1
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
2
|
Zhao J, Chen Y, Ding Z, Zhou Y, Bi R, Qin Z, Yang L, Sun P, Sun Q, Chen G, Sun D, Jiang X, Zheng L, Chen XL, Wan H, Wang G, Li Q, Teng H, Li G. Identification of propranolol and derivatives that are chemical inhibitors of phosphatidate phosphatase as potential broad-spectrum fungicides. PLANT COMMUNICATIONS 2024; 5:100679. [PMID: 37653727 PMCID: PMC10811373 DOI: 10.1016/j.xplc.2023.100679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/18/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.
Collapse
Affiliation(s)
- Juan Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China; College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China
| | - Yu Chen
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhifen Ding
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaru Zhou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqing Bi
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ziting Qin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiping Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Daiyuan Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Sciences, Yangjiang 529500, China
| | - Lu Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Lin Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Wan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanghui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huailong Teng
- College of Science, Huazhong Agricultural University, Wuhan 430070, China.
| | - Guotian Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
3
|
Greenwood BL, Luo Z, Ahmed T, Huang D, Stuart DT. Saccharomyces cerevisiae Δ9-desaturase Ole1 forms a supercomplex with Slc1 and Dga1. J Biol Chem 2023:104882. [PMID: 37269945 PMCID: PMC10302205 DOI: 10.1016/j.jbc.2023.104882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/04/2023] [Accepted: 05/07/2023] [Indexed: 06/05/2023] Open
Abstract
Biosynthesis of the various lipid species that compose cellular membranes and lipid droplets depends on the activity of multiple enzymes functioning in coordinated pathways. The flux of intermediates through lipid biosynthetic pathways is regulated to respond to nutritional and environmental demands placed on the cell necessitating that there be extensive flexibility in pathway activity and organization. This flexibility can in part be achieved through the organization of biosynthetic enzymes into metabolon supercomplexes. However, the composition and organization of such supercomplexes remains unclear. Here, we identified protein-protein interactions between acyltransferases Sct1, Gpt2, Slc1, Dga1 and the Δ9 acyl-CoA desaturase Ole1 in Saccharomyces cerevisiae. We further determined that a subset of these acyltransferases interact with each other without Ole1 acting as a scaffold. We show that truncated versions of Dga1 lacking the carboxyl-terminal 20 amino acid residues are non-functional and unable to bind Ole1. Furthermore, charged-to-alanine scanning mutagenesis revealed that a cluster of charged residues near the carboxyl-terminus were required for the interaction with Ole1. Mutation of these charged residues disrupted the interaction between Dga1 and Ole1, but allowed Dga1 to retain catalytic activity and to induce lipid droplet formation. These data support the formation of a complex of acyltransferases involved in lipid biosynthesis that interacts with Ole1, the sole acyl-CoA desaturase in S. cerevisiae, that can channel unsaturated acyl-chains toward phospholipid or triacylglycerol synthesis. This desaturasome complex may provide the architecture that allows for the necessary flux of de novo synthesized unsaturated acyl-CoA to phospholipid or triacylglycerol synthesis as demanded by cellular requirements.
Collapse
Affiliation(s)
- Brianna L Greenwood
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Zijun Luo
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Tareq Ahmed
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - Daniel Huang
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada
| | - David T Stuart
- Department of Biochemistry, 561 Medical Sciences Building, University of Alberta, Edmonton AB, T6G 2R3, Canada.
| |
Collapse
|
4
|
Zhai X, Gao J, Li Y, Grininger M, Zhou YJ. Peroxisomal metabolic coupling improves fatty alcohol production from sole methanol in yeast. Proc Natl Acad Sci U S A 2023; 120:e2220816120. [PMID: 36913588 PMCID: PMC10041095 DOI: 10.1073/pnas.2220816120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/13/2023] [Indexed: 03/14/2023] Open
Abstract
Methanol is an ideal feedstock for chemical and biological manufacturing. Constructing an efficient cell factory is essential for producing complex compounds through methanol biotransformation, in which coordinating methanol use and product synthesis is often necessary. In methylotrophic yeast, methanol utilization mainly occurs in peroxisomes, which creates challenges in driving the metabolic flux toward product biosynthesis. Here, we observed that constructing the cytosolic biosynthesis pathway resulted in compromised fatty alcohol production in the methylotrophic yeast Ogataea polymorpha. Alternatively, peroxisomal coupling of fatty alcohol biosynthesis and methanol utilization significantly improved fatty alcohol production by 3.9-fold. Enhancing the supply of precursor fatty acyl-CoA and cofactor NADPH in the peroxisomes by global metabolic rewiring further improved fatty alcohol production by 2.5-fold and produced 3.6 g/L fatty alcohols from methanol under fed-batch fermentation. We demonstrated that peroxisome compartmentalization is helpful for coupling methanol utilization and product synthesis, and with this approach, constructing efficient microbial cell factories for methanol biotransformation is feasible.
Collapse
Affiliation(s)
- Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Yunxia Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Martin Grininger
- Institute of Organic Chemistry and Chemical Biology, Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt am MainD-60438, Germany
| | - Yongjin J. Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| |
Collapse
|
5
|
Chen G, Harwood JL, Lemieux MJ, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: Properties, physiological roles, metabolic engineering and intentional control. Prog Lipid Res 2022; 88:101181. [PMID: 35820474 DOI: 10.1016/j.plipres.2022.101181] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022]
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the last reaction in the acyl-CoA-dependent biosynthesis of triacylglycerol (TAG). DGAT activity resides mainly in membrane-bound DGAT1 and DGAT2 in eukaryotes and bifunctional wax ester synthase-diacylglycerol acyltransferase (WSD) in bacteria, which are all membrane-bound proteins but exhibit no sequence homology to each other. Recent studies also identified other DGAT enzymes such as the soluble DGAT3 and diacylglycerol acetyltransferase (EaDAcT), as well as enzymes with DGAT activities including defective in cuticular ridges (DCR) and steryl and phytyl ester synthases (PESs). This review comprehensively discusses research advances on DGATs in prokaryotes and eukaryotes with a focus on their biochemical properties, physiological roles, and biotechnological and therapeutic applications. The review begins with a discussion of DGAT assay methods, followed by a systematic discussion of TAG biosynthesis and the properties and physiological role of DGATs. Thereafter, the review discusses the three-dimensional structure and insights into mechanism of action of human DGAT1, and the modeled DGAT1 from Brassica napus. The review then examines metabolic engineering strategies involving manipulation of DGAT, followed by a discussion of its therapeutic applications. DGAT in relation to improvement of livestock traits is also discussed along with DGATs in various other eukaryotic organisms.
Collapse
Affiliation(s)
- Guanqun Chen
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada.
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Membrane Protein Disease Research Group, Edmonton T6G 2H7, Canada
| | - Scot J Stone
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.
| | - Randall J Weselake
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| |
Collapse
|
6
|
Metabolic Engineering Strategies for Improved Lipid Production and Cellular Physiological Responses in Yeast Saccharomyces cerevisiae. J Fungi (Basel) 2022; 8:jof8050427. [PMID: 35628683 PMCID: PMC9144191 DOI: 10.3390/jof8050427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Microbial lipids have been a hot topic in the field of metabolic engineering and synthetic biology due to their increased market and important applications in biofuels, oleochemicals, cosmetics, etc. This review first compares the popular hosts for lipid production and explains the four modules for lipid synthesis in yeast, including the fatty acid biosynthesis module, lipid accumulation module, lipid sequestration module, and fatty acid modification module. This is followed by a summary of metabolic engineering strategies that could be used for enhancing each module for lipid production. In addition, the efforts being invested in improving the production of value-added fatty acids in engineered yeast, such as cyclopropane fatty acid, ricinoleic acid, gamma linoleic acid, EPA, and DHA, are included. A discussion is further made on the potential relationships between lipid pathway engineering and consequential changes in cellular physiological properties, such as cell membrane integrity, intracellular reactive oxygen species level, and mitochondrial membrane potential. Finally, with the rapid development of synthetic biology tools, such as CRISPR genome editing tools and machine learning models, this review proposes some future trends that could be employed to engineer yeast with enhanced intracellular lipid production while not compromising much of its cellular health.
Collapse
|
7
|
Chaturvedi S, Bhattacharya A, Rout PK, Nain L, Khare SK. An Overview of Enzymes and Rate-Limiting Steps Responsible for Lipid Production in Oleaginous Yeast. Ind Biotechnol (New Rochelle N Y) 2022. [DOI: 10.1089/ind.2021.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Shivani Chaturvedi
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| | - Prasant K. Rout
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Lata Nain
- Division of Microbiology, ICAR- Indian Agricultural Research Institute, New Delhi, India
| | - Sunil K. Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, India
| |
Collapse
|
8
|
Bai F, Yu L, Shi J, Li-Beisson Y, Liu J. Long-chain acyl-CoA synthetases activate fatty acids for lipid synthesis, remodeling and energy production in Chlamydomonas. THE NEW PHYTOLOGIST 2022; 233:823-837. [PMID: 34665469 DOI: 10.1111/nph.17813] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Long-chain acyl-CoA synthetases (LACSs) play many roles in mammals, yeasts and plants, but knowledge on their functions in microalgae remains fragmented. Here via genetic, biochemical and physiological analyses, we unraveled the function and roles of LACSs in the model microalga Chlamydomonas reinhardtii. In vitro assays on purified recombinant proteins revealed that CrLACS1, CrLACS2 and CrLACS3 all exhibited bona fide LACS activities toward a broad range of free fatty acids. The Chlamydomonas mutants compromised in CrLACS1, CrLACS2 or CrLACS3 did not show any obvious phenotypes in lipid content or growth under nitrogen (N)-replete condition. But under N-deprivation, CrLACS1 or CrLACS2 suppression resulted in c. 50% less oil, yet with a higher amount of chloroplast lipids. By contrast, CrLACS3 suppression impaired oil remobilization and cell growth severely during N-recovery, supporting its role in fatty acid β-oxidation to provide energy and carbon sources for regrowth. Transcriptomics analysis suggested that the observed lipid phenotypes are likely not due to transcriptional reprogramming but rather a shift in metabolic adjustment. Taken together, this study provided solid experimental evidence for essential roles of the three Chlamydomonas LACS enzymes in lipid synthesis, remodeling and catabolism, and highlighted the importance of lipid homeostasis in cell growth under nutrient fluctuations.
Collapse
Affiliation(s)
- Fan Bai
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Lihua Yu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Jianan Shi
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| | - Yonghua Li-Beisson
- CEA, CNRS, BIAM, Institut de Biosciences et Biotechnologies Aix-Marseille, CEA Cadarache, Aix Marseille Université, Saint Paul-Lez-Durance, 13108, France
| | - Jin Liu
- Laboratory for Algae Biotechnology and Innovation, College of Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Wang J, Xu Y, Holic R, Yu X, Singer SD, Chen G. Improving the Production of Punicic Acid in Baker's Yeast by Engineering Genes in Acyl Channeling Processes and Adjusting Precursor Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9616-9624. [PMID: 34428902 DOI: 10.1021/acs.jafc.1c03256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Punicic acid (PuA) is a high-value edible conjugated fatty acid with strong bioactivities and has important potential applications in nutraceutical, pharmaceutical, feeding, and oleochemical industries. Since the production of PuA is severely limited by the fact that its natural source (pomegranate seed oil) is not readily available on a large scale, there is considerable interest in understanding the biosynthesis and accumulation of this plant-based unusual fatty acid in transgenic microorganisms to support the rational design of biotechnological approaches for PuA production via fermentation. Here, we tested the effectiveness of genetic engineering and precursor supply in PuA production in the model yeast strain Saccharomyces cerevisiae. The results revealed that the combination of precursor feeding and co-expression of selected genes in acyl channeling processes created an effective "push-pull" approach to increase PuA content, which could prove valuable in future efforts to produce PuA in industrial yeast and other microorganisms via fermentation.
Collapse
Affiliation(s)
- Juli Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| | - Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| | - Roman Holic
- Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia
| | - Xiaochen Yu
- Diamond V, 2525 60th Avenue SW, Cedar Rapids, Iowa 52404, United States
| | - Stacy D Singer
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, 5403 1st Avenue South, Lethbridge, Alberta T1J 4B1, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, 116 Street and 85 Avenue, Edmonton, Alberta T6G 2P5, Canada
| |
Collapse
|
11
|
Wang H, Wang C, Yuan W, Chen H, Lu W, Zhang H, Chen YQ, Zhao J, Chen W. The role of phenylalanine hydroxylase in lipogenesis in the oleaginous fungus Mortierella alpina. MICROBIOLOGY-SGM 2021; 167. [PMID: 34402775 DOI: 10.1099/mic.0.001062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phenylalanine hydroxylase (PAH) catalyses the irreversible hydroxylation of phenylalanine to tyrosine, which is the rate-limiting reaction in phenylalanine metabolism in animals. A variety of polyunsaturated fatty acids can be synthesized by the lipid-producing fungus Mortierella alpina, which has a wide range of industrial applications in the production of arachidonic acid. In this study, RNA interference (RNAi) with the gene PAH was used to explore the role of phenylalanine hydroxylation in lipid biosynthesis in M. alpina. Our results indicated that PAH knockdown decreased the PAH transcript level by approximately 55% and attenuated cellular fatty acid biosynthesis. Furthermore, the level of NADPH, which is a critical reducing agent and the limiting factor in lipogenesis, was decreased in response to PAH RNAi, in addition to the downregulated transcription of other genes involved in NADPH production. Our study indicates that PAH is part of an overall enzymatic and regulatory mechanism supplying NADPH required for lipogenesis in M. alpina.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chunmei Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Weiwei Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, PR China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, PR China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China
| |
Collapse
|
12
|
Wei LJ, Cao X, Liu JJ, Kwak S, Jin YS, Wang W, Hua Q. Increased Accumulation of Squalene in Engineered Yarrowia lipolytica through Deletion of PEX10 and URE2. Appl Environ Microbiol 2021; 87:e0048121. [PMID: 34132586 PMCID: PMC8357297 DOI: 10.1128/aem.00481-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/29/2021] [Indexed: 02/05/2023] Open
Abstract
Squalene is a triterpenoid serving as an ingredient of various products in the food, cosmetic, pharmaceutical industries. The oleaginous yeast Yarrowia lipolytica offers enormous potential as a microbial chassis for the production of terpenoids, such as carotenoid, limonene, linalool, and farnesene, as the yeast provides ample storage space for hydrophobic products. Here, we present a metabolic design that allows the enhanced accumulation of squalene in Y. lipolytica. First, we improved squalene accumulation in Y. lipolytica by overexpressing the genes (ERG and HMG) coding for the mevalonate pathway enzymes. Second, we increased the production of lipid where squalene is accumulated by overexpressing DGA1 (encoding diacylglycerol acyltransferase) and deleting PEX10 (for peroxisomal membrane E3 ubiquitin ligase). Third, we deleted URE2 (coding for a transcriptional regulator in charge of nitrogen catabolite repression [NCR]) to induce lipid accumulation regardless of the carbon-to-nitrogen ratio in culture media. The resulting engineered Y. lipolytica exhibited a 115-fold higher squalene content (22.0 mg/g dry cell weight) than the parental strain. These results suggest that the biological function of Ure2p in Y. lipolytica is similar to that in Saccharomyces cerevisiae, and its deletion can be utilized to enhance the production of hydrophobic target products in oleaginous yeast strains. IMPORTANCE This study demonstrated a novel strategy for increasing squalene production in Y. lipolytica. URE2, a bifunctional protein that is involved in both nitrogen catabolite repression and oxidative stress response, was identified and demonstrated correlation to squalene production. The data suggest that double deletion of PEX10 and URE2 can serve as a positive synergistic effect to help yeast cells in boosting squalene production. This discovery can be combined with other strategies to engineer cell factories to efficiently produce terpenoid in the future.
Collapse
Affiliation(s)
- Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Xuan Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, People’s Republic of China
| | - Jing-Jing Liu
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Suryang Kwak
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, Shanghai, People's Republic of China
| |
Collapse
|
13
|
Wang H, Wang Q, Zhang C, Chen H, Lu W, Gu Z, Zhao J, Zhang H, Chen YQ, Chen W. The role of MTHFDL in mediating intracellular lipogenesis in oleaginous Mortierella alpina. MICROBIOLOGY-SGM 2021; 166:617-623. [PMID: 32209171 DOI: 10.1099/mic.0.000897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The oleaginous fungus Mortierella alpina can synthesize a variety of polyunsaturated fatty acids, which are used extensively in industry for the production of arachidonic acid (AA). NADPH is the limiting factor and critical reducing agent in lipid biosynthesis. In the folate cycle, methylenetetrahydrofolate dehydrogenase (MTHFDL) catalyzes the conversion of methylene tetrahydrofolate into 10-formyl-tetrahydrofolate with the reduction of NADP+ to NADPH. MTHFDL RNAi was used to investigate the role of the folate cycle in lipogenesis. Gene knockdown decreased the transcript levels of MTHFDL by about 50 % and attenuated cell fatty acid synthesis. The observation of decreased NADPH levels and downregulated NADPH-producing genes in response to MTHFDL RNAi indicates a novel aspect of the NADPH regulatory mechanism. Thus, our study demonstrates that MTHFDL plays key role in the mediation of NADPH in lipogenesis in M. alpina.
Collapse
Affiliation(s)
- Hongchao Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Qizai Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chen Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Haiqin Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Zhennan Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jianxin Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yong Q Chen
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, PR China.,School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| |
Collapse
|
14
|
Chawla K, Kaur S, Kaur R, Bhunia RK. Metabolic engineering of oleaginous yeasts to enhance single cell oil production. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13634] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kirti Chawla
- Plant Tissue Culture and Genetic Engineering National Agri‐Food Biotechnology Institute (NABI) Mohali Punjab India
| | - Sumandeep Kaur
- Department of Biotechnology, Sector‐25 Panjab University Chandigarh India
| | - Ranjeet Kaur
- Department of Genetics University of Delhi South Campus New Delhi India
| | - Rupam Kumar Bhunia
- Plant Tissue Culture and Genetic Engineering National Agri‐Food Biotechnology Institute (NABI) Mohali Punjab India
| |
Collapse
|
15
|
Wang M, Wei Y, Ji B, Nielsen J. Advances in Metabolic Engineering of Saccharomyces cerevisiae for Cocoa Butter Equivalent Production. Front Bioeng Biotechnol 2020; 8:594081. [PMID: 33178680 PMCID: PMC7594527 DOI: 10.3389/fbioe.2020.594081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/21/2020] [Indexed: 11/30/2022] Open
Abstract
Cocoa butter is extracted from cocoa beans, and it is mainly used as the raw material for the production of chocolate and cosmetics. Increased demands and insufficient cocoa plants led to a shortage of cocoa butter supply, and there is therefore much interesting in finding an alternative cocoa butter supply. However, the most valuable component of cocoa butter is rarely available in other vegetable oils. Saccharomyces cerevisiae is an important industrial host for production of chemicals, enzyme and pharmaceuticals. Advances in synthetical biology and metabolic engineering had enabled high-level of triacylglycerols (TAG) production in yeast, which provided possible solutions for cocoa butter equivalents (CBEs) production. Diverse engineering strategies focused on the fatty acid-producing pathway had been applied in S. cerevisiae, and the key enzymes determining the TAG structure were considered as the main engineering targets. Recent development in phytomics and multi-omics technologies provided clues to identify potential targeted enzymes, which are responsible for CBE production. In this review, we have summarized recent progress in identification of the key plant enzymes for CBE production, and discussed recent and future metabolic engineering and synthetic biology strategies for increased CBE production in S. cerevisiae.
Collapse
Affiliation(s)
- Mengge Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yongjun Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- BioInnovation Institute, Copenhagen, Denmark
| |
Collapse
|
16
|
Gao Q, Yang JL, Zhao XR, Liu SC, Liu ZJ, Wei LJ, Hua Q. Yarrowia lipolytica as a Metabolic Engineering Platform for the Production of Very-Long-Chain Wax Esters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10730-10740. [PMID: 32896122 DOI: 10.1021/acs.jafc.0c04393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The oleaginous yeast Yarrowia lipolytica is an attractive cell factory platform strain and can be used for sustainable production of high-value oleochemical products. Wax esters (WEs) have a good lubricating property and are usually used as a base for the production of advanced lubricants and emollient oils. In this study, we reported the metabolic engineering of Y. lipolytica to heterologously biosynthesize high-content very-long-chain fatty acids (VLCFAs) and fatty alcohols and efficiently esterify them to obtain very-long-chain WEs. Co-expression of fatty acid elongases from different sources in Y. lipolytica could yield VLCFAs with carbon chain lengths up to 24. Combining with optimization of the central metabolic modules could further enhance the biosynthesis of VLCFAs. Furthermore, through the screening of heterologous fatty acyl reductases (FARs), we enabled high-level production of fatty alcohols. Genomic integration and heterologous expression of wax synthase (WS) and FAR in a VLCFA-producing Y. lipolytica strain yielded 95-650 mg/L WEs with carbon chain lengths from 32 to 44. Scaled-up fermentation in 5 L laboratory bioreactors significantly increased the production of WEs to 2.0 g/L, the highest content so far in yeasts. This study contributes to the further efficient biosynthesis of VLCFAs and their derivatives.
Collapse
Affiliation(s)
- Qi Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Jing-Lin Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xin-Ru Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Shun-Cheng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Zhi-Jie Liu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Collaborative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, P. R. China
| | - Liu-Jing Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
17
|
Tang X, Chen H, Gu Z, Zhang H, Chen YQ, Song Y, Chen W. Role of g6 pdh and leuB on Lipid Accumulation in Mucor circinelloides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4245-4251. [PMID: 32181644 DOI: 10.1021/acs.jafc.9b08155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mucor circinelloides is a valuable oleaginous filamentous fungus rich in γ-linolenic acid (GLA, 18:3; n-6), which is beneficial for human health. Our previous comparative proteomic analysis between high lipid-producing M. circinelloides WJ11 and low lipid-producing M. circinelloides CBS 277.49 indicated that glucose 6-phosphate dehydrogenase (G6PDH) and β-isopropylmalate dehydrogenase (IPMDH) were closely involved in lipid accumulation. Transcription analysis suggested that in the strain WJ11, g6pdh1 and g6pdh2, which encode G6PDH, and leuB, which encodes IPMDH, could be the key genes regulating lipid accumulation. To further analyze the effects of these three genes (i.e., g6pdh1, g6pdh2, and leuB) on lipid accumulation, we respectively overexpressed these genes from M. circinelloides WJ11 in defective CBS 277.49 strains in this study. The results showed that overexpression of g6pdh1 and g6pdh2 genes from strain WJ11 increased the fatty acid content of cell dry weight by 23-38 and 41-47%, respectively, compared with the control strain. Furthermore, overexpression of the leuB gene from strain WJ11 increased the fatty acid content of cell dry weight by up to 67-73%. These results suggest that g6pdh1, g6pdh2, and especially leuB genes play important roles in regulating fatty acid synthesis in M. circinelloides.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R China
| | - Yuanda Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo 255000, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, P. R. China
| |
Collapse
|
18
|
Sosa Ponce ML, Moradi-Fard S, Zaremberg V, Cobb JA. SUNny Ways: The Role of the SUN-Domain Protein Mps3 Bridging Yeast Nuclear Organization and Lipid Homeostasis. Front Genet 2020; 11:136. [PMID: 32184804 PMCID: PMC7058695 DOI: 10.3389/fgene.2020.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/04/2020] [Indexed: 12/14/2022] Open
Abstract
Mps3 is a SUN (Sad1-UNC-84) domain-containing protein that is located in the inner nuclear membrane (INM). Genetic screens with multiple Mps3 mutants have suggested that distinct regions of Mps3 function in relative isolation and underscore the broad involvement of Mps3 in multiple pathways including mitotic spindle formation, telomere maintenance, and lipid metabolism. These pathways have largely been characterized in isolation, without a holistic consideration for how key regulatory events within one pathway might impinge on other aspects of biology at the nuclear membrane. Mps3 is uniquely positioned to function in these multiple pathways as its N- terminus is in the nucleoplasm, where it is important for telomere anchoring at the nuclear periphery, and its C-terminus is in the lumen, where it has links with lipid metabolic processes. Emerging work suggests that the role of Mps3 in nuclear organization and lipid homeostasis are not independent, but more connected. For example, a failure in regulating Mps3 levels through the cell cycle leads to nuclear morphological abnormalities and loss of viability, suggesting a link between the N-terminal domain of Mps3 and nuclear envelope homeostasis. We will highlight work suggesting that Mps3 is pivotal factor in communicating events between the nucleus and the lipid bilayer.
Collapse
Affiliation(s)
- Maria Laura Sosa Ponce
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada.,Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sarah Moradi-Fard
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Vanina Zaremberg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Jennifer A Cobb
- Departments of Biochemistry & Molecular Biology and Oncology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
19
|
Wang H, Zhang C, Chen H, Gu Z, Zhao J, Zhang H, Chen YQ, Chen W. Tetrahydrobiopterin Plays a Functionally Significant Role in Lipogenesis in the Oleaginous Fungus Mortierella alpina. Front Microbiol 2020; 11:250. [PMID: 32153536 PMCID: PMC7044132 DOI: 10.3389/fmicb.2020.00250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/03/2020] [Indexed: 11/13/2022] Open
Abstract
Tetrahydrobiopterin (BH4) is well-known as a cofactor of phenylalanine hydroxylase (PAH) and nitric oxide synthase (NOS), but its exact role in lipogenesis is unclear. In this study, the GTP cyclohydrolase I (GTPCH) gene was overexpressed to investigate the role of BH4 in lipogenesis in oleaginous fungus Mortierella alpina. Transcriptome data analysis reveal that GTPCH expression was upregulated when nitrogen was exhausted, resulting in lipid accumulation. Significant changes were also found in the fatty acid profile of M. alpina grown on medium that contained a GTPCH inhibitor relative to that of M. alpina grown on medium that lacked the inhibitor. GTPCH overexpression in M. alpina (the MA-GTPCH strain) led to a sevenfold increase in BH4 levels and enhanced cell fatty acid synthesis and poly-unsaturation. Increased levels of nicotinamide adenine dinucleotide phosphate (NADPH) and upregulated expression of NADPH-producing genes in response to enhanced BH4 levels were also observed, which indicate a novel aspect of the NADPH regulatory mechanism. Increased BH4 levels also enhanced phenylalanine hydroxylation and nitric oxide synthesis, and the addition of an NOS or a PAH inhibitor in the MA-GTPCH and control strain cultures decreased fatty acid accumulation, NADPH production, and the transcript levels of NADPH-producing genes. Our research suggests an important role of BH4 in lipogenesis and that the phenylalanine catabolism and arginine-nitric oxide pathways play an integrating role in translating the effects of BH4 on lipogenesis by regulating the cellular NADPH pool. Thus, our findings provide novel insights into the mechanisms of efficient lipid biosynthesis regulation in oleaginous microorganisms and lay a foundation for the genetic engineering of these organisms to optimize their dietary fat yield.
Collapse
Affiliation(s)
- Hongchao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Chen Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
20
|
Arhar S, Natter K. Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158513. [PMID: 31465888 DOI: 10.1016/j.bbalip.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/26/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
The biosynthetic pathways for most lipophilic metabolites share several common principles. These substances are built almost exclusively from acetyl-CoA as the donor for the carbon scaffold and NADPH is required for the reductive steps during biosynthesis. Due to their hydrophobicity, the end products are sequestered into the same cellular compartment, the lipid droplet. In this review, we will summarize the efforts in the metabolic engineering of yeasts for the production of two major hydrophobic substance classes, fatty acid-based lipids and isoprenoids, with regard to these common aspects. We will compare and discuss the results of genetic engineering strategies to construct strains with enhanced synthesis of the precursor acetyl-CoA and with modified redox metabolism for improved NADPH supply. We will also discuss the role of the lipid droplet in the storage of the hydrophobic product and review the strategies to either optimize this organelle for higher capacity or to achieve excretion of the product into the medium.
Collapse
Affiliation(s)
- Simon Arhar
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Klaus Natter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria.
| |
Collapse
|
21
|
Cao H, Sethumadhavan K, Li K, Boue SM, Anderson RA. Cinnamon Polyphenol Extract and Insulin Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Adipocytes and Macrophages. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2019; 74:115-121. [PMID: 30637573 DOI: 10.1007/s11130-018-0709-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cinnamon polyphenol extract (CPE) improves people with insulin resistance. The objective was to investigate CPE and insulin on diacylglycerol acyltransferase (DGAT) gene expression important for lipid biosynthesis and compared it to anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) gene expression known to be regulated by both agents. Mouse 3T3-L1 adipocytes and RAW264.7 macrophages were treated with insulin and CPE followed by qPCR evaluation of DGAT and TTP mRNA levels. Insulin decreased DGAT1 and DGAT2 mRNA levels in adipocytes but had no effect on DGAT1 and increased DGAT2 mRNA levels 3-fold in macrophages. Insulin increased TTP mRNA levels 3-fold in adipocytes but had no effect in macrophages. CPE effect on DGAT1 gene expression was minimal but increased DGAT2 mRNA levels 2-4 fold in adipocytes and macrophages. CPE increased TTP mRNA levels 2-7 fold in adipocytes and macrophages. We conclude that CPE and insulin exhibited overlapping and independent effects on DGAT and TTP gene expression and suggest that CPE and insulin have profound effects on fat biosynthesis and inflammatory responses.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Kandan Sethumadhavan
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Ke Li
- Modern Research Center for Traditional Chinese Medicine and Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Stephen M Boue
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | | |
Collapse
|
22
|
Colina F, Amaral J, Carbó M, Pinto G, Soares A, Cañal MJ, Valledor L. Genome-wide identification and characterization of CKIN/SnRK gene family in Chlamydomonas reinhardtii. Sci Rep 2019; 9:350. [PMID: 30674892 PMCID: PMC6344539 DOI: 10.1038/s41598-018-35625-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
The SnRK (Snf1-Related protein Kinase) gene family plays an important role in energy sensing and stress-adaptive responses in plant systems. In this study, Chlamydomonas CKIN family (SnRK in Arabidopsis) was defined after a genome-wide analysis of all sequenced Chlorophytes. Twenty-two sequences were defined as plant SnRK orthologs in Chlamydomonas and classified into two subfamilies: CKIN1 and CKIN2. While CKIN1 subfamily is reduced to one conserved member and a close protein (CKIN1L), a large CKIN2 subfamily clusters both plant-like and algae specific CKIN2s. The responsiveness of these genes to abiotic stress situations was tested by RT-qPCR. Results showed that almost all elements were sensitive to osmotic stress while showing different degrees of sensibility to other abiotic stresses, as occurs in land plants, revealing their specialization and the family pleiotropy for some elements. The regulatory pathway of this family may differ from land plants since these sequences shows unique regulatory features and some of them are sensitive to ABA, despite conserved ABA receptors (PYR/PYL/RCAR) and regulatory domains are not present in this species. Core Chlorophytes and land plant showed divergent stress signalling, but SnRKs/CKINs share the same role in cell survival and stress response and adaption including the accumulation of specific biomolecules. This fact places the CKIN family as well-suited target for bioengineering-based studies in microalgae (accumulation of sugars, lipids, secondary metabolites), while promising new findings in stress biology and specially in the evolution of ABA-signalling mechanisms.
Collapse
Affiliation(s)
- Francisco Colina
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Joana Amaral
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Carbó
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Gloria Pinto
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - Amadeu Soares
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal
| | - María Jesús Cañal
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology and University Institute of Biotechnology (IUBA), University of Oviedo, Oviedo, Spain.
- Department of Biology and CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
23
|
Cao H. Identification of the major diacylglycerol acyltransferase mRNA in mouse adipocytes and macrophages. BMC BIOCHEMISTRY 2018; 19:11. [PMID: 30547742 PMCID: PMC6293574 DOI: 10.1186/s12858-018-0103-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023]
Abstract
Background Triacylglycerols (TAGs) are the major form of energy storage in eukaryotes. Diacylglycerol acyltransferases (DGATs) catalyze the final and rate-limiting step of TAG biosynthesis. Mammalian DGATs are classified into DGAT1 and DGAT2 subfamilies. It was unclear which DGAT was the major isoform expressed in animal cells. The objective was to identify the major DGAT mRNA expressed in cultured mouse adipocytes and macrophages and compared it to that expressed in tung tree seeds. Methods qPCR evaluated DGAT mRNA levels in mouse 3 T3-L1 adipocytes and RAW264.7 macrophages and tung tree seeds. Results TaqMan qPCR showed that DGAT2 mRNA levels were 10–30 fold higher than DGAT1 in adipocytes and macrophages, and DGAT mRNA levels in adipocytes were 50–100-fold higher than those in macrophages. In contrast, the anti-inflammatory tristetraprolin/zinc finger protein 36 (TTP/ZFP36) mRNA levels were 2–4-fold higher in macrophages than those in adipocytes and similar to DGAT1 in adipocytes but 100-fold higher than DGAT1 in macrophages. SYBR Green qPCR analyses confirmed TaqMan qPCR results. DGAT2 mRNA as the major DGAT mRNA in the mouse cells was similar to that in tung tree seeds where DGAT2 mRNA levels were 10–20-fold higher than DGAT1 or DGAT3. Conclusion The results demonstrated that DGAT2 mRNA was the major form of DGAT mRNA expressed in mouse adipocytes and macrophages and tung tree seeds.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, 70124, USA.
| |
Collapse
|
24
|
He Q, Yang Y, Yang S, Donohoe BS, Van Wychen S, Zhang M, Himmel ME, Knoshaug EP. Oleaginicity of the yeast strain Saccharomyces cerevisiae D5A. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:258. [PMID: 30258492 PMCID: PMC6151946 DOI: 10.1186/s13068-018-1256-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/10/2018] [Indexed: 05/28/2023]
Abstract
BACKGROUND The model yeast, Saccharomyces cerevisiae, is not known to be oleaginous. However, an industrial wild-type strain, D5A, was shown to accumulate over 20% storage lipids from glucose when growth is nitrogen-limited compared to no more than 7% lipid accumulation without nitrogen stress. METHODS AND RESULTS To elucidate the mechanisms of S. cerevisiae D5A oleaginicity, we compared physiological and metabolic changes; as well as the transcriptional profiles of the oleaginous industrial strain, D5A, and a non-oleaginous laboratory strain, BY4741, under normal and nitrogen-limited conditions using analytic techniques and next-generation sequencing-based RNA-Seq transcriptomics. Transcriptional levels for genes associated with fatty acid biosynthesis, nitrogen metabolism, amino acid catabolism, as well as the pentose phosphate pathway and ethanol oxidation in central carbon (C) metabolism, were up-regulated in D5A during nitrogen deprivation. Despite increased carbon flux to lipids, most gene-encoding enzymes involved in triacylglycerol (TAG) assembly were expressed at similar levels regardless of the varying nitrogen concentrations in the growth media and strain backgrounds. Phospholipid turnover also contributed to TAG accumulation through increased precursor production with the down-regulation of subsequent phospholipid synthesis steps. Our results also demonstrated that nitrogen assimilation via the glutamate-glutamine pathway and amino acid metabolism, as well as the fluxes of carbon and reductants from central C metabolism, are integral to the general oleaginicity of D5A, which resulted in the enhanced lipid storage during nitrogen deprivation. CONCLUSION This work demonstrated the disequilibrium and rebalance of carbon and nitrogen contribution to the accumulation of lipids in the oleaginous yeast S. cerevisiae D5A. Rather than TAG assembly from acyl groups, the major switches for the enhanced lipid accumulation of D5A (i.e., fatty acid biosynthesis) are the increases of cytosolic pools of acetyl-CoA and NADPH, as well as alternative nitrogen assimilation.
Collapse
Affiliation(s)
- Qiaoning He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Yongfu Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-resources, Environmental Microbial Technology Center of Hubei Province, Hubei Key Laboratory of Industrial Biotechnology, College of Life Sciences, Hubei University, Wuhan, 430062 China
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | | | - Min Zhang
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, 80401 USA
| | - Eric P. Knoshaug
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, 80401 USA
| |
Collapse
|
25
|
Cao H, Sethumadhavan K. Cottonseed Extracts and Gossypol Regulate Diacylglycerol Acyltransferase Gene Expression in Mouse Macrophages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6022-6030. [PMID: 29807418 DOI: 10.1021/acs.jafc.8b01240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant bioactive polyphenols have been used for the prevention and treatment of various diseases since ancient history. Cotton ( Gossypium hirsutum L.) seeds are classified as glanded or glandless depending on the presence or absence of pigment glands, which contain polyphenolic gossypol. Diacylglycerol acyltransferases (DGATs) are integral membrane proteins that catalyze the last step of triacylglycerol biosynthesis in eukaryotes. Understanding the regulation of DGATs will provide information for therapeutic intervention for obesity and related diseases. However, little was known if DGAT gene expression was regulated by natural products. The objective of this study was to investigate the effects of cottonseed extracts and gossypol on DGAT gene expression in mouse RAW264.7 macrophages. Mouse cells were treated with different concentrations of cottonseed extracts, gossypol, and lipopolysaccharides (LPS) for various times. Quantitative polymerase chain reaction assay showed that coat extract of glanded seeds had a modest effect on DGAT1 and minimal effect on DGAT2 mRNA levels. Kernel extract of glanded seeds had a minimal effect on DGAT1 but increased DGAT2 mRNA levels more than 20-fold. Coat extract of glandless seeds and LPS had minimal effects on DGAT mRNA levels. Kernel extract of glandless seeds did not have much effect on DGAT1 and slightly increased DGAT2 mRNA levels. Gossypol increased DGAT1 and DGAT2 mRNA levels by up to three-fold and more than 80-fold, respectively. The coefficient correlations ( R2) between DGAT2 mRNA levels and glanded kernel extract and gossypol concentrations were 0.82-0.99. This study suggests that Dgat2 is an inducible gene rapidly responding to stimulators such as polyphenols whose protein product DGAT2 plays an important role in fat biosynthesis. We conclude that gossypol and ethanol extract from glanded cottonseed kernel are strong stimulators of DGAT2 gene expression and that they may be novel agents for intervention of lipid-related dysfunction via increasing DGAT2 gene expression in target tissues.
Collapse
Affiliation(s)
- Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service , Southern Regional Research Center , New Orleans , Louisiana 70124 , United States
| | - Kandan Sethumadhavan
- U.S. Department of Agriculture, Agricultural Research Service , Southern Regional Research Center , New Orleans , Louisiana 70124 , United States
| |
Collapse
|
26
|
A comparative analysis of single cell and droplet-based FACS for improving production phenotypes: Riboflavin overproduction in Yarrowia lipolytica. Metab Eng 2018; 47:346-356. [DOI: 10.1016/j.ymben.2018.04.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/02/2018] [Accepted: 04/20/2018] [Indexed: 12/15/2022]
|
27
|
Mishra P, Lee NR, Lakshmanan M, Kim M, Kim BG, Lee DY. Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica. BMC SYSTEMS BIOLOGY 2018; 12:12. [PMID: 29560822 PMCID: PMC5861505 DOI: 10.1186/s12918-018-0542-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application. Results In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica. Conclusion In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production. Electronic supplementary material The online version of this article (10.1186/s12918-018-0542-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pranjul Mishra
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Na-Rae Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore
| | - Minsuk Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, Republic of Korea
| | - Dong-Yup Lee
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore. .,Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01, Centros, Singapore, 138668, Singapore. .,School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| |
Collapse
|
28
|
Wei Y, Bergenholm D, Gossing M, Siewers V, Nielsen J. Expression of cocoa genes in Saccharomyces cerevisiae improves cocoa butter production. Microb Cell Fact 2018; 17:11. [PMID: 29370801 PMCID: PMC5784687 DOI: 10.1186/s12934-018-0866-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Cocoa butter (CB) extracted from cocoa beans (Theobroma cacao) is the main raw material for chocolate production, but CB supply is insufficient due to the increased chocolate demand and limited CB production. CB is mainly composed of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0-C18:1-C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0-C18:1-C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0-C18:1-C18:0). In general, Saccharomyces cerevisiae produces TAGs as storage lipids, which consist of C16 and C18 fatty acids. However, cocoa butter-like lipids (CBL, which are composed of POP, POS and SOS) are not among the major TAG forms in yeast. TAG biosynthesis is mainly catalyzed by three enzymes: glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT), and it is essential to modulate the yeast TAG biosynthetic pathway for higher CBL production. RESULTS We cloned seven GPAT genes and three LPAT genes from cocoa cDNA, in order to screen for CBL biosynthetic gene candidates. By expressing these cloned cocoa genes and two synthesized cocoa DGAT genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some of the strains. In the best producer, the potential CBL content was eightfold higher than the control strain, suggesting the cocoa genes expressed in this strain were functional and might be responsible for CBL biosynthesis. Moreover, the potential CBL content increased 134-fold over the control Y29-TcD1 (IMX581 sct1Δ ale1Δ lro1Δ dga1Δ with TcDGAT1 expression) in strain Y29-441 (IMX581 sct1Δ ale1Δ lro1Δ dga1Δ with TcGPAT4, TcLPAT4 and TcDGAT1 expression) further suggesting cocoa GPAT and LPAT genes functioned in yeast. CONCLUSIONS We demonstrated that cocoa TAG biosynthetic genes functioned in S. cerevisiae and identified cocoa genes that may be involved in CBL production. Moreover, we found that expression of some cocoa CBL biosynthetic genes improved potential CBL production in S. cerevisiae, showing that metabolic engineering of yeast for cocoa butter production can be realized by manipulating the key enzymes GPAT, LPAT and DGAT in the TAG biosynthetic pathway.
Collapse
Affiliation(s)
- Yongjun Wei
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296, Gothenburg, Sweden.,CAS-Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - David Bergenholm
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Michael Gossing
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 41296, Gothenburg, Sweden. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark.
| |
Collapse
|
29
|
Bergenholm D, Gossing M, Wei Y, Siewers V, Nielsen J. Modulation of saturation and chain length of fatty acids in
Saccharomyces cerevisiae
for production of cocoa butter‐like lipids. Biotechnol Bioeng 2018; 115:932-942. [DOI: 10.1002/bit.26518] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023]
Affiliation(s)
- David Bergenholm
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- Novo Nordisk Foundation Center for BiosustainabilityChalmers University of TechnologyGothenburgSweden
| | - Michael Gossing
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- Novo Nordisk Foundation Center for BiosustainabilityChalmers University of TechnologyGothenburgSweden
| | - Yongjun Wei
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- Novo Nordisk Foundation Center for BiosustainabilityChalmers University of TechnologyGothenburgSweden
| | - Verena Siewers
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- Novo Nordisk Foundation Center for BiosustainabilityChalmers University of TechnologyGothenburgSweden
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
- Novo Nordisk Foundation Center for BiosustainabilityChalmers University of TechnologyGothenburgSweden
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkLyngbyDenmark
| |
Collapse
|
30
|
Polburee P, Ohashi T, Tsai YY, Sumyai T, Lertwattanasakul N, Limtong S, Fujiyama K. Molecular cloning and overexpression of DGA1, an acyl-CoA-dependent diacylglycerol acyltransferase, in the oleaginous yeast Rhodosporidiobolus fluvialis DMKU-RK253. Microbiology (Reading) 2018; 164:1-10. [DOI: 10.1099/mic.0.000584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Pirapan Polburee
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
- Present address: Rattanakosin College for Sustainable Energy and Environment (RCSEE), Rajamangala University of Technology Rattanakosin, Nakhon Pathom, Thailand
| | - Takao Ohashi
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Yung-Yu Tsai
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Thitinun Sumyai
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | | | - Savitree Limtong
- The Royal Society of Thailand, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Kazuhito Fujiyama
- International Center for Biotechnology, Osaka University, Osaka, Japan
| |
Collapse
|
31
|
Zhao C, Li H, Zhang W, Wang H, Xu A, Tian J, Zou J, Taylor DC, Zhang M. BnDGAT1s Function Similarly in Oil Deposition and Are Expressed with Uniform Patterns in Tissues of Brassica napus. FRONTIERS IN PLANT SCIENCE 2017; 8:2205. [PMID: 29312429 PMCID: PMC5744481 DOI: 10.3389/fpls.2017.02205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/14/2017] [Indexed: 05/03/2023]
Abstract
As an allotetraploid oilcrop, Brassica napus contains four duplicated Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) genes, which catalyze one of the rate-limiting steps in triacylglycerol (TAG) biosynthesis in plants. While all four BnDGAT1s have been expressed functionally in yeast, their expression patterns in different germplasms and tissues and also consequent contribution to seed oil accumulation in planta remain to be elucidated. In this study, the coding regions of the four BnDGAT1s were expressed in an Arabidopsis dgat1 mutant. All four BnDGAT1s showed similar effects on oil content and fatty acid composition, a result which is different from that observed in previous studies of their expression in yeast. Expression patterns of BnDGAT1s were analyzed in developing seeds of 34 B. napus inbred lines and in different tissues of 14 lines. Different expression patterns were observed for the four BnDGAT1s, which suggests that they express independently or randomly in different germplasm sources. Higher expression of BnDGAT1s was correlated with higher seed oil content lines. Tissue-specific analyses showed that the BnDGAT1s were expressed in a uniform pattern in different tissues. Our results suggest that it is important to maintain expression of the four BnDGAT1s for maximum return on oil content.
Collapse
Affiliation(s)
- Cuizhu Zhao
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Huan Li
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Hailan Wang
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Aixia Xu
- College of Agronomy, Northwest A&F University, Yangling, China
| | | | - Jitao Zou
- National Research Council of Canada, Saskatoon, SK, Canada
| | | | - Meng Zhang
- College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
32
|
Wei Y, Gossing M, Bergenholm D, Siewers V, Nielsen J. Increasing cocoa butter-like lipid production of Saccharomyces cerevisiae by expression of selected cocoa genes. AMB Express 2017; 7:34. [PMID: 28168573 PMCID: PMC5293708 DOI: 10.1186/s13568-017-0333-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/27/2017] [Indexed: 12/29/2022] Open
Abstract
Cocoa butter (CB) extracted from cocoa beans mainly consists of three different kinds of triacylglycerols (TAGs), 1,3-dipalmitoyl-2-oleoyl-glycerol (POP, C16:0–C18:1–C16:0), 1-palmitoyl-3-stearoyl-2-oleoyl-glycerol (POS, C16:0–C18:1–C18:0) and 1,3-distearoyl-2-oleoyl-glycerol (SOS, C18:0–C18:1–C18:0), but CB supply is limited. Therefore, CB-like lipids (CBL, which are composed of POP, POS and SOS) are in great demand. Saccharomyces cerevisiae produces TAGs as storage lipids, which are also mainly composed of C16 and C18 fatty acids. However, POP, POS and SOS are not among the major TAG forms in yeast. TAG synthesis is mainly catalyzed by three enzymes: glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT) and diacylglycerol acyltransferase (DGAT). In order to produce CBL in S. cerevisiae, we selected six cocoa genes encoding GPAT, LPAT and DGAT potentially responsible for CB biosynthesis from the cocoa genome using a phylogenetic analysis approach. By expressing the selected cocoa genes in S. cerevisiae, we successfully increased total fatty acid production, TAG production and CBL production in some S. cerevisiae strains. The relative CBL content in three yeast strains harboring cocoa genes increased 190, 230 and 196% over the control strain, respectively; especially, the potential SOS content of the three yeast strains increased 254, 476 and 354% over the control strain. Moreover, one of the three yeast strains had a 2.25-fold increased TAG content and 6.7-fold higher level of CBL compared with the control strain. In summary, CBL production by S. cerevisiae were increased through expressing selected cocoa genes potentially involved in CB biosynthesis.
Collapse
|
33
|
Garaiova M, Mietkiewska E, Weselake RJ, Holic R. Metabolic engineering of Schizosaccharomyces pombe to produce punicic acid, a conjugated fatty acid with nutraceutic properties. Appl Microbiol Biotechnol 2017; 101:7913-7922. [DOI: 10.1007/s00253-017-8498-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 08/09/2017] [Accepted: 08/23/2017] [Indexed: 02/01/2023]
|
34
|
Combinatorial Engineering of Yarrowia lipolytica as a Promising Cell Biorefinery Platform for the de novo Production of Multi-Purpose Long Chain Dicarboxylic Acids. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3030040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
35
|
Abstract
Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica (Y. lipolytica) at various metabolic levels of lipid biosynthesis, degradation, and regulation for enhanced lipid and citric acid production. We used a one-step double gene knock-in and site-specific gene knock-out strategy. The resulting final strain combines the overexpression of homologous DGA1 and DGA2 in a POX-deleted background, and deletion of the SNF1 lipid regulator. This increased lipid and citric acid production in the strain under nitrogen-limiting conditions (C/N molar ratio of 60). The engineered strain constitutively accumulated lipid at a titer of more than 4.8 g/L with a lipid content of 53% of dry cell weight (DCW). The secreted citric acid reached a yield of 0.75 g/g (up to ~45 g/L) from pure glycerol in 3 days of batch fermentation using a 1-L bioreactor. This yeast cell factory was capable of simultaneous lipid accumulation and citric acid secretion. It can be used in fed-batch or continuous bioprocessing for citric acid recovery from the supernatant, along with lipid extraction from the harvested biomass.
Collapse
|
36
|
Tang X, Chen H, Gu Z, Zhang H, Chen YQ, Song Y, Chen W. Comparative Proteome Analysis between High Lipid-Producing Strain Mucor circinelloides WJ11 and Low Lipid-Producing Strain CBS 277.49. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:5074-5082. [PMID: 28557429 DOI: 10.1021/acs.jafc.7b00935] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mucor circinelloides is one of few oleaginous fungi that produces a useful oil rich in γ-linolenic acid, but it usually only produces <25% total lipid. Nevertheless, we isolated a new strain WJ11 that can produce up to 36% lipid of cell dry weight. In this study, we have systematically analyzed the global changes in protein levels between the high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 (15%, lipid/cell dry weight) at lipid accumulation phase through comparative proteome analysis. Proteome analysis demonstrated that the branched-chain amino acid and lysine metabolism, glycolytic pathway, and pentose phosphate pathway in WJ11 were up-regulated, while the activities of tricarboxylic acid cycle and branch point enzyme for synthesis of isoprenoids were retarded compared with CBS 277.49. The coordinated regulation at proteome level indicate that more acetyl-CoA and NADPH are provided for fatty acid biosynthesis in WJ11 compared with CBS 277.49.
Collapse
Affiliation(s)
- Xin Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P.R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P.R. China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P.R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P.R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P.R. China
| | - Yuanda Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P.R. China
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology , Zibo 255100, P.R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University , Wuxi 214122, P.R. China
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University , Beijing 100048, P.R. China
| |
Collapse
|
37
|
Li L, Zhang G, Wang Q. De novo transcriptomic analysis of Chlorella sorokiniana reveals differential genes expression in photosynthetic carbon fixation and lipid production. BMC Microbiol 2016; 16:223. [PMID: 27669744 PMCID: PMC5037625 DOI: 10.1186/s12866-016-0839-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Microalgae, which can absorb carbon dioxide and then transform it into lipid, are promising candidates to produce renewable energy, especially biodiesel. The paucity of genomic information, however, limits the development of genome-based genetic modification to improve lipid production in many microalgae. Here, we describe the de novo sequencing, transcriptome assembly, annotation and differential expression analysis for Chlorella sorokiniana cultivated in different conditions to reveal the change of genes expression associated with lipid accumulation and photosynthetic carbon fixation. RESULTS Six cultivation conditions were selected to cultivate C. sorokiniana. Lipid content of C. sorokiniana under nitrogen-limited condition was 2.96 times than that under nitrogen-replete condition. When cultivated in light with nitrogen-limited supply, C. sorokiniana can use carbon dioxide to accumulate lipid. Then, transcriptome of C. sorokiniana was sequenced using Illumina paired-end sequencing technology, and 244,291,069 raw reads with length of 100 bp were produced. After preprocessed, these reads were de novo assembled into 63,811 contigs among which 23,528 contigs were found homologous sequences in public databases through Blastx. Gene expression abundance under six conditions were quantified by calculating FPKM value. Ultimately, we found 385 genes at least 2-fold up-regulated while 71 genes at least 2-fold down-regulated in nitrogen-limited condition. Also, 204 genes were at least 2-fold up-regulated in light while 638 genes at least 2-fold down-regulated. Finally, 16 genes were selected to conduct RT-qPCR and 15 genes showed the similar results as those identified by transcriptomic analysis in term of differential expression. CONCLUSIONS De novo transcriptomic analyses have generated enormous information over C. sorokiniana, revealing a broad overview of genomic information related to lipid accumulation and photosynthetic carbon fixation. The genes with expression change under different conditions are highly likely the potential targets for genetic modification to improve lipid production and CO2 fixation efficiency in oleaginous microalgae.
Collapse
Affiliation(s)
- Lin Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| | - Guoqiang Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 XiQiDao, Tianjin Airport Economic Area, Tianjin, 300308 People’s Republic of China
| |
Collapse
|
38
|
Gajdoš P, Nicaud JM, Čertík M. Glycerol conversion into a single cell oil by engineered Yarrowia lipolytica. Eng Life Sci 2016; 17:325-332. [PMID: 32624778 DOI: 10.1002/elsc.201600065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/08/2016] [Accepted: 07/28/2016] [Indexed: 01/02/2023] Open
Abstract
Oleaginous yeasts are considered as natural single cell oil producers. Engineering the lipid biosynthetic pathway has the potential to increase lipid accumulation by these yeasts. In Yarrowia lipolytica, three diacylglycerol acyltransferases encoded by LRO1, DGA1, and DGA2 genes are involved in lipid formation. Strain JMY3580 was constructed by overexpressing DGA2 gene in Q4 strain (dga1Δ dga2Δ lro1Δ are1Δ). Reconstruction of triacylglycerol synthesis pathway led to significant improvement in lipid accumulation. Strain JMY3580 accumulated over 40% of lipids in biomass, while lipid accumulation in wild-type strain was not able to exceed 20% when grown on a glycerol-based medium with carbon to nitrogen ratio of 90. Higher lipid accumulation (over 50%) was achieved in fed-batch grown cells when glycerol was added during cultivation. The best biomass yield was 18.5 g/L after 144 h with total fatty acid yield 9.9 g/L. Fatty acid composition was altered when Dga2p was the only diacylglycerol acyltransferase present in yeast cells, especially lower percentage of linoleic acid was present in lipids of JMY3580. Microbial oil prepared by conversion of glycerol by genetically engineered Y. lipolytica could be applied for various value-added products based on single cell oils.
Collapse
Affiliation(s)
- Peter Gajdoš
- Department of Biochemical Technology, Faculty of Chemical and Food Technology Slovak University of Technology Bratislava Slovakia
| | - Jean-Marc Nicaud
- Micalis Institute, INRA, AgroParisTech Université Paris-Saclay Jouy-en-Josas France
| | - Milan Čertík
- Department of Biochemical Technology, Faculty of Chemical and Food Technology Slovak University of Technology Bratislava Slovakia
| |
Collapse
|
39
|
Fakas S. Lipid biosynthesis in yeasts: A comparison of the lipid biosynthetic pathway between the model nonoleaginous yeast Saccharomyces cerevisiae and the model oleaginous yeast Yarrowia lipolytica. Eng Life Sci 2016; 17:292-302. [PMID: 32624775 DOI: 10.1002/elsc.201600040] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/20/2016] [Accepted: 06/09/2016] [Indexed: 01/08/2023] Open
Abstract
Lipid biosynthesis and its regulation have been studied mostly in the nonoleaginous yeast Saccharomyces cerevisiae that serves as a model for eukaryotic cells. On the other hand, the yeast Yarrowia lipolytica has been put forward as a model for oleaginous microorganisms because its genetics is known and tools for its genetic manipulation are becoming increasingly available. A comparison of the lipid biosynthetic pathways that function in these two microorganisms shows many similarities in key biosynthetic and regulatory steps. An example is the enzyme phosphatidic acid phosphatase that controls the synthesis of triacylglycerol (TAG) in both yeasts. Controlling the TAG synthesis is crucial for metabolic engineering efforts that aim to increase the production of microbial lipids (i.e. single cell oils) because TAG comprises the final product of these processes. At the same time the comparison reveals fundamental differences (e.g. in the generation of acetyl-CoA for lipid biosynthesis) stemming from the oleaginous nature of Y. lipolytica. These differences warranty more studies in Y. lipolytica where the biochemistry and molecular biology of oleaginicity can be further explored.
Collapse
Affiliation(s)
- Stylianos Fakas
- Department of Food and Animal Sciences Alabama A&M University Normal AL USA
| |
Collapse
|
40
|
Kamisaka Y, Kimura K, Uemura H, Ledesma-Amaro R. Modulation of gluconeogenesis and lipid production in an engineered oleaginous Saccharomyces cerevisiae transformant. Appl Microbiol Biotechnol 2016; 100:8147-57. [PMID: 27311564 DOI: 10.1007/s00253-016-7662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 11/25/2022]
Abstract
We previously created an oleaginous Saccharomyces cerevisiae transformant as a dga1 mutant overexpressing Dga1p lacking 29 amino acids at the N-terminal (Dga1∆Np). Because we have already shown that dga1 disruption decreases the expression of ESA1, which encodes histone acetyltransferase, the present study was aimed at exploring how Esa1p was involved in lipid accumulation. We based our work on the previous observation that Esa1p acetylates and activates phosphoenolpyruvate carboxykinase (PEPCK) encoded by PCK1, a rate-limiting enzyme in gluconeogenesis, and subsequently evaluated the activation of Pck1p by yeast growth with non-fermentable carbon sources, thus dependent on gluconeogenesis. This assay revealed that the ∆dga1 mutant overexpressing Dga1∆Np had much lower growth in a glycerol-lactate (GL) medium than the wild-type strain overexpressing Dga1∆Np. Moreover, overexpression of Esa1p or Pck1p in mutants improved the growth, indicating that the ∆dga1 mutant overexpressing Dga1∆Np had lower activities of Pck1p and gluconeogenesis due to lower expression of ESA1. In vitro PEPCK assay showed the same trend in the culture of the ∆dga1 mutant overexpressing Dga1∆Np with 10 % glucose medium, indicating that Pck1p-mediated gluconeogenesis decreased in this oleaginous transformant under the lipid-accumulating conditions introduced by the glucose medium. The growth of the ∆dga1 mutant overexpressing Dga1∆Np in the GL medium was also improved by overexpression of acetyl-CoA synthetase, Acs1p or Acs2p, indicating that supply of acetyl-CoA was crucial for Pck1p acetylation by Esa1p. In addition, the ∆dga1 mutant without Dga1∆Np also showed better growth in the GL medium, indicating that decreased lipid accumulation was enhancing Pck1p-mediated gluconeogenesis. Finally, we found that overexpression of Ole1p, a fatty acid ∆9-desaturase, in the ∆dga1 mutant overexpressing Dga1∆Np improved its growth in the GL medium. Although the exact mechanisms leading to the effects of Ole1p were not clearly defined, changes of palmitoleic and oleic acid contents appeared to be critical. This observation was supported by experiments using exogenous palmitoleic and oleic acids or overexpression of elongases. Our findings provide new insights on lipid accumulation mechanisms and metabolic engineering approaches for lipid production.
Collapse
Affiliation(s)
- Yasushi Kamisaka
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.
| | - Kazuyoshi Kimura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Hiroshi Uemura
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Rodrigo Ledesma-Amaro
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan.,Universidad de Salamanca, Campus Miguel de Unamuno, E-3707, Salamanca, Spain.,INRA and AgroParisTech, UMR1319 Micalis, F-78352, Jouy-en-Josas, France
| |
Collapse
|
41
|
Sheng J, Stevens J, Feng X. Pathway Compartmentalization in Peroxisome of Saccharomyces cerevisiae to Produce Versatile Medium Chain Fatty Alcohols. Sci Rep 2016; 6:26884. [PMID: 27230732 PMCID: PMC4882508 DOI: 10.1038/srep26884] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 05/09/2016] [Indexed: 02/06/2023] Open
Abstract
Fatty alcohols are value-added chemicals and important components of a variety of industries, which have a >3 billion-dollar global market annually. Long chain fatty alcohols (>C12) are mainly used in surfactants, lubricants, detergents, pharmaceuticals and cosmetics while medium chain fatty alcohols (C6-C12) could be used as diesel-like biofuels. Microbial production of fatty alcohols from renewable feedstock stands as a promising strategy to enable sustainable supply of fatty alcohols. In this study, we report, for the first time, that medium chain fatty alcohols could be produced in yeast via targeted expression of a fatty acyl-CoA reductase (TaFAR) in the peroxisome of Saccharomyces cerevisiae. By tagging TaFAR enzyme with peroxisomal targeting signal peptides, the TaFAR could be compartmentalized into the matrix of the peroxisome to hijack the medium chain fatty acyl-CoA generated from the beta-oxidation pathway and convert them to versatile medium chain fatty alcohols (C10 &C12). The overexpression of genes encoding PEX7 and acetyl-CoA carboxylase further improved fatty alcohol production by 1.4-fold. After medium optimization in fed-batch fermentation using glucose as the sole carbon source, fatty alcohols were produced at 1.3 g/L, including 6.9% 1-decanol, 27.5% 1-dodecanol, 2.9% 1-tetradecanol and 62.7% 1-hexadecanol. This work revealed that peroxisome could be engineered as a compartmentalized organelle for producing fatty acid-derived chemicals in S. cerevisiae.
Collapse
Affiliation(s)
- Jiayuan Sheng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Joseph Stevens
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
42
|
Chen L, Lee J, Ning Chen W. The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2016.4.468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
43
|
Shi S, Ji H, Siewers V, Nielsen J. Improved production of fatty acids bySaccharomyces cerevisiaethrough screening a cDNA library from the oleaginous yeastYarrowia lipolytica. FEMS Yeast Res 2015; 16:fov108. [DOI: 10.1093/femsyr/fov108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2015] [Indexed: 12/19/2022] Open
|
44
|
Zhang S, Skerker JM, Rutter CD, Maurer MJ, Arkin AP, Rao CV. Engineering Rhodosporidium toruloides for increased lipid production. Biotechnol Bioeng 2015; 113:1056-66. [PMID: 26479039 DOI: 10.1002/bit.25864] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 12/22/2022]
Abstract
Oleaginous yeast are promising organisms for the production of lipid-based chemicals and fuels from simple sugars. In this work, we explored Rhodosporidium toruloides for the production of lipid-based products. This oleaginous yeast natively produces lipids at high titers and can grow on glucose and xylose. As a first step, we sequenced the genomes of two strains, IFO0880, and IFO0559, and generated draft assemblies and annotations. We then used this information to engineer two R. toruloides strains for increased lipid production by over-expressing the native acetyl-CoA carboxylase and diacylglycerol acyltransferase genes using Agrobacterium tumefaciens mediated transformation. Our best strain, derived from IFO0880, was able to produce 16.4 ± 1.1 g/L lipid from 70 g/L glucose and 9.5 ± 1.3 g/L lipid from 70 g/L xylose in shake-flask experiments. This work represents one of the first examples of metabolic engineering in R. toruloides and establishes this yeast as a new platform for production of fatty-acid derived products.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jeffrey M Skerker
- Department of Bioengineering, University of California, Berkeley, California
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Charles D Rutter
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Matthew J Maurer
- Department of Bioengineering, University of California, Berkeley, California
| | - Adam P Arkin
- Department of Bioengineering, University of California, Berkeley, California.
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California.
| | - Christopher V Rao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
45
|
Probst KV, Schulte LR, Durrett TP, Rezac ME, Vadlani PV. Oleaginous yeast: a value-added platform for renewable oils. Crit Rev Biotechnol 2015; 36:942-55. [DOI: 10.3109/07388551.2015.1064855] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kyle V. Probst
- IGERT in Biorefining,
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry,
| | | | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | | | | |
Collapse
|
46
|
Hegde K, Chandra N, Sarma SJ, Brar SK, Veeranki VD. Genetic Engineering Strategies for Enhanced Biodiesel Production. Mol Biotechnol 2015; 57:606-24. [DOI: 10.1007/s12033-015-9869-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Greer MS, Truksa M, Deng W, Lung SC, Chen G, Weselake RJ. Engineering increased triacylglycerol accumulation in Saccharomyces cerevisiae using a modified type 1 plant diacylglycerol acyltransferase. Appl Microbiol Biotechnol 2014; 99:2243-53. [DOI: 10.1007/s00253-014-6284-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/14/2014] [Accepted: 11/29/2014] [Indexed: 10/24/2022]
|
48
|
Kamisaka Y, Kimura K, Uemura H, Yamaoka M. Addition of methionine and low cultivation temperatures increase palmitoleic acid production by engineered Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2014; 99:201-10. [DOI: 10.1007/s00253-014-6083-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/02/2014] [Accepted: 09/09/2014] [Indexed: 12/27/2022]
|
49
|
Zhou YJ, Buijs NA, Siewers V, Nielsen J. Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2014; 2:32. [PMID: 25225637 PMCID: PMC4150446 DOI: 10.3389/fbioe.2014.00032] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 08/18/2014] [Indexed: 11/28/2022] Open
Abstract
Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From an engineering perspective, the pathway for fatty acid biosynthesis is an attractive route for the production of advanced fuels such as fatty acid ethyl esters, fatty alcohols, and alkanes. The robustness and excellent accessibility to molecular genetics make the yeast Saccharomyces cerevisiae a suitable host for the purpose of bio-manufacturing. Recent advances in metabolic engineering, as well as systems and synthetic biology, have now provided the opportunity to engineer yeast metabolism for the production of fatty acid-derived fuels and chemicals.
Collapse
Affiliation(s)
- Yongjin J. Zhou
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Nicolaas A. Buijs
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
50
|
Thompson RA, Trinh CT. Enhancing fatty acid ethyl ester production inSaccharomyces cerevisiaethrough metabolic engineering and medium optimization. Biotechnol Bioeng 2014; 111:2200-8. [DOI: 10.1002/bit.25292] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 05/11/2014] [Accepted: 05/14/2014] [Indexed: 11/12/2022]
Affiliation(s)
- R. Adam Thompson
- Bredesen Center for Interdisciplinary Research and Graduate Education; The University of Tennessee; Knoxville Tennessee
| | - Cong T. Trinh
- Bredesen Center for Interdisciplinary Research and Graduate Education; The University of Tennessee; Knoxville Tennessee
- Department of Chemical and Biomolecular Engineering; The University of Tennessee; Knoxville Tennessee 37996
| |
Collapse
|