1
|
Naser RH, Rajaii T, Farash BRH, Seyyedtabaei SJ, Hajali V, Sadabadi F, Saburi E. Hematological changes due to malaria - An update. Mol Biochem Parasitol 2024; 259:111635. [PMID: 38857772 DOI: 10.1016/j.molbiopara.2024.111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/12/2024]
Abstract
Malaria, a parasitic infection caused by the genus Plasmodium, results to over 20 million reported cases annually worldwide. Most individuals exhibit various symptoms, and blood analysis plays a crucial role in determining the appropriate treatment approach. This study discusses various hematologic complications associated with different Plasmodium species. A review of scientific databases including PubMed, Science Direct, Web of Science, Scopus, EMBASE, Magiran, SID, IranMedex was conducted using standard keywords such as Plasmodium, malaria, anemia and blood disorders (hematologic disorder) between 2000 and 2024. The review focused on articles pertaining to clinical trials, prospective cohort, retrospective, cross-sectional and case-control studies. Articles evaluating the effects of malaria on blood cells and indices, with target groups including human and animals, were included. Articles not written in English or Farsi were excluded. Our review revealed that, apart from iron deficiency anemia and vascular dysfunction contributed in part by adhesion of infected RBC to endothelium, decreases in hematocrit and hemoglobin levels, as part of pancytopenia and thrombocytopenia, are characteristic of Plasmodium infection. Additionally, the occurrence of inflammation due to the release of inflammatory cytokines and complement activation can complicate the clinical features of malaria in individuals with hematologic conditions.
Collapse
Affiliation(s)
- Rana Hussein Naser
- Department of Science, College of Basic Education, University of Diyala, Iraq
| | - Toktam Rajaii
- Health center no.1, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Razieh Hosseini Farash
- Department of Parasitology and Mycology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Cutaneous Leishmania Research Center, Mashhad University of Medical Sciences, Iran
| | | | - Vahid Hajali
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Sadabadi
- Cutaneous Leishmania Research Center, Mashhad University of Medical Sciences, Iran
| | - Ehsan Saburi
- Medical Genetics and Molecular Medicine Department, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Dogga SK, Rop JC, Cudini J, Farr E, Dara A, Ouologuem D, Djimdé AA, Talman AM, Lawniczak MKN. A single cell atlas of sexual development in Plasmodium falciparum. Science 2024; 384:eadj4088. [PMID: 38696552 DOI: 10.1126/science.adj4088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.
Collapse
Affiliation(s)
| | - Jesse C Rop
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
| | | | - Elias Farr
- Wellcome Sanger Institute, Hinxton CB10 1SA, UK
- Institute for Computational Biomedicine, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany
| | - Antoine Dara
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Dinkorma Ouologuem
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Abdoulaye A Djimdé
- Malaria Research and Training Center (MRTC), Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako (USTTB), Point G, P.O. Box, 1805 Bamako, Mali
| | - Arthur M Talman
- MIVEGEC, University of Montpellier, IRD, CNRS, Montpellier, France
| | | |
Collapse
|
3
|
Fréville A, Ressurreição M, van Ooij C. Identification of a non-exported Plasmepsin V substrate that functions in the parasitophorous vacuole of malaria parasites. mBio 2024; 15:e0122323. [PMID: 38078758 PMCID: PMC10790765 DOI: 10.1128/mbio.01223-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/26/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE In the manuscript, the authors investigate the role of the protease Plasmepsin V in the parasite-host interaction. Whereas processing by Plasmepsin V was previously thought to target a protein for export into the host cell, the authors now show that there are proteins cleaved by this protease that are not exported but instead function at the host-parasite interface. This changes the view of this protease, which turns out to have a much broader role than anticipated. The result shows that the protease may have a function much more similar to that of related organisms. The authors also investigate the requirements for protein export by analyzing exported and non-exported proteins and find commonalities between the proteins of each set that further our understanding of the requirements for protein export.
Collapse
Affiliation(s)
- Aline Fréville
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Margarida Ressurreição
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
4
|
Jonsdottir TK, Elsworth B, Cobbold S, Gabriela M, Ploeger E, Parkyn Schneider M, Charnaud SC, Dans MG, McConville M, Bullen HE, Crabb BS, Gilson PR. PTEX helps efficiently traffic haemoglobinases to the food vacuole in Plasmodium falciparum. PLoS Pathog 2023; 19:e1011006. [PMID: 37523385 PMCID: PMC10414648 DOI: 10.1371/journal.ppat.1011006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/10/2023] [Accepted: 07/16/2023] [Indexed: 08/02/2023] Open
Abstract
A key element of Plasmodium biology and pathogenesis is the trafficking of ~10% of the parasite proteome into the host red blood cell (RBC) it infects. To cross the parasite-encasing parasitophorous vacuole membrane, exported proteins utilise a channel-forming protein complex termed the Plasmodium translocon of exported proteins (PTEX). PTEX is obligatory for parasite survival, both in vitro and in vivo, suggesting that at least some exported proteins have essential metabolic functions. However, to date only one essential PTEX-dependent process, the new permeability pathways, has been described. To identify other essential PTEX-dependant proteins/processes, we conditionally knocked down the expression of one of its core components, PTEX150, and examined which pathways were affected. Surprisingly, the food vacuole mediated process of haemoglobin (Hb) digestion was substantially perturbed by PTEX150 knockdown. Using a range of transgenic parasite lines and approaches, we show that two major Hb proteases; falcipain 2a and plasmepsin II, interact with PTEX core components, implicating the translocon in the trafficking of Hb proteases. We propose a model where these proteases are translocated into the PV via PTEX in order to reach the cytostome, located at the parasite periphery, prior to food vacuole entry. This work offers a second mechanistic explanation for why PTEX function is essential for growth of the parasite within its host RBC.
Collapse
Affiliation(s)
- Thorey K. Jonsdottir
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan Elsworth
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Simon Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Mikha Gabriela
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Ellen Ploeger
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | | | - Sarah C. Charnaud
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Madeline G. Dans
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Malcolm McConville
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, Australia
| | - Hayley E. Bullen
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
5
|
Mullick D, Rechav K, Leiserowitz L, Regev-Rudzki N, Dzikowski R, Elbaum M. Diffraction contrast in cryo-scanning transmission electron tomography reveals the boundary of hemozoin crystals in situ. Faraday Discuss 2022; 240:127-141. [PMID: 35938388 DOI: 10.1039/d2fd00088a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Malaria is a potentially fatal infectious disease caused by the obligate intracellular parasite Plasmodium falciparum. The parasite infects human red blood cells (RBC) and derives nutrition by catabolism of hemoglobin. As amino acids are assimilated from the protein component, the toxic heme is released. Molecular heme is detoxified by rapid sequestration to physiologically insoluble hemozoin crystals within the parasite's digestive vacuole (DV). Common antimalarial drugs interfere with this crystallization process, leaving the parasites vulnerable to the by-product of their own metabolism. A fundamental debate with important implications on drug mechanism regards the chemical environment of crystallization in situ, whether aqueous or lipid. This issue had been addressed previously by cryogenic soft X-ray tomography. We employ cryo-scanning transmission electron tomography (CSTET) to probe parasite cells throughout the life cycle in a fully hydrated, vitrified state at higher resolution. During the acquisition of CSTET data, Bragg diffraction from the hemozoin provides a uniquely clear view of the crystal boundary at nanometer resolution. No intermediate medium, such as a lipid coating or shroud, could be detected surrounding the crystals. The present study describes a unique application of CSTET in the study of malaria. The findings can be extended to evaluate new drug candidates affecting hemozoin crystal growth.
Collapse
Affiliation(s)
- Debakshi Mullick
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| | - Katya Rechav
- Electron Microscopy Unit, Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Leslie Leiserowitz
- Department of Molecular Chemistry and Materials Science, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Neta Regev-Rudzki
- Department of Biomolecular Sciences, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Dzikowski
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, and The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Faculty of Chemistry, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Deshmukh SS, Byaruhanga O, Tumwebaze P, Akin D, Greenhouse B, Egan ES, Demirci U. Automated Recognition of Plasmodium falciparum Parasites from Portable Blood Levitation Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105396. [PMID: 35957519 PMCID: PMC9534981 DOI: 10.1002/advs.202105396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/03/2022] [Indexed: 06/15/2023]
Abstract
In many malaria-endemic regions, current detection tools are inadequate in diagnostic accuracy and accessibility. To meet the need for direct, phenotypic, and automated malaria parasite detection in field settings, a portable platform to process, image, and analyze whole blood to detect Plasmodium falciparum parasites, is developed. The liberated parasites from lysed red blood cells suspended in a magnetic field are accurately detected using this cellphone-interfaced, battery-operated imaging platform. A validation study is conducted at Ugandan clinics, processing 45 malaria-negative and 36 malaria-positive clinical samples without external infrastructure. Texture and morphology features are extracted from the sample images, and a random forest classifier is trained to assess infection status, achieving 100% sensitivity and 91% specificity against gold-standard measurements (microscopy and polymerase chain reaction), and limit of detection of 31 parasites per µL. This rapid and user-friendly platform enables portable parasite detection and can support malaria diagnostics, surveillance, and research in resource-constrained environments.
Collapse
Affiliation(s)
- Shreya S Deshmukh
- Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA, 94305, USA
- Canary Center for Early Cancer Detection, Bioacoustic MEMS in Medicine Lab, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | | | | | - Demir Akin
- Canary Center for Early Cancer Detection, Bioacoustic MEMS in Medicine Lab, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, 94110, USA
| | - Elizabeth S Egan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Utkan Demirci
- Canary Center for Early Cancer Detection, Bioacoustic MEMS in Medicine Lab, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| |
Collapse
|
7
|
Maier AG, van Ooij C. The role of cholesterol in invasion and growth of malaria parasites. Front Cell Infect Microbiol 2022; 12:984049. [PMID: 36189362 PMCID: PMC9522969 DOI: 10.3389/fcimb.2022.984049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria parasites are unicellular eukaryotic pathogens that develop through a complex lifecycle involving two hosts, an anopheline mosquito and a vertebrate host. Throughout this lifecycle, the parasite encounters widely differing conditions and survives in distinct ways, from an intracellular lifestyle in the vertebrate host to exclusively extracellular stages in the mosquito. Although the parasite relies on cholesterol for its growth, the parasite has an ambiguous relationship with cholesterol: cholesterol is required for invasion of host cells by the parasite, including hepatocytes and erythrocytes, and for the development of the parasites in those cells. However, the parasite is unable to produce cholesterol itself and appears to remove cholesterol actively from its own plasma membrane, thereby setting up a cholesterol gradient inside the infected host erythrocyte. Overall a picture emerges in which the parasite relies on host cholesterol and carefully controls its transport. Here, we describe the role of cholesterol at the different lifecycle stages of the parasites.
Collapse
Affiliation(s)
- Alexander G. Maier
- Research School of Biology, The Australian National University, Canberra ACT, Australia
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| | - Christiaan van Ooij
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
- *Correspondence: Alexander G. Maier, ; Christiaan van Ooij,
| |
Collapse
|
8
|
Deletion of the Plasmodium falciparum exported protein PTP7 leads to Maurer’s clefts vesiculation, host cell remodeling defects, and loss of surface presentation of EMP1. PLoS Pathog 2022; 18:e1009882. [PMID: 35930605 PMCID: PMC9385048 DOI: 10.1371/journal.ppat.1009882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/17/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022] Open
Abstract
Presentation of the variant antigen, Plasmodium falciparum erythrocyte membrane protein 1 (EMP1), at knob-like protrusions on the surface of infected red blood cells, underpins the parasite’s pathogenicity. Here we describe a protein PF3D7_0301700 (PTP7), that functions at the nexus between the intermediate trafficking organelle, the Maurer’s cleft, and the infected red blood cell surface. Genetic disruption of PTP7 leads to accumulation of vesicles at the Maurer’s clefts, grossly aberrant knob morphology, and failure to deliver EMP1 to the red blood cell surface. We show that an expanded low complexity sequence in the C-terminal region of PTP7, identified only in the Laverania clade of Plasmodium, is critical for efficient virulence protein trafficking. We describe a malaria parasite protein, PTP7, involved in virulence factor trafficking that is associated with Maurer’s clefts and other trafficking compartments. Upon disruption of the PTP7 locus, the Maurer’s clefts become decorated with vesicles; the knobby protrusions on the host red blood cell surface are fewer and distorted; and trafficking of the virulence protein, EMP1, to the host red blood cell surface is ablated. We provide evidence that a region of PTP7 with low sequence complexity plays an important role in virulence protein trafficking from the Maurer’s clefts.
Collapse
|
9
|
Giorgalli M, Cunningham DA, Broncel M, Sait A, Harrison TE, Hosking C, Vandomme A, Amis SI, Antonello A, Sullivan L, Uwadiae F, Torella L, Higgins MK, Langhorne J. Differential Trafficking and Expression of PIR Proteins in Acute and Chronic Plasmodium Infections. Front Cell Infect Microbiol 2022; 12:877253. [PMID: 35782145 PMCID: PMC9245118 DOI: 10.3389/fcimb.2022.877253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
Plasmodium multigene families are thought to play important roles in the pathogenesis of malaria. Plasmodium interspersed repeat (pir) genes comprise the largest multigene family in many Plasmodium species. However, their expression pattern and localisation remain to be elucidated. Understanding protein subcellular localisation is fundamental to reveal the functional importance and cell-cell interactions of the PIR proteins. Here, we use the rodent malaria parasite, Plasmodium chabaudi chabaudi, as a model to investigate the localisation pattern of this gene family. We found that most PIR proteins are co-expressed in clusters during acute and chronic infection; members of the S7 clade are predominantly expressed during the acute-phase, whereas members of the L1 clade dominate the chronic-phase of infection. Using peptide antisera specific for S7 or L1 PIRS, we show that these PIRs have different localisations within the infected red blood cells. S7 PIRs are exported into the infected red blood cell cytoplasm where they are co-localised with parasite-induced host cell modifications termed Maurer’s clefts, whereas L1 PIRs are localised on or close to the parasitophorous vacuolar membrane. This localisation pattern changes following mosquito transmission and during progression from acute- to chronic-phase of infection. The presence of PIRs in Maurer’s clefts, as seen for Plasmodium falciparum RIFIN and STEVOR proteins, might suggest trafficking of the PIRs on the surface of the infected erythrocytes. However, neither S7 nor L1 PIR proteins detected by the peptide antisera are localised on the surface of infected red blood cells, suggesting that they are unlikely to be targets of surface variant-specific antibodies or to be directly involved in adhesion of infected red blood cells to host cells, as described for Plasmodium falciparum VAR proteins. The differences in subcellular localisation of the two major clades of Plasmodium chabaudi PIRs across the blood cycle, and the apparent lack of expression on the red cell surface strongly suggest that the function(s) of this gene family may differ from those of other multigene families of Plasmodium, such as the var genes of Plasmodium falciparum.
Collapse
Affiliation(s)
- Maria Giorgalli
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Malgorzata Broncel
- Proteomics Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Aaron Sait
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Thomas E. Harrison
- Laboratory of Molecular Parasitology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Caroline Hosking
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Audrey Vandomme
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sarah I. Amis
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ana Antonello
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Lauren Sullivan
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Faith Uwadiae
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Laura Torella
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Matthew K. Higgins
- Laboratory of Molecular Parasitology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Jean Langhorne
- Malaria Immunology Laboratory, The Francis Crick Institute, London, United Kingdom
- *Correspondence: Jean Langhorne,
| |
Collapse
|
10
|
Kinetic Tracking of Plasmodium falciparum Antigens on Infected Erythrocytes with a Novel Reporter of Protein Insertion and Surface Exposure. mBio 2022; 13:e0040422. [PMID: 35420481 PMCID: PMC9239273 DOI: 10.1128/mbio.00404-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Intracellular malaria parasites export many proteins into their host cell, inserting several into the erythrocyte plasma membrane to enable interactions with their external environment. While static techniques have identified some surface-exposed proteins, other candidates have eluded definitive localization and membrane topology determination. Moreover, both export kinetics and the mechanisms of membrane insertion remain largely unexplored. We introduce Reporter of Insertion and Surface Exposure (RISE), a method for continuous nondestructive tracking of antigen exposure on infected cells. RISE utilizes a small 11-amino acid (aa) HiBit fragment of NanoLuc inserted into a target protein and detects surface exposure through high-affinity complementation to produce luminescence. We tracked the export and surface exposure of CLAG3, a parasite protein linked to nutrient uptake, throughout the Plasmodiumfalciparum cycle in human erythrocytes. Our approach revealed key determinants of trafficking and surface exposure. Removal of a C-terminal transmembrane domain aborted export. Unexpectedly, certain increases in the exposed reporter size improved the luminescence signal, but other changes abolished the surface signal, revealing that both size and charge of the extracellular epitope influence membrane insertion. Marked cell-to-cell variation with larger inserts containing multiple HiBit epitopes suggests complex regulation of CLAG3 insertion at the host membrane. Quantitative, continuous tracking of CLAG3 surface exposure thus reveals multiple factors that determine this protein’s trafficking and insertion at the host erythrocyte membrane. The RISE assay will enable study of surface antigens from divergent intracellular pathogens.
Collapse
|
11
|
Gabriela M, Matthews KM, Boshoven C, Kouskousis B, Jonsdottir TK, Bullen HE, Modak J, Steer DL, Sleebs BE, Crabb BS, de Koning-Ward TF, Gilson PR. A revised mechanism for how Plasmodium falciparum recruits and exports proteins into its erythrocytic host cell. PLoS Pathog 2022; 18:e1009977. [PMID: 35192672 PMCID: PMC8896661 DOI: 10.1371/journal.ppat.1009977] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/04/2022] [Accepted: 02/10/2022] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum exports ~10% of its proteome into its host erythrocyte to modify the host cell's physiology. The Plasmodium export element (PEXEL) motif contained within the N-terminus of most exported proteins directs the trafficking of those proteins into the erythrocyte. To reach the host cell, the PEXEL motif of exported proteins is processed by the endoplasmic reticulum (ER) resident aspartyl protease plasmepsin V. Then, following secretion into the parasite-encasing parasitophorous vacuole, the mature exported protein must be unfolded and translocated across the parasitophorous vacuole membrane by the Plasmodium translocon of exported proteins (PTEX). PTEX is a protein-conducting channel consisting of the pore-forming protein EXP2, the protein unfoldase HSP101, and structural component PTEX150. The mechanism of how exported proteins are specifically trafficked from the parasite's ER following PEXEL cleavage to PTEX complexes on the parasitophorous vacuole membrane is currently not understood. Here, we present evidence that EXP2 and PTEX150 form a stable subcomplex that facilitates HSP101 docking. We also demonstrate that HSP101 localises both within the parasitophorous vacuole and within the parasite's ER throughout the ring and trophozoite stage of the parasite, coinciding with the timeframe of protein export. Interestingly, we found that HSP101 can form specific interactions with model PEXEL proteins in the parasite's ER, irrespective of their PEXEL processing status. Collectively, our data suggest that HSP101 recognises and chaperones PEXEL proteins from the ER to the parasitophorous vacuole and given HSP101's specificity for the EXP2-PTEX150 subcomplex, this provides a mechanism for how exported proteins are specifically targeted to PTEX for translocation into the erythrocyte.
Collapse
Affiliation(s)
- Mikha Gabriela
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- School of Medicine, Deakin University, Geelong, Australia
| | - Kathryn M. Matthews
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Cas Boshoven
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Betty Kouskousis
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
| | - Thorey K. Jonsdottir
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Hayley E. Bullen
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
| | - Joyanta Modak
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - David L. Steer
- Monash Biomedical Proteomics and Metabolomics Facility, Monash University, Melbourne, Australia
| | - Brad E. Sleebs
- ACRF Chemical Biology Division, Walter and Eliza Hall Institute, Melbourne, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Brendan S. Crabb
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- Department of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Tania F. de Koning-Ward
- School of Medicine, Deakin University, Geelong, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia
| | - Paul R. Gilson
- Malaria Virulence and Drug Discovery Group, Burnet Institute, Melbourne, Australia
- Department of Immunology and Microbiology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
12
|
Lugaajju A, Tijani MK, Persson KEM. Flow Cytometry Assay of Plasmodium Falciparum-Specific B-Cell Proportions. Methods Mol Biol 2022; 2470:681-688. [PMID: 35881383 DOI: 10.1007/978-1-0716-2189-9_51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Detection of P. falciparum-specific subpopulations of B-cells is important for studies of immunity in malaria. This protocol relies on the photostability and protein loading capacity of carboxylated quantum dots to detect a broad range of different P. falciparum-specific B-cells. Infected red blood cell ghosts, obtained by permeabilization of infected cells with Streptolysin O, are coupled with carboxyl quantum dots using N-ethyl-N-dimethylaminopropyl-carbodiimide condensation. Immunophenotyping of P. falciparum-specific B-cells is performed by flow cytometry using Fc-receptor block, quantum dot-infected red blood cell ghost conjugates, and fluorochrome-conjugated anti-human CD19 mouse monoclonal antibodies.
Collapse
Affiliation(s)
- Allan Lugaajju
- School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Lund, Sweden
| | - Muyideen Kolapo Tijani
- Department of Laboratory Medicine, Lund University, Skåne University Hospital Lund, Lund, Sweden
- Cellular Parasitology Programme, Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
13
|
Co-chaperone involvement in knob biogenesis implicates host-derived chaperones in malaria virulence. PLoS Pathog 2021; 17:e1009969. [PMID: 34614006 PMCID: PMC8544838 DOI: 10.1371/journal.ppat.1009969] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/25/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
The pathology associated with malaria infection is largely due to the ability of infected human RBCs to adhere to a number of receptors on endothelial cells within tissues and organs. This phenomenon is driven by the export of parasite-encoded proteins to the host cell, the exact function of many of which is still unknown. Here we inactivate the function of one of these exported proteins, PFA66, a member of the J-domain protein family. Although parasites lacking this protein were still able to grow in cell culture, we observed severe defects in normal host cell modification, including aberrant morphology of surface knobs, disrupted presentation of the cytoadherence molecule PfEMP1, and a total lack of cytoadherence, despite the presence of the knob associated protein KAHRP. Complementation assays demonstrate that an intact J-domain is required for recovery to a wild-type phenotype and suggest that PFA66 functions in concert with a HSP70 to carry out host cell modification. Strikingly, this HSP70 is likely to be of host origin. ATPase assays on recombinant protein verify a functional interaction between PFA66 and residual host cell HSP70. Taken together, our data reveal a role for PFA66 in host cell modification, strongly implicate human HSP70s as being essential in this process and uncover a new KAHRP-independent molecular factor required for correct knob biogenesis. To survive in the human body, the malaria parasite invades and lives within human red blood cells. Once within the red blood cell, the parasite renovates the host cell to its own needs. Here we have studied which factors from both parasite and host cell are required for this renovation process, and discover that human chaperone proteins, referred to as HSP70, are required. It appears that a particular parasite-derived protein, PFA66, recruits and modifies the function of the human HSP70. As this interaction between a parasite and human protein is novel and essential for parasite survival, our study identifies a potential Achilles’ Heel which may be targeted for development of new anti-malaria therapies.
Collapse
|
14
|
Michelow IC, Park S, Tsai SW, Rayta B, Pasaje CFA, Nelson S, Early AM, Frosch AP, Ayodo G, Raj DK, Nixon CE, Nixon CP, Pond-Tor S, Friedman JF, Fried M, Duffy PE, Le Roch KG, Niles JC, Kurtis JD. A newly characterized malaria antigen on erythrocyte and merozoite surfaces induces parasite inhibitory antibodies. J Exp Med 2021; 218:e20200170. [PMID: 34342640 PMCID: PMC8340565 DOI: 10.1084/jem.20200170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
We previously identified a Plasmodium falciparum (Pf) protein of unknown function encoded by a single-copy gene, PF3D7_1134300, as a target of antibodies in plasma of Tanzanian children in a whole-proteome differential screen. Here we characterize this protein as a blood-stage antigen that localizes to the surface membranes of both parasitized erythrocytes and merozoites, hence its designation as Pf erythrocyte membrane and merozoite antigen 1 (PfEMMA1). Mouse anti-PfEMMA1 antisera and affinity-purified human anti-PfEMMA1 antibodies inhibited growth of P. falciparum strains by up to 68% in growth inhibition assays. Following challenge with uniformly fatal Plasmodium berghei (Pb) ANKA, up to 40% of mice immunized with recombinant PbEMMA1 self-cured, and median survival of lethally infected mice was up to 2.6-fold longer than controls (21 vs. 8 d, P = 0.005). Furthermore, high levels of naturally acquired human anti-PfEMMA1 antibodies were associated with a 46% decrease in parasitemia over 2.5 yr of follow-up of Tanzanian children. Together, these findings suggest that antibodies to PfEMMA1 mediate protection against malaria.
Collapse
MESH Headings
- Animals
- Antibodies, Protozoan/immunology
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Antigens, Protozoan/metabolism
- Child, Preschool
- Erythrocyte Membrane/parasitology
- Female
- Host-Parasite Interactions/physiology
- Humans
- Infant
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/mortality
- Malaria, Falciparum/parasitology
- Merozoites/immunology
- Merozoites/metabolism
- Mice, Inbred BALB C
- Plasmodium falciparum/immunology
- Plasmodium falciparum/pathogenicity
- Plasmodium falciparum/physiology
- Polymorphism, Single Nucleotide
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Recombinant Proteins/metabolism
- Tanzania
- Mice
Collapse
Affiliation(s)
- Ian C. Michelow
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Sangshin Park
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Graduate School of Urban Public Health & Department of Urban Big Data Convergence, University of Seoul, Seoul, Republic of Korea
| | - Shu-Whei Tsai
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Bonnie Rayta
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | | | - Sara Nelson
- Department of Pediatrics, Division of Infectious Diseases, The Warren Alpert Medical School of Brown University, Providence, RI
- Center for International Health Research, Rhode Island Hospital, Providence, RI
| | - Angela M. Early
- Infectious Disease and Microbiome Program, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA
| | - Anne P. Frosch
- Department of Medicine, Hennepin Healthcare Research Institute, University of Minnesota, Minneapolis, MN
| | - George Ayodo
- Kenya Medical Research Institute, Centre of Global Health Research, Kisumu, Kenya
- Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Dipak K. Raj
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Christina E. Nixon
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Christian P. Nixon
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Sunthorn Pond-Tor
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Jennifer F. Friedman
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, RI
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, Center for Infectious Disease and Vector Research, University of California, Riverside, Riverside, CA
| | - Jacquin C. Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Jonathan D. Kurtis
- Center for International Health Research, Rhode Island Hospital, Providence, RI
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School of Brown University, Providence, RI
| |
Collapse
|
15
|
Deshmukh SS, Shakya B, Chen A, Durmus NG, Greenhouse B, Egan ES, Demirci U. Multiparametric biophysical profiling of red blood cells in malaria infection. Commun Biol 2021; 4:697. [PMID: 34103669 PMCID: PMC8187722 DOI: 10.1038/s42003-021-02181-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/29/2021] [Indexed: 11/22/2022] Open
Abstract
Biophysical separation promises label-free, less-invasive methods to manipulate the diverse properties of live cells, such as density, magnetic susceptibility, and morphological characteristics. However, some cellular changes are so minute that they are undetectable by current methods. We developed a multiparametric cell-separation approach to profile cells with simultaneously changing density and magnetic susceptibility. We demonstrated this approach with the natural biophysical phenomenon of Plasmodium falciparum infection, which modifies its host erythrocyte by simultaneously decreasing density and increasing magnetic susceptibility. Current approaches have used these properties separately to isolate later-stage infected cells, but not in combination. We present biophysical separation of infected erythrocytes by balancing gravitational and magnetic forces to differentiate infected cell stages, including early stages for the first time, using magnetic levitation. We quantified height distributions of erythrocyte populations-27 ring-stage synchronized samples and 35 uninfected controls-and quantified their unique biophysical signatures. This platform can thus enable multidimensional biophysical measurements on unique cell types.
Collapse
Affiliation(s)
- Shreya S Deshmukh
- Department of Bioengineering, Stanford University Schools of Engineering and Medicine, Stanford, CA, USA
- Canary Center for Early Cancer Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bikash Shakya
- Department of Pediatrics; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Anna Chen
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Naside Gozde Durmus
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth S Egan
- Department of Pediatrics; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Utkan Demirci
- Canary Center for Early Cancer Detection, Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
16
|
K13-Mediated Reduced Susceptibility to Artemisinin in Plasmodium falciparum Is Overlaid on a Trait of Enhanced DNA Damage Repair. Cell Rep 2021; 32:107996. [PMID: 32755588 PMCID: PMC7408483 DOI: 10.1016/j.celrep.2020.107996] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/21/2020] [Accepted: 07/14/2020] [Indexed: 11/23/2022] Open
Abstract
Southeast Asia has been the hotbed for the development of drug-resistant malaria parasites, including those with resistance to artemisinin combination therapy. While mutations in the kelch propeller domain (K13 mutations) are associated with artemisinin resistance, a range of evidence suggests that other factors are critical for the establishment and subsequent transmission of resistance in the field. Here, we perform a quantitative analysis of DNA damage and repair in the malaria parasite Plasmodium falciparum and find a strong link between enhanced DNA damage repair and artemisinin resistance. This experimental observation is further supported when variations in seven known DNA repair genes are found in resistant parasites, with six of these mutations being associated with K13 mutations. Our data provide important insights on confounding factors that are important for the establishment and spread of artemisinin resistance and may explain why resistance has not yet arisen in Africa. High-throughput MalariaCometChip to measure DNA damage level in P. falciparum Subpopulation of Cambodian isolates possess enhanced DNA damage repair Important link between enhanced DNA damage repair and artemisinin resistance
Collapse
|
17
|
Tsuji G, Sunami T, Oki M, Ichihashi N. Exchange of Proteins in Liposomes through Streptolysin O Pores. Chembiochem 2021; 22:1966-1973. [PMID: 33586304 DOI: 10.1002/cbic.202100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Indexed: 01/10/2023]
Abstract
Liposomes, which are vesicles surrounded by lipid membranes, can be used as biochemical reactors by encapsulating various reactions. Accordingly, they are useful for studying cellular functions under controlled conditions that mimic the environment within a cell. However, one of the shortcomings of liposomes as biochemical reactors is the difficulty of introducing or removing proteins due to the impermeability of the membrane. In this study, we established a method for exchanging proteins in liposomes by forming reversible pores in the membrane. We used the toxic protein streptolysin O (SLO); this forms pores in membranes made of phospholipids containing cholesterol that can be closed by the addition of calcium ions. After optimizing the experimental procedure and lipid composition, we observed the exchange of fluorescent proteins (transferrin Alexa Fluor 488 and 647) in 9.9 % of liposomes. We also introduced T7 RNA polymerase, a 98-kDa enzyme, and observed RNA synthesis in ∼8 % of liposomes. Our findings establish a new method for controlling the internal protein composition of liposomes, thereby increasing their utility as bioreactors.
Collapse
Affiliation(s)
- Gakushi Tsuji
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Takeshi Sunami
- Institute for Academic InitiativesOsaka University, Osaka University (Japan), 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Oki
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan.,Life Science Innovation Center, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui, 910-8507, Japan
| | - Norikazu Ichihashi
- Department of Life Science, Graduate School of Arts and Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Komaba Institute for Science, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Universal Biology Institute, The University of Tokyo 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
18
|
van Cromvoirt AM, Fenk S, Sadafi A, Melnikova EV, Lagutkin DA, Dey K, Petrushanko IY, Hegemann I, Goede JS, Bogdanova A. Donor Age and Red Cell Age Contribute to the Variance in Lorrca Indices in Healthy Donors for Next Generation Ektacytometry: A Pilot Study. Front Physiol 2021; 12:639722. [PMID: 33737886 PMCID: PMC7960761 DOI: 10.3389/fphys.2021.639722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 01/17/2023] Open
Abstract
The ability of red blood cells (RBCs) to transport gases, their lifespan as well as their rheological properties invariably depend on the deformability, hydration, and membrane stability of these cells, which can be measured by Laser optical rotational red cell analyser (Lorrca® Maxsis, RR Mechatronics). The osmoscan mode of Lorrca is currently used in diagnosis of rare anemias in clinical laboratories. However, a broad range of normal values for healthy subjects reduces the sensitivity of this method for diagnosis of mild disease phenotype. In this pilot study, we explored the impact of age and gender of 45 healthy donors, as well as RBC age on the Lorrca indices. Whereas gender did not affect the Lorrca indices in our study, the age donors had a profound effect on the O_hyper parameter. To study the impact of RBC age on the osmoscan parameters, we have isolated low (L)-, medium (M)-, or high (H)- density fractions enriched with young, mature, and senescent RBCs, respectively, and evaluated the influence of RBC age-related properties, such as density, morphology, and redox state, on the osmoscan indices. As before, O_hyper was the most sensitive parameter, dropping markedly with an increase in RBC density and age. Senescence was associated with a decrease in deformability (EI_max) and tolerability to low and high osmolatites (Area). L-fraction was enriched with reticulocytes and cells with high projected area and EMA staining, but also contained a small number of cells small in projected area and most likely, terminally senescent. L-fraction was on average slightly less deformable than mature cells. The cells from the L-fraction produced more oxidants and NO than all other fractions. However, RBCs from the L-fraction contained maximal levels of reduced thiols compared to other fractions. Our study suggests that reference values for O_hyper should be age-stratified, and, most probably, corrected for the average RBC age. Further multi-center study is required to validate these suggestions before implementing them into clinical practice.
Collapse
Affiliation(s)
- Ankie M van Cromvoirt
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Simone Fenk
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Ario Sadafi
- Helmholtz Zentrum München - German Research Center for Environmental Health, Munich, Germany.,Computer Aided Medical Procedures, Technische Universität München, Munich, Germany
| | - Elizaveta V Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Denis A Lagutkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Kuntal Dey
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland
| | - Irina Yu Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Inga Hegemann
- Department of Medical Oncology and Hematology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Jeroen S Goede
- Division of Oncology and Hematology, Kantonsspital Winterthur, Winterthur, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Anna Bogdanova
- Red Blood Cell Research Group, Vetsuisse Faculty, Institute of Veterinary Physiology, University of Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Yang T, Yeoh LM, Tutor MV, Dixon MW, McMillan PJ, Xie SC, Bridgford JL, Gillett DL, Duffy MF, Ralph SA, McConville MJ, Tilley L, Cobbold SA. Decreased K13 Abundance Reduces Hemoglobin Catabolism and Proteotoxic Stress, Underpinning Artemisinin Resistance. Cell Rep 2020; 29:2917-2928.e5. [PMID: 31775055 DOI: 10.1016/j.celrep.2019.10.095] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/08/2019] [Accepted: 10/23/2019] [Indexed: 01/09/2023] Open
Abstract
Increased tolerance of Plasmodium falciparum to front-line artemisinin antimalarials (ARTs) is associated with mutations in Kelch13 (K13), although the precise role of K13 remains unclear. Here, we show that K13 mutations result in decreased expression of this protein, while mislocalization of K13 mimics resistance-conferring mutations, pinpointing partial loss of function of K13 as the relevant molecular event. K13-GFP is associated with ∼170 nm diameter doughnut-shaped structures at the parasite periphery, consistent with the location and dimensions of cytostomes. Moreover, the hemoglobin-peptide profile of ring-stage parasites is reduced when K13 is mislocalized. We developed a pulse-SILAC approach to quantify protein turnover and observe less disruption to protein turnover following ART exposure when K13 is mislocalized. Our findings suggest that K13 regulates digestive vacuole biogenesis and the uptake/degradation of hemoglobin and that ART resistance is mediated by a decrease in heme-dependent drug activation, less proteotoxicity, and increased survival of parasite ring stages.
Collapse
Affiliation(s)
- Tuo Yang
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Lee M Yeoh
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Madel V Tutor
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Matthew W Dixon
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul J McMillan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia; Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stanley C Xie
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Jessica L Bridgford
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David L Gillett
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Michael F Duffy
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Simon A Cobbold
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
20
|
Gnangnon B, Peucelle V, Pierrot C. Differential Fractionation of Erythrocytes Infected by Plasmodium berghei. Bio Protoc 2020; 10:e3647. [PMID: 33659316 DOI: 10.21769/bioprotoc.3647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 11/02/2022] Open
Abstract
The study of host/pathogen interactions at the cellular level during Plasmodium intra-erythrocytic cycle requires differential extraction techniques aiming to analyze the different compartments of the infected cell. Various protocols have been proposed in the literature to study specific compartments and/or membranes in the infected erythrocyte. The task remains delicate despite the use of enzymes or detergents theoretically capable of degrading specific membranes inside the infected cell. The remit of this protocol is to propose a method to isolate the erythrocyte cytosol and ghosts from the other compartments of the infected cell via a percoll gradient. Also, the lysis of the erythrocyte membrane is done using equinatoxin II, which has proven to be more effective at erythrocyte lysis regardless of the cell infection status, compared to the commonly used streptolysin. The parasitophorous vacuole (PV) content is collected after saponin lysis, before recovering membrane and parasite cytosol proteins by Triton X-100 lysis. The lysates thus obtained are analyzed by Western blot to assess the accuracy of the various extraction steps. This protocol allows the separation of the host compartment from the parasite compartments (PV and parasite), leading to potential studies of host proteins as well as parasite proteins exported to the host cell.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Véronique Peucelle
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Christine Pierrot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
21
|
Dziekan JM, Wirjanata G, Dai L, Go KD, Yu H, Lim YT, Chen L, Wang LC, Puspita B, Prabhu N, Sobota RM, Nordlund P, Bozdech Z. Cellular thermal shift assay for the identification of drug-target interactions in the Plasmodium falciparum proteome. Nat Protoc 2020; 15:1881-1921. [PMID: 32341577 DOI: 10.1038/s41596-020-0310-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Despite decades of research, little is known about the cellular targets and the mode of action of the vast majority of antimalarial drugs. We recently demonstrated that the cellular thermal shift assay (CETSA) protocol in its two variants: the melt curve and the isothermal dose-response, represents a comprehensive strategy for the identification of antimalarial drug targets. CETSA enables proteome-wide target screening for unmodified antimalarial compounds with undetermined mechanisms of action, providing quantitative evidence about direct drug-protein interactions. The experimental workflow involves treatment of P. falciparum-infected erythrocytes with a compound of interest, heat exposure to denature proteins, soluble protein isolation, enzymatic digestion, peptide labeling with tandem mass tags, offline fractionation, and liquid chromatography-tandem mass spectrometry analysis. Methodological optimizations necessary for the analysis of this intracellular parasite are discussed, including enrichment of parasitized cells and hemoglobin depletion strategies to overcome high hemoglobin abundance in the host red blood cells. We outline an effective data processing workflow using the mineCETSA R package, which enables prioritization of drug-target candidates for follow-up studies. The entire protocol can be completed within 2 weeks.
Collapse
Affiliation(s)
- Jerzy Michal Dziekan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,The Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen, China
| | - Ka Diam Go
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yan Ting Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Liyan Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.,Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Brenda Puspita
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Functional Proteomics Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. .,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
22
|
Brown AC, Moore CC, Guler JL. Cholesterol-dependent enrichment of understudied erythrocytic stages of human Plasmodium parasites. Sci Rep 2020; 10:4591. [PMID: 32165667 PMCID: PMC7067793 DOI: 10.1038/s41598-020-61392-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
For intracellular pathogens, the host cell provides needed protection and nutrients. A major challenge of intracellular parasite research is collection of high parasite numbers separated from host contamination. This situation is exemplified by the malaria parasite, which spends a substantial part of its life cycle inside erythrocytes as rings, trophozoites, and schizonts, before egress and reinvasion. Erythrocytic Plasmodium parasite forms refractory to enrichment remain understudied due to high host contamination relative to low parasite numbers. Here, we present a method for separating all stages of Plasmodium-infected erythrocytes through lysis and removal of uninfected erythrocytes. The Streptolysin O-Percoll (SLOPE) method is effective on previously inaccessible forms, including circulating rings from malaria-infected patients and artemisinin-induced quiescent parasites. SLOPE can be used on multiple parasite species, under multiple media formulations, and lacks measurable impacts on parasite viability. We demonstrate erythrocyte membrane cholesterol levels modulate the preferential lysis of uninfected host cells by SLO, and therefore modulate the effectiveness of SLOPE. Targeted metabolomics of SLOPE-enriched ring stage samples confirms parasite-derived metabolites are increased and contaminating host material is reduced compared to non-enriched samples. Due to consumption of cholesterol by other intracellular bacteria and protozoa, SLOPE holds potential for improving research on organisms beyond Plasmodium.
Collapse
Affiliation(s)
- Audrey C Brown
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Christopher C Moore
- Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA
| | - Jennifer L Guler
- Department of Biology, University of Virginia, Charlottesville, VA, USA. .,Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
23
|
The parasitophorous vacuole of the blood-stage malaria parasite. Nat Rev Microbiol 2020; 18:379-391. [PMID: 31980807 DOI: 10.1038/s41579-019-0321-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2019] [Indexed: 12/31/2022]
Abstract
The pathology of malaria is caused by infection of red blood cells with unicellular Plasmodium parasites. During blood-stage development, the parasite replicates within a membrane-bound parasitophorous vacuole. A central nexus for host-parasite interactions, this unique parasite shelter functions in nutrient acquisition, subcompartmentalization and the export of virulence factors, making its functional molecules attractive targets for the development of novel intervention strategies to combat the devastating impact of malaria. In this Review, we explore the origin, development, molecular composition and functions of the parasitophorous vacuole of Plasmodium blood stages. We also discuss the relevance of the malaria parasite's intravacuolar lifestyle for successful erythrocyte infection and provide perspectives for future research directions in parasitophorous vacuole biology.
Collapse
|
24
|
The Metabolite Repair Enzyme Phosphoglycolate Phosphatase Regulates Central Carbon Metabolism and Fosmidomycin Sensitivity in Plasmodium falciparum. mBio 2019; 10:mBio.02060-19. [PMID: 31822583 PMCID: PMC6904873 DOI: 10.1128/mbio.02060-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The malaria parasite has a voracious appetite, requiring large amounts of glucose and nutrients for its rapid growth and proliferation inside human red blood cells. The host cell is resource rich, but this is a double-edged sword; nutrient excess can lead to undesirable metabolic reactions and harmful by-products. Here, we demonstrate that the parasite possesses a metabolite repair enzyme (PGP) that suppresses harmful metabolic by-products (via substrate dephosphorylation) and allows the parasite to maintain central carbon metabolism. Loss of PGP leads to the accumulation of two damaged metabolites and causes a domino effect of metabolic dysregulation. Accumulation of one damaged metabolite inhibits an essential enzyme in the pentose phosphate pathway, leading to substrate accumulation and secondary inhibition of glycolysis. This work highlights how the parasite coordinates metabolic flux by eliminating harmful metabolic by-products to ensure rapid proliferation in its resource-rich niche. Members of the haloacid dehalogenase (HAD) family of metabolite phosphatases play an important role in regulating multiple pathways in Plasmodium falciparum central carbon metabolism. We show that the P. falciparum HAD protein, phosphoglycolate phosphatase (PGP), regulates glycolysis and pentose pathway flux in asexual blood stages via detoxifying the damaged metabolite 4-phosphoerythronate (4-PE). Disruption of the P. falciparumpgp gene caused accumulation of two previously uncharacterized metabolites, 2-phospholactate and 4-PE. 4-PE is a putative side product of the glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase, and its accumulation inhibits the pentose phosphate pathway enzyme, 6-phosphogluconate dehydrogenase (6-PGD). Inhibition of 6-PGD by 4-PE leads to an unexpected feedback response that includes increased flux into the pentose phosphate pathway as a result of partial inhibition of upper glycolysis, with concomitant increased sensitivity to antimalarials that target pathways downstream of glycolysis. These results highlight the role of metabolite detoxification in regulating central carbon metabolism and drug sensitivity of the malaria parasite.
Collapse
|
25
|
Liu B, Blanch AJ, Namvar A, Carmo O, Tiash S, Andrew D, Hanssen E, Rajagopal V, Dixon MW, Tilley L. Multimodal analysis of
Plasmodium knowlesi
‐infected erythrocytes reveals large invaginations, swelling of the host cell, and rheological defects. Cell Microbiol 2019; 21:e13005. [PMID: 30634201 PMCID: PMC6593759 DOI: 10.1111/cmi.13005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/14/2018] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
The simian parasite Plasmodium knowlesi causes severe and fatal malaria infections in humans, but the process of host cell remodelling that underpins the pathology of this zoonotic parasite is only poorly understood. We have used serial block‐face scanning electron microscopy to explore the topography of P. knowlesi‐infected red blood cells (RBCs) at different stages of asexual development. The parasite elaborates large flattened cisternae (Sinton Mulligan's clefts) and tubular vesicles in the host cell cytoplasm, as well as parasitophorous vacuole membrane bulges and blebs, and caveolar structures at the RBC membrane. Large invaginations of host RBC cytoplasm are formed early in development, both from classical cytostomal structures and from larger stabilised pores. Although degradation of haemoglobin is observed in multiple disconnected digestive vacuoles, the persistence of large invaginations during development suggests inefficient consumption of the host cell cytoplasm. The parasite eventually occupies ~40% of the host RBC volume, inducing a 20% increase in volume of the host RBC and an 11% decrease in the surface area to volume ratio, which collectively decreases the ability of the P. knowlesi‐infected RBCs to enter small capillaries of a human erythrocyte microchannel analyser. Ektacytometry reveals a markedly decreased deformability, whereas correlative light microscopy/scanning electron microscopy and python‐based skeleton analysis (Skan) reveal modifications to the surface of infected RBCs that underpin these physical changes. We show that P. knowlesi‐infected RBCs are refractory to treatment with sorbitol lysis but are hypersensitive to hypotonic lysis. The observed physical changes in the host RBCs may underpin the pathology observed in patients infected with P. knowlesi.
Collapse
Affiliation(s)
- Boyin Liu
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Adam J. Blanch
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Arman Namvar
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria Australia
| | - Olivia Carmo
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Snigdha Tiash
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Dean Andrew
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Eric Hanssen
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
- Advanced Microscopy Facility Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Melbourne Victoria Australia
| | - Vijay Rajagopal
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria Australia
| | - Matthew W.A. Dixon
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology Bio21 Molecular Science and Biotechnology Institute Melbourne Victoria Australia
| |
Collapse
|
26
|
Sanders PR, Dickerman BK, Charnaud SC, Ramsland PA, Crabb BS, Gilson PR. The N-terminus of EXP2 forms the membrane-associated pore of the protein exporting translocon PTEX in Plasmodium falciparum. J Biochem 2018; 165:239-248. [DOI: 10.1093/jb/mvy099] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
| | | | | | - Paul A Ramsland
- Burnet Institute, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
- RMIT University, Bundoora, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, VIC, Australia
- University of Melbourne, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, VIC, Australia
- Monash University, Melbourne, VIC, Australia
| |
Collapse
|
27
|
Charnaud SC, Jonsdottir TK, Sanders PR, Bullen HE, Dickerman BK, Kouskousis B, Palmer CS, Pietrzak HM, Laumaea AE, Erazo AB, McHugh E, Tilley L, Crabb BS, Gilson PR. Spatial organization of protein export in malaria parasite blood stages. Traffic 2018; 19:605-623. [DOI: 10.1111/tra.12577] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/29/2022]
Affiliation(s)
| | - Thorey K. Jonsdottir
- Burnet Institute; Melbourne Australia
- Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne Australia
| | | | | | | | - Betty Kouskousis
- Burnet Institute; Melbourne Australia
- Monash Micro Imaging, Monash University; Melbourne Australia
| | - Catherine S. Palmer
- Burnet Institute; Melbourne Australia
- Monash Micro Imaging, Monash University; Melbourne Australia
| | | | | | | | - Emma McHugh
- Department of Biochemistry and Molecular Biology, University of Melbourne; Melbourne Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, University of Melbourne; Melbourne Australia
| | - Brendan S. Crabb
- Burnet Institute; Melbourne Australia
- Peter Doherty Institute for Infection and Immunity, University of Melbourne; Melbourne Australia
- Department of Microbiology, Monash University; Melbourne Australia
| | - Paul R. Gilson
- Burnet Institute; Melbourne Australia
- Department of Microbiology, Monash University; Melbourne Australia
| |
Collapse
|
28
|
The Plasmodium knowlesi MAHRP2 ortholog localizes to structures connecting Sinton Mulligan's clefts in the infected erythrocyte. Parasitol Int 2018; 67:481-492. [PMID: 29673877 DOI: 10.1016/j.parint.2018.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 11/23/2022]
Abstract
During development within the host erythrocyte malaria parasites generate nascent membranous structures which serve as a pathway for parasite protein transport to modify the host cell. The molecular basis of such membranous structures is not well understood, particularly for malaria parasites other than Plasmodium falciparum. To characterize the structural basis of protein trafficking in the Plasmodium knowlesi-infected erythrocyte, we identified a P. knowlesi ortholog of MAHRP2, a marker of the tether structure that connects membranous structures in the P. falciparum-infected erythrocyte. We show that PkMAHRP2 localizes on amorphous structures that connect Sinton Mulligan's clefts (SMC) to each other and to the erythrocyte membrane. Three dimensional reconstruction of the P. knowlesi-infected erythrocyte revealed that the SMC is a plate-like structure with swollen ends, reminiscent of the morphology of the Golgi apparatus. The PkMAHRP2-localized amorphous structures are possibly functionally equivalent to P. falciparum tether structure. These findings suggest a conservation in the ultrastructure of protein trafficking between P. falciparum and P. knowlesi.
Collapse
|
29
|
Phospholipases during membrane dynamics in malaria parasites. Int J Med Microbiol 2017; 308:129-141. [PMID: 28988696 DOI: 10.1016/j.ijmm.2017.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium parasites, the causative agents of malaria, display a well-regulated lipid metabolism required to ensure their survival in the human host as well as in the mosquito vector. The fine-tuning of lipid metabolic pathways is particularly important for the parasites during the rapid erythrocytic infection cycles, and thus enzymes involved in lipid metabolic processes represent prime targets for malaria chemotherapeutics. While plasmodial enzymes involved in lipid synthesis and acquisition have been studied in the past, to date not much is known about the roles of phospholipases for proliferation and transmission of the malaria parasite. These phospholipid-hydrolyzing esterases are crucial for membrane dynamics during host cell infection and egress by the parasite as well as for replication and cell signaling, and thus they are considered important virulence factors. In this review, we provide a comprehensive bioinformatic analysis of plasmodial phospholipases identified to date. We further summarize previous findings on the lipid metabolism of Plasmodium, highlight the roles of phospholipases during parasite life-cycle progression, and discuss the plasmodial phospholipases as potential targets for malaria therapy.
Collapse
|
30
|
Charnaud SC, Dixon MWA, Nie CQ, Chappell L, Sanders PR, Nebl T, Hanssen E, Berriman M, Chan JA, Blanch AJ, Beeson JG, Rayner JC, Przyborski JM, Tilley L, Crabb BS, Gilson PR. The exported chaperone Hsp70-x supports virulence functions for Plasmodium falciparum blood stage parasites. PLoS One 2017; 12:e0181656. [PMID: 28732045 PMCID: PMC5521827 DOI: 10.1371/journal.pone.0181656] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/05/2017] [Indexed: 12/03/2022] Open
Abstract
Malaria is caused by five different Plasmodium spp. in humans each of which modifies the host erythrocyte to survive and replicate. The two main causes of malaria, P. falciparum and P. vivax, differ in their ability to cause severe disease, mainly due to differences in the cytoadhesion of infected erythrocytes (IE) in the microvasculature. Cytoadhesion of P. falciparum in the brain leads to a large number of deaths each year and is a consequence of exported parasite proteins, some of which modify the erythrocyte cytoskeleton while others such as PfEMP1 project onto the erythrocyte surface where they bind to endothelial cells. Here we investigate the effects of knocking out an exported Hsp70-type chaperone termed Hsp70-x that is present in P. falciparum but not P. vivax. Although the growth of Δhsp70-x parasites was unaffected, the export of PfEMP1 cytoadherence proteins was delayed and Δhsp70-x IE had reduced adhesion. The Δhsp70-x IE were also more rigid than wild-type controls indicating changes in the way the parasites modified their host erythrocyte. To investigate the cause of this, transcriptional and translational changes in exported and chaperone proteins were monitored and some changes were observed. We propose that PfHsp70-x is not essential for survival in vitro, but may be required for the efficient export and functioning of some P. falciparum exported proteins.
Collapse
Affiliation(s)
| | - Matthew W. A. Dixon
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Lia Chappell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | | | - Thomas Nebl
- Walter & Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Eric Hanssen
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Jo-Anne Chan
- Burnet Institute, Melbourne, Victoria, Australia
| | - Adam J. Blanch
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Julian C. Rayner
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | | | - Leann Tilley
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brendan S. Crabb
- Burnet Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
| | - Paul R. Gilson
- Burnet Institute, Melbourne, Victoria, Australia
- Monash University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
31
|
Batinovic S, McHugh E, Chisholm SA, Matthews K, Liu B, Dumont L, Charnaud SC, Schneider MP, Gilson PR, de Koning-Ward TF, Dixon MWA, Tilley L. An exported protein-interacting complex involved in the trafficking of virulence determinants in Plasmodium-infected erythrocytes. Nat Commun 2017; 8:16044. [PMID: 28691708 PMCID: PMC5508133 DOI: 10.1038/ncomms16044] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/20/2017] [Indexed: 01/01/2023] Open
Abstract
The malaria parasite, Plasmodium falciparum, displays the P. falciparum erythrocyte membrane protein 1 (PfEMP1) on the surface of infected red blood cells (RBCs). We here examine the physical organization of PfEMP1 trafficking intermediates in infected RBCs and determine interacting partners using an epitope-tagged minimal construct (PfEMP1B). We show that parasitophorous vacuole (PV)-located PfEMP1B interacts with components of the PTEX (Plasmodium Translocon of EXported proteins) as well as a novel protein complex, EPIC (Exported Protein-Interacting Complex). Within the RBC cytoplasm PfEMP1B interacts with components of the Maurer’s clefts and the RBC chaperonin complex. We define the EPIC interactome and, using an inducible knockdown approach, show that depletion of one of its components, the parasitophorous vacuolar protein-1 (PV1), results in altered knob morphology, reduced cell rigidity and decreased binding to CD36. Accordingly, we show that deletion of the Plasmodium berghei homologue of PV1 is associated with attenuation of parasite virulence in vivo. Plasmodium-infected red blood cells export virulence factors, such as PfEMP1, to the cell surface. Here, the authors identify a protein complex termed EPIC that interacts with PfEMP1 during export, and they show that knockdown of an EPIC component affects parasite virulence.
Collapse
Affiliation(s)
- Steven Batinovic
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Emma McHugh
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Scott A Chisholm
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3220, Australia
| | - Kathryn Matthews
- School of Medicine, Deakin University, Waurn Ponds, Victoria 3220, Australia
| | - Boiyin Liu
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Laure Dumont
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah C Charnaud
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | - Molly Parkyn Schneider
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria 3004, Australia
| | | | - Matthew W A Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
32
|
Karas JA, Sani MA, Separovic F. Chemical Synthesis and Characterization of an Equinatoxin II(1-85) Analogue. Molecules 2017; 22:E559. [PMID: 28358312 PMCID: PMC6153748 DOI: 10.3390/molecules22040559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 11/17/2022] Open
Abstract
The chemical synthesis of an 85 residue analogue of the pore-forming protein, Equinatoxin II (EqtII), was achieved. Peptide precursors with over 40 residues were assembled by solid phase synthesis. The EqtII(1-46) fragment was modified to the reactive C-terminal thioester and native chemical ligation was performed with the A47C mutated EqtII(47-85) peptide to form the EqtII(1-85) analogue. Circular dichroism spectroscopy indicated that the N-terminal domain of EqtII(1-46) and EqtII(1-85) maintains predominantly an α-helical structure in solution and also in the presence of lipid micelles. This demonstrates the feasibility of assembling the full 179 residue protein EqtII via chemical means. Site-specific isotopic labels could be incorporated for structural studies in membranes by solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- John A Karas
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
33
|
Counihan NA, Chisholm SA, Bullen HE, Srivastava A, Sanders PR, Jonsdottir TK, Weiss GE, Ghosh S, Crabb BS, Creek DJ, Gilson PR, de Koning-Ward TF. Plasmodium falciparum parasites deploy RhopH2 into the host erythrocyte to obtain nutrients, grow and replicate. eLife 2017; 6. [PMID: 28252383 PMCID: PMC5365316 DOI: 10.7554/elife.23217] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 02/26/2017] [Indexed: 11/13/2022] Open
Abstract
Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.
Collapse
Affiliation(s)
| | | | | | - Anubhav Srivastava
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Thorey K Jonsdottir
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia
| | | | - Sreejoyee Ghosh
- School of Medicine, Deakin University, Waurn Ponds, Australia
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Australia.,Department of Medicine, University of Melbourne, Parkville, Australia.,Monash University, Melbourne, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Paul R Gilson
- Burnet Institute, Melbourne, Australia.,Monash University, Melbourne, Australia
| | | |
Collapse
|
34
|
Mantel PY, Hjelmqvist D, Walch M, Kharoubi-Hess S, Nilsson S, Ravel D, Ribeiro M, Grüring C, Ma S, Padmanabhan P, Trachtenberg A, Ankarklev J, Brancucci NM, Huttenhower C, Duraisingh MT, Ghiran I, Kuo WP, Filgueira L, Martinelli R, Marti M. Infected erythrocyte-derived extracellular vesicles alter vascular function via regulatory Ago2-miRNA complexes in malaria. Nat Commun 2016; 7:12727. [PMID: 27721445 PMCID: PMC5062468 DOI: 10.1038/ncomms12727] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
Malaria remains one of the greatest public health challenges worldwide, particularly in sub-Saharan Africa. The clinical outcome of individuals infected with Plasmodium falciparum parasites depends on many factors including host systemic inflammatory responses, parasite sequestration in tissues and vascular dysfunction. Production of pro-inflammatory cytokines and chemokines promotes endothelial activation as well as recruitment and infiltration of inflammatory cells, which in turn triggers further endothelial cell activation and parasite sequestration. Inflammatory responses are triggered in part by bioactive parasite products such as hemozoin and infected red blood cell-derived extracellular vesicles (iRBC-derived EVs). Here we demonstrate that such EVs contain functional miRNA-Argonaute 2 complexes that are derived from the host RBC. Moreover, we show that EVs are efficiently internalized by endothelial cells, where the miRNA-Argonaute 2 complexes modulate target gene expression and barrier properties. Altogether, these findings provide a mechanistic link between EVs and vascular dysfunction during malaria infection.
Collapse
Affiliation(s)
- Pierre-Yves Mantel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA.,Department of Medicine, Unit of Anatomy, University of Fribourg, 1700 Fribourg, Switzerland
| | - Daisy Hjelmqvist
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Michael Walch
- Department of Medicine, Unit of Anatomy, University of Fribourg, 1700 Fribourg, Switzerland
| | - Solange Kharoubi-Hess
- Department of Medicine, Unit of Anatomy, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sandra Nilsson
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Deepali Ravel
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Marina Ribeiro
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Christof Grüring
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Siyuan Ma
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Prasad Padmanabhan
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Alexander Trachtenberg
- Harvard Catalyst Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Johan Ankarklev
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Nicolas M Brancucci
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA.,Wellcome Trust Center for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Ionita Ghiran
- Division of Allergy and Infection, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Winston P Kuo
- Harvard Catalyst Laboratory for Innovative Translational Technologies, Harvard Medical School, Boston, Massachusetts 02115, USA.,Predicine, Inc., Hayward, California 94545, USA
| | - Luis Filgueira
- Department of Medicine, Unit of Anatomy, University of Fribourg, 1700 Fribourg, Switzerland
| | - Roberta Martinelli
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts 02115, USA.,Wellcome Trust Center for Molecular Parasitology, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
35
|
Ponnappan N, Budagavi DP, Yadav BK, Chugh A. Membrane-active peptides from marine organisms--antimicrobials, cell-penetrating peptides and peptide toxins: applications and prospects. Probiotics Antimicrob Proteins 2016; 7:75-89. [PMID: 25559972 DOI: 10.1007/s12602-014-9182-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Marine organisms are known to be a rich and unique source of bioactive compounds as they are exposed to extreme conditions in the oceans. The present study is an attempt to briefly describe some of the important membrane-active peptides (MAPs) such as antimicrobial peptides (AMPs), cell-penetrating peptides (CPPs) and peptide toxins from marine organisms. Since both AMPs and CPPs play a role in membrane perturbation and exhibit interchangeable role, they can speculatively fall under the broad umbrella of MAPs. The study focuses on the structural and functional characteristics of different classes of marine MAPs. Further, AMPs are considered as a potential remedy to antibiotic resistance acquired by several pathogens. Peptides from marine organisms show novel post-translational modifications such as cysteine knots, halogenation and histidino-alanine bridge that enable these peptides to withstand harsh marine environmental conditions. These unusual modifications of AMPs from marine organisms are expected to increase their half-life in living systems, contributing to their increased bioavailability and stability when administered as drug in in vivo systems. Apart from AMPs, marine toxins with membrane-perturbing properties could be essentially investigated for their cytotoxic effect on various pathogens and their cell-penetrating activity across various mammalian cells. The current review will help in identifying the MAPs from marine organisms with crucial post-translational modifications that can be used as template for designing novel therapeutic agents and drug-delivery vehicles for treatment of human diseases.
Collapse
Affiliation(s)
- Nisha Ponnappan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | | | | | | |
Collapse
|
36
|
Tibúrcio M, Dixon MWA, Looker O, Younis SY, Tilley L, Alano P. Specific expression and export of the Plasmodium falciparum Gametocyte EXported Protein-5 marks the gametocyte ring stage. Malar J 2015; 14:334. [PMID: 26315106 PMCID: PMC4552133 DOI: 10.1186/s12936-015-0853-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum sexual development plays a fundamental role in the transmission and spread of malaria. The ability to generate gametocytes can be lost during culture in vitro, often associated with the loss of a subtelomeric region of chromosome 9. Gametocytogenesis starts with erythrocyte invasion by a sexually committed merozoite, but the first available specific marker of sexual differentiation appears only from 24 h post invasion. METHODS Specific antibodies and gene fusions were produced to study the timing of expression and the sub-cellular localization of the P. falciparum Gametocyte EXported Protein-5 (PfGEXP5), encoded in the subtelomeric region of chromosome 9. Expression patterns were examined in wild-type parasites and in parasite lines mutated in the Apetala2-G (AP2-G) transcription factor, governing a cascade of early sexual stage specific genes. RESULTS PfGEXP5 is highly expressed in early sexual stages and it is actively exported to the infected erythrocyte cytoplasm from as early as 14 h post-invasion in haemozoin-free, ring stage-like parasites. The pattern of PfGEXP5 expression and export is similar in wild-type parasites and in independent AP2-G defective parasite lines unable to produce gametocytes. CONCLUSIONS PfGEXP5 represents the earliest post-invasion sexual stage marker described to date. This provides a tool that can be used to identify sexually committed ring stage parasites in natural infections. This early gametocyte marker would enable the identification and mapping of malaria transmission reservoirs in human populations and the study of gametocyte sequestration dynamics in infected individuals. The fact that regulation of PfGEXP5 does not depend on the AP2-G master regulator of parasite sexual development suggests that, after sexual commitment, differentiation progresses through multiple checkpoints in the early phase of gametocytogenesis.
Collapse
Affiliation(s)
- Marta Tibúrcio
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, NW7 1AA, UK.
| | - Matthew W A Dixon
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Oliver Looker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Sumera Younis Younis
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy. .,Department of Parasitology, Biomedical Primate Research Centre, PO Box 306, 2280 GH, Rijswijk, The Netherlands.
| | - Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
37
|
Plasmodium falciparum transfected with ultra bright NanoLuc luciferase offers high sensitivity detection for the screening of growth and cellular trafficking inhibitors. PLoS One 2014; 9:e112571. [PMID: 25392998 PMCID: PMC4231029 DOI: 10.1371/journal.pone.0112571] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 10/08/2014] [Indexed: 11/19/2022] Open
Abstract
Drug discovery is a key part of malaria control and eradication strategies, and could benefit from sensitive and affordable assays to quantify parasite growth and to help identify the targets of potential anti-malarial compounds. Bioluminescence, achieved through expression of exogenous luciferases, is a powerful tool that has been applied in studies of several aspects of parasite biology and high throughput growth assays. We have expressed the new reporter NanoLuc (Nluc) luciferase in Plasmodium falciparum and showed it is at least 100 times brighter than the commonly used firefly luciferase. Nluc brightness was explored as a means to achieve a growth assay with higher sensitivity and lower cost. In addition we attempted to develop other screening assays that may help interrogate libraries of inhibitory compounds for their mechanism of action. To this end parasites were engineered to express Nluc in the cytoplasm, the parasitophorous vacuole that surrounds the intraerythrocytic parasite or exported to the red blood cell cytosol. As proof-of-concept, these parasites were used to develop functional screening assays for quantifying the effects of Brefeldin A, an inhibitor of protein secretion, and Furosemide, an inhibitor of new permeation pathways used by parasites to acquire plasma nutrients.
Collapse
|
38
|
Jamasbi E, Batinovic S, Sharples RA, Sani MA, Robins-Browne RM, Wade JD, Separovic F, Hossain MA. Melittin peptides exhibit different activity on different cells and model membranes. Amino Acids 2014; 46:2759-66. [DOI: 10.1007/s00726-014-1833-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
|
39
|
Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. Blood 2014; 124:3459-68. [PMID: 25139348 DOI: 10.1182/blood-2014-06-583054] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Following invasion of human red blood cells (RBCs) by the malaria parasite, Plasmodium falciparum, a remarkable process of remodeling occurs in the host cell mediated by trafficking of several hundred effector proteins to the RBC compartment. The exported virulence protein, P falciparum erythrocyte membrane protein 1 (PfEMP1), is responsible for cytoadherence of infected cells to host endothelial receptors. Maurer clefts are organelles essential for protein trafficking, sorting, and assembly of protein complexes. Here we demonstrate that disruption of PfEMP1 trafficking protein 1 (PfPTP1) function leads to severe alterations in the architecture of Maurer's clefts. Furthermore, 2 major surface antigen families, PfEMP1 and STEVOR, are no longer displayed on the host cell surface leading to ablation of cytoadherence to host receptors. PfPTP1 functions in a large complex of proteins and is required for linking of Maurer's clefts to the host actin cytoskeleton.
Collapse
|
40
|
Beck JR, Muralidharan V, Oksman A, Goldberg DE. PTEX component HSP101 mediates export of diverse malaria effectors into host erythrocytes. Nature 2014; 511:592-5. [PMID: 25043010 PMCID: PMC4130291 DOI: 10.1038/nature13574] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/11/2014] [Indexed: 12/02/2022]
Affiliation(s)
- Josh R Beck
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2]
| | - Vasant Muralidharan
- 1] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] [4] Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | - Anna Oksman
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Daniel E Goldberg
- 1] Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri 63110, USA [2] Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA [3] Howard Hughes Medical Institute, Washington University School of Medicine, St Louis, Missouri 63110, USA
| |
Collapse
|
41
|
Wirth CC, Glushakova S, Scheuermayer M, Repnik U, Garg S, Schaack D, Kachman MM, Weißbach T, Zimmerberg J, Dandekar T, Griffiths G, Chitnis CE, Singh S, Fischer R, Pradel G. Perforin-like protein PPLP2 permeabilizes the red blood cell membrane during egress of Plasmodium falciparum gametocytes. Cell Microbiol 2014; 16:709-33. [PMID: 24602217 PMCID: PMC4312913 DOI: 10.1111/cmi.12288] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/17/2014] [Accepted: 02/21/2014] [Indexed: 12/18/2022]
Abstract
Egress of malaria parasites from the host cell requires the concerted rupture of its enveloping membranes. Hence, we investigated the role of the plasmodial perforin-like protein PPLP2 in the egress of Plasmodium falciparum from erythrocytes. PPLP2 is expressed in blood stage schizonts and mature gametocytes. The protein localizes in vesicular structures, which in activated gametocytes discharge PPLP2 in a calcium-dependent manner. PPLP2 comprises a MACPF domain and recombinant PPLP2 has haemolytic activities towards erythrocytes. PPLP2-deficient [PPLP2(−)] merozoites show normal egress dynamics during the erythrocytic replication cycle, but activated PPLP2(−) gametocytes were unable to leave erythrocytes and stayed trapped within these cells. While the parasitophorous vacuole membrane ruptured normally, the activated PPLP2(−) gametocytes were unable to permeabilize the erythrocyte membrane and to release the erythrocyte cytoplasm. In consequence, transmission of PPLP2(−) parasites to the Anopheles vector was reduced. Pore-forming equinatoxin II rescued both PPLP2(−) gametocyte exflagellation and parasite transmission. The pore sealant Tetronic 90R4, on the other hand, caused trapping of activated wild-type gametocytes within the enveloping erythrocytes, thus mimicking the PPLP2(−) loss-of-function phenotype. We propose that the haemolytic activity of PPLP2 is essential for gametocyte egress due to permeabilization of the erythrocyte membrane and depletion of the erythrocyte cytoplasm.
Collapse
Affiliation(s)
- Christine C Wirth
- Institute of Molecular Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Heiber A, Retzlaff S, Spielmann T. Immuno-EM Analysis of PF13_0191-GFP Expressing Parasites. Bio Protoc 2014. [DOI: 10.21769/bioprotoc.1137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
43
|
Deligianni E, Morgan RN, Bertuccini L, Wirth CC, Silmon de Monerri NC, Spanos L, Blackman MJ, Louis C, Pradel G, Siden-Kiamos I. A perforin-like protein mediates disruption of the erythrocyte membrane during egress of Plasmodium berghei male gametocytes. Cell Microbiol 2013; 15:1438-55. [PMID: 23461714 DOI: 10.1111/cmi.12131] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/31/2013] [Accepted: 02/25/2013] [Indexed: 12/31/2022]
Abstract
Successful gametogenesis of the malaria parasite depends on egress of the gametocytes from the erythrocytes within which they developed. Egress entails rupture of both the parasitophorous vacuole membrane and the erythrocyte plasma membrane, and precedes the formation of the motile flagellated male gametes in a process called exflagellation. We show here that egress of the male gametocyte depends on the function of a perforin-like protein, PPLP2. A mutant of Plasmodium berghei lacking PPLP2 displayed abnormal exflagellation; instead of each male gametocyte forming eight flagellated gametes, it produced gametocytes with only one, shared thicker flagellum. Using immunofluorescence and transmission electron microscopy analysis, and phenotype rescue with saponin or a pore-forming toxin, we conclude that rupture of the erythrocyte membrane is blocked in the mutant. The parasitophorous vacuole membrane, on the other hand, is ruptured normally. Some mutant parasites are still able to develop in the mosquito, possibly because the vigorous motility of the flagellated gametes eventually leads to escape from the persisting erythrocyte membrane. This is the first example of a perforin-like protein in Plasmodium parasites having a role in egress from the host cell and the first parasite protein shown to be specifically required for erythrocyte membrane disruption during egress.
Collapse
Affiliation(s)
- Elena Deligianni
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM, Rug M, Bursac D, Angrisano F, Gee M, Hill AF, Baum J, Cowman AF. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 2013; 153:1120-33. [PMID: 23683579 DOI: 10.1016/j.cell.2013.04.029] [Citation(s) in RCA: 426] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 03/12/2013] [Accepted: 04/16/2013] [Indexed: 12/27/2022]
Abstract
Cell-cell communication is an important mechanism for information exchange promoting cell survival for the control of features such as population density and differentiation. We determined that Plasmodium falciparum-infected red blood cells directly communicate between parasites within a population using exosome-like vesicles that are capable of delivering genes. Importantly, communication via exosome-like vesicles promotes differentiation to sexual forms at a rate that suggests that signaling is involved. Furthermore, we have identified a P. falciparum protein, PfPTP2, that plays a key role in efficient communication. This study reveals a previously unidentified pathway of P. falciparum biology critical for survival in the host and transmission to mosquitoes. This identifies a pathway for the development of agents to block parasite transmission from the human host to the mosquito.
Collapse
Affiliation(s)
- Neta Regev-Rudzki
- Division of Infection and Immunity, the Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
The exported protein PbCP1 localises to cleft-like structures in the rodent malaria parasite Plasmodium berghei. PLoS One 2013; 8:e61482. [PMID: 23658610 PMCID: PMC3637216 DOI: 10.1371/journal.pone.0061482] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/11/2013] [Indexed: 02/02/2023] Open
Abstract
Protein export into the host red blood cell is one of the key processes in the pathobiology of the malaria parasite Plasmodiumtrl falciparum, which extensively remodels the red blood cell to ensure its virulence and survival. In this study, we aimed to shed further light on the protein export mechanisms in the rodent malaria parasite P. berghei and provide further proof of the conserved nature of host cell remodeling in Plasmodium spp. Based on the presence of an export motif (R/KxLxE/Q/D) termed PEXEL (Plasmodium export element), we have generated transgenic P. berghei parasite lines expressing GFP chimera of putatively exported proteins and analysed one of the newly identified exported proteins in detail. This essential protein, termed PbCP1 (P. berghei Cleft-like Protein 1), harbours an atypical PEXEL motif (RxLxY) and is further characterised by two predicted transmembrane domains (2TMD) in the C-terminal end of the protein. We have functionally validated the unusual PEXEL motif in PbCP1 and analysed the role of the 2TMD region, which is required to recruit PbCP1 to discrete membranous structures in the red blood cell cytosol that have a convoluted, vesico-tubular morphology by electron microscopy. Importantly, this study reveals that rodent malaria species also induce modifications to their host red blood cell.
Collapse
|
46
|
Sana TR, Gordon DB, Fischer SM, Tichy SE, Kitagawa N, Lai C, Gosnell WL, Chang SP. Global mass spectrometry based metabolomics profiling of erythrocytes infected with Plasmodium falciparum. PLoS One 2013; 8:e60840. [PMID: 23593322 PMCID: PMC3621881 DOI: 10.1371/journal.pone.0060840] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/05/2013] [Indexed: 12/20/2022] Open
Abstract
Malaria is a global infectious disease that threatens the lives of millions of people. Transcriptomics, proteomics and functional genomics studies, as well as sequencing of the Plasmodium falciparum and Homo sapiens genomes, have shed new light on this host-parasite relationship. Recent advances in accurate mass measurement mass spectrometry, sophisticated data analysis software, and availability of biological pathway databases, have converged to facilitate our global, untargeted biochemical profiling study of in vitro P. falciparum-infected (IRBC) and uninfected (NRBC) erythrocytes. In order to expand the number of detectable metabolites, several key analytical steps in our workflows were optimized. Untargeted and targeted data mining resulted in detection of over one thousand features or chemical entities. Untargeted features were annotated via matching to the METLIN metabolite database. For targeted data mining, we queried the data using a compound database derived from a metabolic reconstruction of the P. falciparum genome. In total, over one hundred and fifty differential annotated metabolites were observed. To corroborate the representation of known biochemical pathways from our data, an inferential pathway analysis strategy was used to map annotated metabolites onto the BioCyc pathway collection. This hypothesis-generating approach resulted in over-representation of many metabolites onto several IRBC pathways, most prominently glycolysis. In addition, components of the “branched” TCA cycle, partial urea cycle, and nucleotide, amino acid, chorismate, sphingolipid and fatty acid metabolism were found to be altered in IRBCs. Interestingly, we detected and confirmed elevated levels for cyclic ADP ribose and phosphoribosyl AMP in IRBCs, a novel observation. These metabolites may play a role in regulating the release of intracellular Ca2+ during P. falciparum infection. Our results support a strategy of global metabolite profiling by untargeted data acquisition. Untargeted and targeted data mining workflows, when used together to perform pathway-inferred metabolomics, have the benefit of obviating MS/MS confirmation for every detected compound.
Collapse
Affiliation(s)
- Theodore R. Sana
- Life Sciences Group, Agilent Technologies, Santa Clara, California, United States of America
| | - D. Benjamin Gordon
- Life Sciences Group, Agilent Technologies, Santa Clara, California, United States of America
| | - Steven M. Fischer
- Life Sciences Group, Agilent Technologies, Santa Clara, California, United States of America
| | - Shane E. Tichy
- Life Sciences Group, Agilent Technologies, Santa Clara, California, United States of America
| | - Norton Kitagawa
- Life Sciences Group, Agilent Technologies, Santa Clara, California, United States of America
| | - Cindy Lai
- Life Sciences Group, Agilent Technologies, Santa Clara, California, United States of America
| | - William L. Gosnell
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Sandra P. Chang
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
47
|
McMillan PJ, Millet C, Batinovic S, Maiorca M, Hanssen E, Kenny S, Muhle RA, Melcher M, Fidock DA, Smith JD, Dixon MWA, Tilley L. Spatial and temporal mapping of the PfEMP1 export pathway in Plasmodium falciparum. Cell Microbiol 2013; 15:1401-18. [PMID: 23421990 DOI: 10.1111/cmi.12125] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 01/24/2023]
Abstract
The human malaria parasite, Plasmodium falciparum, modifies the red blood cells (RBCs) that it infects by exporting proteins to the host cell. One key virulence protein, P. falciparum Erythrocyte Membrane Protein-1 (PfEMP1), is trafficked to the surface of the infected RBC, where it mediates adhesion to the vascular endothelium. We have investigated the organization and development of the exomembrane system that is used for PfEMP1 trafficking. Maurer's cleft cisternae are formed early after invasion and proteins are delivered to these (initially mobile) structures in a temporally staggered and spatially segregated manner. Membrane-Associated Histidine-Rich Protein-2 (MAHRP2)-containing tether-like structures are generated as early as 4 h post invasion and become attached to Maurer's clefts. The tether/Maurer's cleft complex docks onto the RBC membrane at ~20 h post invasion via a process that is not affected by cytochalasin D treatment. We have examined the trafficking of a GFP chimera of PfEMP1 expressed in transfected parasites. PfEMP1B-GFP accumulates near the parasite surface, within membranous structures exhibiting a defined ultrastructure, before being transferred to pre-formed mobile Maurer's clefts. Endogenous PfEMP1 and PfEMP1B-GFP are associated with Electron-Dense Vesicles that may be responsible for trafficking PfEMP1 from the Maurer's clefts to the RBC membrane.
Collapse
Affiliation(s)
- Paul J McMillan
- Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Coronado LM, Tayler NM, Correa R, Giovani RM, Spadafora C. Separation of Plasmodium falciparum late stage-infected erythrocytes by magnetic means. J Vis Exp 2013:e50342. [PMID: 23486405 DOI: 10.3791/50342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Unlike other Plasmodium species, P. falciparum can be cultured in the lab, which facilitates its study (1). While the parasitemia achieved can reach the ≈40% limit, the investigator usually keeps the percentage at around 10%. In many cases it is necessary to isolate the parasite-containing red blood cells (RBCs) from the uninfected ones, to enrich the culture and proceed with a given experiment. When P. falciparum infects the erythrocyte, the parasite degrades and feeds from haemoglobin (2, 3). However, the parasite must deal with a very toxic iron-containing haem moiety (4, 5). The parasite eludes its toxicity by transforming the haem into an inert crystal polymer called haemozoin (6, 7). This iron-containing molecule is stored in its food vacuole and the metal in it has an oxidative state which differs from the one in haem (8). The ferric state of iron in the haemozoin confers on it a paramagnetic property absent in uninfected erythrocytes. As the invading parasite reaches maturity, the content of haemozoin also increases (9), which bestows even more paramagnetism on the latest stages of P. falciparum inside the erythrocyte. Based on this paramagnetic property, the latest stages of P. falciparum infected-red blood cells can be separated by passing the culture through a column containing magnetic beads. These beads become magnetic when the columns containing them are placed on a magnet holder. Infected RBCs, due to their paramagnetism, will then be trapped inside the column, while the flow-through will contain, for the most part, uninfected erythrocytes and those containing early stages of the parasite. Here, we describe the methodology to enrich the population of late stage parasites with magnetic columns, which maintains good parasite viability (10). After performing this procedure, the unattached culture can be returned to an incubator to allow the remaining parasites to continue growing.
Collapse
Affiliation(s)
- Lorena Michelle Coronado
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama
| | | | | | | | | |
Collapse
|
49
|
Nilsson S, Angeletti D, Wahlgren M, Chen Q, Moll K. Plasmodium falciparum antigen 332 is a resident peripheral membrane protein of Maurer's clefts. PLoS One 2012. [PMID: 23185236 PMCID: PMC3502387 DOI: 10.1371/journal.pone.0046980] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During the intraerythrocytic development of Plasmodium falciparum, the malaria parasite remodels the host cell cytosol by inducing membranous structures termed Maurer's clefts and inserting parasite proteins into the red blood cell cytoskeleton and plasma membrane. Pf332 is the largest known asexual malaria antigen that is exported into the red blood cell cytosol where it associates with Maurer's clefts. In the current work, we have utilized a set of different biochemical assays to analyze the solubility of the endogenous Pf332 molecule during its trafficking from the endoplasmic reticulum within the parasite to the host cell cytosol. Solubilization studies demonstrate that Pf332 is synthesized and trafficked within the parasite as a peripheral membrane protein, which after export into the host cell cytosol associates with the cytoplasmic side of Maurer's clefts in a peripheral manner. By immunofluorescence microscopy and flow cytometry, we show that Pf332 persists in close association with Maurer's clefts throughout trophozoite maturation and schizogony, and does not become exposed at the host cell surface. Our data also indicate that Pf332 interacts with the host cell cytoskeleton, but only in very mature parasite stages. Thus, the present study describes Pf332 as a resident peripheral membrane protein of Maurer's clefts and suggests that the antigen participates in host cytoskeleton modifications at completion of the intraerythrocytic developmental cycle.
Collapse
Affiliation(s)
- Sandra Nilsson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (SN); (KM)
| | - Davide Angeletti
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Qijun Chen
- Laboratory of Parasitology, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Kirsten Moll
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (SN); (KM)
| |
Collapse
|
50
|
Cell biological characterization of the malaria vaccine candidate trophozoite exported protein 1. PLoS One 2012; 7:e46112. [PMID: 23056243 PMCID: PMC3466242 DOI: 10.1371/journal.pone.0046112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 08/28/2012] [Indexed: 12/11/2022] Open
Abstract
In a genome-wide screen for alpha-helical coiled coil motifs aiming at structurally defined vaccine candidates we identified PFF0165c. This protein is exported in the trophozoite stage and was named accordingly Trophozoite exported protein 1 (Tex1). In an extensive preclinical evaluation of its coiled coil peptides Tex1 was identified as promising novel malaria vaccine candidate providing the rational for a comprehensive cell biological characterization of Tex1. Antibodies generated against an intrinsically unstructured N-terminal region of Tex1 and against a coiled coil domain were used to investigate cytological localization, solubility and expression profile. Co-localization experiments revealed that Tex1 is exported across the parasitophorous vacuole membrane and located to Maurer's clefts. Change in location is accompanied by a change in solubility: from a soluble state within the parasite to a membrane-associated state after export to Maurer's clefts. No classical export motifs such as PEXEL, signal sequence/anchor or transmembrane domain was identified for Tex1.
Collapse
|