapse
Affiliation(s)
- Qiao Yi Chen
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, 341 East 25 Street, New York, NY 10016, United States of America.
| |
Collapse
|
6
|
Mahmoud AM, Abd El-Twab SM. Caffeic acid phenethyl ester protects the brain against hexavalent chromium toxicity by enhancing endogenous antioxidants and modulating the JAK/STAT signaling pathway. Biomed Pharmacother 2017; 91:303-311. [PMID: 28463793 DOI: 10.1016/j.biopha.2017.04.073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/26/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is commonly used in industry, and is a proven toxin and carcinogen. However, the information regarding its neurotoxic mechanism is not completely understood. The present study was designed to scrutinize the possible protective effects of caffeic acid phenethyl ester (CAPE), a bioactive phenolic of propolis extract, on Cr(VI)-induced brain injury in rats, with an emphasis on the JAK/STAT signaling pathway. Rats received 2mg/kgK2CrO4 and concurrently treated with 20mg/kg CAPE for 30 days. Cr(VI)-induced rats showed a significant increase in cerebral lipid peroxidation, nitric oxide and pro-inflammatory cytokines, with concomitantly declined antioxidants and acetylcholinesterase. CAPE attenuated oxidative stress and inflammation and enhanced antioxidant defenses in the cerebrum of rats. Cr(VI) significantly up-regulated JAK2, STAT3 and SOCS3, an effect that was reversed by CAPE. In conclusion, CAPE protects the brain against Cr(VI) toxicity through abrogation of oxidative stress, inflammation and down-regulation of JAK2/STAT3 signaling in a SOCS3-independent mechanism.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| | - Sanaa M Abd El-Twab
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt
| |
Collapse
|
7
|
Ganapathy S, Li P, Lafontant J, Xiong R, Yu T, Zhang G, Chen C. Chromium IV exposure, via Src/Ras signaling, promotes cell transformation. Mol Carcinog 2017; 56:1808-1815. [PMID: 28218450 DOI: 10.1002/mc.22639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 01/01/2023]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known environment carcinogen. The exposure of Cr(VI) through contaminated soil, air particles, and drinking water is a strong concern for the public health worldwide. While many studies have been done, it remains unclear which intracellular molecules transduce Cr(VI)-mediated carcinogenic signaling in cells to promote cancer. In this study, we demonstrated that upon Cr(VI) treatment, the intracellular receptor src was activated, which further upregulated Ras activity, leading to the augmentation of ROS and onset of ER stress in human lung epithelial BEAS-2B or keratinocytes. These cells were formed colonies in soft agar cultures following the persistent Cr(VI) treatment. Furthermore, anti-apoptotic factor Bcl-2 was upregulated and activated in the colonies. Thus, our study suggests that Cr(VI), though activating the src and Ras signaling axis, perturbs redox state and invokes ER stress for the establishment of carcinogenic actions in the cells. In this process, Bcl-2 appears playing an important role. By uncovering these intracellular targets, our study may help developing novel strategies for better environmental protection, especially in areas contaminated or polluted by Cr(VI) as well as for effective cancer treatments.
Collapse
Affiliation(s)
- Suthakar Ganapathy
- Center for Drug Development, Northeastern University, Boston, Massachusetts
| | - Ping Li
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China.,The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | - Jean Lafontant
- Center for Drug Development, Northeastern University, Boston, Massachusetts
| | - Rui Xiong
- The Institute of Clinic Sciences, Sahlgrenska Academy, Gothenburg, Sweden
| | - Tianqi Yu
- Center for Drug Development, Northeastern University, Boston, Massachusetts
| | - Guojun Zhang
- The First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Changyan Chen
- Center for Drug Development, Northeastern University, Boston, Massachusetts
| |
Collapse
|
8
|
Wang B, Li N, Deng F, Buglak N, Park G, Su S, Ren A, Shen G, Tao S, Guo X. Human bronchial epithelial cell injuries induced by fine particulate matter from sandstorm and non-sandstorm periods: Association with particle constituents. J Environ Sci (China) 2016; 47:201-210. [PMID: 27593287 DOI: 10.1016/j.jes.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/23/2015] [Accepted: 12/16/2015] [Indexed: 06/06/2023]
Abstract
Epidemiological studies have demonstrated the exacerbation of respiratory diseases following sandstorm-derived particulate matter (PM) exposure. The presence of anthropogenic and biological agents on the sandstorm PM and the escalation of PM<2.5μm (PM2.5) pollution in China have led to serious concerns regarding the health effects of PM2.5 during Asian sandstorms. We investigated how changes in PM2.5 composition, as the weather transitioned towards a sandstorm, affected human airway epithelial cells. Six PM2.5 samples covering two sandstorm events and their respective background and transition periods were collected in Baotou, an industrial city near the Gobi Desert in China. PM samples from all three periods had mild cytotoxicity in human bronchial epithelial cell line BEAS-2B, which was positively correlated with the contents of polycyclic aromatic hydrocarbons and several metals. All PM samples potently increased the release of interleukin-6 (IL-6) and interleukin-8 (IL-8). Endotoxin in all samples contributed significantly to the IL-6 response, with only a minor effect on IL-8. Cr was positively correlated with both IL-6 and IL-8 release, while Si was only associated with the increase of IL-6. Our study suggests that local agricultural and industrial surroundings in addition to the sandstorm play important roles in the respiratory effects of sandstorm-derived PM.
Collapse
Affiliation(s)
- Bin Wang
- Institute of Reproductive & Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, China.
| | - Ning Li
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA.
| | - Furong Deng
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Nicholas Buglak
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | - George Park
- Department of Pathobiology & Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing 48824, USA
| | - Shu Su
- Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Aiguo Ren
- Institute of Reproductive & Child Health/Ministry of Health Key Laboratory of Reproductive Health, School of Public Health, Peking University, Beijing 100191, China
| | - Guofeng Shen
- Jiangsu Provincial Academy of Environmental Science, Nanjing 210036, China
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China
| | - Xinbiao Guo
- Department of Occupational & Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
9
|
Pratheeshkumar P, Son YO, Divya SP, Turcios L, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Shi X. Hexavalent chromium induces malignant transformation of human lung bronchial epithelial cells via ROS-dependent activation of miR-21-PDCD4 signaling. Oncotarget 2016; 7:51193-51210. [PMID: 27323401 PMCID: PMC5239469 DOI: 10.18632/oncotarget.9967] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/20/2016] [Indexed: 12/11/2022] Open
Abstract
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with an increased risk of lung cancer. However, the mechanisms underlying Cr(VI)-induced carcinogenesis remain unclear. MicroRNA-21 (miR-21) is a key regulator of oncogenic processes. Studies have shown that miR-21 exerts its oncogenic activity by targeting the tumor suppressor gene programmed cell death 4 (PDCD4). The present study examined the role of miR-21-PDCD4 signaling in Cr(VI)-induced cell transformation and tumorigenesis. Results showed that Cr(VI) induces ROS generation in human bronchial epithelial (BEAS-2B) cells. Chronic exposure to Cr(VI) is able to cause malignant transformation in BEAS-2B cells. Cr(VI) caused a significant increase of miR-21 expression associated with an inhibition of PDCD4 expression. Notably, STAT3 transcriptional activation by IL-6 is crucial for the Cr(VI)-induced miR-21 elevation. Stable knockdown of miR-21 or overexpression of PDCD4 in BEAS-2B cells significantly reduced the Cr(VI)-induced cell transformation. Furthermore, the Cr(VI) induced inhibition of PDCD4 suppressed downstream E-cadherin protein expression, but promoted β-catenin/TCF-dependent transcription of uPAR and c-Myc. We also found an increased miR-21 level and decreased PDCD4 expression in xenograft tumors generated with chronic Cr(VI)-exposed BEAS-2B cells. In addition, stable knockdown of miR-21 and overexpression of PDCD4 reduced the tumorogenicity of chronic Cr(VI)-exposed BEAS-2B cells in nude mice. Taken together, these results demonstrate that the miR-21-PDCD4 signaling axis plays an important role in Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Lilia Turcios
- Department of Surgery, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Donghern Kim
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Jin Dai
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Zhuo Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, Lexington, KY, USA
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
10
|
Honda A, Tsuji K, Matsuda Y, Hayashi T, Fukushima W, Sawahara T, Kudo H, Murayama R, Takano H. Effects of Air Pollution-Related Heavy Metals on the Viability and Inflammatory Responses of Human Airway Epithelial Cells. Int J Toxicol 2015; 34:195-203. [DOI: 10.1177/1091581815575757] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Various metals produced from human activity are ubiquitously detected in ambient air. The metals may lead to induction and/or exacerbation of respiratory diseases, but the significant metals and factors contributing to such diseases have not been identified. To compare the effects of each metal and different oxidation states of metals on human airway, we examined the viability and production of interleukin (IL)-6 and IL-8 using BEAS-2B cell line, derived from human airway epithelial cells. Airway epithelial cells were exposed to Mn2+, V4+, V5+, Cr3+, Cr6+, Zn2+, Ni2+, and Pb2+ at a concentration of 0.5, 5, 50, or 500 μmol/L for 24 hours. Mn and V decreased the cell viability in a concentration-dependent manner, and V5+ tended to have a greater effect than V4+. The Cr decreased the cell viability, and (Cr+6) at concentrations of 50 and 500 μmol/L was more toxic than (Cr+3). Zn at a concentration of 500 μmol/L greatly decreased the cell viability, whereas Ni at the same concentration increased it. Pb produced fewer changes. Mn and Ni at a concentration of 500 μmol/L induced the significant production of IL-6 and IL-8. However, most of the metals including (V+4, V+5), (Cr+3, Cr+6), Zn, and Pb inhibited the production of both IL-6 and IL-8. The present results indicate that various heavy metals have different effects on toxicity and the proinflammatory responses of airway epithelial cells, and those influences also depend on the oxidation states of the metals.
Collapse
Affiliation(s)
- Akiko Honda
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Kenshi Tsuji
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Yugo Matsuda
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Tomohiro Hayashi
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Wataru Fukushima
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Takahiro Sawahara
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Hitomi Kudo
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Rumiko Murayama
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| | - Hirohisa Takano
- Department of Environmental Engineering, Environmental Health Division, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, Japan
| |
Collapse
|
11
|
Riedmann C, Ma Y, Melikishvili M, Godfrey SG, Zhang Z, Chen KC, Rouchka EC, Fondufe-Mittendorf YN. Inorganic Arsenic-induced cellular transformation is coupled with genome wide changes in chromatin structure, transcriptome and splicing patterns. BMC Genomics 2015; 16:212. [PMID: 25879800 PMCID: PMC4371809 DOI: 10.1186/s12864-015-1295-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/29/2015] [Indexed: 12/29/2022] Open
Abstract
Background Arsenic (As) exposure is a significant worldwide environmental health concern. Low dose, chronic arsenic exposure has been associated with a higher than normal risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. While arsenic-induced biological changes play a role in disease pathology, little is known about the dynamic cellular changes resulting from arsenic exposure and withdrawal. Results In these studies, we sought to understand the molecular mechanisms behind the biological changes induced by arsenic exposure. A comprehensive global approach was employed to determine genome-wide changes to chromatin structure, transcriptome patterns and splicing patterns in response to chronic low dose arsenic and its subsequent withdrawal. Our results show that cells exposed to chronic low doses of sodium arsenite have distinct temporal and coordinated chromatin, gene expression, and miRNA changes consistent with differentiation and activation of multiple biochemical pathways. Most of these temporal patterns in gene expression are reversed when arsenic is withdrawn. However, some gene expression patterns remained altered, plausibly as a result of an adaptive response by cells. Additionally, the correlation of changes to gene expression and chromatin structure solidify the role of chromatin structure in gene regulatory changes due to arsenite exposure. Lastly, we show that arsenite exposure influences gene regulation both at the initiation of transcription as well as at the level of splicing. Conclusions Our results show that adaptation of cells to iAs-mediated EMT is coupled to changes in chromatin structure effecting differential transcriptional and splicing patterns of genes. These studies provide new insights into the mechanism of iAs-mediated pathology, which includes epigenetic chromatin changes coupled with changes to the transcriptome and splicing patterns of key genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1295-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caitlyn Riedmann
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Ye Ma
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Manana Melikishvili
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Steven Grason Godfrey
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA.
| | - Zhou Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY, 40536, USA.
| | - Kuey Chu Chen
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, 40536, USA.
| | - Eric C Rouchka
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY, 40292, USA.
| | | |
Collapse
|
12
|
Pratheeshkumar P, Son YO, Divya SP, Roy RV, Hitron JA, Wang L, Kim D, Dai J, Asha P, Zhang Z, Wang Y, Shi X. Luteolin inhibits Cr(VI)-induced malignant cell transformation of human lung epithelial cells by targeting ROS mediated multiple cell signaling pathways. Toxicol Appl Pharmacol 2014; 281:230-41. [PMID: 25448439 DOI: 10.1016/j.taap.2014.10.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/22/2014] [Accepted: 10/14/2014] [Indexed: 12/27/2022]
Abstract
Hexavalent chromium [Cr(VI)] is a well-known human carcinogen associated with the incidence of lung cancer. Inhibition of metal induced carcinogenesis by a dietary antioxidant is a novel approach. Luteolin, a natural dietary flavonoid found in fruits and vegetables, possesses potent antioxidant and anti-inflammatory activity. We found that short term exposure of human bronchial epithelial cells (BEAS-2B) to Cr(VI) (5μM) showed a drastic increase in ROS generation, NADPH oxidase (NOX) activation, lipid peroxidation, and glutathione depletion, which were significantly inhibited by the treatment with luteolin in a dose dependent manner. Treatment with luteolin decreased AP-1, HIF-1α, COX-2, and iNOS promoter activity induced by Cr(VI) in BEAS-2B cells. In addition, luteolin protected BEAS-2B cells from malignant transformation induced by chronic Cr(VI) exposure. Moreover, luteolin also inhibited the production of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α) and VEGF in chronic Cr(VI) exposed BEAS-2B cells. Western blot analysis showed that luteolin inhibited multiple gene products linked to survival (Akt, Fak, Bcl-2, Bcl-xL), inflammation (MAPK, NF-κB, COX-2, STAT-3, iNOS, TNF-α) and angiogenesis (HIF-1α, VEGF, MMP-9) in chronic Cr(VI) exposed BEAS-2B cells. Nude mice injected with BEAS-2B cells chronically exposed to Cr(VI) in the presence of luteolin showed reduced tumor incidence compared to Cr(VI) alone treated group. Overexpression of catalase (CAT) or SOD2, eliminated Cr(VI)-induced malignant transformation. Overall, our results indicate that luteolin protects BEAS-2B cells from Cr(VI)-induced carcinogenesis by scavenging ROS and modulating multiple cell signaling mechanisms that are linked to ROS. Luteolin, therefore, serves as a potential chemopreventive agent against Cr(VI)-induced carcinogenesis.
Collapse
Affiliation(s)
- Poyil Pratheeshkumar
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Young-Ok Son
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Sasidharan Padmaja Divya
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Ram Vinod Roy
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - John Andrew Hitron
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Lei Wang
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Donghern Kim
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Jin Dai
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Padmaja Asha
- National Centre for Aquatic Animal Health, Cochin University of Science and Technology, Cochin, India
| | - Zhuo Zhang
- Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xianglin Shi
- Center for Research on Environmental Disease, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA; Graduate Center for Toxicology, University of Kentucky, 1095 VA Drive, Lexington, KY 40536, USA.
| |
Collapse
|
13
|
Cytogenomics of hexavalent chromium (Cr 6+) exposed cells: a comprehensive review. Indian J Med Res 2014; 139:349-70. [PMID: 24820829 PMCID: PMC4069729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The altered cellular gene expression profile is being hypothesized as the possible molecular basis navigating the onset or progress of various morbidities. This hypothesis has been evaluated here in respect of Cr 6+ induced toxicity. Several studies using gene microarray show selective and strategic dysregulations of cellular genes and pathways induced by Cr 6+. Relevant literature has been reviewed to unravel these changes in different test systems after exposure to Cr 6+ and also to elucidate association if any, of the altered cytogenomics with Cr 6+ induced toxicity or carcinogenicity. The aim was to verify the hypothesis for critical role of altered cytogenomics in onset of Cr 6+ induced biological/clinical effects by identifying genes modulated commonly by the toxicant irrespective of test system or test concentrations/doses, and by scrutinizing their importance in regulation of the flow of mechanistically linked events crucial for resultant morbidities. Their probability as biomarkers to monitor the toxicant induced biological changes is speculative. The modulated genes have been found to cluster under the pathways that manage onset of oxidative stress, DNA damage, apoptosis, cell-cycle regulation, cytoskeleton, morphological changes, energy metabolism, biosynthesis, oncogenes, bioenergetics, and immune system critical for toxicity. In these studies, the identity of genes has been found to differ remarkably; albeit the trend of pathways' dysregulation has been found to remain similar. We conclude that the intensity of dysregulation of genes or pathways involved in mechanistic events forms a sub-threshold or threshold level depending upon the dose and type (including speciation) of the toxicant, duration of exposure, type of target cells, and niche microenvironment of cells, and the intensity of sub-threshold or threshold level of the altered cytogenomics paves way in toxicant exposed cells eventually either to opt for reversal to differentiation and growth, or to result in toxicity like dedifferentiation and apoptosis, respectively.
Collapse
|
14
|
Ding SZ, Yang YX, Li XL, Michelli-Rivera A, Han SY, Wang L, Pratheeshkumar P, Wang X, Lu J, Yin YQ, Budhraja A, Hitron AJ. Epithelial-mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells. Toxicol Appl Pharmacol 2013; 269:61-71. [PMID: 23518002 DOI: 10.1016/j.taap.2013.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2013] [Revised: 03/07/2013] [Accepted: 03/08/2013] [Indexed: 12/18/2022]
Abstract
Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial-mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention.
Collapse
Affiliation(s)
- Song-Ze Ding
- Department of Internal Medicine, Henan Provincial People's Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000, PR China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Costa AN, Moreno V, Prieto MJ, Urbano AM, Alpoim MC. Induction of morphological changes in BEAS-2B human bronchial epithelial cells following chronic sub-cytotoxic and mildly cytotoxic hexavalent chromium exposures. Mol Carcinog 2010; 49:582-91. [PMID: 20336777 DOI: 10.1002/mc.20624] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Certain hexavalent chromium (Cr(VI)) compounds are well established occupational respiratory tract carcinogens. However, despite extensive studies, the cellular and molecular mechanisms underlying Cr(VI)-induced lung cancer remain poorly understood. In fact, the models used were often suboptimal and yielded conflicting results that were heavily dependent upon the system and experimental conditions employed. Here, we investigated the effects of chronic subcytotoxic and mildly cytotoxic (0.1-2 microM) Cr(VI) exposures on cultures of human bronchial epithelial cells, the main targets of Cr(VI) carcinogenicity. Our studies with the nontumorigenic BEAS-2B cell line suggest that relatively short exposures (h) to sublethal Cr(VI) doses (0.1-1 microM) may render these cells less sensitive to contact inhibition. We have also observed a reduced sensitivity to Cr(VI)-induced apoptosis shortly after the beginning of exposure to a mildly cytotoxic Cr(VI) dose (2 microM). Further studies are needed to determine whether these two phenotypes are involved in the Cr(VI)-induced carcinogenic process. Additionally, evidence gathered in this study strongly points to a Cr(VI) interference with cell adhesion to the substratum and with cell-cell interactions. Finally, by chronically exposing BEAS-2B cells to mildly cytotoxic Cr(VI) doses (1 and 2 microM), we were able to induce changes in cell morphology and pattern of growth characteristic of an early phase of pre-malignant progression.
Collapse
Affiliation(s)
- André N Costa
- Departament de Química Inorgánica, Facultad de Química, y Departament de Microbiologia, Facultad de Biologia, Universitat de Barcelona
| | | | | | | | | |
Collapse
|
16
|
Nemec AA, Zubritsky LM, Barchowsky A. Chromium(VI) stimulates Fyn to initiate innate immune gene induction in human airway epithelial cells. Chem Res Toxicol 2010; 23:396-404. [PMID: 19994902 DOI: 10.1021/tx900365u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mechanisms for pathogenic metal signaling in airway injury or disease promotion are poorly understood. It is widely believed that one mechanism for pathogenic and possible carcinogenic effects of inhaled chromium (Cr(VI)) is inhibition of inducible gene transactivation. However, we recently reported that Cr(VI) inhibition of Sp1-dependent transactivation required signal transducer and activator of transcription 1 (STAT1)-dependent expression of an inhibitory protein in airway epithelium. Thus, Cr(VI) exposures can induce genes, and we hypothesized that this induction resulted from Cr(VI) signaling through an innate immune-like STAT1-dependent pathway initiated by Fyn. Exposure of human airway epithelial (BEAS-2B) cells to Cr(VI) selectively transactivated the STAT-responsive interferon-stimulated response element (ISRE) and induced ISRE-driven transactivation of interferon regulatory factor 7 (IRF7), without affecting the gamma interferon-activated site (GAS)-driven IRF1 expression. Cr(VI)-induced IRF7 was absent or greatly reduced in cells that lacked STAT1, were treated with the Src family kinase inhibitor, PP2, or lacked Fyn. Expressing Fyn, but not Src, in mouse embryonic fibroblasts cells null for Src, Yes, and Fyn restored Cr(VI)-stimulated STAT1 tyrosine phosphorylation and IRF7 expression. Finally, shRNA knockdown of Fyn in BEAS-2B cells prevented Cr(VI)-activated STAT1 transactivation of IRF7. These data support a novel mechanism through which Cr(VI) stimulates Fyn to initiate interferon-like signaling for STAT1-dependent gene transactivation.
Collapse
Affiliation(s)
- Antonia A Nemec
- University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15219, USA
| | | | | |
Collapse
|
17
|
Tajima H, Yoshida T, Ohnuma A, Fukuyama T, Hayashi K, Yamaguchi S, Ohtsuka R, Sasaki J, Tomita M, Kojima S, Takahashi N, Kashimoto Y, Kuwahara M, Takeda M, Kosaka T, Nakashima N, Harada T. Pulmonary injury and antioxidant response in mice exposed to arsenate and hexavalent chromium and their combination. Toxicology 2010; 267:118-24. [DOI: 10.1016/j.tox.2009.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 10/26/2009] [Accepted: 10/27/2009] [Indexed: 11/29/2022]
|
18
|
Mignini F, Tomassoni D, Traini E, Vitali M, Scuri S, Baldoni E, Grappasonni I, Cocchioni M. Immunological pattern alteration in shoe, hide, and leather industry workers exposed to hexavalent chromium. ENVIRONMENTAL TOXICOLOGY 2009; 24:594-602. [PMID: 19051261 DOI: 10.1002/tox.20464] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
OBJECTIVE The aim of this work was to assess the effects of hexavalent chromium [Cr(VI)] on shoe, leather, and hide industry workers, based on the assumption that Cr(VI) can behave as an environmental immunological "stressor." METHODS The immunological patterns of 84 male subjects were studied in relation to Cr(VI) hematic and urinary levels. Cr(VI) was measured through atomic absorption. Lymphocyte subsets, mitogen-mediated lymphocyte-proliferation, cytokine levels, and natural killer (NK) cytotoxic activity were also assayed. RESULTS The urinary levels of the total amount of Cr(VI) were significantly higher in a subgroup of exposed subjects (group B) than in the control or in the lower exposed (group A). In group B, Cr(VI) caused a decrease in the density of glucocorticoid receptors (GR) on peripheral blood mononuclear cells (PBMC) and a increase of IL-6. Cr(VI) did not modify NK-mediated cytotoxicity, the plasmatic levels of inflammatory cytokines and related soluble receptors, and prostaglandin levels, while it tended to increase lymphocyte sensitivity to mitogens and the production of immunomodulant cytokines (IFN-gamma, IL-4, and IL-2). The experimental addition of Cr(VI) to the in vitro lymphocyte culture determined a significant inhibition of phagocytosis percentage, index, and killing percentage. These effects were neutralized by exogenous IFN-gamma. CONCLUSION Cr(VI) could represent an environmental immunological stressor whose effects can be evaluated through laboratory surveys. The lymphocyte mitogen-induced proliferation, GR receptor on PBMC, and IL-6 plasma levels may represent a discriminating element between Cr(VI)-induced stress and other kinds of stress.
Collapse
Affiliation(s)
- Fiorenzo Mignini
- Dipartimento di Medicina Sperimentale e Sanità Pubblica, Via Madonna delle Carceri, Università di Camerino, Camerino.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nemec AA, Leikauf GD, Pitt BR, Wasserloos KJ, Barchowsky A. Nickel mobilizes intracellular zinc to induce metallothionein in human airway epithelial cells. Am J Respir Cell Mol Biol 2009; 41:69-75. [PMID: 19097988 PMCID: PMC2701961 DOI: 10.1165/rcmb.2008-0409oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 12/02/2008] [Indexed: 11/24/2022] Open
Abstract
We recently reported that induction of metallothionein (MT) was critical in limiting nickel (Ni)-induced lung injury in intact mice. Nonetheless, the mechanism by which Ni induces MT expression is unclear. We hypothesized that the ability of Ni to mobilize zinc (Zn) may contribute to such regulation and therefore, we examined the mechanism for Ni-induced MT2A expression in human airway epithelial (BEAS-2B) cells. Ni induced MT2A transcript levels and protein expression by 4 hours. Ni also increased the activity of a metal response element (MRE) promoter luciferase reporter construct, suggesting that Ni induces MRE binding of the metal transcription factor (MTF-1). Exposure to Ni resulted in the nuclear translocation of MTF-1, and Ni failed to induce MT in mouse embryonic fibroblasts lacking MTF-1. As Zn is the only metal known to directly bind MTF-1, we then showed that Ni increased a labile pool of intracellular Zn in cells as revealed by fluorescence-activated cell sorter using the Zn-sensitive fluorophore, FluoZin-3. Ni-induced increases in MT2A mRNA and MRE-luciferase activity were sensitive to the Zn chelator, TPEN, supporting an important role for Zn in mediating the effect of Ni. Although neither the source of labile Zn nor the mechanism by which Ni liberates labile Zn was apparent, it was noteworthy that Ni increased intracellular reactive oxygen species (ROS). Although both N-acetyl cysteine (NAC) and ascorbic acid (AA) decreased Ni-induced increases in ROS, only NAC prevented Ni-induced increases in MT2A mRNA, suggesting a special role for interactions of Ni, thiols, and Zn release.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
20
|
Nemec AA, Barchowsky A. Signal transducer and activator of transcription 1 (STAT1) is essential for chromium silencing of gene induction in human airway epithelial cells. Toxicol Sci 2009; 110:212-23. [PMID: 19403854 DOI: 10.1093/toxsci/kfp084] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium (Cr(VI)) promotes lung injury and pulmonary diseases through poorly defined mechanisms that may involve the silencing of inducible protective genes. The current study investigated the hypothesis that Cr(VI) actively signals through a signal transducer and activator of transcription 1 (STAT1)-dependent pathway to silence nickel (Ni)-induced expression of vascular endothelial cell growth factor A (VEGFA), an important mediator of lung injury and repair. In human bronchial airway epithelial (BEAS-2B) cells, Ni-induced VEGFA transcription by stimulating an extracellular regulated kinase (ERK) signaling cascade that involved Src kinase-activated Sp1 transactivation, as well as increased hypoxia-inducible factor-1 alpha (HIF-1 alpha) stabilization and DNA binding. Ni-stimulated ERK, Src, and HIF-1 alpha activities, as well as Ni-induced VEGFA transcript levels were inhibited in Cr(VI)-exposed cells. We previously demonstrated that Cr(VI) stimulates STAT1 to suppress VEGFA expression. In BEAS-2B cells stably expressing STAT1 short hairpin RNA, Cr(VI) increased VEGFA transcript levels and Sp1 transactivation. Moreover, in the absence of STAT1, Cr(VI), and Ni coexposures positively interacted to further increase VEGFA transcripts. This study demonstrates that metal-stimulated signaling cascades interact to regulate transcription and induction of adaptive or repair responses in airway cells. In addition, the data implicate STAT1 as a rate limiting mediator of Cr(VI)-stimulated gene regulation and suggest that cells lacking STAT1, such as many tumor cell lines, have opposite responses to Cr(VI) relative to normal cells.
Collapse
Affiliation(s)
- Antonia A Nemec
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | | |
Collapse
|
21
|
Beaver LM, Stemmy EJ, Constant SL, Schwartz A, Little LG, Gigley JP, Chun G, Sugden KD, Ceryak SM, Patierno SR. Lung injury, inflammation and Akt signaling following inhalation of particulate hexavalent chromium. Toxicol Appl Pharmacol 2009; 235:47-56. [PMID: 19109987 PMCID: PMC3640501 DOI: 10.1016/j.taap.2008.11.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 10/30/2008] [Accepted: 11/17/2008] [Indexed: 12/18/2022]
Abstract
Certain particulate hexavalent chromium [Cr(VI)] compounds are human respiratory carcinogens that release genotoxic soluble chromate, and are associated with fibrosis, fibrosarcomas, adenocarcinomas and squamous cell carcinomas of the lung. We postulate that inflammatory processes and mediators may contribute to the etiology of Cr(VI) carcinogenesis, however the immediate (0-24 h) pathologic injury and immune responses after exposure to particulate chromates have not been adequately investigated. Our aim was to determine the nature of the lung injury, inflammatory response, and survival signaling responses following intranasal exposure of BALB/c mice to particulate basic zinc chromate. Factors associated with lung injury, inflammation and survival signaling were measured in airway lavage fluid and in lung tissue. A single chromate exposure induced an acute immune response in the lung, characterized by a rapid and significant increase in IL-6 and GRO-alpha levels, an influx of neutrophils, and a decline in macrophages in lung airways. Histological examination of lung tissue in animals challenged with a single chromate exposure revealed an increase in bronchiolar cell apoptosis and mucosal injury. Furthermore, chromate exposure induced injury and inflammation that progressed to alveolar and interstitial pneumonitis. Finally, a single Cr(VI) challenge resulted in a rapid and persistent increase in the number of airways immunoreactive for phosphorylation of the survival signaling protein Akt, on serine 473. These data illustrate that chromate induces both survival signaling and an inflammatory response in the lung, which we postulate may contribute to early oncogenesis.
Collapse
Affiliation(s)
- Laura M. Beaver
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Institute of Biomedical Sciences, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Erik J. Stemmy
- Institute of Biomedical Sciences, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Stephanie L. Constant
- Institute of Biomedical Sciences, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Arnold Schwartz
- Department of Pathology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Laura G. Little
- The University of Montana, Department of Chemistry, 32 Campus Drive, Missoula, MT 59812
| | - Jason P. Gigley
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Gina Chun
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Institute of Biomedical Sciences, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Kent D. Sugden
- The University of Montana, Department of Chemistry, 32 Campus Drive, Missoula, MT 59812
| | - Susan M. Ceryak
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Institute of Biomedical Sciences, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Department of Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- GW Cancer Institute, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| | - Steven R. Patierno
- Department of Pharmacology and Physiology, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Institute of Biomedical Sciences, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- Department of Medicine, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
- GW Cancer Institute, The George Washington University Medical Center, 2300 I Street NW, Washington, DC 20037
| |
Collapse
|
22
|
Kaczmarek M, Cachau RE, Topol IA, Kasprzak KS, Ghio A, Salnikow K. Metal ions-stimulated iron oxidation in hydroxylases facilitates stabilization of HIF-1 alpha protein. Toxicol Sci 2008; 107:394-403. [PMID: 19074761 DOI: 10.1093/toxsci/kfn251] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The exposure of cells to several metal ions stabilizes HIF-1 alpha protein. However, the molecular mechanisms are not completely understood. They may involve inhibition of hydroxylation by either substitution of iron by metal ions or by iron oxidation in the hydroxylases. Here we provide evidence supporting the latter mechanism. We show that HIF-1 alpha stabilization in human lung epithelial cells occurred following exposure to various metal and metalloid ions, including those that cannot substitute for iron in the hydroxylases. In each case addition of the reducing agent ascorbic acid (AA)* abolished HIF-1 alpha protein stabilization. To better understand the role of iron oxidation in hydroxylase inhibition and to define the role of AA in the enzyme recovery we applied molecular modeling techniques. Our results indicate that the energy required for iron substitution by Ni(II) in the enzyme is high and unlikely to be achieved in a biological system. Additionally, computer modeling allowed us to identify a tridentate coordination of AA with the enzyme-bound iron, which explains the specific demand for AA as the iron reductant. Thus, the stabilization of HIF-1 alpha by numerous metal ions that cannot substitute for iron in the enzyme, the alleviation of this effect by AA, and our computer modeling data support the hypothesis of iron oxidation in the hydroxylases following exposure to metal ions.
Collapse
Affiliation(s)
- Monika Kaczmarek
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
23
|
Sehgal PB. Paradigm shifts in the cell biology of STAT signaling. Semin Cell Dev Biol 2008; 19:329-40. [PMID: 18691663 DOI: 10.1016/j.semcdb.2008.07.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 07/15/2008] [Accepted: 07/17/2008] [Indexed: 01/25/2023]
Abstract
In recent years several of the key tenets of the original cytokine-STAT-signaling paradigm had to be revised. First, the notion that nonphosphorylated "inactive" STATs are present in the cytoplasm as free monomers which dimerized only subsequent to Tyr-phosphorylation has been replaced by the understanding that nonphosphorylated STATs in the cytoplasm exist largely as dimers and high molecular mass "statosome" complexes. Second, the notion that phosphorylation, either of Tyr or Ser residues or both, in STAT species is required for transcriptional activation has been replaced by the realization that nonphosphorylated STATs can be transcriptionally active albeit with respect to sets of target genes distinct from phosphorylated STATs. Third, the notion that it is the activation by phosphorylation of STATs at the plasma membrane that then leads to their import into the nucleus has been replaced by the recognition that even nonphosphorylated STATs shuttle between the cytoplasm and nucleus at all times in a constitutive manner. Fourth, the notion that the trans-cytoplasmic transit of STATs from the plasma membrane to the nuclear import machinery takes place exclusively as a free cytosolic process has been replaced by the understanding that at least a portion of this trans-cytoplasmic transit is mediated via membrane-associated caveolar and endocytic trafficking (the "signaling endosome" hypothesis). Fifth, the targeting and sequestration of activated STAT3 to long-lived endosomes in the cytoplasm requires consideration of STAT3-mediated "signal transduction" from the plasma membrane to cytoplasmic membrane destinations potentially for function(s) in the cytoplasm. Indeed, in tissue sections many discrete histologic cell types display PY-STAT3 almost exclusively in the cytoplasm with little, if any, in the nucleus. New challenges include determining the structural bases for the recruitment of nonphosphorylated dimeric STAT species to the cytosolic face of membranes including at the cytoplasmic tails of respective receptor complexes, the conformational changes subsequent to phosphorylation and the structural bases for the targeting and functions of STAT proteins within the cytoplasm per se.
Collapse
Affiliation(s)
- Pravin B Sehgal
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|