1
|
Ebina M, Miura Y, Sakane F. Ubiquitin-specific peptidase 11 selectively interacts with and deubiquitination-dependently stabilizes diacylglycerol kinase δ to maintain cellular glucose uptake. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119883. [PMID: 39603461 DOI: 10.1016/j.bbamcr.2024.119883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/27/2024] [Accepted: 11/23/2024] [Indexed: 11/29/2024]
Abstract
Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol and converts it into phosphatidic acid. DGKδ contributes to glucose uptake as one of its cellular functions. However, detail mechanisms underlying the regulation of DGKδ protein stability remain unelucidated. Herein, we identified ubiquitin-specific peptidase 11 (USP11) in the DGKδ protein complex by DGKδ-interactome analysis. By mapping analysis, we clarified that a wider region of USP11, including the catalytic domain 1 region, and both the C1 domains and catalytic subdomain-a of DGKδ mainly contributed to their association. Cellular dysfunction of USP11 by mitoxiantrone (a USP11-specific inhibitor) or siRNA knockdown markedly decreased DGKδ protein levels. Additionally, we found that DGKδ ubiquitination was increased by USP11 dysfunction, and cumulative ubiquitination was reduced by rescue manipulation. Functionally, USP11 dysfunction reduced cellular glucose uptake. Altogether, our findings provide the first evidence that USP11 deubiquitination-dependently stabilizes DGKδ to maintain cellular glucose uptake.
Collapse
Affiliation(s)
- Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Division of Structural Biochemistry, Department of Biochemistry, Jichi Medical University, Tochigi 329-0498, Japan.
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
2
|
Sakai H, Murakami C, Takechi M, Urano T, Sakane F. Diacylglycerol kinase δ is required for skeletal muscle development and regeneration. FASEB Bioadv 2025; 7:e1481. [PMID: 39781426 PMCID: PMC11705536 DOI: 10.1096/fba.2024-00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/23/2024] [Accepted: 11/22/2024] [Indexed: 01/12/2025] Open
Abstract
Diacylglycerol kinase δ (DGKδ) phosphorylates diacylglycerol to produce phosphatidic acid. Previously, we demonstrated that down-regulation of DGKδ suppresses the myogenic differentiation of C2C12 myoblasts. However, the myogenic roles of DGKδ in vivo remain unclear. In the present study, we generated DGKδ-conditional knockout mice under the control of the myogenic factor 5 (Myf5) gene promoter, which regulates myogenesis and brown adipogenesis. The knockout mice showed a significant body weight reduction and apparent mass decrease in skeletal muscle, including the tibialis anterior (TA) muscle. Moreover, the thickness of a portion of the myofibers was reduced in DGKδ-deficient TA muscles. However, DGKδ deficiency did not substantially affect brown adipogenesis, suggesting that Myf5-driven DGKδ deficiency mainly affects muscle development. Notably, skeletal muscle injury induced by a cardiotoxin highly up-regulated DGKδ protein expression, and the DGKδ deficiency significantly reduced the thickness of myofibers, the expression levels of myogenic differentiation markers such as embryonic myosin heavy chain and myogenin, and the number of newly formed myofibers containing multiple central nuclei during muscle regeneration. DGKδ was strongly expressed in myogenin-positive satellite cells around the injured myofibers and centronucleated myofibers. These results indicate that DGKδ has important roles in muscle regeneration in activated satellite cells. Moreover, the conditional knockout mice fed with a high-fat diet showed increased fat mass and glucose intolerance. Taken together, these results demonstrate that DGKδ plays crucial roles in skeletal muscle development, regeneration, and function.
Collapse
Affiliation(s)
- Hiromichi Sakai
- Department of Biosignaling and Radioisotope ExperimentInterdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane UniversityIzumoJapan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
- Institute for Advanced Academic ResearchChiba UniversityChibaJapan
| | - Mayumi Takechi
- Department of Experimental Animals, Interdisciplinary Center for Science Research, Organization for Research and Academic InformationShimane UniversityIzumoJapan
| | - Takeshi Urano
- Department of BiochemistryShimane University School of MedicineIzumoJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
| |
Collapse
|
3
|
Watanabe N, Kaneko YK, Ishihara H, Shizu R, Yoshinari K, Yamaguchi M, Kimura T, Ishikawa T. Diacylglycerol kinase ζ is a positive insulin secretion regulator in pancreatic β-cell line MIN6. Biochem Biophys Res Commun 2025; 742:151109. [PMID: 39644605 DOI: 10.1016/j.bbrc.2024.151109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Some isoforms of diacylglycerol (DAG) kinase (DGK), an enzyme converting DAG into phosphatidic acid, i.e., DGKα, γ and δ, have been reportedly involved in the regulation of pancreatic β-cell function. DGKζ has also been reported to be expressed in rat pancreatic β-cells. However, its function in pancreatic β-cells remains unknown. The present study aimed to elucidate the function of DGKζ in pancreatic β-cells. The expression of DGKζ was detected in the β-cell line MIN6B and mouse pancreatic islets and in the cytoplasmic fraction from MIN6B cells. The knockdown of DGKζ with siRNA significantly decreased glucose-induced insulin secretion in MIN6B cells. The induction of DGKζ expression in MIN6CEon1 cells with a doxycycline-inducible stable expression system significantly increased glucose-induced insulin secretion. In contrast, glucose-induced insulin secretion was not changed when a kinase-dead DGKζ mutant (G356D) was overexpressed in MIN6CEon1 cells, indicating that a mechanism dependent on its kinase activity mediates the facilitatory effect of DGKζ on glucose-induced insulin secretion. Additionally, we revealed that DGKζ overexpression exhibited no effect on cell cycle of MIN6 cells. These results suggest that DGKζ plays a facilitatory role in insulin secretion in pancreatic β-cells.
Collapse
Affiliation(s)
- Naoya Watanabe
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan.
| | - Hisamitsu Ishihara
- Division of Diabetes and Metabolic Diseases, Nihon University School of Medicine, 30-1 Oyaguchikami-cho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Ryota Shizu
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Kouichi Yoshinari
- Department of Molecular Biology and Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, Shizuoka, 422-8526, Japan
| |
Collapse
|
4
|
Wu F, Bettiga M, Olsson L. Exploring the interplay between yeast cell membrane lipid adaptation and physiological response to acetic acid stress. Appl Environ Microbiol 2024; 90:e0121224. [PMID: 39535190 DOI: 10.1128/aem.01212-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/17/2024] [Indexed: 11/16/2024] Open
Abstract
Acetic acid is a byproduct of lignocellulose pretreatment and a potent inhibitor of yeast-based fermentation processes. A thicker yeast plasma membrane (PM) is expected to retard the passive diffusion of undissociated acetic acid into the cell. Molecular dynamic simulations suggest that membrane thickness can be increased by elongating glycerophospholipids (GPL) fatty acyl chains. Previously, we successfully engineered Saccharomyces cerevisiae to increase GPL fatty acyl chain length but failed to lower acetic acid net uptake. Here, we tested whether altering the relative abundance of diacylglycerol (DAG) might affect PM permeability to acetic acid in cells with longer GPL acyl chains (DAGEN). To this end, we expressed diacylglycerol kinase α (DGKα) in DAGEN. The resulting DAGEN_Dgkα strain exhibited restored DAG levels, grew in medium containing 13 g/L acetic acid, and accumulated less acetic acid. Acetic acid stress and energy burden were accompanied by increased glucose uptake in DAGEN_Dgkα cells. Compared to DAGEN, the relative abundance of several membrane lipids changed in DAGEN_Dgkα in response to acetic acid stress. We propose that the ability to increase the energy supply and alter membrane lipid composition could compensate for the negative effect of high net acetic acid uptake in DAGEN_Dgkα under stressful conditions. IMPORTANCE In the present study, we successfully engineered a yeast strain that could grow under high acetic acid stress by regulating its diacylglycerol metabolism. We compared how the plasma membrane and total cell membranes responded to acetic acid by adjusting their lipid content. By combining physiological and lipidomics analyses in cells cultivated in the absence or presence of acetic acid, we found that the capacity of the membrane to adapt lipid composition together with sufficient energy supply influenced membrane properties in response to stress. We suggest that potentiating the intracellular energy system or enhancing lipid transport to destination membranes should be taken into account when designing membrane engineering strategies. The findings highlight new directions for future yeast cell factory engineering.
Collapse
Affiliation(s)
- Fei Wu
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Bettiga
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
- Italbiotec Srl Benefit Corporation, Innovation Unit, Milan, Italy
| | - Lisbeth Olsson
- Department of Life Sciences, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
5
|
Kumar K, Pazare M, Ratnaparkhi GS, Kamat SS. CG17192 is a Phospholipase That Regulates Signaling Lipids in the Drosophila Gut upon Infection. Biochemistry 2024; 63:3000-3010. [PMID: 39442931 DOI: 10.1021/acs.biochem.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The chemoproteomics technique, activity-based protein profiling (ABPP), has proven to be an invaluable tool in assigning functions to enzymes. The serine hydrolase (SH) enzyme superfamily, in particular, has served as an excellent example in displaying the versatility of various ABPP platforms and has resulted in a comprehensive cataloging of the biochemical activities associated within this superfamily. Besides SHs, in mammals, several other enzyme classes have been thoroughly investigated using ABPP platforms. However, the utility of ABPP platforms in fly models remains underexplored. Realizing this knowledge gap, leveraging complementary ABPP platforms, we reported the full array of SH activities during various developmental stages and adult tissues in the fruit fly (Drosophila melanogaster). Following up on this study, using ABPP, we mapped SH activities in adult fruit flies in an infection model and found that a gut-resident lipase CG17192 showed increased activity during infection. To assign a biological function to this uncharacterized lipase, we performed an untargeted lipidomics analysis and found that phosphatidylinositols were significantly elevated when CG17192 was depleted in the adult fruit fly gut. Next, we overexpressed this lipase in insect cells, and using biochemical assays, we show that CG17192 is a secreted enzyme that has phospholipase C (PLC) type activity, with phosphatidylinositol being a preferred substrate. Finally, we show during infection that heightened CG17192 regulates phosphatidylinositol levels and, by doing so, likely modulates signaling pathways in the adult fruit fly gut that might be involved in the resolution of this pathophysiological condition.
Collapse
Affiliation(s)
- Kundan Kumar
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Mrunal Pazare
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Girish S Ratnaparkhi
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India
| |
Collapse
|
6
|
Sakane F, Murakami C, Sakai H. Upstream and downstream pathways of diacylglycerol kinase : Novel phosphatidylinositol turnover-independent signal transduction pathways. Adv Biol Regul 2024:101054. [PMID: 39368888 DOI: 10.1016/j.jbior.2024.101054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to produce phosphatidic acid (PA). Mammalian DGK comprise ten isozymes (α-κ) that regulate a wide variety of physiological and pathological events. Recently, we revealed that DGK isozymes use saturated fatty acid (SFA)/monosaturated fatty acid (MUFA)-containing and docosahexaenoic acid (22:6)-containing DG species, but not phosphatidylinositol (PI) turnover-derived 18:0/20:4-DG. For example, DGKδ, which is involved in the pathogenesis of type 2 diabetes, preferentially uses SFA/MUFA-containing DG species, such as 16:0/16:0- and 16:0/18:1-DG species, in high glucose-stimulated skeletal muscle cells. Moreover, DGKδ, which destabilizes the serotonin transporter (SERT) and regulates the serotonergic system in the brain, primarily generates 18:0/22:6-PA. Furthermore, 16:0/16:0-PA is produced by DGKζ in Neuro-2a cells during neuronal differentiation. We searched for SFA/MUFA-PA- and 18:0/22:6-PA-selective binding proteins (candidate downstream targets of DGKδ) and found that SFA/MUFA-PA binds to and activates the creatine kinase muscle type, an energy-metabolizing enzyme, and that 18:0/22:6-PA interacts with and activates Praja-1, an E3 ubiquitin ligase acting on SERT, and synaptojanin-1, a key player in the synaptic vesicle cycle. Next, we searched for SFA/MUFA-DG-generating enzymes upstream of DGKδ. We found that sphingomyelin synthase (SMS)1, SMS2, and SMS-related protein (SMSr) commonly act as phosphatidylcholine (PC)-phospholipase C (PLC) and phosphatidylethanolamine (PE)-PLC, generating SFA/MUFA-DG species, in addition to SMS and ceramide phosphoethanolamine synthase. Moreover, the orphan phosphatase PHOSPHO1 showed PC- and PE-PLC activities that produced SFA/MUFA-DG. Although PC- and PE-PLC activities were first described 70-35 years ago, their proteins and genes were not identified for a long time. We found that DGKδ interacts with SMSr and PHOSPHO1, and that DGKζ binds to SMS1 and SMSr. Taken together, these results strongly suggest that there are previously unrecognized signal transduction pathways that include DGK isozymes and generate and utilize SFA/MUFA-DG/PA or 18:0/22:6-DG/PA but not PI-turnover-derived 18:0/20:4-DG/PA.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo, Japan
| |
Collapse
|
7
|
Hernandez-Lara MA, Richard J, Deshpande DA. Diacylglycerol kinase is a keystone regulator of signaling relevant to the pathophysiology of asthma. Am J Physiol Lung Cell Mol Physiol 2024; 327:L3-L18. [PMID: 38742284 PMCID: PMC11380957 DOI: 10.1152/ajplung.00091.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Signal transduction by G protein-coupled receptors (GPCRs), receptor tyrosine kinases (RTKs) and immunoreceptors converge at the activation of phospholipase C (PLC) for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). This is a point for second-messenger bifurcation where DAG via protein kinase C (PKC) and IP3 via calcium activate distinct protein targets and regulate cellular functions. IP3 signaling is regulated by multiple calcium influx and efflux proteins involved in calcium homeostasis. A family of lipid kinases belonging to DAG kinases (DGKs) converts DAG to phosphatidic acid (PA), negatively regulating DAG signaling and pathophysiological functions. PA, through a series of biochemical reactions, is recycled to produce new molecules of PIP2. Therefore, DGKs act as a central switch in terminating DAG signaling and resynthesis of membrane phospholipids precursor. Interestingly, calcium and PKC regulate the activation of α and ζ isoforms of DGK that are predominantly expressed in airway and immune cells. Thus, DGK forms a feedback and feedforward control point and plays a crucial role in fine-tuning phospholipid stoichiometry, signaling, and functions. In this review, we discuss the previously underappreciated complex and intriguing DAG/DGK-driven mechanisms in regulating cellular functions associated with asthma, such as contraction and proliferation of airway smooth muscle (ASM) cells and inflammatory activation of immune cells. We highlight the benefits of manipulating DGK activity in mitigating salient features of asthma pathophysiology and shed light on DGK as a molecule of interest for heterogeneous diseases such as asthma.
Collapse
Affiliation(s)
- Miguel A Hernandez-Lara
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Joshua Richard
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| | - Deepak A Deshpande
- Department of Medicine, Center for Translational Medicine, Jane & Leonard Korman Respiratory Institute, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Barbernitz MX, Devine LR, Cole RN, Raben DM. The role of N-terminal phosphorylation of DGK-θ. J Lipid Res 2024; 65:100506. [PMID: 38272356 PMCID: PMC10914586 DOI: 10.1016/j.jlr.2024.100506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Diacylglycerol kinases (DGKs) are lipid kinases that mediate the phosphorylation of diacylglycerol (DAG) leading to the production of phosphatidic acid (PtdOH). To examine the role of phosphorylation on DGK-θ, we first identified the phosphorylated sites on endogenous DGK-θ from mouse brain and found four sites: S15, S17, which we refer to phosphomotif-1 sites, and S22 and S26 which we refer to as phosphomotif-2 sites. This study focused on the role of these phosphorylated sites on enzyme activity, membrane binding, thermal stability, and cellular half-life of DGK-θ. After generating a construct devoid of all non-catalytic phosphorylation sites (4A), we also generated other constructs to mimic phosphorylation of these residues by mutating them to glutamate (E). Our data demonstrate that an increase in membrane affinity requires the phosphorylation of all four endogenous sites as the phosphomimetic 4E but not other phosphomimietics. Furthermore, 4E also shows an increase in basal activity as well as an increase in the Syt1-induced activity compared to 4A. It is noteworthy that these phosphorylations had no effect on the thermal stability or cellular half-life of this enzyme. Interestingly, when only one phosphorylation domain (phosphomotif-1 or phosphomotif-2) contained phosphomimetics (S15E/S17E or S22E/S26E), the basal activity was also increased but membrane binding affinity was not increased. Furthermore, when only one residue in each domain mimicked an endogenous phosphorylated serine (S15E/S22E or S17E/S26E), the Syt1-induced activity as well as membrane binding affinity decreased relative to 4A. These results indicate that these endogenous phosphorylation sites contribute differentially to membrane binding and enzymatic activity.
Collapse
Affiliation(s)
- Millie X Barbernitz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lauren R Devine
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physiology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Liu W, Wang H, Zhao Q, Tao C, Qu W, Hou Y, Huang R, Sun Z, Zhu G, Jiang X, Fang Y, Gao J, Wu X, Yang Z, Ping R, Chen J, Yang R, Chu T, Zhou J, Fan J, Tang Z, Yang D, Shi Y. Multiomics analysis reveals metabolic subtypes and identifies diacylglycerol kinase α (DGKA) as a potential therapeutic target for intrahepatic cholangiocarcinoma. Cancer Commun (Lond) 2024; 44:226-250. [PMID: 38143235 PMCID: PMC10876206 DOI: 10.1002/cac2.12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/23/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous and lethal hepatobiliary tumor with few therapeutic strategies. The metabolic reprogramming of tumor cells plays an essential role in the development of tumors, while the metabolic molecular classification of iCCA is largely unknown. Here, we performed an integrated multiomics analysis and metabolic classification to depict differences in metabolic characteristics of iCCA patients, hoping to provide a novel perspective to understand and treat iCCA. METHODS We performed integrated multiomics analysis in 116 iCCA samples, including whole-exome sequencing, bulk RNA-sequencing and proteome analysis. Based on the non-negative matrix factorization method and the protein abundance of metabolic genes in human genome-scale metabolic models, the metabolic subtype of iCCA was determined. Survival and prognostic gene analyses were used to compare overall survival (OS) differences between metabolic subtypes. Cell proliferation analysis, 5-ethynyl-2'-deoxyuridine (EdU) assay, colony formation assay, RNA-sequencing and Western blotting were performed to investigate the molecular mechanisms of diacylglycerol kinase α (DGKA) in iCCA cells. RESULTS Three metabolic subtypes (S1-S3) with subtype-specific biomarkers of iCCA were identified. These metabolic subtypes presented with distinct prognoses, metabolic features, immune microenvironments, and genetic alterations. The S2 subtype with the worst survival showed the activation of some special metabolic processes, immune-suppressed microenvironment and Kirsten rat sarcoma viral oncogene homolog (KRAS)/AT-rich interactive domain 1A (ARID1A) mutations. Among the S2 subtype-specific upregulated proteins, DGKA was further identified as a potential drug target for iCCA, which promoted cell proliferation by enhancing phosphatidic acid (PA) metabolism and activating mitogen-activated protein kinase (MAPK) signaling. CONCLUSION Via multiomics analyses, we identified three metabolic subtypes of iCCA, revealing that the S2 subtype exhibited the poorest survival outcomes. We further identified DGKA as a potential target for the S2 subtype.
Collapse
Affiliation(s)
- Weiren Liu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Huqiang Wang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Qianfu Zhao
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Chenyang Tao
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Weifeng Qu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Yushan Hou
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Run Huang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Zimei Sun
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Guiqi Zhu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Xifei Jiang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Yuan Fang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Jun Gao
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Xiaoling Wu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Zhixiang Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Rongyu Ping
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Jiafeng Chen
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Rui Yang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Tianhao Chu
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Jian Zhou
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Jia Fan
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Zheng Tang
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| | - Dong Yang
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of LifeomicsBeijingP. R. China
| | - Yinghong Shi
- Department of Liver Surgery and TransplantationLiver Cancer Institute, Zhongshan HospitalFudan UniversityKey Laboratory of Carcinogenesis and Cancer Invasion of Ministry of EducationShanghaiP. R. China
- Research Unit of Liver cancer Recurrence and Metastasis, Chinese Academy of Medical SciencesBeijingP. R. China
| |
Collapse
|
10
|
Barbernitz MX, Raben DM. A new method for quantifying the enzyme activity of DGKs. Adv Biol Regul 2024; 91:100998. [PMID: 38030419 DOI: 10.1016/j.jbior.2023.100998] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH). A common approach to examine the activity of these enzymes relys on a radiometric assay (Epand and Topham, 2007; Tu-Sekine and Raben, 2017). This assay quantifies the DGK-catalyzed incorporation of 32P into DAG from AT32P to generate 32PtdOH and is perhaps been the most widely used assay. While sensitive, its drawbacks are the expense and the potential negative impacts on health and the environment. In this report, we describe a new assay which utilizes fluorescent labeled NBD-DAG (1-Oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-Glycero-3-diacylglycerol) to quantify the DGK-θ-catalyzed conversion of NBD-DAG to NBD-PtdOH. Furthermore, we show the assay is sufficiently sensitive as the measured specific activity was similar to that previously determined with AT32P (Tu-Sekine and Raben, 2012) and was able to detect the activation of DGK-θ by synaptotagmin-1 (Barber et al., 2022). Overall, this assay is inexpensive, sensitive, and reproducible making it an attractive alternative to currently established assays.
Collapse
Affiliation(s)
- Millie Xin Barbernitz
- Departments of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Departments of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Departments of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Martin-Salgado M, Ochoa-Echeverría A, Mérida I. Diacylglycerol kinases: A look into the future of immunotherapy. Adv Biol Regul 2024; 91:100999. [PMID: 37949728 DOI: 10.1016/j.jbior.2023.100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Cancer still represents the second leading cause of death right after cardiovascular diseases. According to the World Health Organization (WHO), cancer provoked around 10 million deaths in 2020, with lung and colon tumors accounting for the deadliest forms of cancer. As tumor cells become resistant to traditional therapeutic approaches, immunotherapy has emerged as a novel strategy for tumor control. T lymphocytes are key players in immune responses against tumors. Immunosurveillance allows identification, targeting and later killing of cancerous cells. Nevertheless, tumors evolve through different strategies to evade the immune response and spread in a process called metastasis. The ineffectiveness of traditional strategies to control tumor growth and expansion has led to novel approaches considering modulation of T cell activation and effector functions. Program death receptor 1 (PD-1) and cytotoxic T-lymphocyte antigen 4 (CTLA-4) showed promising results in the early 90s and nowadays are still being exploited together with other drugs for several cancer types. Other negative regulators of T cell activation are diacylglycerol kinases (DGKs) a family of enzymes that catalyze the conversion of diacylglycerol (DAG) into phosphatidic acid (PA). In T cells, DGKα and DGKζ limit the PLCγ/Ras/ERK axis thus attenuating DAG mediated signaling and T cell effector functions. Upregulation of either of both isoforms results in impaired Ras activation and anergy induction, whereas germline knockdown mice showed enhanced antitumor properties and more effective immune responses against pathogens. Here we review the mechanisms used by DGKs to ameliorate T cell activation and how inhibition could be used to reinvigorate T cell functions in cancer context. A better knowledge of the molecular mechanisms involved upon T cell activation will help to improve current therapies with DAG promoting agents.
Collapse
Affiliation(s)
- Miguel Martin-Salgado
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Ane Ochoa-Echeverría
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain
| | - Isabel Mérida
- Department of Immunology and Oncology. National Centre for Biotechnology. Spanish Research Council (CNB-CSIC), Spain.
| |
Collapse
|
12
|
Wang Y, Liang Y, Yuan Z, Mai W, Leng Y, Zhang R, Chen J, Lai C, Chen H, Wu X, Sheng C, Zhang Q. Cadmium facilitates the formation of large lipid droplets via PLCβ2-DAG-DGKε-PA signal pathway in Leydig cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115610. [PMID: 37866036 DOI: 10.1016/j.ecoenv.2023.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 10/24/2023]
Abstract
Cadmium (Cd) exposure damages the reproductive system. Lipid droplets (LDs) play an important role in steroid-producing cells to provide raw material for steroid hormone. We have found that the LDs of Leydig cells exposed to Cd are bigger than those of normal cells, but the effects on steroidogenesis and its underlying mechanism remains unclear. Using Isobaric tag for relative and absolute quantitation (iTARQ) proteomics, phosphodiesterase beta-2 (PLCβ2) was identified as the most significantly up-regulated protein in immature Leydig cells (ILCs) and adult Leydig cells (ALCs) derived from male rats exposed to maternal Cd. Consistent with high expression of PLCβ2, the size of LDs was increased in Leydig cells exposed to Cd, accompanied by reduction in cholesterol and progesterone (P4) levels. However, the high PLCβ2 did not result in high diacylglycerol (DAG) level, because Cd exposure up-regulated diacylglycerol kinases ε (DGKε) to promote the conversion from DAG to phosphatidic acid (PA). Exogenous PA, which was consistent with the intracellular PA concentration induced by Cd, facilitated the formation of large LDs in R2C cells, followed by reduced P4 level in the culture medium. When PLCβ2 expression was knocked down, the increased DGKε caused by Cd was reversed, and then the PA level was decreased to normal. As results, large LDs returned to normal size, and the level of total cholesterol was improved to restore steroidogenesis. The accumulation of PA regulated by PLCβ2-DAG-DGKε signal pathway is responsible for the formation of large LDs and insufficient steroid hormone synthesis in Leydig cells exposed to Cd. These data highlight that LD is an important target organelle for Cd-induced steroid hormone deficiency in males.
Collapse
Affiliation(s)
- Youjin Wang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yuqing Liang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Zansheng Yuan
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Wanwen Mai
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Yang Leng
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Runze Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Jiayan Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China
| | - Caiyong Lai
- Department of Urology, The sixth affiliated hospital of Jinan University, Dongguan 523570, China
| | - Hongxia Chen
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China.
| | - Chao Sheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qihao Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou 510632, China; Guangzhou Biopharmaceutical R&D Center of Jinan University Co., Ltd, Guangzhou 510632, China.
| |
Collapse
|
13
|
Suzuki R, Murakami C, Dilimulati K, Atsuta-Tsunoda K, Kawai T, Sakane F. Human sphingomyelin synthase 1 generates diacylglycerol in the presence and absence of ceramide via multiple enzymatic activities. FEBS Lett 2023; 597:2672-2686. [PMID: 37715942 DOI: 10.1002/1873-3468.14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/24/2023] [Accepted: 09/01/2023] [Indexed: 09/18/2023]
Abstract
Sphingomyelin (SM) synthase 1 (SMS1), which is involved in lipodystrophy, deafness, and thrombasthenia, generates diacylglycerol (DG) and SM using phosphatidylcholine (PC) and ceramide as substrates. Here, we found that SMS1 possesses DG-generating activities via hydrolysis of PC and phosphatidylethanolamine (PE) in the absence of ceramide and ceramide phosphoethanolamine synthase (CPES) activity. In the presence of the same concentration (4.7 mol%) of PC and ceramide, the amounts of DG produced by SMS and PC-phospholipase C (PLC) activities of SMS1 were approximately 65% and 35% of total DG production, respectively. PC-PLC activity showed substrate selectivity for saturated and/or monounsaturated fatty acid-containing PC species. A PC-PLC/SMS inhibitor, D609, inhibited only SMS activity. Mn2+ inhibited only PC-PLC activity. Intriguingly, DG attenuated SMS/CPES activities. Our study indicates that SMS1 is a unique enzyme with PC-PLC/PE-PLC/SMS/CPES activities.
Collapse
Affiliation(s)
- Rika Suzuki
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
- Institute for Advanced Academic Research, Chiba University, Japan
| | - Kamila Dilimulati
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | | | - Takuma Kawai
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Japan
| |
Collapse
|
14
|
Su H, Guo H, Qiu X, Lin TY, Qin C, Celio G, Yong P, Senders M, Han X, Bernlohr DA, Chen X. Lipocalin 2 regulates mitochondrial phospholipidome remodeling, dynamics, and function in brown adipose tissue in male mice. Nat Commun 2023; 14:6729. [PMID: 37872178 PMCID: PMC10593768 DOI: 10.1038/s41467-023-42473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Mitochondrial function is vital for energy metabolism in thermogenic adipocytes. Impaired mitochondrial bioenergetics in brown adipocytes are linked to disrupted thermogenesis and energy balance in obesity and aging. Phospholipid cardiolipin (CL) and phosphatidic acid (PA) jointly regulate mitochondrial membrane architecture and dynamics, with mitochondria-associated endoplasmic reticulum membranes (MAMs) serving as the platform for phospholipid biosynthesis and metabolism. However, little is known about the regulators of MAM phospholipid metabolism and their connection to mitochondrial function. We discover that LCN2 is a PA binding protein recruited to the MAM during inflammation and metabolic stimulation. Lcn2 deficiency disrupts mitochondrial fusion-fission balance and alters the acyl-chain composition of mitochondrial phospholipids in brown adipose tissue (BAT) of male mice. Lcn2 KO male mice exhibit an increase in the levels of CLs containing long-chain polyunsaturated fatty acids (LC-PUFA), a decrease in CLs containing monounsaturated fatty acids, resulting in mitochondrial dysfunction. This dysfunction triggers compensatory activation of peroxisomal function and the biosynthesis of LC-PUFA-containing plasmalogens in BAT. Additionally, Lcn2 deficiency alters PA production, correlating with changes in PA-regulated phospholipid-metabolizing enzymes and the mTOR signaling pathway. In conclusion, LCN2 plays a critical role in the acyl-chain remodeling of phospholipids and mitochondrial bioenergetics by regulating PA production and its function in activating signaling pathways.
Collapse
Affiliation(s)
- Hongming Su
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Hong Guo
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Xiaoxue Qiu
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Te-Yueh Lin
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA
| | - Chao Qin
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Gail Celio
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Peter Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Mark Senders
- University Imaging Centers, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota-Twin Cities, Minneapolis, MN, 55455, USA
| | - Xiaoli Chen
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, St. Paul, MN, 55108, USA.
| |
Collapse
|
15
|
Xiao Q, Wang D, Li D, Huang J, Ma F, Zhang H, Sheng Y, Zhang C, Ha X. Protein kinase C: A potential therapeutic target for endothelial dysfunction in diabetes. J Diabetes Complications 2023; 37:108565. [PMID: 37540984 DOI: 10.1016/j.jdiacomp.2023.108565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/13/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Protein kinase C (PKC) is a family of serine/threonine protein kinases that play an important role in many organs and systems and whose activation contributes significantly to endothelial dysfunction in diabetes. The increase in diacylglycerol (DAG) under high glucose conditions mediates PKC activation and synthesis, which stimulates oxidative stress and inflammation, resulting in impaired endothelial cell function. This article reviews the contribution of PKC to the development of diabetes-related endothelial dysfunction and summarizes the drugs that inhibit PKC activation, with the aim of exploring therapeutic modalities that may alleviate endothelial dysfunction in diabetic patients.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Dan Wang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Danyang Li
- School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Jing Huang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Feifei Ma
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; College of Veterinary Medicine, Gansu Agriculture University, Lanzhou 730070, Gansu, China
| | - Haocheng Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; The Second School of Clinical Medicine, Lanzhou University, Lanzhou, 730030, Gansu, China
| | - Yingda Sheng
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Caimei Zhang
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China
| | - Xiaoqin Ha
- Department of Laboratory, Ninth Forty Hospital of the Chinese People's Liberation Army Joint Security Force, Lanzhou 730050, Gansu, China; School of Public Health, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, Gansu, China.
| |
Collapse
|
16
|
Chetwynd SA, Andrews S, Inglesfield S, Delon C, Ktistakis NT, Welch HCE. Functions and mechanisms of the GPCR adaptor protein Norbin. Biochem Soc Trans 2023; 51:1545-1558. [PMID: 37503670 PMCID: PMC10586782 DOI: 10.1042/bst20221349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/29/2023]
Abstract
Norbin (Neurochondrin, NCDN) is a highly conserved 79 kDa adaptor protein that was first identified more than a quarter of a century ago as a gene up-regulated in rat hippocampus upon induction of long-term potentiation. Most research has focussed on the role of Norbin in the nervous system, where the protein is highly expressed. Norbin regulates neuronal morphology and synaptic plasticity, and is essential for normal brain development and homeostasis. Dysregulation of Norbin is linked to a variety of neurological conditions. Recently, Norbin was shown to be expressed in myeloid cells as well as neurons. Myeloid-cell specific deletion revealed an important role of Norbin as a suppressor of neutrophil-derived innate immunity. Norbin limits the ability of neutrophils to clear bacterial infections by curbing the responsiveness of these cells to inflammatory and infectious stimuli. Mechanistically, Norbin regulates cell responses through binding to its interactors, in particular to a wide range of G protein-coupled receptors (GPCRs). Norbin association with GPCRs controls GPCR trafficking and signalling. Other important Norbin interactors are the Rac guanine-nucleotide exchange factor P-Rex1 and protein kinase A. Downstream signalling pathways regulated by Norbin include ERK, Ca2+ and the small GTPase Rac. Here, we review the current understanding of Norbin structure, expression and its roles in health and disease. We also explore Norbin signalling through its interactors, with a particular focus on GPCR trafficking and signalling. Finally, we discuss avenues that could be pursued in the future to increase our understanding of Norbin biology.
Collapse
Affiliation(s)
| | - Simon Andrews
- Bioinformatics Facility, Babraham Institute, Cambridge, U.K
| | | | | | | | | |
Collapse
|
17
|
Mao P, Shen Y, Mao X, Liu K, Zhong J. The single-cell landscape of alternative transcription start sites of diabetic retina. Exp Eye Res 2023; 233:109520. [PMID: 37236522 DOI: 10.1016/j.exer.2023.109520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/01/2023] [Accepted: 05/24/2023] [Indexed: 05/28/2023]
Abstract
More than half of mammalian protein-coding genes have multiple transcription start sites. Alternative transcription start site (TSS) modulate mRNA stability, localization, and translation efficiency on post-transcription level, and even generate novel protein isoforms. However, differential TSS usage among cell types in healthy and diabetic retina remains poorly characterized. In this study, by using 5'-tag-based single-cell RNA sequencing, we identified cell type-specific alternative TSS events and key transcription factors for each of retinal cell types. We observed that lengthening of 5'- UTRs in retinal cell types are enriched for multiple RNA binding protein binding sites, including splicing regulators Rbfox1/2/3 and Nova1. Furthermore, by comparing TSS expression between healthy and diabetic retina, we identified elevated apoptosis signal in Müller glia and microglia, which can be served as a putative early sign of diabetic retinopathy. By measuring 5'UTR isoforms in retinal single-cell dataset, our work provides a comprehensive panorama of alternative TSS and its potential consequence related to post-transcriptional regulation. We anticipate our assay can not only provide insights into cellular heterogeneity driven by transcriptional initiation, but also open up the perspectives for identification of novel diagnostic indexes for diabetic retinopathy.
Collapse
Affiliation(s)
- Peiyao Mao
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yinchen Shen
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Xiying Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jiawei Zhong
- Department of Medicine (H7), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
18
|
Ancajas CF, Carr AJ, Lou J, Sagar R, Zhou Y, Reynolds TB, Best MD. Harnessing Clickable Acylated Glycerol Probes as Chemical Tools for Tracking Glycerolipid Metabolism. Chemistry 2023; 29:e202300417. [PMID: 37085958 PMCID: PMC10498425 DOI: 10.1002/chem.202300417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 04/23/2023]
Abstract
We report the use of clickable monoacylglycerol (MAG) analogs as probes for the labeling of glycerolipids during lipid metabolism. Incorporation of azide tags onto the glycerol region was pursued to develop probes that would label glycerolipids, in which the click tag would not be removed through processes including acyl chain and headgroup remodeling. Analysis of clickable MAG probes containing acyl chains of different length resulted in widely variable cell imaging and cytotoxicity profiles. Based on these results, we focused on a probe bearing a short acyl chain (C4 -MAG-N3 ) that was found to infiltrate natural lipid biosynthetic pathways to produce click-tagged versions of both neutral and phospholipid products. Alternatively, strategic blocking of the glycerol sn-3 position in probe C4 -MEG-N3 served to deactivate phospholipid tagging and focus labeling on neutral lipids. This work shows that lipid metabolic labeling profiles can be tuned based on probe structures and provides valuable tools for evaluating alterations to lipid metabolism in cells.
Collapse
Affiliation(s)
- Christelle F Ancajas
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Adam J Carr
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Jinchao Lou
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Ruhani Sagar
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| | - Yue Zhou
- Department of Microbiology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN, 37996, USA
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN, 37996, USA
| | - Michael D Best
- Department of Chemistry, University of Tennessee, 1420 Circle Drive, Knoxville, TN, 37996, USA
| |
Collapse
|
19
|
Tan J, Zhong M, Hu Y, Pan G, Yao J, Tang Y, Duan H, Jiang Y, Shan W, Lin J, Liu Y, Huang J, Zheng H, Zhou Y, Fu G, Li Z, Xu B, Zha J. Ritanserin suppresses acute myeloid leukemia by inhibiting DGKα to downregulate phospholipase D and the Jak-Stat/MAPK pathway. Discov Oncol 2023; 14:118. [PMID: 37392305 DOI: 10.1007/s12672-023-00737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/25/2023] [Indexed: 07/03/2023] Open
Abstract
Refractory or relapsed (R/R) AML is the most challenging form of AML to treat. Due to frequent genetic mutations, therapy alternatives are limited. Here, we identified the role of ritanserin and its target DGKα in AML. Several AML cell lines and primary patient cells were treated with ritanserin and subjected to cell proliferation, apoptosis and gene analyses with CCK-8 assay, Annexin V/PI assay and Western blotting, respectively. We also evaluated the function of the ritanserin target diacylglycerol kinase alpha (DGKα) in AML by bioinformatics. In vitro experiments have revealed that ritanserin inhibits AML progression in a dose- and time-dependent manner, and it shows an anti-AML effect in xenograft mouse models. We further demonstrated that the expression of DGKα was elevated in AML and correlated with poor survival. Mechanistically, ritanserin negatively regulates SphK1 expression through PLD signaling, also inhibiting the Jak-Stat and MAPK signaling pathways via DGKα. These findings suggest that DGKα may be an available therapeutic target and provide effective preclinical evidence of ritanserin as a promising treatment for AML.
Collapse
Affiliation(s)
- Jinshui Tan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Mengya Zhong
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yanyan Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Guangchao Pan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jingwei Yao
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yuanfang Tang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Hongpeng Duan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Yuelong Jiang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Weihang Shan
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jiaqi Lin
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Yating Liu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Jiewen Huang
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361002, Fujian, China
| | - Huijian Zheng
- The School of Clinical Medicine, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yong Zhou
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Guo Fu
- State Key Laboratory of Cellular Stress Biology, School of Medicine, Innovation Center for Cell Biology, Xiamen University, Xiamen, 361002, Fujian, China
| | - Zhifeng Li
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China
| | - Bing Xu
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China.
| | - Jie Zha
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen, 361003, Fujian, People's Republic of China.
- Key Laboratory of Xiamen for Diagnosis and Treatment of Hematological Malignancy, No. 55, Shizhen Hai Road, Xiamen, 361003, Fujian, People's Republic of China.
| |
Collapse
|
20
|
Qu M, Zuo L, Zhang M, Cheng P, Guo Z, Yang J, Li C, Wu J. High glucose induces tau hyperphosphorylation in hippocampal neurons via inhibition of ALKBH5-mediated Dgkh m 6A demethylation: a potential mechanism for diabetic cognitive dysfunction. Cell Death Dis 2023; 14:385. [PMID: 37385994 PMCID: PMC10310746 DOI: 10.1038/s41419-023-05909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/02/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023]
Abstract
Tau hyperphosphorylation in hippocampal neurons has an important pathogenetic role in the development of diabetic cognitive dysfunction. N6-methyladenosine (m6A) methylation is the most common modification of eukaryotic mRNA and is involved in regulating diverse biological processes. However, the role of m6A alteration in tau hyperphosphorylation of hippocampus neurons has not been reported. We found lower ALKBH5 expression in the hippocampus of diabetic rats and in HN-h cells with high-glucose intervention, accompanied by tau hyperphosphorylation. ALKBH5 overexpression significantly reversed tau hyperphosphorylation in high-glucose-stimulated HN-h cells. Furthermore, we found and confirmed by m6A-mRNA epitope transcriptome microarray and transcriptome RNA sequencing coupled with methylated RNA immunoprecipitation that ALKBH5 regulates the m6A modification of Dgkh mRNA. High glucose inhibited the demethylation modification of Dgkh by ALKBH5, resulting in decreases in Dgkh mRNA and protein levels. Overexpression of Dgkh reversed tau hyperphosphorylation in HN-h cells after high-glucose stimulation. Overexpression of Dgkh by adenovirus suspension injection into the bilateral hippocampus of diabetic rats significantly ameliorated tau hyperphosphorylation and diabetic cognitive dysfunction. In addition, ALKBH5 targeted Dgkh to activate PKC-α, leading to tau hyperphosphorylation under high-glucose conditions. The results of this study reveal that high glucose suppresses the demethylation modification of Dgkh by ALKBH5, which downregulates Dgkh and leads to tau hyperphosphorylation through activation of PKC-α in hippocampal neurons. These findings may indicate a new mechanism and a novel therapeutic target for diabetic cognitive dysfunction.
Collapse
Affiliation(s)
- Minli Qu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Linhui Zuo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengru Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peng Cheng
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhanjun Guo
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junya Yang
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Changjun Li
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Endocrinology Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
21
|
Mendez R, Shaikh M, Lemke MC, Yuan K, Libby AH, Bai DL, Ross MM, Harris TE, Hsu KL. Predicting small molecule binding pockets on diacylglycerol kinases using chemoproteomics and AlphaFold. RSC Chem Biol 2023; 4:422-430. [PMID: 37292058 PMCID: PMC10246554 DOI: 10.1039/d3cb00057e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/13/2023] [Indexed: 06/10/2023] Open
Abstract
Diacylglycerol kinases (DGKs) are metabolic kinases involved in regulating cellular levels of diacylglycerol and phosphatidic lipid messengers. The development of selective inhibitors for individual DGKs would benefit from discovery of protein pockets available for inhibitor binding in cellular environments. Here we utilized a sulfonyl-triazole probe (TH211) bearing a DGK fragment ligand for covalent binding to tyrosine and lysine sites on DGKs in cells that map to predicted small molecule binding pockets in AlphaFold structures. We apply this chemoproteomics-AlphaFold approach to evaluate probe binding of DGK chimera proteins engineered to exchange regulatory C1 domains between DGK subtypes (DGKα and DGKζ). Specifically, we discovered loss of TH211 binding to a predicted pocket in the catalytic domain when C1 domains on DGKα were exchanged that correlated with impaired biochemical activity as measured by a DAG phosphorylation assay. Collectively, we provide a family-wide assessment of accessible sites for covalent targeting that combined with AlphaFold revealed predicted small molecule binding pockets for guiding future inhibitor development of the DGK superfamily.
Collapse
Affiliation(s)
- Roberto Mendez
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Minhaj Shaikh
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Michael C Lemke
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Kun Yuan
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Adam H Libby
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| | - Dina L Bai
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Mark M Ross
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
| | - Ku-Lung Hsu
- Department of Chemistry, University of Virginia Charlottesville Virginia 22904 USA +1 434-297-4864
- Department of Pharmacology, University of Virginia School of Medicine Charlottesville Virginia 22908 USA
- Department of Molecular Physiology and Biological Physics, University of Virginia Charlottesville Virginia 22908 USA
- University of Virginia Cancer Center, University of Virginia Charlottesville VA 22903 USA
| |
Collapse
|
22
|
Ratnayake OC, Chotiwan N, Saavedra-Rodriguez K, Perera R. The buzz in the field: the interaction between viruses, mosquitoes, and metabolism. Front Cell Infect Microbiol 2023; 13:1128577. [PMID: 37360524 PMCID: PMC10289420 DOI: 10.3389/fcimb.2023.1128577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/24/2023] [Indexed: 06/28/2023] Open
Abstract
Among many medically important pathogens, arboviruses like dengue, Zika and chikungunya cause severe health and economic burdens especially in developing countries. These viruses are primarily vectored by mosquitoes. Having surmounted geographical barriers and threat of control strategies, these vectors continue to conquer many areas of the globe exposing more than half of the world's population to these viruses. Unfortunately, no medical interventions have been capable so far to produce successful vaccines or antivirals against many of these viruses. Thus, vector control remains the fundamental strategy to prevent disease transmission. The long-established understanding regarding the replication of these viruses is that they reshape both human and mosquito host cellular membranes upon infection for their replicative benefit. This leads to or is a result of significant alterations in lipid metabolism. Metabolism involves complex chemical reactions in the body that are essential for general physiological functions and survival of an organism. Finely tuned metabolic homeostases are maintained in healthy organisms. However, a simple stimulus like a viral infection can alter this homeostatic landscape driving considerable phenotypic change. Better comprehension of these mechanisms can serve as innovative control strategies against these vectors and viruses. Here, we review the metabolic basis of fundamental mosquito biology and virus-vector interactions. The cited work provides compelling evidence that targeting metabolism can be a paradigm shift and provide potent tools for vector control as well as tools to answer many unresolved questions and gaps in the field of arbovirology.
Collapse
Affiliation(s)
- Oshani C. Ratnayake
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Nunya Chotiwan
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Karla Saavedra-Rodriguez
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rushika Perera
- Center for Vector-borne Infectious Diseases, Dept. of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
23
|
Zhou D, Liu T, Rao X, Jie X, Chen Y, Wu Z, Deng H, Zhang D, Wang J, Wu G. Targeting diacylglycerol kinase α impairs lung tumorigenesis by inhibiting cyclin D3. Thorac Cancer 2023; 14:1179-1191. [PMID: 36965165 PMCID: PMC10151139 DOI: 10.1111/1759-7714.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/27/2023] Open
Abstract
BACKGROUND Diacylglycerol kinase α (DGKA) is the first member discovered from the diacylglycerol kinase family, and it has been linked to the progression of various types of tumors. However, it is unclear whether DGKA is linked to the development of lung cancer. METHODS We investigated the levels of DGKA in the lung cancer tissues. Cell growth assay, colony formation assay and EdU assay were used to examine the effects of DGKA-targeted siRNAs/shRNAs/drugs on the proliferation of lung cancer cells in vitro. Xenograft mouse model was used to investigate the role of DGKA inhibitor ritanserin on the proliferation of lung cancer cells in vivo. The downstream target of DGKA in lung tumorigenesis was identified by RNA sequencing. RESULTS DGKA is upregulated in the lung cancer cells. Functional assays and xenograft mouse model indicated that the proliferation ability of lung cancer cells was impaired after inhibiting DGKA. And cyclin D3(CCND3) is the downstream target of DGKA promoting lung cancer. CONCLUSIONS Our study demonstrated that DGKA promotes lung tumorigenesis by regulating the CCND3 expression and hence it can be considered as a potential molecular biomarker to evaluate the prognosis of lung cancer patients. What's more, we also demonstrated the efficacy of ritanserin as a promising new medication for treating lung cancer.
Collapse
Affiliation(s)
- Dong Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinrui Rao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Jie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunshang Chen
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zilong Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huilin Deng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Numagami Y, Hoshino F, Murakami C, Ebina M, Sakane F. Distinct regions of Praja-1 E3 ubiquitin-protein ligase selectively bind to docosahexaenoic acid-containing phosphatidic acid and diacylglycerol kinase δ. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159265. [PMID: 36528254 DOI: 10.1016/j.bbalip.2022.159265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/18/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
1-Stearoyl-2-docosahexaenoyl (18:0/22:6)-phosphatidic acid (PA) interacts with and activates Praja-1 E3 ubiquitin-protein ligase (full length: 615 aa) to ubiquitinate and degrade the serotonin transporter (SERT). SERT modulates serotonergic system activity and is a therapeutic target for depression, autism, obsessive-compulsive disorder, schizophrenia and Alzheimer's disease. Moreover, diacylglycerol kinase (DGK) δ2 (full length: 1214 aa) interacts with Praja-1 in addition to SERT and generates 18:0/22:6-PA, which binds and activates Praja-1. In the present study, we investigated the interaction of Praja-1 with 18:0/22:6-PA and DGKδ2 in more detail. We first found that the N-terminal one-third region (aa 1-224) of Praja-1 bound to 18:0/22:6-PA and that Lys141 in the region was critical for binding to 18:0/22:6-PA. In contrast, the C-terminal catalytic domain of Praja-1 (aa 446-615) interacted with DGKδ2. Additionally, the N-terminal half of the catalytic domain (aa 309-466) of DGKδ2 intensely bound to Praja-1. Moreover, the N-terminal region containing the pleckstrin homology and C1 domains (aa 1-308) and the C-terminal half of the catalytic domain (aa 762-939) of DGKδ2 weakly associated with Praja-1. Taken together, these results reveal new functions of the N-terminal (aa 1-224) and C-terminal (aa 446-615) regions of Praja-1 and the N-terminal half of the catalytic region (aa 309-466) of DGKδ2 as regulatory domains. Moreover, it is likely that the DGKδ2-Praja-1-SERT heterotrimer proximally arranges the 18:0/22:6-PA-producing catalytic domain of DGKδ2, the 18:0/22:6-PA-binding regulatory domain of Praja-1, the ubiquitin-protein ligase catalytic domain of Praja-1 and the ubiquitination acceptor site-containing SERT C-terminal region.
Collapse
Affiliation(s)
- Yuki Numagami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan; Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
25
|
Burroughs A, Aravind L. New biochemistry in the Rhodanese-phosphatase superfamily: emerging roles in diverse metabolic processes, nucleic acid modifications, and biological conflicts. NAR Genom Bioinform 2023; 5:lqad029. [PMID: 36968430 PMCID: PMC10034599 DOI: 10.1093/nargab/lqad029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 03/09/2023] [Indexed: 03/25/2023] Open
Abstract
The protein-tyrosine/dual-specificity phosphatases and rhodanese domains constitute a sprawling superfamily of Rossmannoid domains that use a conserved active site with a cysteine to catalyze a range of phosphate-transfer, thiotransfer, selenotransfer and redox activities. While these enzymes have been extensively studied in the context of protein/lipid head group dephosphorylation and various thiotransfer reactions, their overall diversity and catalytic potential remain poorly understood. Using comparative genomics and sequence/structure analysis, we comprehensively investigate and develop a natural classification for this superfamily. As a result, we identified several novel clades, both those which retain the catalytic cysteine and those where a distinct active site has emerged in the same location (e.g. diphthine synthase-like methylases and RNA 2' OH ribosyl phosphate transferases). We also present evidence that the superfamily has a wider range of catalytic capabilities than previously known, including a set of parallel activities operating on various sugar/sugar alcohol groups in the context of NAD+-derivatives and RNA termini, and potential phosphate transfer activities involving sugars and nucleotides. We show that such activities are particularly expanded in the RapZ-C-DUF488-DUF4326 clade, defined here for the first time. Some enzymes from this clade are predicted to catalyze novel DNA-end processing activities as part of nucleic-acid-modifying systems that are likely to function in biological conflicts between viruses and their hosts.
Collapse
Affiliation(s)
- A Maxwell Burroughs
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
26
|
Yachida N, Hoshino F, Murakami C, Ebina M, Miura Y, Sakane F. Saturated fatty acid- and/or monounsaturated fatty acid-containing phosphatidic acids selectively interact with heat shock protein 27. J Biol Chem 2023; 299:103019. [PMID: 36791913 PMCID: PMC10023972 DOI: 10.1016/j.jbc.2023.103019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Diacylglycerol kinase (DGK) α, which is a key enzyme in the progression of cancer and, in contrast, in T-cell activity attenuation, preferentially produces saturated fatty acid (SFA)- and/or monounsaturated fatty acid (MUFA)-containing phosphatidic acids (PAs), such as 16:0/16:0-, 16:0/18:0-, and 16:1/16:1-PA, in melanoma cells. In the present study, we searched for the target proteins of 16:0/16:0-PA in melanoma cells and identified heat shock protein (HSP) 27, which acts as a molecular chaperone and contributes to cancer progression. HSP27 more strongly interacted with PA than other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylglycerol, cardiolipin, phosphatidylinositol, phosphatidylinositol 4-monophosphate, and phosphatidylinositol 4,5-bisphosphate. Moreover, HSP27 is more preferentially bound to SFA- and/or MUFA-containing PAs, including 16:0/16:0- and 16:0/18:1-PAs, than PUFA-containing PAs, including 18:0/20:4- and 18:0/22:6-PA. Furthermore, HSP27 and constitutively active DGKα expressed in COS-7 cells colocalized in a DGK activity-dependent manner. Notably, 16:0/16:0-PA, but not phosphatidylcholine or 16:0/16:0-phosphatidylserine, induced oligomer dissociation of HSP27, which enhances its chaperone activity. Intriguingly, HSP27 protein was barely detectable in Jurkat T cells, while the protein band was intensely detected in AKI melanoma cells. Taken together, these results strongly suggest that SFA- and/or MUFA-containing PAs produced by DGKα selectively target HSP27 and regulate its cancer-progressive function in melanoma cells but not in T cells.
Collapse
Affiliation(s)
- Naoto Yachida
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan; Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, Japan.
| |
Collapse
|
27
|
Zheng ZG, Xu YY, Liu WP, Zhang Y, Zhang C, Liu HL, Zhang XY, Liu RZ, Zhang YP, Shi MY, Yang H, Li P. Discovery of a potent allosteric activator of DGKQ that ameliorates obesity-induced insulin resistance via the sn-1,2-DAG-PKCε signaling axis. Cell Metab 2023; 35:101-117.e11. [PMID: 36525963 DOI: 10.1016/j.cmet.2022.11.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 09/07/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
sn-1,2-diacylglycerol (sn-1,2-DAG)-mediated activation of protein kinase Cε (PKCε) is a key pathway that is responsible for obesity-related lipid metabolism disorders, which induces hepatic insulin resistance and type 2 diabetes. No small molecules have been previously reported to ameliorate these diseases through this pathway. Here, we screened and identified the phytochemical atractylenolide II (AT II) that reduces the hepatic sn-1,2-DAG levels, deactivates PKCε activity, and improves obesity-induced hyperlipidemia, hepatosteatosis, and insulin resistance. Furthermore, using the ABPP strategy, the diacylglycerol kinase family member DGKQ was identified as a direct target of AT II. AT II may act on a novel drug-binding pocket in the CRD and PH domains of DGKQ to thereby allosterically regulate its kinase activity. Moreover, AT II also increases weight loss by activating DGKQ-AMPK-PGC1α-UCP-1 signaling in adipose tissue. These findings suggest that AT II is a promising lead compound to improve obesity-induced insulin resistance.
Collapse
Affiliation(s)
- Zu-Guo Zheng
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Yin-Yue Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Wen-Ping Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yang Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Chong Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Han-Ling Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Run-Zhou Liu
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Yi-Ping Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Meng-Ying Shi
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Ping Li
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
28
|
Wu J, Wang L, Ervin JF, Wang SHJ, Soderblom E, Ko D, Yan D. GABA signaling triggered by TMC-1/Tmc delays neuronal aging by inhibiting the PKC pathway in C. elegans. SCIENCE ADVANCES 2022; 8:eadc9236. [PMID: 36542715 PMCID: PMC9770988 DOI: 10.1126/sciadv.adc9236] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/04/2022] [Indexed: 06/17/2023]
Abstract
Aging causes functional decline and degeneration of neurons and is a major risk factor of neurodegenerative diseases. To investigate the molecular mechanisms underlying neuronal aging, we developed a new pipeline for neuronal proteomic profiling in young and aged animals. While the overall translational machinery is down-regulated, certain proteins increase expressions upon aging. Among these aging-up-regulated proteins, the conserved channel protein TMC-1/Tmc has an anti-aging function in all neurons tested, and the neuroprotective function of TMC-1 occurs by regulating GABA signaling. Moreover, our results show that metabotropic GABA receptors and G protein GOA-1/Goα are required for the anti-neuronal aging functions of TMC-1 and GABA, and the activation of GABA receptors prevents neuronal aging by inhibiting the PLCβ-PKC pathway. Last, we show that the TMC-1-GABA-PKC signaling axis suppresses neuronal functional decline caused by a pathogenic form of human Tau protein. Together, our findings reveal the neuroprotective function of the TMC-1-GABA-PKC signaling axis in aging and disease conditions.
Collapse
Affiliation(s)
- Jieyu Wu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - John F. Ervin
- Bryan Brain Bank and Biorepository, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Shih-Hsiu J. Wang
- Department of Pathology & Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erik Soderblom
- Proteomics and Metabolomics Shared Resource and Duke Center for Genomic and Computational Biology, Duke University Medical School, Durham, NC 27710, USA
| | - Dennis Ko
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Dong Yan
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Regeneration Next, and Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
29
|
Barbernitz X, Raben DM. Phosphorylation of DGK. Adv Biol Regul 2022; 88:100941. [PMID: 36508895 DOI: 10.1016/j.jbior.2022.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Diacylglycerol (DAG) and phosphatidic acid (PtdOH) play important roles in a variety of signaling cascades (Carrasco and Merida, 2007; Stace and Ktistakis, 2006). Therefore, the physiological roles and regulatory mechanisms controlling the levels of these lipids are important. One class of enzymes capable of coordinating the levels of these two lipids are the diacylglycerol kinases (DGKs). DGKs catalyze the transfer of the γ-phosphate of ATP to the hydroxyl group of DAG which generates PtdOH(Merida et al., 2008; Sakane et al., 2007). As DGKs reciprocally modulate the relative levels of these two signaling lipids, it is not surprising that there is increasing interest in understanding the mechanism underlying the catalysis and regulation of these kinases. While post-translational modifications (PTMs) are often involved in enzyme regulation, there is surprisingly little information regarding the PTMs on these enzymes and their roles in modulating their activity and function. In this review, we will summarize what is known about one PTM on DGKs, phosphorylation, and the possible functions of this modification.
Collapse
Affiliation(s)
- Xin Barbernitz
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel M Raben
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
30
|
Morita SY, Ikeda Y. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochem Pharmacol 2022; 206:115296. [DOI: 10.1016/j.bcp.2022.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
|
31
|
Myo-D-inositol Trisphosphate Signalling in Oomycetes. Microorganisms 2022; 10:microorganisms10112157. [DOI: 10.3390/microorganisms10112157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Oomycetes are pathogens of plants and animals, which cause billions of dollars of global losses to the agriculture, aquaculture and forestry sectors each year. These organisms superficially resemble fungi, with an archetype being Phytophthora infestans, the cause of late blight of tomatoes and potatoes. Comparison of the physiology of oomycetes with that of other organisms, such as plants and animals, may provide new routes to selectively combat these pathogens. In most eukaryotes, myo-inositol 1,4,5 trisphosphate is a key second messenger that links extracellular stimuli to increases in cytoplasmic Ca2+, to regulate cellular activities. In the work presented in this study, investigation of the molecular components of myo-inositol 1,4,5 trisphosphate signaling in oomycetes has unveiled similarities and differences with that in other eukaryotes. Most striking is that several oomycete species lack detectable phosphoinositide-selective phospholipase C homologues, the enzyme family that generates this second messenger, but still possess relatives of myo-inositol 1,4,5 trisphosphate-gated Ca2+-channels.
Collapse
|
32
|
Hoshino F, Nakayama M, Furuta M, Murakami C, Kato A, Sakane F. Phosphatidylinositol 4,5-bisphosphate-specific phospholipase C β1 selectively binds dipalmitoyl and distearoyl phosphatidic acids via Lys946 and Lys951. Lipids 2022; 57:289-302. [PMID: 36054018 DOI: 10.1002/lipd.12356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/31/2022] [Accepted: 08/15/2022] [Indexed: 11/09/2022]
Abstract
Phospholipase C (PLC) β1 hydrolyzes 1-stearoyl-2-arachidonoyl (18:0/20:4)-phosphatidylinositol (PtdIns) 4,5-bisphosphate to produce diacylglycerol, which is converted to phosphatidic acid (PtdOH), in the PtdIns cycle and plays pivotal roles in intracellular signal transduction. The present study identified PLCβ1 as a PtdOH-binding protein using PtdOH-containing liposomes. Moreover, the comparison of the binding of PLCβ1 to various PtdOH species, including 14:0/14:0-PtdOH, 16:0/16:0-PtdOH, 16:0/18:1-PtdOH, 18:0/18:1-PtdOH, 18:0/18:0-PtdOH, 18:1/18:1-PtdOH, 18:0/20:4-PtdOH, and 18:0/22:6-PtdOH, indicated that the interaction of PLCβ1 with 16:0/16:0-PtdOH was the strongest. The PLCβ1-binding activity of 18:0/18:0-PtdOH was almost the same as the binding activity of 16:0/16:0-PtdOH. Furthermore, the binding of PLCβ1 to 16:0/16:0-PtdOH was substantially stronger than 16:0/16:0-phosphatidylserine, 16:0/16:0/16:0/16:0-cardiolipin, 16:0/16:0-PtdIns, and 18:0/20:4-PtdIns. We revealed that a PLCβ1 mutant whose Lys946 and Lys951 residues were replaced with Glu (PLCβ1-KE) did not interact with 16:0/16:0-PtdOH and failed to localize to the plasma membrane in Neuro-2a cells. Retinoic acid-dependent increase in neurite length and numbers was significantly inhibited in PLCβ1-expressing cells; however, this considerable attenuation was not detected in the cells expressing PLCβ1-KE. Overall, these results strongly suggest that PtdOHs containing only saturated fatty acids, including 16:0/16:0-PtdOH, which are not derived from the PtdIns cycle, selectively bind to PLCβ1 and regulate its function.
Collapse
Affiliation(s)
- Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Maika Nakayama
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Masataka Furuta
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan.,Institute for Advanced Academic Research, Chiba University, Chiba, Japan
| | - Ayumu Kato
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
33
|
Aulakh SS, Bozelli JC, Epand RM. Exploring the AlphaFold Predicted Conformational Properties of Human Diacylglycerol Kinases. J Phys Chem B 2022; 126:7172-7183. [PMID: 36041230 DOI: 10.1021/acs.jpcb.2c04533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Diacylglycerol kinases (DGKs) are important enzymes in molecular membrane biology, as they can lower the concentration of diacylglycerol through phosphorylation while at the same time producing phosphatidic acid. Dysfunction of DGK is linked with multiple diseases including cancer and autoimmune disorders. Currently, the high-resolution structures have not been determined for any of the 10 human DGK paralogs, which has made it difficult to gain a more complete understanding of the enzyme's mechanism of action and regulation. In the present study, we have taken advantage of the significant developments in protein structural prediction technology by artificial intelligence (i.e., Alphafold 2.0), to conduct a comprehensive investigation on the properties of all 10 human DGK paralogs. Structural alignment of the predictions reveals that the C1, catalytic, and accessory domains are conserved in their spatial arrangement relative to each other, across all paralogs. This suggests a critical role played by this domain architecture in DGK function. Moreover, docking studies corroborate the existence of a conserved ATP-binding site between the catalytic and accessory domains. Interestingly, the ATP bound to the interdomain cleft was also found to be in proximity of the conserved glycine-rich motif, which in protein kinases has been suggested to function in ATP binding. Lastly, the spatial arrangement of DGK, with respect to the membrane, reveals that most paralogs possess a more energetically favorable interaction with curved membranes. In conclusion, AlphaFold predictions of human DGKs provide novel insights into the enzyme's structural and functional properties while also paving the way for future experimentation.
Collapse
Affiliation(s)
- Sukhvershjit S Aulakh
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, Health Sciences Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
34
|
Knox S, Hagvall L, Malmberg P, O'Boyle NM. Topical Application of Metal Allergens Induces Changes to Lipid Composition of Human Skin. FRONTIERS IN TOXICOLOGY 2022; 4:867163. [PMID: 36004357 PMCID: PMC9393847 DOI: 10.3389/ftox.2022.867163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Lipids are an important constituent of skin and are known to be modified in many skin diseases including psoriasis and atopic dermatitis. The direct effects of common metallic contact allergens on the lipid composition of skin has never been investigated, to the best of our knowledge. We describe skin lipid profiles in the stratum corneum and viable epidermis of ex vivo human skin from a female donor upon exposure to three metal allergens (nickel, cobalt and chromium) visualised using time-of-flight secondary ion mass spectrometry (ToF-SIMS), which allows for simultaneous visualisation of both the allergen and skin components such as lipids. Multivariate analysis using partial least squares discriminant analysis (PLS-DA) indicated that the lipid profile of metal-treated skin was different to non-treated skin. Analysis of individual ions led to the discovery that cobalt and chromium induced increases in the content of diacylglycerols (DAG) in stratum corneum. Cobalt also induced increases in cholesterol in both the stratum corneum and viable epidermis, as well as monoacylglycerols (MAG) in the viable epidermis. Chromium caused an increase in DAG in viable epidermis in addition to the stratum corneum. In contrast, nickel decreased MAG and DAG levels in viable epidermis. Our results indicate that skin lipid content is likely to be altered upon topical exposure to metals. This discovery has potential implications for the molecular mechanisms by which contact allergens cause skin sensitization.
Collapse
Affiliation(s)
- Sophie Knox
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland
| | - Lina Hagvall
- Department of Dermatology and Venereology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Malmberg
- Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Niamh M. O'Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Niamh M. O'Boyle,
| |
Collapse
|
35
|
Sakai H, Matsumoto K, Urano T, Sakane F. Myristic acid selectively augments β-tubulin levels in C2C12 myotubes via diacylglycerol kinase δ. FEBS Open Bio 2022; 12:1788-1796. [PMID: 35856166 PMCID: PMC9527581 DOI: 10.1002/2211-5463.13466] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/29/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
Effective amelioration of type II diabetes requires therapies that increase both glucose uptake activity per cell and skeletal muscle mass. Myristic acid (14:0) increases diacylglycerol kinase (DGK) δ protein levels and enhances glucose uptake in myotubes in a DGKδ-dependent manner. However, it is still unclear whether myristic acid treatment affects skeletal muscle mass. In this study, we found that myristic acid treatment increased the protein level of β-tubulin, which constitutes microtubules and is closely related to muscle mass, in C2C12 myotubes but not in the proliferation stage in C2C12 myoblasts. However, lauric (12:0), palmitic (16:0) and oleic (18:1) acids failed to affect DGKδ and β-tubulin protein levels in C2C12 myotubes. Moreover, knockdown of DGKδ by siRNA significantly inhibited the increased protein level of β-tubulin in the presence of myristic acid, suggesting that the increase in β-tubulin protein by myristic acid depends on DGKδ. These results indicate that myristic acid selectively affects β-tubulin protein levels in C2C12 myotubes via DGKδ, suggesting that this fatty acid improves skeletal muscle mass in addition to increasing glucose uptake activity per cell.
Collapse
Affiliation(s)
- Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic InformationShimane UniversityIzumoJapan
| | - Ken‐ichi Matsumoto
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic InformationShimane UniversityIzumoJapan
| | - Takeshi Urano
- Department of BiochemistryShimane University School of MedicineIzumoJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityJapan
| |
Collapse
|
36
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
37
|
Takahashi D, Yonezawa K, Okizaki Y, Caaveiro JMM, Ueda T, Shimada A, Sakane F, Shimizu N. Ca 2+ -induced structural changes and intramolecular interactions in N-terminal region of diacylglycerol kinase alpha. Protein Sci 2022; 31:e4365. [PMID: 35762720 PMCID: PMC9202544 DOI: 10.1002/pro.4365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022]
Abstract
Diacylglycerol kinases (DGKs) are multi-domain lipid kinases that modulate the levels of lipid messengers, diacylglycerol, and phosphatidic acid. Recently, increasing attention has been paid to its α isozyme (DGKα) as a potential target for cancer immunotherapy. However, little progress has been made on the structural biology of DGKs, and a detailed understanding of the Ca2+ -triggered activation of DGKα, for which the N-terminal domains likely play a critical role, remains unclear. We have recently shown that Ca2+ binding to DGKα-EF induces conformational changes from a protease-susceptible "open" conformation in the apo state to a well-folded one in its holo state. Here, we further studied the structural properties of DGKα N-terminal (RVH and EF) domains using a series of biophysical techniques. We first revealed that the N-terminal RVH domain is a novel Ca2+ -binding domain, but the Ca2+ -induced conformational changes mainly occur in the EF domain. This was corroborated by NMR experiments showing that the EF domain adopts a molten-globule like structure in the apo state. Further analyses using SEC-SAXS and NMR indicate that the partially unfolded EF domain interacts with RVH domain, likely via hydrophobic interactions in the absence of Ca2+ , and this interaction is modified in the presence of Ca2+ . Taken together, these results present novel insights into the structural rearrangement of DGKα N-terminal domains upon binding to Ca2+ , which is essential for the activation of the enzyme.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Kento Yonezawa
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
- Center for Digital Green‐Innovation (CDG)Nara Institute of Science and Technology (NAIST)IkomaJapan
| | - Yuki Okizaki
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Jose M. M. Caaveiro
- Department of Global Healthcare, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Tadashi Ueda
- Department of Protein Structure, Function, and Design, Graduate School of Pharmaceutical ScienceKyushu UniversityFukuokaJapan
| | - Atsushi Shimada
- Division of Structural Biology, Medical Institute of BioregulationKyushu UniversityFukuokaJapan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of ScienceChiba UniversityChibaJapan
| | - Nobutaka Shimizu
- Photon Factory, Institute of Materials Structure ScienceHigh Energy Accelerator Research Organization (KEK)TsukubaJapan
| |
Collapse
|
38
|
Gatius S, Jove M, Megino-Luque C, Albertí-Valls M, Yeramian A, Bonifaci N, Piñol M, Santacana M, Pradas I, Llobet-Navas D, Pamplona R, Matías-Guiu X, Eritja N. Metabolomic Analysis Points to Bioactive Lipid Species and Acireductone Dioxygenase 1 (ADI1) as Potential Therapeutic Targets in Poor Prognosis Endometrial Cancer. Cancers (Basel) 2022; 14:cancers14122842. [PMID: 35740505 PMCID: PMC9220847 DOI: 10.3390/cancers14122842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Uterine serous carcinoma is considered a rare and aggressive variant of endometrial cancer that accounts for 10% of all endometrial cancers diagnosed but is responsible for 40% of endometrial cancer-related deaths. Unfortunately, current treatments for serous endometrial carcinoma are ineffective. Therefore, there is a need to find new therapeutic targets. The aim of this study was to analyse the metabolic profile of serous cancer in order to identify new molecules and thereby define potential therapeutic targets. We observed that most of the differential metabolites are lipid species (suggesting the important role of the lipid metabolism). In addition, we found an increase in 2-Oxo-4-methylthiobutanoic acid (synthesised by the ADI1 enzyme) in serous carcinomas. Using public database analysis and immunohistochemistry, we established a correlation between elevated ADI1 levels and serous carcinoma. Furthermore, the ectopic modification of ADI1 expression in vitro revealed the ability of ADI1 to induce pathological cell migration and invasion capabilities. Abstract Metabolomic profiling analysis has the potential to highlight new molecules and cellular pathways that may serve as potential therapeutic targets for disease treatment. In this study, we used an LC-MS/MS platform to define, for the first time, the specific metabolomic signature of uterine serous carcinoma (SC), a relatively rare and aggressive variant of endometrial cancer (EC) responsible for 40% of all endometrial cancer-related deaths. A metabolomic analysis of 31 ECs (20 endometrial endometrioid carcinomas (EECs) and 11 SCs) was performed. Following multivariate statistical analysis, we identified 232 statistically different metabolites among the SC and EEC patient samples. Notably, most of the metabolites identified (89.2%) were lipid species and showed lower levels in SCs when compared to EECs. In addition to lipids, we also documented metabolites belonging to amino acids and purine nucleotides (such as 2-Oxo-4-methylthiobutanoic acid, synthesised by acireductone dioxygenase 1 (ADI1) enzyme), which showed higher levels in SCs. To further investigate the role of ADI1 in SC, we analysed the expression protein levels of ADI1 in 96 ECs (67 EECs and 29 SCs), proving that the levels of ADI1 were higher in SCs compared to EECs. We also found that ADI1 mRNA levels were higher in p53 abnormal ECs compared to p53 wild type tumours. Furthermore, elevated ADI1 mRNA levels showed a statistically significant negative correlation with overall survival and progression-free survival among EEC patients. Finally, we tested the ability of ADI1 to induce migration and invasion capabilities in EC cell lines. Altogether, these results suggest that ADI1 could be a potential therapeutic target in poor-prognosis SCs and other Ecs with abnormal p53 expression.
Collapse
Affiliation(s)
- Sònia Gatius
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Correspondence: (S.G.); (N.E.); Tel.: +34-97370-5312 (S.G.); +34-97300-3750 (N.E.)
| | - Mariona Jove
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Manel Albertí-Valls
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
| | - Andree Yeramian
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Nuria Bonifaci
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
| | - Miquel Piñol
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
| | - Maria Santacana
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Scientific and Technical Service of Immunohistochemistry, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198 Lleida, Spain
| | - Irene Pradas
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - David Llobet-Navas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (M.J.); (I.P.); (R.P.)
| | - Xavier Matías-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain; (C.M.-L.); (M.A.-V.); (A.Y.); (N.B.); (M.P.); (X.M.-G.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
- Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Av. Gran via de l’Hospitalet 199, 08908 L’Hospitalet de Llobregat, Spain
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3–5, 28029 Madrid, Spain; (M.S.); (D.L.-N.)
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198 Lleida, Spain
- Correspondence: (S.G.); (N.E.); Tel.: +34-97370-5312 (S.G.); +34-97300-3750 (N.E.)
| |
Collapse
|
39
|
Diacylglycerol kinase η regulates cell proliferation and its levels are elevated by glucocorticoids in undifferentiated neuroblastoma cells. Biochem Biophys Res Commun 2022; 602:41-48. [DOI: 10.1016/j.bbrc.2022.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 11/18/2022]
|
40
|
Aslam N, Alvi F. TRPC3 Channel Activity and Viability of Purkinje Neurons can be Regulated by a Local Signalosome. Front Mol Biosci 2022; 9:818682. [PMID: 35265671 PMCID: PMC8899209 DOI: 10.3389/fmolb.2022.818682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/03/2022] [Indexed: 11/19/2022] Open
Abstract
Canonical transient receptor potential channels (TRPC3) may play a pivotal role in the development and viability of dendritic arbor in Purkinje neurons. This is a novel postsynaptic channel for glutamatergic synaptic transmission. In the cerebellum, TRPC3 appears to regulate functions relating to motor coordination in a highly specific manner. Gain of TRPC3 function is linked to significant alterations in the density and connectivity of dendritic arbor in Purkinje neurons. TRPC3 signals downstream of class I metabotropic glutamate receptors (mGluR1). Moreover, diacylglycerol (DAG) can directly bind and activate TRPC3 molecules. Here, we investigate a key question: How can the activity of the TRPC3 channel be regulated in Purkinje neurons? We also explore how mGluR1 activation, Ca2+ influx, and DAG homeostasis in Purkinje neurons can be linked to TRPC3 activity modulation. Through systems biology approach, we show that TRPC3 activity can be modulated by a Purkinje cell (PC)–specific local signalosome. The assembly of this signalosome is coordinated by DAG generation after mGluR1 activation. Our results also suggest that purinergic receptor activation leads to the spatial and temporal organization of the TRPC3 signaling module and integration of its key effector molecules such as DAG, PKCγ, DGKγ, and Ca2+ into an organized local signalosome. This signaling machine can regulate the TRPC3 cycling between active, inactive, and desensitized states. Precise activity of the TRPC3 channel is essential for tightly regulating the Ca2+ entry into PCs and thus the balance of lipid and Ca2+ signaling in Purkinje neurons and hence their viability. Cell-type–specific understanding of mechanisms regulating TRPC3 channel activity could be key in identifying therapeutic targeting opportunities.
Collapse
Affiliation(s)
- Naveed Aslam
- BioSystOmics, Houston, TX, United States
- *Correspondence: Naveed Aslam,
| | - Farah Alvi
- BioSystOmics, Houston, TX, United States
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Pakistan
| |
Collapse
|
41
|
Chen X, Fan B, Fan C, Wang Z, Wangkahart E, Huang Y, Huang Y, Jian J, Wang B. First comprehensive proteome analysis of lysine crotonylation in Streptococcus agalactiae, a pathogen causing meningoencephalitis in teleosts. Proteome Sci 2021; 19:14. [PMID: 34758830 PMCID: PMC8580364 DOI: 10.1186/s12953-021-00182-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022] Open
Abstract
Backgroud Streptococcus agalactiae is a common colonizer of the rectovaginal tract and lead to infectious diseases of neonatal and non-pregnant adults, which also causes infectious disease in fish and a zoonotic risk as well. Lysine crotonylation (Kcr) is a kind of histone post-translational modifications discovered in 2011. In yeast and mammals, Kcr function as potential enhancers and promote gene expression. However, lysine crotonylation in S. agalactiae has not been studied yet. Methods In this study, the crotonylation profiling of fish pathogen, S. agalactiae was investigated by combining affinity enrichment with LC MS/MS. The Kcr modification of several selected proteins were further validated by Western blotting. Results In the present study, we conducted the proteome-wide profiling of Kcr in S. agalactiae and identified 241 Kcr sites from 675 screened proteins for the first time. Bioinformatics analysis showed that 164 sequences were matched to a total of six definitively conserved motifs, and many of them were significantly enriched in metabolic processes, cellular process, and single-organism processes. Moreover, four crotonylation modified proteins were predicted as virulence factors or to being part of the quorum sensing system PTMs on bacteria. The data are available via ProteomeXchange with identifier PXD026445. Conclusions These data provide a promising starting point for further functional research of crotonylation in bacterial virulence in S. agalactiae. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00182-y.
Collapse
Affiliation(s)
- Xinjin Chen
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China
| | - Bolin Fan
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China
| | - Chenlong Fan
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China
| | - Zhongliang Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China.
| | - Eakapol Wangkahart
- Research Unit of Excellence for Tropical Fisheries and Technology, Division of Fisheries, Department of Agricultural Technology, Faculty of Technology, Mahasarakham University, Khamriang Sub-District, Kantarawichai, Mahasarakham, Thailand
| | - Yucong Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Huang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jichang Jian
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei Wang
- Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, College of Fishery, Guangdong Ocean University, Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, PR China. .,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
42
|
Sakane F, Hoshino F, Ebina M, Sakai H, Takahashi D. The Roles of Diacylglycerol Kinase α in Cancer Cell Proliferation and Apoptosis. Cancers (Basel) 2021; 13:cancers13205190. [PMID: 34680338 PMCID: PMC8534027 DOI: 10.3390/cancers13205190] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). DGKα is highly expressed in several refractory cancer cells, including melanoma, hepatocellular carcinoma, and glioblastoma cells, attenuates apoptosis, and promotes proliferation. In cancer cells, PA produced by DGKα plays an important role in proliferation/antiapoptosis. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), representing the main mechanism by which advanced cancers avoid immune action. In T cells, DGKα induces anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously activates T cell function. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers. Abstract Diacylglycerol (DG) kinase (DGK) phosphorylates DG to generate phosphatidic acid (PA). The α isozyme is activated by Ca2+ through its EF-hand motifs and tyrosine phosphorylation. DGKα is highly expressed in several refractory cancer cells including melanoma, hepatocellular carcinoma, and glioblastoma cells. In melanoma cells, DGKα is an antiapoptotic factor that activates nuclear factor-κB (NF-κB) through the atypical protein kinase C (PKC) ζ-mediated phosphorylation of NF-κB. DGKα acts as an enhancer of proliferative activity through the Raf–MEK–ERK pathway and consequently exacerbates hepatocellular carcinoma progression. In glioblastoma and melanoma cells, DGKα attenuates apoptosis by enhancing the phosphodiesterase (PDE)-4A1–mammalian target of the rapamycin pathway. As PA activates PKCζ, Raf, and PDE, it is likely that PA generated by DGKα plays an important role in the proliferation/antiapoptosis of cancer cells. In addition to cancer cells, DGKα is highly abundant in T cells and induces a nonresponsive state (anergy), which represents the main mechanism by which advanced cancers escape immune action. In T cells, DGKα attenuates the activity of Ras-guanyl nucleotide-releasing protein, which is activated by DG and avoids anergy through DG consumption. Therefore, a DGKα-specific inhibitor is expected to be a dual effective anticancer treatment that inhibits cancer cell proliferation and simultaneously enhances T cell functions. Moreover, the inhibition of DGKα synergistically enhances the anticancer effects of programmed cell death-1/programmed cell death ligand 1 blockade. Taken together, DGKα inhibition provides a promising new treatment strategy for refractory cancers.
Collapse
Affiliation(s)
- Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
- Correspondence: ; Tel.: +81-43-290-3695
| | - Fumi Hoshino
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
| | - Masayuki Ebina
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan; (F.H.); (M.E.)
| | - Hiromichi Sakai
- Department of Biosignaling and Radioisotope Experiment, Interdisciplinary Center for Science Research, Organization for Research and Academic Information, Shimane University, Izumo 693-8501, Japan;
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
43
|
Conte G, Giordani T, Vangelisti A, Serra A, Pauselli M, Cavallini A, Mele M. Transcriptome Adaptation of the Ovine Mammary Gland to Dietary Supplementation of Extruded Linseed. Animals (Basel) 2021; 11:2707. [PMID: 34573673 PMCID: PMC8465498 DOI: 10.3390/ani11092707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Several dietary strategies were adopted to reduce saturated fatty acids and increase beneficial fatty acids (FA) for human health. Few studies are available about the pathways/genes involved in these processes. Illumina RNA-sequencing was used to investigate changes in the ovine mammary gland transcriptome following supplemental feeding with 20% extruded linseed. Comisana ewes in mid-lactation were fed a control diet for 28 days (control period) followed by supplementation with 20% DM of linseed panel for 28 days (treatment period). Milk production was decreased by 30.46% with linseed supplementation. Moreover, a significant reduction in fat, protein and lactose secretion was also observed. Several unsaturated FAs were increased while short and medium chain saturated FAs were decreased by linseed treatment. Around four thousand (1795 up- and 2133 down-regulated) genes were significantly differentially regulated by linseed supplementation. The main pathways affected by linseed supplementation were those involved in the energy balance of the mammary gland. Principally, the mammary gland of fed linseed sheep showed a reduced abundance of transcripts related to the synthesis of lipids and carbohydrates and oxidative phosphorylation. Our study suggests that the observed decrease in milk saturated FA was correlated to down-regulation of genes in the lipid synthesis and lipid metabolism pathways.
Collapse
Affiliation(s)
- Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
| | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Mariano Pauselli
- Department of Agriculture, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy;
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| | - Marcello Mele
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy; (T.G.); (A.V.); (A.S.); (A.C.); (M.M.)
- Research Center of Nutraceutical and Food for Health, University of Pisa, Via del Borghetto, 80, 56124 Pisa, Italy
| |
Collapse
|
44
|
Pain E, Shinhmar S, Williams RSB. Using Dictyostelium to Advance Our Understanding of the Role of Medium Chain Fatty Acids in Health and Disease. Front Cell Dev Biol 2021; 9:722066. [PMID: 34589488 PMCID: PMC8473879 DOI: 10.3389/fcell.2021.722066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
Ketogenic diets have been utilized for many years to improve health, and as a dietary approach for the treatment of a range of diseases, where the mechanism of these low carbohydrate and high fat diets is widely considered to be through the production of metabolic products of fat breakdown, called ketones. One of these diets, the medium chain triglyceride ketogenic diet, involves high fat dietary intake in the form of medium chain fatty acids (MCFAs), decanoic and octanoic acid, and is commonly used in endurance and high intensity exercises but has also demonstrated beneficial effects in the treatment of numerous pathologies including drug resistant epilepsy, cancer, and diabetes. Recent advances, using Dictyostelium discoideum as a model, have controversially proposed several direct molecular mechanisms for decanoic acid in this diet, independent of ketone generation. Studies in this model have identified that decanoic acid reduces phosphoinositide turnover, diacylglycerol kinase (DGK) activity, and also inhibits the mechanistic target of rapamycin complex 1 (mTORC1). These discoveries could potentially impact the treatment of a range of disorders including epilepsy, cancer and bipolar disorder. In this review, we summarize the newly proposed mechanisms for decanoic acid, identified using D. discoideum, and highlight potential roles in health and disease treatment.
Collapse
Affiliation(s)
| | | | - Robin S. B. Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
| |
Collapse
|
45
|
Hattori Y, Yamasaki T, Ohashi T, Miyanohana Y, Kusumoto T, Maeda R, Miyamoto M, Debori Y, Hata A, Zhang Y, Wakizaka H, Wakabayashi T, Fujinaga M, Yamashita R, Zhang MR, Koike T. Design, Synthesis, and Evaluation of 11C-Labeled 3-Acetyl-Indole Derivatives as a Novel Positron Emission Tomography Imaging Agent for Diacylglycerol Kinase Gamma (DGKγ) in Brain. J Med Chem 2021; 64:11990-12002. [PMID: 34347478 DOI: 10.1021/acs.jmedchem.1c00584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Diacylglycerol kinase gamma (DGKγ) is a subtype of DGK enzyme, which catalyzes ATP-dependent conversion of diacylglycerol to phosphatidic acid. DGKγ, localized in the brain, plays an important role in the central nervous system. However, its function has not been widely investigated. Positron emission tomography (PET) imaging of DGKγ validates target engagement of therapeutic DGKγ inhibitors and investigates DGKγ levels under normal and disease conditions. In this study, we designed and synthesized a series of 3-acetyl indole derivatives as candidates for PET imaging agents for DGKγ. Among the synthesized compounds, 2-((3-acetyl-1-(6-methoxypyridin-3-yl)-2-methyl-1H-indol-5-yl)oxy)-N-methylacetamide (9) exhibited potent inhibitory activity (IC50 = 30 nM) against DGKγ and desirable physicochemical properties allowing efficient blood-brain barrier penetration and low levels of undesirable nonspecific binding. The radiolabeling of 9 followed by PET imaging of wild-type and DGKγ-deficient mice and rats indicated that [11C]9 ([11C]T-278) specifically binds to DGKγ and yields a high signal-to-noise ratio for DGKγ in rodent brains.
Collapse
Affiliation(s)
- Yasushi Hattori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomoteru Yamasaki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tomohiro Ohashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yuhei Miyanohana
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Tomokazu Kusumoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ryouta Maeda
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Maki Miyamoto
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasuyuki Debori
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Akito Hata
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Hidekatsu Wakizaka
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Takeshi Wakabayashi
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masayuki Fujinaga
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ryo Yamashita
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1, Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Tatsuki Koike
- Takeda Pharmaceutical Company Limited, 26-1 Muraoka-Higashi, 2-Chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
46
|
Dang X, Li Y, Li X, Wang C, Ma Z, Wang L, Fan X, Li Z, Huang D, Xu J, Zhou Z. Lipidomic Profiling Reveals Distinct Differences in Sphingolipids Metabolic Pathway between Healthy Apis cerana cerana larvae and Chinese Sacbrood Disease. INSECTS 2021; 12:insects12080703. [PMID: 34442269 PMCID: PMC8396520 DOI: 10.3390/insects12080703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022]
Abstract
Chinese sacbrood disease (CSD), which is caused by Chinese sacbrood virus (CSBV), is a major viral disease in Apis cerana cerana larvae. Analysis of lipid composition is critical to the study of CSBV replication. The host lipidome profiling during CSBV infection has not been conducted. This paper identified the lipidome of the CSBV-larvae interaction through high-resolution mass spectrometry. A total of 2164 lipids were detected and divided into 20 categories. Comparison of lipidome between healthy and CSBV infected-larvae showed that 266 lipid species were altered by CSBV infection. Furthermore, qRT-PCR showed that various sphingolipid enzymes and the contents of sphingolipids in the larvae were increased, indicating that sphingolipids may be important for CSBV infection. Importantly, Cer (d14:1 + hO/21:0 + O), DG (41:0e), PE (18:0e/18:3), SM (d20:0/19:1), SM (d37:1), TG (16:0/18:1/18:3), TG (18:1/20:4/21:0) and TG (43:7) were significantly altered in both CSBV_24 h vs. CK_24 h and CSBV_48 h vs. CK_48 h. Moreover, TG (39:6), which was increased by more than 10-fold, could be used as a biomarker for the early detection of CSD. This study provides evidence that global lipidome homeostasis in A. c. cerana larvae is remodeled after CSBV infection. Detailed studies in the future may improve the understanding of the relationship between the sphingolipid pathway and CSBV replication.
Collapse
Affiliation(s)
- Xiaoqun Dang
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Yan Li
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Xiaoqing Li
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Chengcheng Wang
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Zhengang Ma
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Linling Wang
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Xiaodong Fan
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Zhi Li
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Dunyuan Huang
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
| | - Jinshan Xu
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
- Correspondence: (J.X.); (Z.Z.)
| | - Zeyang Zhou
- Chongqing Key Laboratory of Vector Insect, College of Life Science, Chongqing Normal University, Chongqing 401331, China; (X.D.); (Y.L.); (X.L.); (C.W.); (Z.M.); (L.W.); (X.F.); (Z.L.); (D.H.)
- State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing 400715, China
- Correspondence: (J.X.); (Z.Z.)
| |
Collapse
|
47
|
Liao H, Gaur A, Mauvais C, Denicourt C. p53 induces a survival transcriptional response after nucleolar stress. Mol Biol Cell 2021; 32:ar3. [PMID: 34319761 PMCID: PMC8684752 DOI: 10.1091/mbc.e21-05-0251] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Accumulating evidence indicates that increased ribosome biogenesis is a hallmark of cancer. It is well established that inhibition of any steps of ribosome biogenesis induces nucleolar stress characterized by p53 activation and subsequent cell cycle arrest and/or cell death. However, cells derived from solid tumors have demonstrated different degrees of sensitivity to ribosome biogenesis inhibition, where cytostatic effects rather than apoptosis are observed. The reason for this is not clear, and the p53-specific transcriptional program induced after nucleolar stress has not been previously investigated. Here we demonstrate that blocking rRNA synthesis by depletion of essential rRNA processing factors such as LAS1L, PELP1, and NOP2 or by inhibition of RNA Pol I with the specific small molecule inhibitor CX-5461, mainly induce cell cycle arrest accompanied by autophagy in solid tumor–derived cell lines. Using gene expression analysis, we find that p53 orchestrates a transcriptional program involved in promoting metabolic remodeling and autophagy to help cells survive under nucleolar stress. Importantly, our study demonstrates that blocking autophagy significantly sensitizes cancer cells to RNA Pol I inhibition by CX-5461, suggesting that interfering with autophagy should be considered a strategy to heighten the responsiveness of ribosome biogenesis–targeted therapies in p53-positive tumors.
Collapse
Affiliation(s)
- Han Liao
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Anushri Gaur
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| | - Claire Mauvais
- Current address: UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
48
|
Sharma P, Yadav SK, Shah SD, Javed E, Lim JM, Pan S, Nayak AP, Panettieri RA, Penn RB, Kambayashi T, Deshpande DA. Diacylglycerol Kinase Inhibition Reduces Airway Contraction by Negative Feedback Regulation of Gq-signaling. Am J Respir Cell Mol Biol 2021; 65:658-671. [PMID: 34293268 DOI: 10.1165/rcmb.2021-0106oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Exaggerated airway smooth muscle (ASM) contraction regulated by the Gq family of G protein-coupled receptors (GPCRs) causes airway hyperresponsiveness (AHR) in asthma. Activation of Gq-coupled GPCRs leads to phospholipase C (PLC)-mediated generation of inositol triphosphate (IP3) and diacylglycerol (DAG). DAG signaling is terminated by the action of DAG kinase (DGK) that converts DAG into phosphatidic acid (PA). Our previous study demonstrated that DGKα and ζ isoform knockout mice are protected from the development of allergen-induced AHR. Here we aimed at determining the mechanism by which DGK regulates ASM contraction. Activity of DGK isoforms was inhibited in human ASM cells by siRNA-mediated knockdown of DGKα and ζwhile pharmacological inhibition was achieved by pan DGK inhibitor I (R59022). Effects of DGK inhibition on contractile agonist-induced activation of PLC and myosin light chain (MLC) kinase, elevation of IP3, and calcium levels were assessed. Further, we employed human precision-cut lung slices and assessed the role of DGK in agonist-induced bronchoconstriction. DGK inhibitor I attenuated histamine- and methacholine-induced bronchoconstriction. DGKα and ζ knockdown or pre-treatment with DGK inhibitor I resulted in attenuated agonist-induced phosphorylation of MLC and myosin light chain phosphatase in ASM cells. Further, DGK inhibition decreased Gq agonist-induced calcium elevation, generation of IP3, and increased histamine-induced production of PA. Finally, DGK inhibition or treatment with DAG analog resulted in attenuation of activation of PLC in human ASM cells. Our findings suggest that DGK inhibition perturbed the DAG:PA ratio resulting in inhibition of Gq-PLC activation in a negative feedback manner, resulting in protection against ASM contraction.
Collapse
Affiliation(s)
- Pawan Sharma
- Thomas Jefferson University - Center City Campus, 6559, Medicine, Philadelphia, Pennsylvania, United States.,University of Tasmania Faculty of Health, 60119, Hobart, Tasmania, Australia
| | - Santosh K Yadav
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - Sushrut D Shah
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - Elham Javed
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - John M Lim
- Thomas Jefferson University Sidney Kimmel Medical College, 12313, Philadelphia, Pennsylvania, United States
| | - Shi Pan
- Thomas Jefferson University, 6559, Philadelphia, Pennsylvania, United States
| | - Ajay P Nayak
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - Reynold A Panettieri
- Rutgers University, 242612, Rutgers Institute for Translational Medicine and Science, Child Health Institute, New Brunswick, New Jersey, United States
| | - Raymond B Penn
- Thomas Jefferson University, 6559, Medicine, Philadelphia, Pennsylvania, United States
| | - Taku Kambayashi
- University of Pennsylvania, 6572, Pathology, Philadelphia, Pennsylvania, United States
| | - Deepak A Deshpande
- Thomas Jefferson University, 6559, Center for Translational Medicine, Philadelphia, Pennsylvania, United States;
| |
Collapse
|
49
|
Bozelli JC, Yune J, Takahashi D, Sakane F, Epand RM. Membrane morphology determines diacylglycerol kinase α substrate acyl chain specificity. FASEB J 2021; 35:e21602. [PMID: 33977628 DOI: 10.1096/fj.202100264r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/22/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023]
Abstract
Diacylglycerol kinases catalyze the ATP-dependent phosphorylation of diacylglycerol (DAG) to produce phosphatidic acid (PA). In humans, the alpha isoform (DGKα) has emerged as a potential target in the treatment of cancer due to its anti-tumor and pro-immune responses. However, its mechanism of action at a molecular level is not fully understood. In this work, a systematic investigation of the role played by the membrane in the regulation of the enzymatic properties of human DGKα is presented. By using a cell-free system with purified DGKα and model membranes of variable physical and chemical properties, it is shown that membrane physical properties determine human DGKα substrate acyl chain specificity. In model membranes with a flat morphology; DGKα presents high enzymatic activity, but it is not able to differentiate DAG molecular species. Furthermore, DGKα enzymatic properties are insensitive to membrane intrinsic curvature. However, in the presence of model membranes with altered morphology, specifically the presence of physically curved membrane structures, DGKα bears substrate acyl chain specificity for palmitic acid-containing DAG. The present results identify changes in membrane morphology as one possible mechanism for the depletion of specific pools of DAG as well as the production of specific pools of PA by DGKα, adding an extra layer of regulation on the interconversion of these two potent lipid-signaling molecules. It is proposed that the interplay between membrane physical (shape) and chemical (lipid composition) properties guarantee a fine-tuned signal transduction system dependent on the levels and molecular species of DAG and PA.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Jenny Yune
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Daisuke Takahashi
- Department of Pharmaceutical Health Care and Sciences, Kyushu University, Fukuoka, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba, Japan
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| |
Collapse
|
50
|
Ferrer I, Andrés-Benito P, Ausín K, Pamplona R, Del Rio JA, Fernández-Irigoyen J, Santamaría E. Dysregulated protein phosphorylation: A determining condition in the continuum of brain aging and Alzheimer's disease. Brain Pathol 2021; 31:e12996. [PMID: 34218486 PMCID: PMC8549032 DOI: 10.1111/bpa.12996] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023] Open
Abstract
Tau hyperphosphorylation is the first step of neurofibrillary tangle (NFT) formation. In the present study, samples of the entorhinal cortex (EC) and frontal cortex area 8 (FC) of cases with NFT pathology classified as stages I-II, III-IV, and V-VI without comorbidities, and of middle-aged (MA) individuals with no NFT pathology, were analyzed by conventional label-free and SWATH-MS (sequential window acquisition of all theoretical fragment ion spectra mass spectrometry) to assess the (phospho)proteomes. The total number of identified dysregulated phosphoproteins was 214 in the EC, 65 of which were dysregulated at the first stages (I-II) of NFT pathology; 167 phosphoproteins were dysregulated in the FC, 81 of them at stages I-II of NFT pathology. A large percentage of dysregulated phosphoproteins were identified in the two regions and at different stages of NFT progression. The main group of dysregulated phosphoproteins was made up of components of the membranes, cytoskeleton, synapses, proteins linked to membrane transport and ion channels, and kinases. The present results show abnormal phosphorylation of proteins at the first stages of NFT pathology in the elderly (in individuals clinically considered representative of normal aging) and sporadic Alzheimer's disease (sAD). Dysregulated protein phosphorylation in the FC precedes the formation of NFTs and SPs. The most active period of dysregulated phosphorylation is at stages III-IV when a subpopulation of individuals might be clinically categorized as suffering from mild cognitive impairment which is a preceding determinant stage in the progression to dementia. Altered phosphorylation of selected proteins, carried out by activation of several kinases, may alter membrane and cytoskeletal functions, among them synaptic transmission and membrane/cytoskeleton signaling. Besides their implications in sAD, the present observations suggest a molecular substrate for "benign" cognitive deterioration in "normal" brain aging.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Hospitalet de Llobregat, Spain.,Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL, Hospitalet de Llobregat, Spain
| | - Pol Andrés-Benito
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Hospitalet de Llobregat, Spain.,CIBERNED (Network Centre of Biomedical Research of Neurodegenerative Diseases), Institute of Health Carlos III, Hospitalet de Llobregat, Spain.,Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL, Hospitalet de Llobregat, Spain
| | - Karina Ausín
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, University of Lleida-Biomedical Research Institute of Lleida (UdL-IRBLleida, Lleida, Spain
| | - José Antonio Del Rio
- Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Science Park Barcelona (PCB, Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA, IdiSNA, Pamplona, Spain
| |
Collapse
|