1
|
Shibuya K, Nozawa A, Takahashi C, Sawasaki T. A chemical approach to extend flower longevity of Japanese morning glory via inhibition of master senescence regulator EPHEMERAL1. NATURE PLANTS 2024; 10:1377-1388. [PMID: 39209993 DOI: 10.1038/s41477-024-01767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
Petal senescence in flowering plants is a type of programmed cell death with highly regulated onset and progression. A NAM/ATAF1,2/CUC2 transcription factor, EPHEMERAL1 (EPH1), has been identified as a key regulator of petal senescence in Japanese morning glory (Ipomoea nil). Here we used a novel chemical approach to delay petal senescence in Japanese morning glory by inhibiting the DNA-binding activity of EPH1. A cell-free high-throughput screening system and subsequent bioassays found two tetrafluorophthalimide-based compounds, Everlastin1 and Everlastin2, that inhibited the EPH1-DNA interaction and delayed petal senescence. The inhibitory mechanism was due to the suppression of EPH1 dimerization. RNA-sequencing analysis revealed that the chemical treatment strongly suppressed the expression of programmed cell death- and autophagy-related genes. These results suggest that a chemical approach targeting a transcription factor can regulate petal senescence.
Collapse
Affiliation(s)
- Kenichi Shibuya
- Institute of Vegetable and Floriculture Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan.
| | - Akira Nozawa
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan.
| | | | - Tatsuya Sawasaki
- Proteo-Science Center (PROS), Ehime University, Matsuyama, Japan
| |
Collapse
|
2
|
Li Q, Zhang H, Yang Y, Tang K, Yang Y, Ouyang W, Du G. Genome-Wide Identification of NAC Family Genes and Their Expression Analyses in Response to Osmotic Stress in Cannabis sativa L. Int J Mol Sci 2024; 25:9466. [PMID: 39273412 PMCID: PMC11394811 DOI: 10.3390/ijms25179466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
NAC (NAM, ATAF1/2, and CUC2) transcription factors are unique and essential for plant growth and development. Although the NAC gene family has been identified in a wide variety of plants, its chromosomal location and function in Cannabis sativa are still unknown. In this study, a total of 69 putative CsNACs were obtained, and chromosomal location analysis indicated that the CsNAC genes mapped unevenly to 10 chromosomes. Phylogenetic analyses showed that the 69 CsNACs could be divided into six subfamilies. Additionally, the CsNAC genes in group IV-a are specific to Cannabis sativa and contain a relatively large number of exons. Promoter analysis revealed that most CsNAC promoters contained cis-elements related to plant hormones, the light response, and abiotic stress. Furthermore, transcriptome expression profiling revealed that 24 CsNAC genes in two Cannabis sativa cultivars (YM1 and YM7) were significantly differentially expressed under osmotic stress, and these 12 genes presented differential expression patterns across different cultivars according to quantitative real-time PCR (RT-qPCR) analysis. Among these, the genes homologous to the CsNAC18, CsNAC24, and CsNAC61 genes have been proven to be involved in the response to abiotic stress and might be candidate genes for further exploration to determine their functions. The present study provides a comprehensive insight into the sequence characteristics, structural properties, evolutionary relationships, and expression patterns of NAC family genes under osmotic stress in Cannabis sativa and provides a basis for further functional characterization of CsNAC genes under osmotic stress to improve agricultural traits in Cannabis sativa.
Collapse
Affiliation(s)
- Qi Li
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Hanxue Zhang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yulei Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Kailei Tang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Yang Yang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Wenjing Ouyang
- School of Agriculture, Yunnan University, Kunming 650500, China
| | - Guanghui Du
- School of Agriculture, Yunnan University, Kunming 650500, China
| |
Collapse
|
3
|
Wang Q, Zhou L, Yuan M, Peng F, Zhu X, Wang Y. Genome-Wide Identification of NAC Gene Family Members of Tree Peony ( Paeonia suffruticosa Andrews) and Their Expression under Heat and Waterlogging Stress. Int J Mol Sci 2024; 25:9312. [PMID: 39273263 PMCID: PMC11395581 DOI: 10.3390/ijms25179312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
An important family of transcription factors (TFs) in plants known as NAC (NAM, ATAF1/2, and CUC2) is crucial for the responses of plants to environmental stressors. In this study, we mined the NAC TF family members of tree peony (Paeonia suffruticosa Andrews) from genome-wide data and analyzed their response to heat and waterlogging stresses in conjunction with transcriptome data. Based on tree peony's genomic information, a total of 48 PsNAC genes were discovered. Based on how similar their protein sequences were, these PsNAC genes were divided into 14 branches. While the gene structures and conserved protein motifs of the PsNAC genes within each branch were largely the same, the cis-acting elements in the promoter region varied significantly. Transcriptome data revealed the presence of five PsNAC genes (PsNAC06, PsNAC23, PsNAC38, PsNAC41, PsNAC47) and one PsNAC gene (PsNAC37) in response to heat and waterlogging stresses, respectively. qRT-PCR analysis reconfirmed the response of these five PsNAC genes to heat stress and one PsNAC gene to waterlogging stress. This study lays a foundation for the study of the functions and regulatory mechanisms of NAC TFs in tree peony. Meanwhile, the NAC TFs of tree peony in response to heat and waterlogging stress were excavated, which is of great significance for the selection and breeding of new tree peony varieties with strong heat and waterlogging tolerance.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Meng Yuan
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fucheng Peng
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiangtao Zhu
- College of Jiyang, Zhejiang A&F University, Zhuji 311800, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation of National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Han K, Zhao Y, Liu J, Tian Y, El-Kassaby YA, Qi Y, Ke M, Sun Y, Li Y. Genome-wide investigation and analysis of NAC transcription factor family in Populus tomentosa and expression analysis under salt stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:764-776. [PMID: 38859551 DOI: 10.1111/plb.13657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/20/2024] [Indexed: 06/12/2024]
Abstract
The NAC transcription factor family is one of the largest families of TFs in plants, and members of NAC gene family play important roles in plant growth and stress response. Recent release of the haplotype-resolved genome assembly of P. tomentosa provide a platform for NAC protein genome-wide analysis. A total of 270 NAC genes were identified and a comprehensive overview of the PtoNAC gene family is presented, including gene promoter, structure and conserved motif analyses, chromosome localization and collinearity analysis, protein phylogeny, expression pattern, and interaction analysis. The results indicate that protein length, molecular weight, and theoretical isoelectric points of the NAC TF family vary, while gene structure and motif are relatively conserved. Chromosome mapping analysis showed that the P. tomentosa NAC genes are unevenly distributed on 19 chromosomes. The interchromosomal evolutionary results indicate 12 pairs of tandem and 280 segmental duplications. Segmental duplication is possibly related to amplification of P. tomentosa NAC gene family. Expression patterns of 35 PtoNAC genes from P. tomentosa subgroup were analysed under high salinity, and seven NAC genes were induced by this treatment. Promoter and protein interaction network analyses showed that PtoNAC genes are closely associated with growth, development, and abiotic and biotic stress, especially salt stress. These results provide a meaningful reference for follow-up studies of the functional characteristics of NAC genes in the mechanism of stress response and their potential roles in development of P. tomentosa.
Collapse
Affiliation(s)
- K Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Zhao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - J Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Tian
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y A El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Y Qi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - M Ke
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Sun
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Y Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Wang D, Coleman HD. The transcriptional regulation of a putative hemicellulose gene, PtrPARVUS2 in poplar. Sci Rep 2024; 14:12592. [PMID: 38824196 PMCID: PMC11144201 DOI: 10.1038/s41598-024-63408-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
The plant cell wall serves as a critical interface between the plant and its environment, offering protection against various stresses and contributing to biomass production. Hemicellulose is one of the major components of the cell wall, and understanding the transcriptional regulation of its production is essential to fully understanding cell wall formation. This study explores the regulatory mechanisms underlying one of the genes involved in hemicellulose biosynthesis, PtrPARVUS2. Six transcription factors (TFs) were identified from a xylem-biased library to negatively regulate PtrPARVUS2 expression. These TFs, belonging to diverse TF families, were confirmed to bind to specific cis-elements in the PtrPARVUS2 promoter region, as validated by Yeast One-Hybrid (Y1H) assays, transient expression analysis, and Chromatin Immunoprecipitation sequencing (ChIP-seq) assays. Furthermore, motif analysis identified putative cis-regulatory elements bound by these TFs, shedding light on the transcriptional regulation of SCW biosynthesis genes. Notably, several TFs targeted genes encoding uridine diphosphate glycosyltransferases (UGTs), crucial enzymes involved in hemicellulose glycosylation. Phylogenetic analysis of UGTs regulated by these TFs highlighted their diverse roles in modulating hemicellulose synthesis. Overall, this study identifies a set of TFs that regulate PARVUS2 in poplar, providing insights into the intricate coordination of TFs and PtrPARVUS2 in SCW formation. Understanding these regulatory mechanisms enhances our ability to engineer plant biomass for tailored applications, including biofuel production and bioproduct development.
Collapse
Affiliation(s)
- Dan Wang
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA
| | - Heather D Coleman
- Department of Biology, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
6
|
Ou X, Sun L, Chen Y, Zhao Z, Jian W. Characteristics of NAC transcription factors in Solanaceae crops and their roles in responding to abiotic and biotic stresses. Biochem Biophys Res Commun 2024; 709:149840. [PMID: 38564941 DOI: 10.1016/j.bbrc.2024.149840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
As one of the largest transcription factor (TF) families in plants, the NAC (NAM, ATAF1/2, and CUC2) family plays important roles in response pathways to various abiotic and biotic stresses, such as drought, high salinity, low temperature, and pathogen infection. Although, there are a number of reviews on the involvement of NAC TF in plant responses to biotic and abiotic stresses, most of them are focused on the model plants Arabidopsis thaliana and Oryza sativa, and there is a lack of systematic evaluation of specific species. Solanaceae, the world's third most significant cash crop, has been seriously affected by environmental disturbances in recent years in terms of yield and quality, posing a severe threat to global food security. This review focuses on the functional roles of NAC transcription factors in response to external stresses involved in five important Solanaceae crops: tomato, potato, pepper, eggplant and tobacco, and analyzes the affinities between them. It will provide resources for stress-resistant breeding of Solanaceae crops using transgenic technology.
Collapse
Affiliation(s)
- Xiaogang Ou
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Lixinyu Sun
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yu Chen
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhengwu Zhao
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wei Jian
- Key Laboratory of Plant Environmental Adaptation Biology of Chongqing, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
7
|
Fuertes-Aguilar J, Matilla AJ. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int J Mol Sci 2024; 25:5369. [PMID: 38791407 PMCID: PMC11121595 DOI: 10.3390/ijms25105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Transcription factors (TFs) regulate gene expression by binding to specific sequences on DNA through their DNA-binding domain (DBD), a universal process. This update conveys information about the diverse roles of TFs, focusing on the NACs (NAM-ATAF-CUC), in regulating target-gene expression and influencing various aspects of plant biology. NAC TFs appeared before the emergence of land plants. The NAC family constitutes a diverse group of plant-specific TFs found in mosses, conifers, monocots, and eudicots. This update discusses the evolutionary origins of plant NAC genes/proteins from green algae to their crucial roles in plant development and stress response across various plant species. From mosses and lycophytes to various angiosperms, the number of NAC proteins increases significantly, suggesting a gradual evolution from basal streptophytic green algae. NAC TFs play a critical role in enhancing abiotic stress tolerance, with their function conserved in angiosperms. Furthermore, the modular organization of NACs, their dimeric function, and their localization within cellular compartments contribute to their functional versatility and complexity. While most NAC TFs are nuclear-localized and active, a subset is found in other cellular compartments, indicating inactive forms until specific cues trigger their translocation to the nucleus. Additionally, it highlights their involvement in endoplasmic reticulum (ER) stress-induced programmed cell death (PCD) by activating the vacuolar processing enzyme (VPE) gene. Moreover, this update provides a comprehensive overview of the diverse roles of NAC TFs in plants, including their participation in ER stress responses, leaf senescence (LS), and growth and development. Notably, NACs exhibit correlations with various phytohormones (i.e., ABA, GAs, CK, IAA, JA, and SA), and several NAC genes are inducible by them, influencing a broad spectrum of biological processes. The study of the spatiotemporal expression patterns provides insights into when and where specific NAC genes are active, shedding light on their metabolic contributions. Likewise, this review emphasizes the significance of NAC TFs in transcriptional modules, seed reserve accumulation, and regulation of seed dormancy and germination. Overall, it effectively communicates the intricate and essential functions of NAC TFs in plant biology. Finally, from an evolutionary standpoint, a phylogenetic analysis suggests that it is highly probable that the WRKY family is evolutionarily older than the NAC family.
Collapse
Affiliation(s)
| | - Angel J. Matilla
- Departamento de Biología Funcional, Universidad de Santiago de Compostela, 14971 Santiago de Compostela, Spain
| |
Collapse
|
8
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
9
|
Li C, Hou X, Zhao Z, Liu H, Huang P, Shi M, Wu X, Gao R, Liu Z, Wei L, Li Y, Liao W. A tomato NAC transcription factor, SlNAP1, directly regulates gibberellin-dependent fruit ripening. Cell Mol Biol Lett 2024; 29:57. [PMID: 38649857 PMCID: PMC11036752 DOI: 10.1186/s11658-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
- College of Agriculture, Guangxi University, 100 East University Road, Xixiangtang District, Nanning, 530004, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Panpan Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Meimei Shi
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
10
|
Wang Z, Chen Z, Wu Y, Mu M, Jiang J, Nie W, Zhao S, Cui G, Yin X. Genome-wide identification and characterization of NAC transcription factor family members in Trifolium pratense and expression analysis under lead stress. BMC Genomics 2024; 25:128. [PMID: 38297198 PMCID: PMC10829316 DOI: 10.1186/s12864-023-09944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND The NAC TF family is widely involved in plant responses to various types of stress. Red clover (Trifolium pratense) is a high-quality legume, and the study of NAC genes in red clover has not been comprehensive. The aim of this study was to analyze the NAC gene family of red clover at the whole-genome level and explore its potential role in the Pb stress response. RESULTS In this study, 72 TpNAC genes were identified from red clover; collinearity analysis showed that there were 5 pairs of large fragment replicators of TpNAC genes, and red clover was found to be closely related to Medicago truncatula. Interestingly, the TpNAC genes have more homologs in Arabidopsis thaliana than in soybean (Glycine max). There are many elements in the TpNAC genes promoters that respond to stress. Gene expression analysis showed that all the TpNAC genes responded to Pb stress. qRT-PCR showed that the expression levels of TpNAC29 and TpNAC42 were significantly decreased after Pb stress. Protein interaction network analysis showed that 21 TpNACs and 23 other genes participated in the interaction. In addition, the TpNAC proteins had three possible 3D structures, and the secondary structure of these proteins were mainly of other types. These results indicated that most TpNAC members were involved in the regulation of Pb stress in red clover. CONCLUSION These results suggest that most TpNAC members are involved in the regulation of Pb stress in red clover. TpNAC members play an important role in the response of red clover to Pb stress.
Collapse
Affiliation(s)
- Zicheng Wang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Zirui Chen
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Yuchen Wu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Meiqi Mu
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Jingwen Jiang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Wanting Nie
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Siwen Zhao
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Guowen Cui
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Xiujie Yin
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
11
|
Cao F, Guo C, Wang X, Wang X, Yu L, Zhang H, Zhang J. Genome-wide identification, evolution, and expression analysis of the NAC gene family in chestnut ( Castanea mollissima). Front Genet 2024; 15:1337578. [PMID: 38333622 PMCID: PMC10850246 DOI: 10.3389/fgene.2024.1337578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
The NAC gene family is one of the most important transcription factor families specific to plants, responsible for regulating many biological processes, including development, stress response, and signal transduction. However, it has not yet been characterized in chestnut, an important nut tree species. Here, we identified 115 CmNAC genes in the chestnut genome, which were divided into 16 subgroups based on the phylogenetic analysis. Numerous cis-acting elements related to auxin, gibberellin, and abscisic acid were identified in the promoter region of CmNACs, suggesting that they play an important role in the growth and development of chestnut. The results of the collinear analysis indicated that dispersed duplication and whole-genome-duplication were the main drivers of CmNAC gene expansion. RNA-seq data of developmental stages of chestnut nut, bud, and ovule revealed the expression patterns of CmNAC genes. Additionally, qRT-PCR experiments were used to verify the expression levels of some CmNAC genes. The comprehensive analysis of the above results revealed that some CmNAC members may be related to chestnut bud and nut development, as well as ovule fertility. The systematic analysis of this study will help to increase understanding of the potential functions of the CmNAC genes in chestnut growth and development.
Collapse
Affiliation(s)
- Fei Cao
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Chunlei Guo
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xiangyu Wang
- The Office of Scientific Research, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Xuan Wang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Liyang Yu
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Haie Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
| | - Jingzheng Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Engineering Research Center of Chestnut Industry Technology, Ministry of Education, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei, China
- Hebei Collaborative Innovation Center of Chestnut Industry, Qinhuangdao, Hebei, China
| |
Collapse
|
12
|
Zhang S, Han Y, Zeng Q, Wang C, Wang H, Zhang J, Cai M, Lu J, Chen T. Whole-Transcriptome Sequencing Reveals the Global Molecular Responses and NAC Transcription Factors Involved in Drought Stress in Dendrobium catenatum. Antioxidants (Basel) 2024; 13:94. [PMID: 38247518 PMCID: PMC10812421 DOI: 10.3390/antiox13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
Dendrobium catenatum is a highly drought-tolerant herb, which usually grows on cliffs or in the branches of trees, yet the underlying molecular mechanisms for its tolerance remain poorly understood. We conducted a comprehensive study utilizing whole-transcriptome sequencing approaches to investigate the molecular response to extreme drought stress in D. catenatum. A large number of differentially expressed mRNAs, lncRNAs, and circRNAs have been identified, and the NAC transcription factor family was highly enriched. Meanwhile, 46 genes were significantly up-regulated in the ABA-activated signaling pathway. In addition to the 89 NAC family members accurately identified in this study, 32 members were found to have different expressions between the CK and extreme drought treatment. They may regulate drought stress through both ABA-dependent and ABA-independent pathways. Moreover, the 32 analyzed differentially expressed DcNACs were found to be predominantly expressed in the floral organs and roots. The ceRNA regulatory network showed that DcNAC87 is at the core of the ceRNA network and is regulated by miR169, miR393, and four lncRNAs. These investigations provided valuable information on the role of NAC transcription factors in D. catenatum's response to drought stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiangjie Lu
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; (S.Z.); (Y.H.); (Q.Z.); (C.W.); (H.W.); (J.Z.); (M.C.)
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China; (S.Z.); (Y.H.); (Q.Z.); (C.W.); (H.W.); (J.Z.); (M.C.)
| |
Collapse
|
13
|
Li W, Lin YCJ, Chen YL, Zhou C, Li S, De Ridder N, Oliveira DM, Zhang L, Zhang B, Wang JP, Xu C, Fu X, Luo K, Wu AM, Demura T, Lu MZ, Zhou Y, Li L, Umezawa T, Boerjan W, Chiang VL. Woody plant cell walls: Fundamentals and utilization. MOLECULAR PLANT 2024; 17:112-140. [PMID: 38102833 DOI: 10.1016/j.molp.2023.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
Cell walls in plants, particularly forest trees, are the major carbon sink of the terrestrial ecosystem. Chemical and biosynthetic features of plant cell walls were revealed early on, focusing mostly on herbaceous model species. Recent developments in genomics, transcriptomics, epigenomics, transgenesis, and associated analytical techniques are enabling novel insights into formation of woody cell walls. Here, we review multilevel regulation of cell wall biosynthesis in forest tree species. We highlight current approaches to engineering cell walls as potential feedstock for materials and energy and survey reported field tests of such engineered transgenic trees. We outline opportunities and challenges in future research to better understand cell type biogenesis for more efficient wood cell wall modification and utilization for biomaterials or for enhanced carbon capture and storage.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | | | - Ying-Lan Chen
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Nette De Ridder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaokang Fu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Integrative Science Center of Germplasm Creation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Ai-Min Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Laigeng Li
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Toshiaki Umezawa
- Laboratory of Metabolic Science of Forest Plants and Microorganisms, Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
14
|
Han K, Zhao Y, Sun Y, Li Y. NACs, generalist in plant life. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2433-2457. [PMID: 37623750 PMCID: PMC10651149 DOI: 10.1111/pbi.14161] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
Plant-specific NAC proteins constitute a major transcription factor family that is well-known for its roles in plant growth, development, and responses to abiotic and biotic stresses. In recent years, there has been significant progress in understanding the functions of NAC proteins. NAC proteins have a highly conserved DNA-binding domain; however, their functions are diverse. Previous understanding of the structure of NAC transcription factors can be used as the basis for their functional diversity. NAC transcription factors consist of a target-binding domain at the N-terminus and a highly versatile C-terminal domain that interacts with other proteins. A growing body of research on NAC transcription factors helps us comprehend the intricate signalling network and transcriptional reprogramming facilitated by NAC-mediated complexes. However, most studies of NAC proteins have been limited to a single function. Here, we discuss the upstream regulators, regulatory components and targets of NAC in the context of their prospective roles in plant improvement strategies via biotechnology intervention, highlighting the importance of the NAC transcription factor family in plants and the need for further research.
Collapse
Affiliation(s)
- Kunjin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Ye Zhao
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina
| |
Collapse
|
15
|
Li J, Li X, Jia C, Liu D. Gene Cloning and Characterization of Transcription Factor FtNAC10 in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn.). Int J Mol Sci 2023; 24:16317. [PMID: 38003506 PMCID: PMC10671190 DOI: 10.3390/ijms242216317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
NAC transcription factors play a significant role in plant stress responses. In this study, an NAC transcription factor, with a CDS of 792 bp encoding 263 amino acids, was cloned from Fagopyrum tataricum (L.) Gaertn. (F. tataricum), a minor cereal crop, which is rich in flavonoids and highly stress resistant. The transcription factor was named FtNAC10 (NCBI accession number: MK614506.1) and characterized as a member of the NAP subgroup of NAC transcriptions factors. The gene exhibited a highly conserved N-terminal, encoding about 150 amino acids, and a highly specific C-terminal. The resulting protein was revealed to be hydrophilic, with strong transcriptional activation activity. FtNAC10 expression occurred in various F. tataricum tissues, most noticeably in the root, and was regulated differently under various stress treatments. The over-expression of FtNAC10 in transgenic Arabidopsis thaliana (A. thaliana) seeds inhibited germination, and the presence of FtNAC10 enhanced root elongation under saline and drought stress. According to phylogenetic analysis and previous reports, our experiments indicate that FtNAC10 may regulate the stress response or development of F. tataricum through ABA-signaling pathway, although the mechanism is not yet known. This study provides a reference for further analysis of the regulatory function of FtNAC10 and the mechanism that underlies stress responses in Tartary buckwheat.
Collapse
Affiliation(s)
- Jinghuan Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
- Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Department of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaohua Li
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
| | - Caihua Jia
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Dahui Liu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430070, China; (J.L.); (D.L.)
| |
Collapse
|
16
|
Sun Z, Wu M, Wang S, Feng S, Wang Y, Wang T, Zhu C, Jiang X, Wang H, Wang R, Yuan X, Wang M, Zhong L, Cheng Y, Bao M, Zhang F. An insertion of transposon in DcNAP inverted its function in the ethylene pathway to delay petal senescence in carnation (Dianthus caryophyllus L.). PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2307-2321. [PMID: 37626478 PMCID: PMC10579710 DOI: 10.1111/pbi.14132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/27/2023]
Abstract
Petal senescence is the final stage of flower development. Transcriptional regulation plays key roles in this process. However, whether and how post-transcriptional regulation involved is still largely unknown. Here, we identified an ethylene-induced NAC family transcription factor DcNAP in carnation (Dianthus caryophyllus L.). One allele, DcNAP-dTdic1, has an insertion of a dTdic1 transposon in its second exon. The dTdic1 transposon disrupts the structure of DcNAP and causes alternative splicing, which transcribes multiple domain-deleted variants (DcNAP2 and others). Conversely, the wild type allele DcNAP transcribes DcNAP1 encoding an intact NAC domain. Silencing DcNAP1 delays and overexpressing DcNAP1 accelerates petal senescence in carnation, while silencing and overexpressing DcNAP2 have the opposite effects, respectively. Further, DcNAP2 could interact with DcNAP1 and interfere the binding and activation activity of DcNAP1 to the promoters of its downstream target ethylene biosynthesis genes DcACS1 and DcACO1. Lastly, ethylene signalling core transcriptional factor DcEIL3-1 can activate the expression of DcNAP1 and DcNAP2 in the same way by binding their promoters. In summary, we discovered a novel mechanism by which DcNAP regulates carnation petal senescence at the post-transcriptional level. It may also provide a useful strategy to manipulate the NAC domains of NAC transcription factors for crop genetic improvement.
Collapse
|
17
|
Chen S, Sun M, Xu S, Xue C, Wei S, Zheng P, Gu K, Qiao Z, Liu Z, Zhang M, Wu J. The pear genomics database (PGDB): a comprehensive multi-omics research platform for Pyrus spp. BMC PLANT BIOLOGY 2023; 23:430. [PMID: 37710163 PMCID: PMC10503127 DOI: 10.1186/s12870-023-04406-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Pears are among the most important temperate fruit trees in the world, with significant research efforts increasing over the last years. However, available omics data for pear cannot be easily and quickly retrieved to enable further studies using these biological data. DESCRIPTION Here, we present a publicly accessible multi-omics pear resource platform, the Pear Genomics Database (PGDB). We collected and collated data on genomic sequences, genome structure, functional annotation, transcription factor predictions, comparative genomics, and transcriptomics. We provide user-friendly functional modules to facilitate querying, browsing and usage of these data. The platform also includes basic and useful tools, including JBrowse, BLAST, phylogenetic tree building, and additional resources providing the possibility for bulk data download and quick usage guide services. CONCLUSIONS The Pear Genomics Database (PGDB, http://pyrusgdb.sdau.edu.cn ) is an online data analysis and query resource that integrates comprehensive multi-omics data for pear. This database is equipped with user-friendly interactive functional modules and data visualization tools, and constitutes a convenient platform for integrated research on pear.
Collapse
Affiliation(s)
- Shulin Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Manyi Sun
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Shaozhuo Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Cheng Xue
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Shuwei Wei
- Shandong Institute of Pomology, Tai'an, 271000, China
| | - Pengfei Zheng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Kaidi Gu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhiwen Qiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Zhiying Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Mingyue Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Jun Wu
- College of Horticulture, National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
18
|
Baoxiang W, Zhiguang S, Yan L, Bo X, Jingfang L, Ming C, Yungao X, Bo Y, Jian L, Jinbo L, Tingmu C, Zhaowei F, Baiguan L, Dayong X, Bello BK. A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress. PLANTA 2023; 258:73. [PMID: 37668677 DOI: 10.1007/s00425-023-04232-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
MAIN CONCLUSION Transcriptional regulation of stress-responsive genes is a crucial step in establishing the mechanisms behind plant abiotic stress tolerance. A sensitive method of regulating transcription factors activity, stability, protein interaction, and subcellular localization is through phosphorylation. This review highlights a widespread regulation mechanism that involves phosphorylation of plant TFs in response to abiotic stress. Abiotic stress is one of the main components limiting crop yield and sustainability on a global scale. It greatly reduces the land area that is planted and lowers crop production globally. In all living organisms, transcription factors (TFs) play a crucial role in regulating gene expression. They participate in cell signaling, cell cycle, development, and plant stress response. Plant resilience to diverse abiotic stressors is largely influenced by TFs. Transcription factors modulate gene expression by binding to their target gene's cis-elements, which are impacted by genomic characteristics, DNA structure, and TF interconnections. In this review, we focus on the six major TFs implicated in abiotic stress tolerance, namely, DREB, bZIP, WRKY, ABF, MYB, and NAC, and the cruciality of phosphorylation of these transcription factors in abiotic stress signaling, as protein phosphorylation has emerged as one of the key post-translational modifications, playing a critical role in cell signaling, DNA amplification, gene expression and differentiation, and modification of other biological configurations. These TFs have been discovered after extensive study as stress-responsive transcription factors which may be major targets for crop development and important contributors to stress tolerance and crop production.
Collapse
Grants
- CARS-01-61 the earmarked funds for China Agricultural Research System
- 2015BAD01B01 National Science and Technology Support Program of China
- BE2016370-3 Science and Technology Support Program of Jiangsu Province, China
- BE2017323 Science and Technology Support Program of Jiangsu Province, China
- BK20201214 Natural Science Foundation of Jiangsu Province of China
- BK20161299 the Natural Science Foundation of Jiangsu Province, China
- QNJJ1704 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2102 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2107 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
- QNJJ2211 the Financial Grant Support Program of Lianyungang City, Jiangsu Province, China
Collapse
Affiliation(s)
- Wang Baoxiang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Sun Zhiguang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Yan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jingfang
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chi Ming
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xing Yungao
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Yang Bo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Li Jian
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Liu Jinbo
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Chen Tingmu
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Fang Zhaowei
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Lu Baiguan
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China
| | - Xu Dayong
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| | - Babatunde Kazeem Bello
- Collaborative Innovation Center for Modern Crop Production, Lianyungang Institute of Agricultural Sciences, Lianyungang, 222006, Jiangsu, China.
| |
Collapse
|
19
|
Zhang X, Wang H, Yang M, Liu R, Zhang X, Jia Z, Li P. Natural variation in ZmNAC087 contributes to total root length regulation in maize seedlings under salt stress. BMC PLANT BIOLOGY 2023; 23:392. [PMID: 37580686 PMCID: PMC10424409 DOI: 10.1186/s12870-023-04393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Soil salinity poses a significant challenge to crop growth and productivity, particularly affecting the root system, which is vital for water and nutrient uptake. To identify genetic factors that influence root elongation in stressful environments, we conducted a genome-wide association study (GWAS) to investigate the natural variation associated with total root length (TRL) under salt stress and normal conditions in maize seedlings. Our study identified 69 genetic variants associated with 38 candidate genes, among which a specific single nucleotide polymorphism (SNP) in ZmNAC087 was significantly associated with TRL under salt stress. Transient expression and transactivation assays revealed that ZmNAC087 encodes a nuclear-localized protein with transactivation activity. Further candidate gene association analysis showed that non-coding variations in ZmNAC087 promoter contribute to differential ZmNAC087 expression among maize inbred lines, potentially influencing the variation in salt-regulated TRL. In addition, through nucleotide diversity analysis, neutrality tests, and coalescent simulation, we demonstrated that ZmNAC087 underwent selection during maize domestication and improvement. These findings highlight the significance of natural variation in ZmNAC087, particularly the favorable allele, in maize salt tolerance, providing theoretical basis and valuable genetic resources for the development of salt-tolerant maize germplasm.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Sanya Institute, Henan University, Sanya, 572025, China
| | - Houmiao Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Mengling Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Runxiao Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management (SKL-NUM), College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, China.
| | - Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
20
|
Liu C, Zhao M, Ma H, Zhang Y, Liu Q, Liu S, Wang Y, Wang K, Zhang M, Wang Y. The NAC Transcription Factor PgNAC41-2 Gene Involved in the Regulation of Ginsenoside Biosynthesis in Panax ginseng. Int J Mol Sci 2023; 24:11946. [PMID: 37569353 PMCID: PMC10418625 DOI: 10.3390/ijms241511946] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/13/2023] Open
Abstract
Ginseng (Panax ginseng C.A. Meyer) is a perennial herb of the Araliaceae family, a traditional and valuable Chinese herb in China. The main active component of ginseng is ginsenoside. The NAC transcription factors belong to a large family of plant-specific transcription factors, which are involved in growth and development, stress response and secondary metabolism. In this study, we mapped the NAC gene family on 24 pairs of ginseng chromosomes and found numerous gene replications in the genome. The NAC gene PgNAC41-2, found to be highly related to ginsenoside synthesis, was specifically screened. The phylogeny and expression pattern of the PgNAC41-2 gene were analyzed, along with the derived protein sequence, and a structure model was generated. Furthermore, the PgNAC41-2 gene was cloned and overexpressed by a Rhizobium rhizogenes mediated method, using ginseng petioles as receptor material. The saponin content of the transformed material was analyzed to verify the function of the NAC transcription factor in ginseng. Our results indicate that the PgNAC41-2 gene positively regulates the biosynthesis of saponins.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Mingzhu Zhao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Hedan Ma
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Yu Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Qian Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
| | - Sizhang Liu
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yanfang Wang
- Laboratory for Cultivation and Breeding of Medicinal Plants of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun 130118, China;
| | - Kangyu Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Meiping Zhang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| | - Yi Wang
- College of Life Science, Jilin Agricultural University, Changchun 130118, China; (C.L.); (H.M.); (Y.Z.); (Q.L.); (S.L.); (K.W.); (M.Z.)
- Jilin Engineering Research Center Ginseng Genetic Resources Development and Utilization, Changchun 130118, China
| |
Collapse
|
21
|
Xin Y, Huang R, Xu M, Xu L. Transcriptome-Wide Identification and Response Pattern Analysis of the Salix integra NAC Transcription Factor in Response to Pb Stress. Int J Mol Sci 2023; 24:11334. [PMID: 37511094 PMCID: PMC10379125 DOI: 10.3390/ijms241411334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/08/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
The NAC (NAM-ATAF1/2-CUC) transcription factor family is one of the largest plant-specific transcription factor families, playing an important role in plant growth and development and abiotic stress response. As a short-rotation woody plant, Salix integra (S. integra) has high lead (Pb) phytoremediation potential. To understand the role of NAC in S. integra Pb tolerance, 53 SiNAC transcripts were identified using third-generation and next-generation transcriptomic data from S. integra exposed to Pb stress, and a phylogenetic analysis revealed 11 subfamilies. A sequence alignment showed that multiple subfamilies represented by TIP and ATAF had a gene that produced more than one transcript under Pb stress, and different transcripts had different responses to Pb. By analyzing the expression profiles of SiNACs at 9 Pb stress time points, 41 of 53 SiNACs were found to be significantly responsive to Pb. Short time-series expression miner (STEM) analysis revealed that 41 SiNACs had two significant Pb positive response patterns (early and late), both containing 10 SiNACs. The SiNACs with the most significant Pb response were mainly from the ATAF and NAP subfamilies. Therefore, 4 and 3 SiNACs from the ATAF and NAP subfamilies, respectively, were selected as candidate Pb-responsive SiNACs for further structural and functional analysis. The RT-qPCR results of 7 transcripts also confirmed the different Pb response patterns of the ATAF and NAP subfamilies. SiNAC004 and SiNAC120, which were randomly selected from two subfamilies, were confirmed to be nuclear localization proteins by subcellular localization experiments. Functional prediction analysis of the associated transcripts of seven candidate SiNACs showed that the target pathways of ATAF subfamily SiNACs were "sulfur metabolism" and "glutathione metabolism", and the target pathways of NAP subfamily SiNACs were "ribosome" and "phenylpropanoid biosynthesis". This study not only identified two NAC subfamilies with different Pb response patterns but also identified Pb-responsive SiNACs that could provide a basis for subsequent gene function verification.
Collapse
Affiliation(s)
- Yue Xin
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Ruifang Huang
- Willow Nursery of the Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Jiangsu Academy of Forestry, Nanjing 211153, China
| | - Meng Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| | - Li'an Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology Ministry of Education, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
22
|
Liao G, Duan Y, Wang C, Zhuang Z, Wang H. Genome-Wide Identification, Characterization, and Expression Analysis of the NAC Gene Family in Litchi chinensis. Genes (Basel) 2023; 14:1416. [PMID: 37510318 PMCID: PMC10379382 DOI: 10.3390/genes14071416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
NAC proteins play an essential role in the growth and development of litchi, especially during reproductive development. However, a comprehensive analysis of the litchi NAC gene family is currently absent. Based on information from the litchi genome, we found that the 112 NAC genes of litchi show an uneven distribution on the chromosomes. Phylogenetic and conserved structural domain analyses indicated that different types of variability were exhibited in the family of litchi NACs (LcNACs). Gene covariance analysis showed that the LcNACs showed better similarity in the same genus than with Arabidopsis. We further investigated the differential expression patterns of LcNACs in buds and rudimentary leaves of litchi. qRT-PCR results implied that they were involved in the process. Profiling of LcNAC promoter elements in litchi showed that they were extensively involved in light response, phytohormone regulation, abiotic stress response, and plant growth and development processes. This study provides new insights into the identification, structural characterization, tissue-specific expression analysis, and promoter response elements of LcNACs. It reveals the characteristics of the LcNACs and lays the foundation for the subsequent understanding of its biological functions and molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Guihua Liao
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, China
| | - Yu Duan
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, China
| | - Congcong Wang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, China
| | - Zebin Zhuang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, China
| | - Haishi Wang
- Guangdong Academy of Forestry, Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou 510520, China
| |
Collapse
|
23
|
Wang Y, Wang W, Jia Q, Tian H, Wang X, Li Y, Hussain S, Hussain H, Wang T, Wang S. BIC2, a Cryptochrome Function Inhibitor, Is Involved in the Regulation of ABA Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112220. [PMID: 37299199 DOI: 10.3390/plants12112220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
The plant hormone ABA (abscisic acid) is able to regulate plant responses to abiotic stresses via regulating the expression of ABA response genes. BIC1 (Blue-light Inhibitor of Cryptochromes 1) and BIC2 have been identified as the inhibitors of plant cryptochrome functions, and are involved in the regulation of plant development and metabolism in Arabidopsis . In this study, we report the identification of BIC2 as a regulator of ABA responses in Arabidopsis . RT-PCR (Reverse Transcription-Polymerase Chain Reaction) results show that the expression level of BIC1 remained largely unchanged, but that of BIC2 increased significantly in response to ABA treatment. Transfection assays in Arabidopsis protoplasts show that both BIC1 and BIC2 were mainly localized in the nucleus, and were able to activate the expression of the co-transfected reporter gene. Results in seed germination and seedling greening assays show that ABA sensitivity was increased in the transgenic plants overexpressing BIC2, but increased slightly, if any, in the transgenic plants overexpressing BIC1. ABA sensitivity was also increased in the bic2 single mutants in seedling greening assays, but no further increase was observed in the bic1 bic2 double mutants. On the other hand, in root elongation assays, ABA sensitivity was decreased in the transgenic plants overexpressing BIC2, as well as the bic2 single mutants, but no further decrease was observed in the bic1 bic2 double mutants. By using qRT-PCR (quantitative RT-PCR), we further examined how BIC2 may regulate ABA responses in Arabidopsis , and found that inhibition of ABA on the expression of the ABA receptor genes PYL4 (PYR1-Like 4) and PYL5 were decreased, but promotion of ABA on the expression of the protein kinase gene SnRK2.6 (SNF1-Related Protein Kinases 2.6) was enhanced in both the bic1 bic2 double mutants and 35S:BIC2 overexpression transgenic plants. Taken together, our results suggest that BIC2 regulates ABA responses in Arabidopsis possibly by affecting the expression of ABA signaling key regulator genes.
Collapse
Affiliation(s)
- Yating Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Qiming Jia
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Xutong Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China
| |
Collapse
|
24
|
Ling L, Li M, Chen N, Xie X, Han Z, Ren G, Yin Y, Jiang H. Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa. Genes (Basel) 2023; 14:1186. [PMID: 37372366 DOI: 10.3390/genes14061186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, a total of 177 NAC members were identified in Avena sativa, located on 21 chromosomes. Phylogenetic analysis showed that AsNAC proteins could be divided into seven subfamilies (I-VII), and that proteins in the same subfamily have similar protein motifs. Gene structure analysis found that NAC introns ranged from 1 to 17. Cis-element analysis of the promoter indicated that the gene family may have stress-related elements and growth regulation elements. Through qRT-PCR experiments, we speculated that AsNACs genes can respond to abiotic stresses such as cold, freezing, salt, and saline alkali. This study provides a theoretical basis for further exploring the function of the NAC gene family in A. sativa.
Collapse
Affiliation(s)
- Lei Ling
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, College of Bioengineering, Daqing Normal University, Daqing 163712, China
| | - Mingjing Li
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, College of Bioengineering, Daqing Normal University, Daqing 163712, China
| | - Naiyu Chen
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, College of Bioengineering, Daqing Normal University, Daqing 163712, China
| | - Xinying Xie
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, College of Bioengineering, Daqing Normal University, Daqing 163712, China
| | - Zihui Han
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, College of Bioengineering, Daqing Normal University, Daqing 163712, China
| | - Guoling Ren
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, College of Bioengineering, Daqing Normal University, Daqing 163712, China
| | - Yajie Yin
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, College of Bioengineering, Daqing Normal University, Daqing 163712, China
| | - Huixin Jiang
- Heilongjiang Provincial Key Laboratory of Oilfield Applied Chemistry and Technology, College of Bioengineering, Daqing Normal University, Daqing 163712, China
| |
Collapse
|
25
|
Chun I, Kim HJ, Hong S, Kim YG, Kim MS. Structural basis of DNA binding by the NAC transcription factor ORE1, a master regulator of plant senescence. PLANT COMMUNICATIONS 2023; 4:100510. [PMID: 36564947 DOI: 10.1016/j.xplc.2022.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/02/2022] [Accepted: 12/21/2022] [Indexed: 05/11/2023]
Abstract
Plants use sophisticated mechanisms of gene expression to control senescence in response to environmental stress or aging. ORE1 (Arabidopsis thaliana NAC092) is a master regulator of senescence that belongs to the plant-specific NAC transcription factor protein family. ORE1 has been reported to bind to multiple DNA targets to orchestrate leaf senescence, yet the mechanistic basis for recognition of the cognate gene sequence remains unclear. Here, we report the crystal structure of the ORE1-NAC domain alone and its DNA-binding form. The structure of DNA-bound ORE1-NAC revealed the molecular basis for nucleobase recognition and phosphate backbone interactions. We show that local versatility in the DNA-binding site, in combination with domain flexibility of the ORE-NAC homodimer, is crucial for the maintenance of binding to intrinsically flexible DNA. Our results provide a platform for understanding other plant-specific NAC protein-DNA interactions as well as insight into the structural basis of NAC regulators in plants of agronomic and scientific importance.
Collapse
Affiliation(s)
- Inseop Chun
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea
| | - Hyo Jung Kim
- Center for Plant Aging Research, Institute for Basic Science, Daegu, Republic of Korea
| | - Sunghyun Hong
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yeon-Gil Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Min-Sung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, Republic of Korea.
| |
Collapse
|
26
|
Cao S, Wang Y, Gao Y, Xu R, Ma J, Xu Z, Shang-Guan K, Zhang B, Zhou Y. The RLCK-VND6 module coordinates secondary cell wall formation and adaptive growth in rice. MOLECULAR PLANT 2023:S1674-2052(23)00104-1. [PMID: 37050877 DOI: 10.1016/j.molp.2023.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/05/2023] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
The orderly deposition of secondary cell wall (SCW) in plants is implicated in various biological programs and is precisely controlled. Although many positive and negative regulators of SCW have been documented, the molecular mechanisms underlying SCW formation coordinated with distinct cellular physiological processes during plant adaptive growth remain largely unclear. Here, we report the identification of Cellulose Synthase co-expressed Kinase1 (CSK1), which encodes a receptor-like cytoplasmic kinase, as a negative regulator of SCW formation and its signaling cascade in rice. Transcriptome deep sequencing of developing internodes and genome-wide co-expression assays revealed that CSK1 is co-expressed with cellulose synthase genes and is responsive to various stress stimuli. The increased SCW thickness and vigorous vessel transport in csk1 indicate that CSK1 functions as a negative regulator of SCW biosynthesis. Through observation of green fluorescent protein-tagged CSK1 in rice protoplasts and stable transgenic plants, we found that CSK1 is localized in the nucleus and cytoplasm adjacent to the plasma membrane. Biochemical and molecular assays demonstrated that CSK1 phosphorylates VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master SCW-associated transcription factor, in the nucleus, which reduces the transcription of a suite of SCW-related genes, thereby attenuating SCW accumulation. Consistently, genetic analyses show that CSK1 functions upstream of VND6 in regulating SCW formation. Interestingly, our physiological analyses revealed that CSK1 and VND6 are involved in abscisic acid-mediated regulation of cell growth and SCW deposition. Taken together, these results indicate that the CSK1-VND6 module is an important component of the SCW biosynthesis machinery, which coordinates SCW accumulation and adaptive growth in rice. Our study not only identifies a new regulator of SCW biosynthesis but also reveals a fine-tuned mechanism for precise control of SCW deposition, offering tools for rationally tailoring agronomic traits.
Collapse
Affiliation(s)
- Shaoxue Cao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianing Ma
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuopeng Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Keke Shang-Guan
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Zhang S, Xu T, Ren Y, Song L, Liu Z, Kang X, Li Y. The NAC transcription factor family in Eucommia ulmoides: Genome-wide identification, characterization, and network analysis in relation to the rubber biosynthetic genes. FRONTIERS IN PLANT SCIENCE 2023; 14:1030298. [PMID: 37077635 PMCID: PMC10106570 DOI: 10.3389/fpls.2023.1030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
The NAC transcription factor family is a large plant gene family, participating in plant growth and development, secondary metabolite synthesis, biotic and abiotic stresses responses, and hormone signaling. Eucommia ulmoides is a widely planted economic tree species in China that can produce trans-polyisoprene: Eucommia rubber (Eu-rubber). However, genome-wide identification of the NAC gene family has not been reported in E. ulmoides. In this study, 71 NAC proteins were identified based on genomic database of E. ulmoides. Phylogenetic analysis showed that the EuNAC proteins were distributed in 17 subgroups based on homology with NAC proteins in Arabidopsis, including the E. ulmoides-specific subgroup Eu_NAC. Gene structure analysis suggested that the number of exons varied from 1 to 7, and multitudinous EuNAC genes contained two or three exons. Chromosomal location analysis revealed that the EuNAC genes were unevenly distributed on 16 chromosomes. Three pairs of genes of tandem duplicates genes and 12 segmental duplications were detected, which indicated that segmental duplications may provide the primary driving force of expansion of EuNAC. Prediction of cis-regulatory elements indicated that the EuNAC genes were involved in development, light response, stress response and hormone response. For the gene expression analysis, the expression levels of EuNAC genes in various tissues were quite different. To explore the effect of EuNAC genes on Eu-rubber biosynthesis, a co-expression regulatory network between Eu-rubber biosynthesis genes and EuNAC genes was constructed, which indicated that six EuNAC genes may play an important role in the regulation of Eu-rubber biosynthesis. In addition, this six EuNAC genes expression profiles in E. ulmoides different tissues were consistent with the trend in Eu-rubber content. Quantitative real-time PCR analysis showed that EuNAC genes were responsive to different hormone treatment. These results will provide a useful reference for further studies addressing the functional characteristics of the NAC genes and its potential role in Eu-rubber biosynthesis.
Collapse
Affiliation(s)
- Shuwen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Tingting Xu
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Yongyu Ren
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Lianjun Song
- Weixian Eucommia National Forest Tree Germplasm Repository, Weixian Forestry Cultivation Base of Superior Species, Hebei, China
| | - Zhao Liu
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Xiangyang Kang
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, Beijing, China
| |
Collapse
|
28
|
Hasan N, Tokuhara N, Noda T, Kotoda N. Molecular characterization of Satsuma mandarin ( Citrus unshiu Marc.) VASCULAR PLANT ONE-ZINC FINGER2 (CuVOZ2) interacting with CuFT1 and CuFT3. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:51-62. [PMID: 38213920 PMCID: PMC10777139 DOI: 10.5511/plantbiotechnology.23.0122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/22/2023] [Indexed: 01/13/2024]
Abstract
Shortening the juvenility is a burning issue in breeding fruit trees such as Satsuma mandarin (Citrus unshiu Marc.). Decreasing the breeding period requires a comprehensive understanding of the flowering process in woody plants. Throughout the Arabidopsis flowering system, FLOWERING LOCUS T (FT) interacts with other transcription factors (TFs) and functions as a transmissible floral inducer. In a previous study, a VASCULAR PLANT ONE-ZINC FINGER1 (VOZ1)-like TF from the Satsuma mandarin, CuVOZ1, showed protein-protein interaction with two citrus FTs in a yeast two-hybrid (Y2H) system and precocious flowering in Arabidopsis. In this study, another VOZ, CuVOZ2, was isolated from the Satsuma mandarin 'Aoshima' and protein-protein interaction was confirmed between CuVOZ2 and CuFTs. No apical meristem (NAM) and zinc coordination motifs were identified within the N-terminal of CuVOZ2. Docking simulation predicted that interactions between CuVOZ2 and CuFTs might occur in domain B of CuVOZ2, which contains a zinc finger motif. According to docking predictions, the distances between the amino acid residues involved ranged from 1.09 to 4.37 Å, indicating weak Van der Waals forces in the interaction. Cys216, Cys221, Cys235, and His239 in CuVOZ2 were suggested to bond with a Zn2+ in the Zn coordination motif. Ectopic expression of 35SΩ:CuVOZ2 in Arabidopsis affected the flowering time, length of inflorescence and internode, and number of siliques, suggesting that CuVOZ2 might regulate both vegetative and reproductive development, act as a trigger for early flowering, and be involved in the elongation of inflorescence possibly in a slightly different way than CuVOZ1.
Collapse
Affiliation(s)
- Nazmul Hasan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Naoki Tokuhara
- Graduate School of Advanced Health Sciences, Saga University, Saga 840-8502, Japan
| | - Takayuki Noda
- Graduate School of Agriculture, Saga University, Saga 840-8502, Japan
| | - Nobuhiro Kotoda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
- Graduate School of Advanced Health Sciences, Saga University, Saga 840-8502, Japan
- Graduate School of Agriculture, Saga University, Saga 840-8502, Japan
| |
Collapse
|
29
|
Rui Z, Pan W, Zhao Q, Hu H, Li X, Xing L, Jia H, She K, Nie X. Genome-wide identification, evolution and expression analysis of NAC gene family under salt stress in wild emmer wheat (Triticum dicoccoides. L). Int J Biol Macromol 2023; 230:123376. [PMID: 36709820 DOI: 10.1016/j.ijbiomac.2023.123376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/31/2022] [Accepted: 01/15/2023] [Indexed: 01/27/2023]
Abstract
The NAC transcription factor (TF) family is one of the largest plant-specific gene families, playing the vital roles in plant growth and development as well as stress response. Although it has been extensively characterized in many plants, the significance of NAC family in wild emmer wheat is not well understood up to now. Here, a total of 200 NAC transcription factors were identified in wild emmer (TdNACs) through a genome-search method, which were classified into 12 subfamilies based on phylogenetic relationship. And the members in the subfamily shared similar exon-intron structure and conversed domain organization. Collinearity analysis revealed that segmental duplication and polyploidization contributed mainly to the expansion of TdNACs. Furthermore, the genetic variations of TdNACs were investigated using the re-sequencing data and genetic bottleneck has occurred on NAC genes when wild emmer domesticated to cultivated emmer wheat. Finally, the expression patterns of these TdNACs were investigated using RNA-seq data of the salt-tolerant genotype under salt stress to obtain salt-responsive TdNACs, and 10 out of which were further validated using QPCR analysis. This study provided the targets for further functional study of TdNAC genes, and also contributed to mine novel genes for improving the salt tolerance in wheat and other crops.
Collapse
Affiliation(s)
- Zesheng Rui
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qinlong Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haibo Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiuhua Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Liheng Xing
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huining Jia
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kuijun She
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China; ICARDA-NWSUAF Joint Research Centre, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
30
|
Cresta A, D’Alessandro S. Arabidopsis ANAC102, Chloroplastic or Nucleocytosolic Localization? Genes (Basel) 2023; 14:438. [PMID: 36833365 PMCID: PMC9956179 DOI: 10.3390/genes14020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
ANAC102 is a transcription factor involved in stress response and brassinosteroids signaling, with circadian regulation controlled by phytochromes. ANAC102 has been proposed to have a role in downregulating chloroplast transcription, which may be very useful in reducing photosynthesis and chloroplast energy demand under stress conditions. However, its localization in the chloroplast has mainly been demonstrated by using constitutive promoters. In this work, we recapitulate the literature, clarify which are ANAC102 isoforms in Arabidopsis and analyze their expressions under control conditions and in response to stress. Based on our results, the most highly expressed ANAC102 isoform encodes for a nucleocytoplasmic protein and the N-terminal chloroplast-targeting peptide appears to be present only in Brassicaceae, and not involved in stress response.
Collapse
Affiliation(s)
| | - Stefano D’Alessandro
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, 10135 Turin, Italy
| |
Collapse
|
31
|
Arias LA, D'Ippolito S, Frik J, Amigo NL, Marchetti F, Casalongué CA, Pagnussat GC, Fiol DF. The DC1 Domain Protein BINUCLEATE POLLEN is Required for POLLEN Development in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2023; 63:1994-2007. [PMID: 36001044 DOI: 10.1093/pcp/pcac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The development of the male gametophyte is a tightly regulated process that requires the precise control of cell division and gene expression. A relevant aspect to understand the events underlying pollen development regulation constitutes the identification and characterization of the genes required for this process. In this work, we showed that the DC1 domain protein BINUCLEATE POLLEN (BNP) is essential for pollen development and germination. Pollen grains carrying a defective BNP alleles failed to complete mitosis II and exhibited impaired pollen germination. By yeast two-hybrid analysis and bimolecular fluorescence complementation assays, we identified a set of BNP-interacting proteins. Among confirmed interactors, we found the NAC family transcriptional regulators Vascular Plant One-Zinc Finger 1 (VOZ1) and VOZ2. VOZ1 localization changes during pollen development, moving to the vegetative nucleus at the tricellular stage. We observed that this relocalization requires BNP; in the absence of BNP in pollen from bnp/BNP plants, VOZ1 nuclear localization is impaired. As the voz1voz2 double mutants showed the same developmental defect observed in bnp pollen grains, we propose that BNP requirement to complete microgametogenesis could be linked to its interaction with VOZ1/2 proteins. BNP could have the role of a scaffold protein, recruiting VOZ1/2 to the endosomal system into assemblies that are required for their further translocation to the nucleus, where they act as transcriptional regulators.
Collapse
Affiliation(s)
- Leonardo A Arias
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Sebastián D'Ippolito
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Jésica Frik
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Natalia L Amigo
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Fernanda Marchetti
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Claudia A Casalongué
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Gabriela C Pagnussat
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| | - Diego F Fiol
- Instituto de investigaciones Biológicas IIB-CONICET - Universidad Nacional de Mar del Plata, Funes 3250, Mar del Plata, Buenos Aires 7600, Argentina
| |
Collapse
|
32
|
Jiang M, Jian J, Zhou C, Li L, Wang Y, Zhang W, Song Z, Yang J. Does integument arise de novo or from pre-existing structures? ── Insights from the key regulatory genes controlling integument development. FRONTIERS IN PLANT SCIENCE 2023; 13:1078248. [PMID: 36714739 PMCID: PMC9880897 DOI: 10.3389/fpls.2022.1078248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The origin of seeds is one of the key innovations in land plant evolution. Ovules are the developmental precursors of seeds. The integument is the envelope structure surrounding the nucellus within the ovule and developing into the seed coat when ovules mature upon fertilization. The question of whether the integument arise de novo or evolve from elaboration of pre-existing structures has caused much debate. By exploring the origin and evolution of the key regulatory genes controlling integument development and their functions during both individual and historical developmental processes, we showed the widespread presence of the homologs of ANT, CUC, BEL1, SPL, C3HDZ, INO, ATS, and ETT in seedless plant genomes. All of these genes have undergone duplication-divergence events in their evolutionary history, with most of the descendant paralogous suffering motif gain and/or loss in the coding regions. Expression and functional characterization have shown that these genes are key components of the genetic program that patterns leaf-like lateral organs. Serial homology can thus be postulated between integuments and other lateral organs in terms of the shared master regulatory genes. Given that the genetic program patterning leaf-like lateral organs formed in seedless plants, and was reused during seed origin, the integument is unlikely to arise de novo but evolved from the stem segment-specific modification of pre-existing serially homologous structures. The master 'switches' trigging the modification to specify the integument identity remain unclear. We propose a successive transformation model of integument origin.
Collapse
Affiliation(s)
- Min Jiang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Jinjing Jian
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Chengchuan Zhou
- Institute of Tree Genetics Breeding and Cultivation, Jiangxi Academy of Forestry, Nanchang, China
| | - Linfeng Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Yuguo Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Wenju Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
| | - Ji Yang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Center for Evolutionary Biology, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| |
Collapse
|
33
|
Meng X, Liu S, Zhang C, He J, Ma D, Wang X, Dong T, Guo F, Cai J, Long T, Li Z, Zhu M. The unique sweet potato NAC transcription factor IbNAC3 modulates combined salt and drought stresses. PLANT PHYSIOLOGY 2023; 191:747-771. [PMID: 36315103 PMCID: PMC9806649 DOI: 10.1093/plphys/kiac508] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Plants often simultaneously experience combined stresses rather than a single stress, causing more serious damage, but the underlying mechanisms remain unknown. Here, we identified the stress-induced IbNAC3 from sweet potato (Ipomoea batatas) as a nucleus-localized transcription activator. IbNAC3 contains a unique activation domain whose MKD sequence confers transactivation activities to multiple other TFs and is essential for the activated expression of downstream target genes. Ectopic expression of IbNAC3 conferred tolerance to single and combined salt and drought stresses in Arabidopsis (Arabidopsis thaliana), and a group of NAM, ATAF1/2, and CUC2 (NAC) TFs, including ANAC011, ANAC072, ANAC083, ANAC100, and NAP, interacted with IbNAC3, and the specific domains responsible for each interaction varied. Intriguingly, IbNAC3 repressed the interaction among the five NACs, and knockout or mutation of ANAC011 and ANAC072 dramatically impaired combined stress tolerance. IbNAC3-ANAC072 and IbNAC3-NAP modules synergistically activated the MICROTUBULE-RELATED E3 LIGASE57 (MREL57) gene. Consistently, mutation of MREL57 and overexpression of WAVE-DAM-PENED2-LIKE7, encoding a target protein of MREL57, both remarkably impaired combined stress tolerance. Moreover, transgenic plants displayed abscisic acid (ABA) hyposensitivity by directly promoting the transcription of ENHANCED RESPONSE TO ABA 1, a key negative regulator of ABA signaling. The data unravel the unique IbNAC3 TF functions as a pivotal component in combined stress tolerance by integrating multiple regulatory events and ubiquitin pathways, which is essential for developing high-tolerant plants in natural environments.
Collapse
Affiliation(s)
- Xiaoqing Meng
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Siyuan Liu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Chengbin Zhang
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Daifu Ma
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Xin Wang
- Jiangsu Xuzhou Sweetpotato Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xuzhou, 221131, China
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Fen Guo
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jing Cai
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, South Korea
| | - Tiandan Long
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zongyun Li
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Science, Jiangsu Normal University, Xuzhou, 221116, China
| |
Collapse
|
34
|
Choi SJ, Lee Z, Kim S, Jeong E, Shim JS. Modulation of lignin biosynthesis for drought tolerance in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1116426. [PMID: 37152118 PMCID: PMC10157170 DOI: 10.3389/fpls.2023.1116426] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Lignin is a complex polymer that is embedded in plant cell walls to provide physical support and water protection. For these reasons, the production of lignin is closely linked with plant adaptation to terrestrial regions. In response to developmental cues and external environmental conditions, plants use an elaborate regulatory network to determine the timing and location of lignin biosynthesis. In this review, we summarize the canonical lignin biosynthetic pathway and transcriptional regulatory network of lignin biosynthesis, consisting of NAC and MYB transcription factors, to explain how plants regulate lignin deposition under drought stress. Moreover, we discuss how the transcriptional network can be applied to the development of drought tolerant plants.
Collapse
|
35
|
Iqbal A, Bocian J, Hameed A, Orczyk W, Nadolska-Orczyk A. Cis-Regulation by NACs: A Promising Frontier in Wheat Crop Improvement. Int J Mol Sci 2022; 23:15431. [PMID: 36499751 PMCID: PMC9736367 DOI: 10.3390/ijms232315431] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Crop traits are controlled by multiple genes; however, the complex spatio-temporal transcriptional behavior of genes cannot be fully understood without comprehending the role of transcription factors (TFs) and the underlying mechanisms of the binding interactions of their cis-regulatory elements. NAC belongs to one of the largest families of plant-specific TFs and has been associated with the regulation of many traits. This review provides insight into the cis-regulation of genes by wheat NACs (TaNACs) for the improvement in yield-related traits, including phytohormonal homeostasis, leaf senescence, seed traits improvement, root modulation, and biotic and abiotic stresses in wheat and other cereals. We also discussed the current potential, knowledge gaps, and prospects of TaNACs.
Collapse
Affiliation(s)
| | | | | | | | - Anna Nadolska-Orczyk
- Plant Breeding and Acclimatization Institute—National Research Institute, Radzikow, 05-870 Blonie, Poland
| |
Collapse
|
36
|
Zhang X, Li L, Lang Z, Li D, He Y, Zhao Y, Tao H, Wei J, Li Q, Hong G. Genome-wide characterization of NAC transcription factors in Camellia sinensis and the involvement of CsNAC28 in drought tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:1065261. [PMID: 36507457 PMCID: PMC9731689 DOI: 10.3389/fpls.2022.1065261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
The NAM, ATAF1/2, and CUC2 (NAC) transcription factors, which are members of a plant-specific gene family, play critical roles during the growth and development of plants and in their adaption to environmental stress. Few NAC transcription factors have been functionally characterized in tea plants (Camellia sinensis). Based on the analysis of the gene structure, motif pattern, and evolutionary relationship, we identified 104 NAC genes in C. sinensis. Among them, CsNAC28 is constitutively expressed in all organs, and most significantly, exhibiting remarkable responsiveness to abscisic acid (ABA) treatment and drought stress. ABA is a primary stress-related hormone. Recently, ABA-responsive element binding factor 2 (CsABF2) was identified in the ABA pathway of C. sinensis. However, the involvement of the CsABF2-mediated ABA pathway in regulating CsNACs was not known. Herein, a series of biochemical and genetic approaches supported the fact that CsNAC28 could potentially act as a transcription factor in the downstream of CsABF2. Furthermore, we investigated the function of CsNAC28 in the adapting of a plant to drought stress. The results showed that overexpression of CsNAC28 in Arabidopsis conferred hypersensitivity to ABA treatment and decreased the accumulation of reactive oxygen species (ROS), resulting in improved dehydration tolerance. Under conditions of drought, the expression levels of ABA pathway-related genes and drought stress‒inducible genes were greater in CsNAC28 overexpression lines than in the wild type. Our study's comprehensive characterization of NAC genes in C. sinensis could serve as a foundation for exploring the molecular mechanism of CsNAC-mediated drought responsiveness.
Collapse
Affiliation(s)
- Xueying Zhang
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Linying Li
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhuoliang Lang
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Da Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuqing He
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yao Zhao
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Han Tao
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiqian Wei
- Ecology and Energy Section, Hangzhou Agricultural Technology Extension Center, Hangzhou, China
| | - Qingsheng Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Gaojie Hong
- Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Rural Affairs, Key Laboratory of Biotechnology in Plant Protection of Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
37
|
Zhao JL, Wu Q, Wu HL, Wang AH, Wang XL, Li CL, Zhao HX, Wu Q. FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:20-33. [PMID: 36174283 DOI: 10.1016/j.plaphy.2022.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Tartary buckwheat [Fagopyrum tataricum (L.) Gaertn.] is a pseudocereal with strongly abiotic resistance. NACs, one of the largest plant-specific transcription factors (TFs), are involved in various stress responses. However, the characteristics and regulatory mechanisms of NAC TFs remain unclarified clearly in Tartary buckwheat (TB). In this study, it validated that salt, drought, and abscisic acid (ABA) stress significantly up-regulated the expression of NAC TF gene FtNAC31. Its coding protein has a C-terminal transactivated domain and localized in the nucleus, suggesting that FtNAC31 might play a transcriptional activation role in TB. Notably, overexpression of FtNAC31 lowered the seed germination rate upon ABA treatment and enhanced the tolerance to salt and drought stress in transgenetic Arabidopsis. Furthermore, under various stresses, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in FtNAC31 overexpressed lines exhibited a sharp increase trend. Meanwhile, the expression levels of several stress-associated genes including RD29A, RD29B, RD22, DREB2B, NCED3, and POD1, were dramatically upregulated in lines overexpressing FtNAC31. Altogether, overproduction of FtNAC31 could enhance the resistance to salt and drought stresses in transgenic Arabidopsis, which most likely functioned in an ABA-dependent way.
Collapse
Affiliation(s)
- Jia-Li Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Qiong Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Hua-la Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - An-Hu Wang
- Xichang University, Xichang, Sichuan, 615000, China.
| | - Xiao-Li Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Cheng-Lei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Hai-Xia Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| |
Collapse
|
38
|
Holušová K, Čmejlová J, Suran P, Čmejla R, Sedlák J, Zelený L, Bartoš J. High-resolution genome-wide association study of a large Czech collection of sweet cherry ( Prunus avium L.) on fruit maturity and quality traits. HORTICULTURE RESEARCH 2022; 10:uhac233. [PMID: 36643756 PMCID: PMC9832837 DOI: 10.1093/hr/uhac233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
In sweet cherry (Prunus avium L.), quantitative trait loci have been identified for fruit maturity, colour, firmness, and size to develop markers for marker-assisted selection. However, resolution is usually too low in those analyses to directly target candidate genes, and some associations are missed. In contrast, genome-wide association studies are performed on broad collections of accessions, and assemblies of reference sequences from Tieton and Satonishiki cultivars enable identification of single nucleotide polymorphisms after whole-genome sequencing, providing high marker density. Two hundred and thirty-five sweet cherry accessions were sequenced and phenotyped for harvest time and fruit colour, firmness, and size. Genome-wide association studies were used to identify single nucleotide polymorphisms associated with each trait, which were verified in breeding material consisting of 64 additional accessions. A total of 1 767 106 single nucleotide polymorphisms were identified. At that density, significant single nucleotide polymorphisms could be linked to co-inherited haplotype blocks (median size ~10 kb). Thus, markers were tightly associated with respective phenotypes, and individual allelic combinations of particular single nucleotide polymorphisms provided links to distinct phenotypes. In addition, yellow-fruit accessions were sequenced, and a ~ 90-kb-deletion on chromosome 3 that included five MYB10 transcription factors was associated with the phenotype. Overall, the study confirmed numerous quantitative trait loci from bi-parental populations using high-diversity accession populations, identified novel associations, and genome-wide association studies reduced the size of trait-associated loci from megabases to kilobases and to a few candidate genes per locus. Thus, a framework is provided to develop molecular markers and evaluate and characterize genes underlying important agronomic traits.
Collapse
Affiliation(s)
- Kateřina Holušová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, Olomouc, 779 00, Czech Republic
| | - Jana Čmejlová
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, Holovousy, 508 01, Czech Republic
| | - Pavol Suran
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, Holovousy, 508 01, Czech Republic
| | - Radek Čmejla
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, Holovousy, 508 01, Czech Republic
| | - Jiří Sedlák
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, Holovousy, 508 01, Czech Republic
| | - Lubor Zelený
- Research and Breeding Institute of Pomology Holovousy Ltd., Holovousy 129, Holovousy, 508 01, Czech Republic
| | | |
Collapse
|
39
|
Azameti MK, Ranjan A, Singh PK, Gaikwad K, Singh AK, Dalal M, Arora A, Rai V, Padaria JC. Transcriptome profiling reveals the genes and pathways involved in thermo-tolerance in wheat (Triticum aestivum L.) genotype Raj 3765. Sci Rep 2022; 12:14831. [PMID: 36050336 PMCID: PMC9437100 DOI: 10.1038/s41598-022-18625-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Wheat, one of the most widely consumed staple food crops globally, is relatively vulnerable to high temperature-induced heat stress. It is therefore essential to gain more insight into the comprehensive mechanism of thermotolerance of wheat in order to safeguard its production. In view of this, we analysed heat stress responsive transcriptome data of wheat to determine its gene expression level under heat stress. A total of 7990 DEGs, including 4483 up-regulated and 3507 down regulated genes were identified. Gene Ontology (GO) analysis categorized 3910 DEGs into different ontology families. 146 pathways involving 814 DEGs were enriched during KEGG analysis. Metabolic pathways and biosynthesis of secondary metabolites were the major pathways enriched. MYB (myeloblastosis) transcription factors (TFs) and many other TFs as bHLH, WRKY, NAC, ERF, were determined to be quite abundant in the DEGs. Since various reports indicate that these TFs play important role in plants abiotic stress, it is an indication that our DEGs are functional in heat stress tolerance. Verification of few selected DEGs using RT-qPCR produced expression levels similar to the transcriptome data. This indicates that the transcriptome data is reliable. These results could be helpful in enhancing our understanding of the mechanism underlying thermotolerance in wheat.
Collapse
Affiliation(s)
- Mawuli K Azameti
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.,ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.,CSIR-Food Research Institute, Accra, Ghana
| | - Alok Ranjan
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - P K Singh
- Division of Genetics, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Kishor Gaikwad
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Monika Dalal
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Ajay Arora
- Division of Plant Physiology, Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India
| | - Jasdeep C Padaria
- PG School, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India. .,ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| |
Collapse
|
40
|
Gu C, Shang L, Zhang G, Wang Q, Ma Q, Hong S, Zhao Y, Yang L. Identification and Expression Analysis of NAC Gene Family in Weeping Trait of Lagerstroemia indica. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11162168. [PMID: 36015471 PMCID: PMC9413744 DOI: 10.3390/plants11162168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 05/05/2023]
Abstract
Lagerstroemia indica is a widely used ornamental plant in summer gardens because of its desirable plant shape. The weeping traits of plants are related to secondary cell wall thickness and hormone signaling. NAC (NAM-ATAF1/2-CUC2), as one of the plant-specific transcription factors, is a switch for the secondary cell wall and also involved in leaf senescence, phytohormone signaling, and other growth processes. We identified a total of 21 LiNAC genes from the transcriptome data, which we divided into 14 subgroups and 2 groups. The physicochemical characteristics of amino acids, subcellular localization, transmembrane structure, GO and KEGG enrichment, and expression patterns were also examined. The qRT-PCR analysis showed that the expressions of LiNAC8 and LiNAC13 in upright L. indica 'Shaoguifei' and weeping L. indica 'Xiariwuniang' were significantly higher from the beginning to the end of growth stage (S1-S3), and the expressions of 'Shaoguifei' were always higher than those of 'Xiariwuniang'. However, LiNAC2 showed a downward trend in S1-S3 and the relative expression level of 'Shaoguifei' was lower than that of 'Xiariwuniang'. It is hypothesized that these LiNAC genes may be involved in the regulation of weeping traits in L. indica. The results of this study provide a basis for analyzing the functions of LiNAC genes and help to explore the molecular regulatory mechanisms related to the weeping traits in L. indica.
Collapse
Affiliation(s)
- Cuihua Gu
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Linxue Shang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Guozhe Zhang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qun Wang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qingqing Ma
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Sidan Hong
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yu Zhao
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Correspondence: (Y.Z.); (L.Y.)
| | - Liyuan Yang
- College of Landscape and Architecture, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Key Laboratory of National Forestry and Grassland Administration on Germplasm Innovation and Utilization for Southern Garden Plants, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
- Correspondence: (Y.Z.); (L.Y.)
| |
Collapse
|
41
|
Lei X, Liu Z, Xie Q, Fang J, Wang C, Li J, Wang C, Gao C. Construction of two regulatory networks related to salt stress and lignocellulosic synthesis under salt stress based on a Populus davidiana × P. bolleana transcriptome analysis. PLANT MOLECULAR BIOLOGY 2022; 109:689-702. [PMID: 35486290 DOI: 10.1007/s11103-022-01267-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Construction of ML-hGRN for the salt pathway in Populus davidiana × P. bolleana. Construction of ML-hGRN for the lignocellulosic pathway in Populus davidiana × P. bolleana under salt stress. Many woody plants, including Populus davidiana × P. bolleana, have made great contributions to human production and life. High salt is one of the main environmental factors that restricts the growth of poplar. This study found that high salt could induce strong biochemical changes in poplar. To detect the effect of salt treatment on gene expression, 18 libraries were sequenced on the Illumina sequencing platform. The results identified a large number of early differentially expressed genes (DEGs) and a small number of late DEGs, which indicated that most of the salt response genes of poplar were early response genes. In addition, 197 TFs, including NAC, ERF, and other TFs related to salt stress, were differentially expressed during salt treatment, which indicated that these TFs may play an important role in the salt stress response of poplar. Based on the RNA-seq analysis results, multilayered hierarchical gene regulatory networks (ML-hGRNs) of salt stress- and lignocellulosic synthesis-related DEGs were constructed using the GGM algorithm. The lignocellulosic synthesis regulatory network under salt stress revealed that lignocellulosic synthesis might play an important role in the process of salt stress resistance. Furthermore, the NAC family transcription factor PdbNAC83, which was found in the upper layer in both pathways, was selected to verify the accuracy of the ML-hGRNs. DAP-seq showed that the binding site of PdbNAC83 included a "TT(G/A)C(G/T)T" motif, and ChIP-PCR further verified that PdbNAC83 can regulate the promoters of at least six predicted downstream genes (PdbNLP2-2, PdbZFP6, PdbMYB73, PdbC2H2-like, PdbMYB93-1, PdbbHLH094) by binding to the "TT(G/A)C(G/T)T" motif, which indicates that the predicted regulatory network diagram obtained in this study is relatively accurate. In conclusion, a species-specific salt response pathway might exist in poplar, and this finding lays a foundation for further study of the regulatory mechanism of the salt stress response and provides new clues for the use of genetic engineering methods to create high-quality and highly resistant forest germplasms.
Collapse
Affiliation(s)
- Xiaojin Lei
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Zhongyuan Liu
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Jiaru Fang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Chunyao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Jinghang Li
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Chao Wang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin, 150040, China.
| |
Collapse
|
42
|
Xu BQ, Wang JJ, Peng Y, Huang H, Sun LL, Yang R, Suo LN, Wang SH, Zhao WC. SlMYC2 mediates stomatal movement in response to drought stress by repressing SlCHS1 expression. FRONTIERS IN PLANT SCIENCE 2022; 13:952758. [PMID: 35937339 PMCID: PMC9354244 DOI: 10.3389/fpls.2022.952758] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/04/2022] [Indexed: 05/27/2023]
Abstract
Drought stress limits plant development and reproduction. Multiple mechanisms in plants are activated to respond to stress. The MYC2 transcription factor is a core regulator of the jasmonate (JA) pathway and plays a vital role in the crosstalk between abscisic acid (ABA) and JA. In this study, we found that SlMYC2 responded to drought stress and regulated stomatal aperture in tomato (Solanum lycopersicum). Overexpression of SlMYC2 repressed SlCHS1 expression and decreased the flavonol content, increased the reactive oxygen species (ROS) content in guard cells and promoted the accumulation of JA and ABA in leaves. Additionally, silencing the SlCHS1 gene produced a phenotype that was similar to that of the MYC2-overexpressing (MYC2-OE) strain, especially in terms of stomatal dynamics and ROS levels. Finally, we confirmed that SlMYC2 directly repressed the expression of SlCHS1. Our study revealed that SlMYC2 drove stomatal closure by modulating the accumulation of flavonol and the JA and ABA contents, helping us decipher the mechanism of stomatal movement under drought stress.
Collapse
Affiliation(s)
- Bing-Qin Xu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Bei Jing Bei Nong Enterprise Management Co., Ltd., Beijing, China
| | - Jing-Jing Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yi Peng
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lu-Lu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Lin-Na Suo
- Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Shao-Hui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| | - Wen-Chao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
43
|
Dong Y, Tang M, Huang Z, Song J, Xu J, Ahammed GJ, Yu J, Zhou Y. The miR164a-NAM3 module confers cold tolerance by inducing ethylene production in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:440-456. [PMID: 35569132 DOI: 10.1111/tpj.15807] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Because of a high sensitivity to cold, both the yield and quality of tomato (Solanum lycopersicum L.) are severely restricted by cold stress. The NAC transcription factor (TF) family has been characterized as an important player in plant growth, development, and the stress response, but the role of NAC TFs in cold stress and their interaction with other post-transcriptional regulators such as microRNAs in cold tolerance remains elusive. Here, we demonstrated that SlNAM3, the predicted target of Sl-miR164a/b-5p, improved cold tolerance as indicated by a higher maximum quantum efficiency of photosystem II (Fv/Fm), lower relative electrolyte leakage, and less wilting in SlNAM3-overexpression plants compared to wild-type. Further genetic and molecular confirmation revealed that Sl-miR164a/b-5p functioned upstream of SlNAM3 by inhibiting the expression of the latter, thus playing a negative role in cold tolerance. Interestingly, this role is partially mediated by an ethylene-dependent pathway because either Sl-miR164a/b-5p silencing or SlNAM3 overexpression improved cold tolerance in the transgenic lines by promoting ethylene production. Moreover, silencing of the ethylene synthesis genes, SlACS1A, SlACS1B, SlACO1, and SlACO4, resulted in a significant decrease in cold tolerance. Further experiments demonstrated that NAM3 activates SlACS1A, SlACS1B, SlACO1, and SlACO4 transcription by directly binding to their promoters. Taken together, the present study identified the miR164a-NAM3 module conferring cold tolerance in tomato plants via the direct regulation of SlACS1A, SlACS1B, SlACO1, and SlACO4 expression to induce ethylene synthesis.
Collapse
Affiliation(s)
- Yufei Dong
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Mingjia Tang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Zelan Huang
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jianing Song
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jin Xu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Golam Jalal Ahammed
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Yuhangtang Road 866, Hangzhou, 310058, China
| |
Collapse
|
44
|
Vyse K, Schaarschmidt S, Erban A, Kopka J, Zuther E. Specific CBF transcription factors and cold-responsive genes fine-tune the early triggering response after acquisition of cold priming and memory. PHYSIOLOGIA PLANTARUM 2022; 174:e13740. [PMID: 35776365 DOI: 10.1111/ppl.13740] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Plants need to adapt to fluctuating temperatures throughout their lifetime. Previous research showed that Arabidopsis memorizes a first cold stress (priming) and improves its primed freezing tolerance further when subjected to a second similar stress after a lag phase. This study investigates primary metabolomic and transcriptomic changes during early cold priming or triggering after 3 days at 4°C interrupted by a memory phase. DREB1 family transcription factors DREB1C/CBF2, DREB1D/CBF4, DREB1E/DDF2, and DREB1F/DDF1 were strongly significantly induced throughout the entire triggering. During triggering, genes encoding Late Embryogenesis Abundant (LEA), antifreeze proteins or detoxifiers of reactive oxygen species (ROS) were higher expressed compared with priming. Examples of early triggering responders were xyloglucan endotransglucosylase/hydrolase genes encoding proteins involved in cell wall remodeling, while late responders were identified to act in fine-tuning the stress response and developmental regulation. Induction of non-typical members of the DREB subfamily of ERF/AP2 transcription factors, the relatively small number of induced CBF regulon genes and a slower accumulation of selected cold stress associated metabolites indicate that a cold triggering stimulus might be sensed as milder stress in plants compared with priming. Further, strong induction of CBF4 throughout triggering suggests a unique function of this gene for the response to alternating temperatures.
Collapse
Affiliation(s)
- Kora Vyse
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | - Alexander Erban
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Joachim Kopka
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Ellen Zuther
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
45
|
Song H, Liu Y, Dong G, Zhang M, Wang Y, Xin J, Su Y, Sun H, Yang M. Genome-Wide Characterization and Comprehensive Analysis of NAC Transcription Factor Family in Nelumbo nucifera. Front Genet 2022; 13:901838. [PMID: 35754820 PMCID: PMC9214227 DOI: 10.3389/fgene.2022.901838] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
NAC (NAM, ATAF, and CUC) is a ubiquitously expressed plant-specific transcription factor (TF) family which is involved in the regulation of various biological processes. However, a systematic characterization of NAC gene family is yet to be reported in lotus. Here, 82 NnNAC genes which included five predicted membrane-bound NAC proteins were identified in the lotus genome. Phylogenetic analysis revealed seven-subfamily clusters (I–VII) of NnNAC proteins, with homologous gene pairs displaying similar conserved motifs and gene structure characteristics. Transactivation assay of NnNAC proteins revealed an extensive transcriptional activation capacity which is mediated by the highly divergent C-terminal activation domain (AD). Expression analysis of NnNAC genes in lotus tissues showed high transcript levels in root, stamen, petal and seed coat. In addition, 30 and 29 differentially expressed NnNAC candidate genes putatively involved in lotus seed development and response to complete submergence stress, respectively, were identified. Overall, our study provides potentially useful candidate gene resources for future molecular breeding of lotus varieties with novel agronomic traits.
Collapse
Affiliation(s)
- Heyun Song
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanling Liu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | - Minghua Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yuxin Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jia Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Su
- Amway (China) Botanical R&D Centre, Wuxi, China
| | - Heng Sun
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Mei Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.,Aquatic Plant Research Center, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
46
|
Ke YD, Huang YW, Viswanath KK, Hu CC, Yeh CM, Mitsuda N, Lin NS, Hsu YH. NbNAC42 and NbZFP3 Transcription Factors Regulate the Virus Inducible NbAGO5 Promoter in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:924482. [PMID: 35812928 PMCID: PMC9261433 DOI: 10.3389/fpls.2022.924482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 05/27/2023]
Abstract
Plant argonautes (AGOs) play important roles in the defense responses against viruses. The expression of Nicotiana benthamiana AGO5 gene (NbAGO5) is highly induced by Bamboo mosaic virus (BaMV) infection; however, the underlying mechanisms remain elusive. In this study, we have analyzed the potential promoter activities of NbAGO5 and its interactions with viral proteins by using a 2,000 bp fragment, designated as PN1, upstream to the translation initiation of NbAGO5. PN1 and seven serial 5'-deletion mutants (PN2-PN8) were fused with a β-glucuronidase (GUS) reporter and introduced into the N. benthamiana genome by Agrobacterium-mediated transformation for further characterization. It was found that PN4-GUS transgenic plants were able to drive strong GUS expression in the whole plant. In the virus infection tests, the GUS activity was strongly induced in PN4-GUS transgenic plants after being challenged with potexviruses. Infiltration of the transgenic plants individually with BaMV coat protein (CP) or triple gene block protein 1 (TGBp1) revealed that only TGBp1 was crucial for inducing the NbAGO5 promoter. To identify the factors responsible for controlling the activity of the NbAGO5 promoter, we employed yeast one-hybrid screening on a transcription factor cDNA library. The result showed that NbNAC42 and NbZFP3 could directly bind the 704 bp promoter regions of NbAGO5. By using overexpressing and virus-induced gene silencing techniques, we found that NbNAC42 and NbZFP3 regulated and downregulated, respectively, the expression of the NbAGO5 gene. Upon virus infection, NbNAC42 played an important role in regulating the expression of NbAGO5. Together, these results provide new insights into the modulation of the defense mechanism of N. benthamiana against viruses. This virus inducible promoter could be an ideal candidate to drive the target gene expression that could improve the anti-virus abilities of crops in the future.
Collapse
Affiliation(s)
- Yuan-Dun Ke
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Chuan-Ming Yeh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei City, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
47
|
Wang M, Ren LT, Wei XY, Ling YM, Gu HT, Wang SS, Ma XF, Kong GC. NAC Transcription Factor TwNAC01 Positively Regulates Drought Stress Responses in Arabidopsis and Triticale. FRONTIERS IN PLANT SCIENCE 2022; 13:877016. [PMID: 35812952 PMCID: PMC9257188 DOI: 10.3389/fpls.2022.877016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The NAC transcription factors play important roles in regulating plant growth, development, and senescence, and responding to biotic and abiotic stressors in plants. A novel coding sequence (1,059 bp) was cloned from hexaploid triticale in this study. The putative protein (352 amino acids) encoded by this sequence was over 95% similar to the amino acid sequence of a NAC protein from Aegilops tauschii (XP020161331), and it formed a clade with Ae. tauschii, durum wheat, and barley. The putative protein contained a conserved nature actomyosin (NAM) domain (129 consecutive amino acids) between the 20th and 148th amino acids at the N-terminus and three transcription activation regions at the C-terminus. The novel gene was identified as a triticale NAC gene localized in the nucleus and designated as TwNAC01 (GenBank accession MG736919). The expression levels of TwNAC01 were the highest in roots, followed by leaves and stems when triticale lines were exposed to drought, polyethylene glycol 6,000 (PEG6000), NaCl, cold, methyl jasmonate (MeJA), and abscisic acid (ABA). Transgenic Arabidopsis thaliana overexpressing TwNAC01 had significantly lower leaf water loss rates and longer roots than wild-type (WT) A. thaliana. Virus-induced silencing of the TwNAC01 gene in triticale delayed root development and decreased length of primary root. Under drought stress, leaves of TwNAC01-silenced triticale had higher levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2), but lower relative water content (RWC), net photosynthetic rate, stomatal conductance, intercellular CO2 concentration, and transpiration rate than the leaves of the WT. Gene overexpression and silencing experiments suggested that TwNAC01 improves plant stress tolerance by increasing root length, regulating the water content of plant leaves by reducing MDA and H2O2 content, and adjusting respiration rate. The results suggest that TwNAC01 is a novel NAC transcription factor gene that can be exploited for triticale and cereal improvement.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agriculture College of Shihezi University, Shihezi, China
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Li-Tong Ren
- School of Chemistry and Chemical Engineering of Shihezi University, Shihezi, China
| | - Xiao-Yong Wei
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agriculture College of Shihezi University, Shihezi, China
| | - Yue-Ming Ling
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agriculture College of Shihezi University, Shihezi, China
| | - Hai-Tao Gu
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agriculture College of Shihezi University, Shihezi, China
| | - Shan-Shan Wang
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agriculture College of Shihezi University, Shihezi, China
| | - Xue-Feng Ma
- Forage Genetics International, West Salem, WI, United States
| | - Guang-Chao Kong
- Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps, Agriculture College of Shihezi University, Shihezi, China
| |
Collapse
|
48
|
Waseem M, Nkurikiyimfura O, Niyitanga S, Jakada BH, Shaheen I, Aslam MM. GRAS transcription factors emerging regulator in plants growth, development, and multiple stresses. Mol Biol Rep 2022; 49:9673-9685. [PMID: 35713799 DOI: 10.1007/s11033-022-07425-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/23/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
Abstract
GRAS transcription factors play multifunctional roles in plant growth, development, and resistance to various biotic and abiotic stresses. The structural and functional features of GRAS TFs have been unveiled in the last two decades. A typical GRAS protein contained a C-terminal GRAS domain with a highly variable N-terminal region. Studies on these TFs increase in numbers and are reported to be involved in various important developmental processes such as flowering, root formation, and stress responses. The GRAS TFs and hormone signaling crosstalk can be implicated in plant development and to stress responses. There are relatively few reports about GRAS TFs roles in plants, and no related reviews have been published. In this review, we summarized the features of GRAS TFs, their targets, and the roles these GRAS TFs playing in plant development and multiple stresses.
Collapse
Affiliation(s)
- Muhammad Waseem
- Department of Botany, University of Narowal, Narowal, Punjab, Pakistan. .,College of Life Science, Hainan University, Hainan, P.R. China.
| | - Oswald Nkurikiyimfura
- Key Lab for Bio-Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Sylvain Niyitanga
- Department of Plant Pathology, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Bello Hassan Jakada
- College of Life Science, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, 350002, Fuzhou, Fujian, China
| | - Iffat Shaheen
- Faculty of Agriculture Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
49
|
Yu G, Xie Z, Lei S, Li H, Xu B, Huang B. The NAC factor LpNAL delays leaf senescence by repressing two chlorophyll catabolic genes in perennial ryegrass. PLANT PHYSIOLOGY 2022; 189:595-610. [PMID: 35218362 PMCID: PMC9157085 DOI: 10.1093/plphys/kiac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Expression of chlorophyll (Chl) catabolic genes during leaf senescence is tightly controlled at the transcriptional level. Here, we identified a NAC family transcription factor, LpNAL, involved in regulating Chl catabolic genes via the yeast one-hybrid system based on truncated promoter analysis of STAYGREEN (LpSGR) in perennial ryegrass (Lolium perenne L.). LpNAL was found to be a transcriptional repressor, directly repressing LpSGR as well as the Chl b reductase gene, NONYELLOWING COLORING1. Perennial ryegrass plants over-expressing LpNAL exhibited delayed leaf senescence or stay-green phenotypes, whereas knocking down LpNAL using RNA interference accelerated leaf senescence. Comparative transcriptome analysis of leaves at 30 d after emergence in wild-type, LpNAL-overexpression, and knock-down transgenic plants revealed that LpNAL-regulated stay-green phenotypes possess altered light reactions of photosynthesis, antioxidant metabolism, ABA and ethylene synthesis and signaling, and Chl catabolism. Collectively, the transcriptional repressor LpNAL targets both Chl a and Chl b catabolic genes and acts as a brake to fine-tune the rate of Chl degradation during leaf senescence in perennial ryegrass.
Collapse
Affiliation(s)
- Guohui Yu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Zheni Xie
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, USA
| | - Shanshan Lei
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Li
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Xu
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Bingru Huang
- Department of Plant Biology, Rutgers University, New Brunswick, New Jersey 08901, USA
| |
Collapse
|
50
|
Wang C, Li T, Liu Q, Li L, Feng Z, Yu S. Characterization and Functional Analysis of GhNAC82, A NAM Domain Gene, Coordinates the Leaf Senescence in Upland Cotton ( Gossypium hirsutum L.). PLANTS (BASEL, SWITZERLAND) 2022; 11:1491. [PMID: 35684264 PMCID: PMC9182992 DOI: 10.3390/plants11111491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/22/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In the process of growth and development, cotton exhibits premature senescence under various abiotic stresses, impairing yield and fiber quality. NAC (NAM, ATAF1,2, and CUC2) protein widely distributed in land plants, play the critical role in responding to abiotic stress and regulating leaf senescence. We have identified and functional analyzed a NAM domain gene GhNAC82 in upland cotton, it was located on the A11 chromosome 4,921,702 to 4,922,748 bp, only containing one exon. The spatio-temporal expression pattern analysis revealed that it was highly expressed in root, torus, ovule and fiber development stage. The results of qRT-PCR validated that GhNAC82 negatively regulated by salt stress, drought stress, H2O2 stress, IAA treatment, and ethylene treatment, positively regulated by the ABA and MeJA treatment. Moreover, heterologous overexpression of GhNAC82 results in leaf premature senescence and delays root system development in Arabidopsis thaliana. The phenotype of delayed-senescence was performed after silencing GhNAC82 by VIGS in premature cotton. Taken together, GhNAC82 was involved in different abiotic stress pathways and play important roles in negatively regulating leaf premature senescence.
Collapse
Affiliation(s)
- Chenlei Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Tengyu Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Qibao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| | - Libei Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
| | - Zhen Feng
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
| | - Shuxun Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (C.W.); (L.L.)
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang 455000, China; (T.L.); (Q.L.)
| |
Collapse
|