1
|
Hatzold J, Nett V, Brantsch S, Zhang JL, Armistead J, Wessendorf H, Stephens R, Humbert PO, Iden S, Hammerschmidt M. Matriptase-dependent epidermal pre-neoplasm in zebrafish embryos caused by a combination of hypotonic stress and epithelial polarity defects. PLoS Genet 2023; 19:e1010873. [PMID: 37566613 PMCID: PMC10446194 DOI: 10.1371/journal.pgen.1010873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/23/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Aberrantly up-regulated activity of the type II transmembrane protease Matriptase-1 has been associated with the development and progression of a range of epithelial-derived carcinomas, and a variety of signaling pathways can mediate Matriptase-dependent tumorigenic events. During mammalian carcinogenesis, gain of Matriptase activity often results from imbalanced ratios between Matriptase and its cognate transmembrane inhibitor Hai1. Similarly, in zebrafish, unrestrained Matriptase activity due to loss of hai1a results in epidermal pre-neoplasms already during embryogenesis. Here, based on our former findings of a similar tumor-suppressive role for the Na+/K+-pump beta subunit ATP1b1a, we identify epithelial polarity defects and systemic hypotonic stress as another mode of aberrant Matriptase activation in the embryonic zebrafish epidermis in vivo. In this case, however, a different oncogenic pathway is activated which contains PI3K, AKT and NFkB, rather than EGFR and PLD (as in hai1a mutants). Strikingly, epidermal pre-neoplasm is only induced when epithelial polarity defects in keratinocytes (leading to disturbed Matriptase subcellular localization) occur in combination with systemic hypotonic stress (leading to increased proteolytic activity of Matriptase). A similar combinatorial effect of hypotonicity and loss of epithelial polarity was also obtained for the activity levels of Matriptase-1 in human MCF-10A epithelial breast cells. Together, this is in line with the multi-factor concept of carcinogenesis, with the notion that such factors can even branch off from one and the same initiator (here ATP1a1b) and can converge again at the level of one and the same mediator (here Matriptase). In sum, our data point to tonicity and epithelial cell polarity as evolutionarily conserved regulators of Matriptase activity that upon de-regulation can constitute an alternative mode of Matriptase-dependent carcinogenesis in vivo.
Collapse
Affiliation(s)
- Julia Hatzold
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Verena Nett
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Stephanie Brantsch
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Jin-Li Zhang
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Joy Armistead
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Heike Wessendorf
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
| | - Rebecca Stephens
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Patrick O. Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sandra Iden
- Cell and Developmental Biology, Center of Human and Molecular Biology (ZHMB), Saarland University, Faculty of Medicine, Homburg/Saar, Germany
| | - Matthias Hammerschmidt
- Institute of Zoology–Developmental Biology, University of Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| |
Collapse
|
2
|
Wu Q, Li S, Zhang X, Dong N. Type II Transmembrane Serine Proteases as Modulators in Adipose Tissue Phenotype and Function. Biomedicines 2023; 11:1794. [PMID: 37509434 PMCID: PMC10376093 DOI: 10.3390/biomedicines11071794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Adipose tissue is a crucial organ in energy metabolism and thermoregulation. Adipose tissue phenotype is controlled by various signaling mechanisms under pathophysiological conditions. Type II transmembrane serine proteases (TTSPs) are a group of trypsin-like enzymes anchoring on the cell surface. These proteases act in diverse tissues to regulate physiological processes, such as food digestion, salt-water balance, iron metabolism, epithelial integrity, and auditory nerve development. More recently, several members of the TTSP family, namely, hepsin, matriptase-2, and corin, have been shown to play a role in regulating lipid metabolism, adipose tissue phenotype, and thermogenesis, via direct growth factor activation or indirect hormonal mechanisms. In mice, hepsin deficiency increases adipose browning and protects from high-fat diet-induced hyperglycemia, hyperlipidemia, and obesity. Similarly, matriptase-2 deficiency increases fat lipolysis and reduces obesity and hepatic steatosis in high-fat diet-fed mice. In contrast, corin deficiency increases white adipose weights and cell sizes, suppresses adipocyte browning and thermogenic responses, and causes cold intolerance in mice. These findings highlight an important role of TTSPs in modifying cellular phenotype and function in adipose tissue. In this review, we provide a brief description about TTSPs and discuss recent findings regarding the role of hepsin, matriptase-2, and corin in regulating adipose tissue phenotype, energy metabolism, and thermogenic responses.
Collapse
Affiliation(s)
- Qingyu Wu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Shuo Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Xianrui Zhang
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou 215123, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, Soochow University, Suzhou 215006, China
| |
Collapse
|
3
|
Buzza MS, Pawar NR, Strong AA, Antalis TM. Intersection of Coagulation and Fibrinolysis by the Glycosylphosphatidylinositol (GPI)-Anchored Serine Protease Testisin. Int J Mol Sci 2023; 24:9306. [PMID: 37298257 PMCID: PMC10252689 DOI: 10.3390/ijms24119306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Hemostasis is a delicate balance between coagulation and fibrinolysis that regulates the formation and removal of fibrin, respectively. Positive and negative feedback loops and crosstalk between coagulation and fibrinolytic serine proteases maintain the hemostatic balance to prevent both excessive bleeding and thrombosis. Here, we identify a novel role for the glycosylphosphatidylinositol (GPI)-anchored serine protease testisin in the regulation of pericellular hemostasis. Using in vitro cell-based fibrin generation assays, we found that the expression of catalytically active testisin on the cell surface accelerates thrombin-dependent fibrin polymerization, and intriguingly, that it subsequently promotes accelerated fibrinolysis. We find that the testisin-dependent fibrin formation is inhibited by rivaroxaban, a specific inhibitor of the central prothrombin-activating serine protease factor Xa (FXa), demonstrating that cell-surface testisin acts upstream of factor X (FX) to promote fibrin formation at the cell surface. Unexpectedly, testisin was also found to accelerate fibrinolysis by stimulating the plasmin-dependent degradation of fibrin and enhancing plasmin-dependent cell invasion through polymerized fibrin. Testisin was not a direct activator of plasminogen, but it is able to induce zymogen cleavage and the activation of pro-urokinase plasminogen activator (pro-uPA), which converts plasminogen to plasmin. These data identify a new proteolytic component that can regulate pericellular hemostatic cascades at the cell surface, which has implications for angiogenesis, cancer biology, and male fertility.
Collapse
Affiliation(s)
- Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Amando A. Strong
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (N.R.P.); (A.A.S.); (T.M.A.)
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
4
|
Rahimnahal S, Meimandipour A, Fayazi J, Asghar Karkhane A, Shamsara M, Beigi Nassiri M, Mirzaei H, Hamblin MR, Tarrahimofrad H, Bakherad H, Zamani J, Mohammadi Y. Biochemical and molecular characterization of novel keratinolytic protease from Bacillus licheniformis (KRLr1). Front Microbiol 2023; 14:1132760. [PMID: 37234543 PMCID: PMC10206251 DOI: 10.3389/fmicb.2023.1132760] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
The keratin-degrading bacterium Bacillus licheniformis secretes a keratinase with potential industrial interest. Here, the Keratinase gene was intracellularly expressed in Escherichia coli BL21(DE3) using pET-21b (+) vector. Phylogenetic tree analysis showed that KRLr1 is closely related to Bacillus licheniformis keratinase that belongs to the serine peptidase/subtilisin-like S8 family. Recombinant keratinase appeared on the SDS-PAGE gel with a band of about 38 kDa and was confirmed by western blotting. Expressed KRLr1 was purified by Ni-NTA affinity chromatography with a yield of 85.96% and then refolded. It was found that this enzyme has optimum activity at pH 6 and 37°C. PMSF inhibited the KRLr1 activity and Ca2+ and Mg2+ increased the KRLr1 activity. Using keratin 1% as the substrate, the thermodynamic values were determined as Km 14.54 mM, kcat 912.7 × 10-3 (S-1), and kcat/Km 62.77 (M-1 S-1). Feather digestion by recombinant enzyme using HPLC method, showed that the amino acids cysteine, phenylalanine, tyrosine and lysine had the highest amount compared to other amino acids obtained from digestion. Molecular dynamics (MD) simulation of HADDOCK docking results exhibited that KRLr1 enzyme was able to interact strongly with chicken feather keratine 4 (FK4) compared to chicken feather keratine 12 (FK12). These properties make keratinase KRLr1 a potential candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Somayyeh Rahimnahal
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Amir Meimandipour
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Jamal Fayazi
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Ali Asghar Karkhane
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Mehdi Shamsara
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Mohammadtaghi Beigi Nassiri
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Faculty of Health Science, Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Hossein Tarrahimofrad
- Department of Animal Science and Food Technology, Agriculture Science and Natural Resources University Khouzestan, Ahwaz, Iran
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Hamid Bakherad
- Department of Pharmaceutical Biotechnology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javad Zamani
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | | |
Collapse
|
5
|
Martin CE, Murray AS, Mackinder JR, Sala-Hamrick KE, Flynn MG, Lundgren JG, Varela FA, List K. TMPRSS13 zymogen activation, surface localization, and shedding is regulated by proteolytic cleavage within the non-catalytic stem region. Biol Chem 2022; 403:969-982. [PMID: 35796294 PMCID: PMC10642292 DOI: 10.1515/hsz-2022-0129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/24/2022] [Indexed: 12/21/2022]
Abstract
TMPRSS13 is a member of the type II transmembrane serine protease (TTSP) family. Here we characterize a novel post-translational mechanism important for TMPRSS13 function: proteolytic cleavage within the extracellular TMPRSS13 stem region located between the transmembrane domain and the first site of N-linked glycosylation at asparagine (N)-250 in the scavenger receptor cysteine rich (SRCR) domain. Importantly, the catalytic competence of TMPRSS13 is essential for stem region cleavage, suggesting an autonomous mechanism of action. Site-directed mutagenesis of the 10 basic amino acids (four arginine and six lysine residues) in this region abrogated zymogen activation and catalytic activity of TMPRSS13, as well as phosphorylation, cell surface expression, and shedding. Mutation analysis of individual arginine residues identified R223, a residue located between the low-density lipoprotein receptor class A domain and the SRCR domain, as important for stem region cleavage. Mutation of R223 causes a reduction in the aforementioned functional processing steps of TMPRSS13. These data provide further insight into the roles of different post-translational modifications as regulators of the function and localization of TMPRSS13. Additionally, the data suggest the presence of complex interconnected regulatory mechanisms that may serve to ensure the proper levels of cell-surface and pericellular TMPRSS13-mediated proteolysis under homeostatic conditions.
Collapse
Affiliation(s)
- Carly E. Martin
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Andrew S. Murray
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
- Division of Hematological Malignancies and Cellular Therapy, Duke University, Durham, NC, 27708, USA
| | - Jacob R. Mackinder
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, 05405, USA
| | - Kimberley E. Sala-Hamrick
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Environmental Sciences, University of Michigan School of Public Health, Ann Arbor, MI, 48109, USA
| | - Michael G. Flynn
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
| | - Joseph G. Lundgren
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| | - Fausto A. Varela
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI, 48202, USA
- Department of Oncology, Wayne State University, Detroit, MI, 48202, USA
| |
Collapse
|
6
|
Sneha, Pandey JP, Pandey DM. Evaluating the role of trypsin in silk degumming: An in silico approach. J Biotechnol 2022; 359:35-47. [PMID: 36126805 DOI: 10.1016/j.jbiotec.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
The trypsin being universal enzyme forming family of proteases catalyzes the hydrolysis of proteins into amino acids and regenerates the serine hydroxyl an active site. The trypsin enzyme from D. saccharalis, uses sericin as its preferred substrate. Presence of catalytic triad (serine, aspartic acid and histidine) at the substrate binding site of this enzyme is very important for the catalytic activity. In the current study, the interacting mechanism between the substrate sericin protein and enzyme trypsin protein were explored by integrating various computational approaches including physico-chemical properties, biophysical properties, dynamics, gene ontology, molecular docking, protein - protein interactions, binding free energy calculation and structural motifs were studied. The evolutionary study performed by MEGA X showed that trypsin protein sequence (ALE15212.1) is closely related to cocoonase protein sequence (ADG26770.1) from Antheraea pernyi. 3-D models of trypsin and sericin proteins were predicted using I-TASSER and further validated by PROCHECK, and ProSAweb softwares. The predicted trypsin structure model was assigned E.C. no. 3.4.21.4 which refers hydrolytic mechanism. Gene Ontology predicted by QuickGO showed that trypsin has serine hydrolase activity (GO: 00017171), and part of proteolysis (GO: 0006508) as well as protein metabolic process (GO:0019538) actvity. Molecular docking studies between trypsin and sericin proteins were conducted by the HADDOCK 2.4 having best docked protein complex with Z-score - 1.9. 2D and 3D protein-protein interaction was performed with LIGPLOT+ and HAWKDOCK, PDBsum, respectively. The amino acid residues interacting across proteins interface are sericin_chain A representing "Ser133, Tyr214, Thr188, Thr243, Ser225, Ser151, Ser156, His294, Arg293, Gly296″ and trypsin_chain B "Lys120, Tyr246, Asn119, Glu239, Ser62, Tyr194, Ile197, Ser171, Tyr169, Gly170″. Based on our results trypsin shows similarity with cocoonase and presumably trypsin can be used as an alternative source in cocoon degumming.
Collapse
Affiliation(s)
- Sneha
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Jay Prakash Pandey
- Central Tasar Research and Training Institute, Piska-Nagri, Ranchi, Jharkhand 835303, India.
| | - Dev Mani Pandey
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| |
Collapse
|
7
|
Jang J, Cho EH, Cho Y, Ganzorig B, Kim KY, Kim MG, Kim C. Environment-Sensitive Ectodomain Shedding of Epithin/PRSS14 Increases Metastatic Potential of Breast Cancer Cells by Producing CCL2. Mol Cells 2022; 45:564-574. [PMID: 35950457 PMCID: PMC9385564 DOI: 10.14348/molcells.2022.2004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/20/2021] [Accepted: 01/28/2022] [Indexed: 11/27/2022] Open
Abstract
Epithin/PRSS14 is a membrane serine protease that plays a key role in tumor progression. The protease exists on the cell surface until its ectodomain shedding, which releases most of the extracellular domain. Previously, we showed that the remaining portion on the membrane undergoes intramembrane proteolysis, which results in the liberation of the intracellular domain and the intracellular domainmediated gene expression. In this study, we investigated how the intramembrane proteolysis for the nuclear function is initiated. We observed that ectodomain shedding of epithin/PRSS14 in mouse breast cancer 4T1 cells increased depending on environmental conditions and was positively correlated with invasiveness of the cells and their proinvasive cytokine production. We identified selenite as an environmental factor that can induce ectodomain shedding of the protease and increase C-C motif chemokine ligand 2 (CCL2) secretion in an epithin/PRSS14-dependent manner. Additionally, by demonstrating that the expression of the intracellular domain of epithin/PRSS14 is sufficient to induce CCL2 secretion, we established that epithin/PRSS14- dependent shedding and its subsequent intramembrane proteolysis are responsible for the metastatic conversion of 4T1 cells under these conditions. Consequently, we propose that epithin/PRSS14 can act as an environment-sensing receptor that promotes cancer metastasis by liberating the intracellular domain bearing transcriptional activity under conditions promoting ectodomain shedding.
Collapse
Affiliation(s)
- Jiyoung Jang
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Eun Hye Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Youngkyung Cho
- Department of Life Sciences, Korea University, Seoul 02841, Korea
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Binderya Ganzorig
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Ki Yeon Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Moon Gyo Kim
- Department of Biological Sciences, Inha University, Incheon 22212, Korea
| | - Chungho Kim
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
8
|
Treatment of ovarian cancer with modified anthrax toxin. Proc Natl Acad Sci U S A 2022; 119:e2210179119. [PMID: 35917343 PMCID: PMC9371659 DOI: 10.1073/pnas.2210179119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
9
|
Duru N, Pawar NR, Martin EW, Buzza MS, Conway GD, Lapidus RG, Liu S, Reader J, Rao GG, Roque DM, Leppla SH, Antalis TM. Selective targeting of metastatic ovarian cancer using an engineered anthrax prodrug activated by membrane-anchored serine proteases. Proc Natl Acad Sci U S A 2022; 119:e2201423119. [PMID: 35867758 PMCID: PMC9282395 DOI: 10.1073/pnas.2201423119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/05/2022] [Indexed: 01/19/2023] Open
Abstract
Treatments for advanced and recurrent ovarian cancer remain a challenge due to a lack of potent, selective, and effective therapeutics. Here, we developed the basis for a transformative anticancer strategy based on anthrax toxin that has been engineered to be selectively activated by the catalytic power of zymogen-activating proteases on the surface of malignant tumor cells to induce cell death. Exposure to the engineered toxin is cytotoxic to ovarian tumor cell lines and ovarian tumor spheroids derived from patient ascites. Preclinical studies demonstrate that toxin treatment induces tumor regression in several in vivo ovarian cancer models, including patient-derived xenografts, without adverse side effects, supportive of progression toward clinical evaluation. These data lay the groundwork for developing therapeutics for treating women with late-stage and recurrent ovarian cancers, utilizing a mechanism distinct from current anticancer therapies.
Collapse
Affiliation(s)
- Nadire Duru
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Nisha R. Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Erik W. Martin
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Marguerite S. Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gregory D. Conway
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Rena G. Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Shihui Liu
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Jocelyn Reader
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Gautam G. Rao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Dana M. Roque
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Stephen H. Leppla
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Toni M. Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201
| |
Collapse
|
10
|
Bai X, Buckle AM, Vladar EK, Janoff EN, Khare R, Ordway D, Beckham D, Fornis LB, Majluf-Cruz A, Fugit RV, Freed BM, Kim S, Sandhaus RA, Chan ED. Enoxaparin augments alpha-1-antitrypsin inhibition of TMPRSS2, a promising drug combination against COVID-19. Sci Rep 2022; 12:5207. [PMID: 35338216 PMCID: PMC8953970 DOI: 10.1038/s41598-022-09133-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The cell surface serine protease Transmembrane Protease 2 (TMPRSS2) is required to cleave the spike protein of SARS-CoV-2 for viral entry into cells. We determined whether negatively-charged heparin enhanced TMPRSS2 inhibition by alpha-1-antitrypsin (AAT). TMPRSS2 activity was determined in HEK293T cells overexpressing TMPRSS2. We quantified infection of primary human airway epithelial cells (hAEc) with human coronavirus 229E (HCoV-229E) by immunostaining for the nucleocapsid protein and by the plaque assay. Detailed molecular modeling was undertaken with the heparin-TMPRSS2-AAT ternary complex. Enoxaparin enhanced AAT inhibition of both TMPRSS2 activity and infection of hAEc with HCoV-229E. Underlying these findings, detailed molecular modeling revealed that: (i) the reactive center loop of AAT adopts an inhibitory-competent conformation compared with the crystal structure of TMPRSS2 bound to an exogenous (nafamostat) or endogenous (HAI-2) TMPRSS2 inhibitor and (ii) negatively-charged heparin bridges adjacent electropositive patches at the TMPRSS2-AAT interface, neutralizing otherwise repulsive forces. In conclusion, enoxaparin enhances AAT inhibition of both TMPRSS2 and coronavirus infection. Such host-directed therapy is less likely to be affected by SARS-CoV-2 mutations. Furthermore, given the known anti-inflammatory activities of both AAT and heparin, this form of treatment may target both the virus and the excessive inflammatory consequences of severe COVID-19.
Collapse
Affiliation(s)
- Xiyuan Bai
- grid.422100.50000 0000 9751 469XDepartment of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA ,grid.240341.00000 0004 0396 0728Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO USA ,grid.430503.10000 0001 0703 675XDivision of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.240341.00000 0004 0396 0728National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO 80206 USA
| | - Ashley M. Buckle
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - Eszter K. Vladar
- grid.430503.10000 0001 0703 675XDivision of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Edward N. Janoff
- grid.422100.50000 0000 9751 469XDepartment of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Reeti Khare
- grid.240341.00000 0004 0396 0728Mycobacteriology Laboratory, Advance Diagnostics, National Jewish Health, Denver, CO USA
| | - Diane Ordway
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunlogy, and Pathology, Colorado State University, Fort Collins, CO USA
| | - David Beckham
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Lorelenn B. Fornis
- grid.240341.00000 0004 0396 0728Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO USA
| | - Abraham Majluf-Cruz
- grid.419157.f0000 0001 1091 9430Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Randolph V. Fugit
- grid.422100.50000 0000 9751 469XDepartment of Pharmacy, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA
| | - Brian M. Freed
- grid.430503.10000 0001 0703 675XDepartment of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Soohyun Kim
- grid.258676.80000 0004 0532 8339Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea ,grid.258676.80000 0004 0532 8339College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Robert A. Sandhaus
- grid.240341.00000 0004 0396 0728Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO USA
| | - Edward D. Chan
- grid.422100.50000 0000 9751 469XDepartment of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA ,grid.240341.00000 0004 0396 0728Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO USA ,grid.430503.10000 0001 0703 675XDivision of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.240341.00000 0004 0396 0728National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO 80206 USA
| |
Collapse
|
11
|
Izumi A, Yamamoto K, Kawaguchi M, Yamashita F, Fukushima T, Kiwaki T, Tanaka H, Yamashita Y, Kataoka H. Insufficiency of hepatocyte growth factor activator inhibitor-1 confers lymphatic invasion of tongue carcinoma cells. Cancer Sci 2022; 113:2179-2193. [PMID: 35332604 PMCID: PMC9207362 DOI: 10.1111/cas.15346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatocyte growth factor (HGF) activator inhibitor type‐1 (HAI‐1), encoded by the SPINT1 gene, is a transmembrane protease inhibitor that regulates membrane‐anchored serine proteases, particularly matriptase. Here, we explored the role of HAI‐1 in tongue squamous cell carcinoma (TSCC) cells. An immunohistochemical study of HAI‐1 in surgically resected TSCC revealed the cell surface immunoreactivity of HAI‐1 in the main portion of the tumor. The immunoreactivity decreased in the infiltrative front, and this decrease correlated with enhanced lymphatic invasion as judged by podoplanin immunostaining. In vitro homozygous deletion of SPINT1 (HAI‐1KO) in TSCC cell lines (HSC3 and SAS) suppressed the cell growth rate but significantly enhanced invasion in vitro. The loss of HAI‐1 resulted in enhanced pericellular activities of proteases, such as matriptase and urokinase‐type plasminogen activator, which induced activation of HGF/MET signaling in the co‐culture with pro‐HGF‐expressing fibroblasts and plasminogen‐dependent plasmin generation, respectively. The enhanced plasminogen‐dependent plasmin generation was abrogated partly by matriptase silencing. Culture supernatants of HAI‐1KO cells had enhanced potency for converting the proform of vascular endothelial growth factor‐C (VEGF‐C), a lymphangiogenesis factor, into the mature form in a plasminogen‐dependent manner. Furthermore, HGF significantly stimulated VEGF‐C expression in TSCC cells. Orthotopic xenotransplantation into nude mouse tongue revealed enhanced lymphatic invasion of HAI‐1KO TSCC cells compared to control cells. Our results suggest that HAI‐1 insufficiency leads to dysregulated pericellular protease activity, which eventually orchestrates robust activation of protease‐dependent growth factors, such as HGF and VEGF‐C, in a tumor microenvironment to contribute to TSCC progression.
Collapse
Affiliation(s)
- Aya Izumi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Koji Yamamoto
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Fumiki Yamashita
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takumi Kiwaki
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Tanaka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoshihiro Yamashita
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
12
|
Forni D, Sironi M, Cagliani R. Evolutionary history of type II transmembrane serine proteases involved in viral priming. Hum Genet 2022; 141:1705-1722. [PMID: 35122525 PMCID: PMC8817155 DOI: 10.1007/s00439-022-02435-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/15/2022] [Indexed: 11/24/2022]
Abstract
Type II transmembrane serine proteases (TTSPs) are a family of trypsin-like membrane-anchored serine proteases that play key roles in the regulation of some crucial processes in physiological conditions, including cardiac function, digestion, cellular iron homeostasis, epidermal differentiation, and immune responses. However, some of them, in particular TTSPs expressed in the human airways, were identified as host factors that promote the proteolytic activation and spread of respiratory viruses such as influenza virus, human metapneumovirus, and coronaviruses, including SARS-CoV-2. Given their involvement in viral priming, we hypothesized that members of the TTSP family may represent targets of positive selection, possibly as the result of virus-driven pressure. Thus, we investigated the evolutionary history of sixteen TTSP genes in mammals. Evolutionary analyses indicate that most of the TTSP genes that have a verified role in viral proteolytic activation present signals of pervasive positive selection, suggesting that viral infections represent a selective pressure driving the evolution of these proteases. We also evaluated genetic diversity in human populations and we identified targets of balancing selection in TMPRSS2 and TMPRSS4. This scenario may be the result of an ancestral and still ongoing host–pathogen arms race. Overall, our results provide evolutionary information about candidate functional sites and polymorphic positions in TTSP genes.
Collapse
Affiliation(s)
- Diego Forni
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy
| | - Manuela Sironi
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy
| | - Rachele Cagliani
- Scientific Institute IRCCS E. MEDEA, Bioinformatics, 23842, Bosisio Parini, Italy.
| |
Collapse
|
13
|
Habibian Dehkordi S, Farhadian S, Ghasemi M. The interaction between the azo dye tartrazine and α-Chymotrypsin enzyme: Molecular dynamics simulation and multi-spectroscopic investigations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Lee Y, Yoon J, Ko D, Yu M, Lee S, Kim S. TMPRSS4 promotes cancer stem-like properties in prostate cancer cells through upregulation of SOX2 by SLUG and TWIST1. J Exp Clin Cancer Res 2021; 40:372. [PMID: 34809669 PMCID: PMC8607621 DOI: 10.1186/s13046-021-02147-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/20/2021] [Indexed: 01/01/2023] Open
Abstract
Background Transmembrane serine protease 4 (TMPRSS4) is a cell surface–anchored serine protease. Elevated expression of TMPRSS4 correlates with poor prognosis in colorectal cancer, gastric cancer, prostate cancer, non–small cell lung cancer, and other cancers. Previously, we demonstrated that TMPRSS4 promotes invasion and proliferation of prostate cancer cells. Here, we investigated whether TMPRSS4 confers cancer stem–like properties to prostate cancer cells and characterized the underlying mechanisms. Methods Acquisition of cancer stem–like properties by TMPRSS4 was examined by monitoring anchorage-independent growth, tumorsphere formation, aldehyde dehydrogenase (ALDH) activation, and resistance to anoikis and drugs in vitro and in an early metastasis model in vivo. The underlying molecular mechanisms were evaluated, focusing on stemness-related factors regulated by epithelial–mesenchymal transition (EMT)-inducing transcription factors. Clinical expression and significance of TMPRSS4 and stemness-associated factors were explored by analyzing datasets from The Cancer Genome Atlas (TCGA). Results TMPRSS4 promoted anchorage-independent growth, ALDH activation, tumorsphere formation, and therapeutic resistance of prostate cancer cells. In addition, TMPRSS4 promoted resistance to anoikis, thereby increasing survival of circulating tumor cells and promoting early metastasis. These features were accompanied by upregulation of stemness-related factors such as SOX2, BMI1, and CD133. SLUG and TWIST1, master EMT-inducing transcription factors, made essential contributions to TMPRSS4-mediated cancer stem cell (CSC) features through upregulation of SOX2. SLUG stabilized SOX2 via preventing proteasomal degradation through its interaction with SOX2, while TWIST1 upregulated transcription of SOX2 by interacting with the proximal E-box element in the SOX2 promoter. Clinical data showed that TMPRSS4 expression correlated with the levels of SOX2, PROM1, SNAI2, and TWIST1. Expression of SOX2 was positively correlated with that of TWIST1, but not with other EMT-inducing transcription factors, in various cancer cell lines. Conclusions Together, these findings suggest that TMPRSS4 promotes CSC features in prostate cancer through upregulation of the SLUG- and TWIST1-induced stem cell factor SOX2 beyond EMT. Thus, TMPRSS4/SLUG–TWIST1/SOX2 axis may represent a novel mechanism involved in the control of tumor progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02147-7.
Collapse
Affiliation(s)
- Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea
| | - Junghwa Yoon
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea.,Department of Microbiology and Molecular Biology, Chungnam National University, Daejon, 34134, South Korea
| | - Dongjoon Ko
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea
| | - Minyeong Yu
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea
| | - Soojin Lee
- Department of Microbiology and Molecular Biology, Chungnam National University, Daejon, 34134, South Korea
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, 34141, South Korea. .,Department of Functional Genomics, Korea University of Science and Technology, Daejon, 34113, South Korea.
| |
Collapse
|
15
|
Belitškin D, Pant SM, Munne P, Suleymanova I, Belitškina K, Hongisto HA, Englund J, Raatikainen T, Klezovitch O, Vasioukhin V, Li S, Wu Q, Monni O, Kuure S, Laakkonen P, Pouwels J, Tervonen TA, Klefström J. Hepsin regulates TGFβ signaling via fibronectin proteolysis. EMBO Rep 2021; 22:e52532. [PMID: 34515392 PMCID: PMC8567232 DOI: 10.15252/embr.202152532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 01/17/2023] Open
Abstract
Transforming growth factor‐beta (TGFβ) is a multifunctional cytokine with a well‐established role in mammary gland development and both oncogenic and tumor‐suppressive functions. The extracellular matrix (ECM) indirectly regulates TGFβ activity by acting as a storage compartment of latent‐TGFβ, but how TGFβ is released from the ECM via proteolytic mechanisms remains largely unknown. In this study, we demonstrate that hepsin, a type II transmembrane protease overexpressed in 70% of breast tumors, promotes canonical TGFβ signaling through the release of latent‐TGFβ from the ECM storage compartment. Mammary glands in hepsin CRISPR knockout mice showed reduced TGFβ signaling and increased epithelial branching, accompanied by increased levels of fibronectin and latent‐TGFβ1, while overexpression of hepsin in mammary tumors increased TGFβ signaling. Cell‐free and cell‐based experiments showed that hepsin is capable of direct proteolytic cleavage of fibronectin but not latent‐TGFβ and, importantly, that the ability of hepsin to activate TGFβ signaling is dependent on fibronectin. Altogether, this study demonstrates a role for hepsin as a regulator of the TGFβ pathway in the mammary gland via a novel mechanism involving proteolytic downmodulation of fibronectin.
Collapse
Affiliation(s)
- Denis Belitškin
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Shishir M Pant
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Pauliina Munne
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Ilida Suleymanova
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Kati Belitškina
- Pathology Department, North Estonia Medical Centre, Tallinn, Estonia
| | - Hanna-Ala Hongisto
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Johanna Englund
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tiina Raatikainen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Shuo Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Qingyu Wu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Outi Monni
- Research Programs Unit/Applied Tumor Genomics Research Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Kuure
- GM-Unit, Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Laboratory Animal Center, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jeroen Pouwels
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Topi A Tervonen
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Juha Klefström
- Research Programs Unit/Translational Cancer Medicine Research Program and Medicum, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.,Finnish Cancer Institute & FICAN South, Helsinki University Hospital (HUS), Helsinki, Finland
| |
Collapse
|
16
|
Martin CE, Murray AS, Sala-Hamrick KE, Mackinder JR, Harrison EC, Lundgren JG, Varela FA, List K. Posttranslational modifications of serine protease TMPRSS13 regulate zymogen activation, proteolytic activity, and cell surface localization. J Biol Chem 2021; 297:101227. [PMID: 34562451 PMCID: PMC8503615 DOI: 10.1016/j.jbc.2021.101227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/01/2022] Open
Abstract
TMPRSS13, a member of the type II transmembrane serine protease (TTSP) family, harbors four N-linked glycosylation sites in its extracellular domain. Two of the glycosylated residues are located in the scavenger receptor cysteine-rich (SRCR) protein domain, while the remaining two sites are in the catalytic serine protease (SP) domain. In this study, we examined the role of N-linked glycosylation in the proteolytic activity, autoactivation, and cellular localization of TMPRSS13. Individual and combinatory site-directed mutagenesis of the glycosylated asparagine residues indicated that glycosylation of the SP domain is critical for TMPRSS13 autoactivation and catalytic activity toward one of its protein substrates, the prostasin zymogen. Additionally, SP domain glycosylation-deficient TMPRSS13 displayed impaired trafficking of TMPRSS13 to the cell surface, which correlated with increased retention in the endoplasmic reticulum. Importantly, we showed that N-linked glycosylation was a critical determinant for subsequent phosphorylation of endogenous TMPRSS13. Taken together, we conclude that glycosylation plays an important role in regulating TMPRSS13 activation and activity, phosphorylation, and cell surface localization.
Collapse
Affiliation(s)
- Carly E Martin
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Andrew S Murray
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA; Division of Hematological Malignancies and Cellular Therapy, Duke University, Durham, North Carolina, USA
| | | | - Jacob R Mackinder
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Evan C Harrison
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA
| | - Joseph G Lundgren
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, Michigan, USA; Department of Oncology, Wayne State University, Detroit, Michigan, USA.
| |
Collapse
|
17
|
Rahbar Saadat Y, Hosseiniyan Khatibi SM, Zununi Vahed S, Ardalan M. Host Serine Proteases: A Potential Targeted Therapy for COVID-19 and Influenza. Front Mol Biosci 2021; 8:725528. [PMID: 34527703 PMCID: PMC8435734 DOI: 10.3389/fmolb.2021.725528] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/11/2021] [Indexed: 12/23/2022] Open
Abstract
The ongoing pandemic illustrates limited therapeutic options for controlling SARS-CoV-2 infections, calling a need for additional therapeutic targets. The viral spike S glycoprotein binds to the human receptor angiotensin-converting enzyme 2 (ACE2) and then is activated by the host proteases. Based on the accessibility of the cellular proteases needed for SARS-S activation, SARS-CoV-2 entrance and activation can be mediated by endosomal (such as cathepsin L) and non-endosomal pathways. Evidence indicates that in the non-endosomal pathway, the viral S protein is cleaved by the furin enzyme in infected host cells. To help the virus enter efficiently, the S protein is further activated by the serine protease 2 (TMPRSS2), provided that the S has been cleaved by furin previously. In this review, important roles for host proteases within host cells will be outlined in SARS-CoV-2 infection and antiviral therapeutic strategies will be highlighted. Although there are at least five highly effective vaccines at this time, the appearance of the new viral mutations demands the development of therapeutic agents. Targeted inhibition of host proteases can be used as a therapeutic approach for viral infection.
Collapse
|
18
|
Recent advances in rotavirus reverse genetics and its utilization in basic research and vaccine development. Arch Virol 2021; 166:2369-2386. [PMID: 34216267 PMCID: PMC8254061 DOI: 10.1007/s00705-021-05142-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/27/2021] [Indexed: 11/29/2022]
Abstract
Rotaviruses are segmented double-stranded RNA viruses with a high frequency of gene reassortment, and they are a leading cause of global diarrheal deaths in children less than 5 years old. Two-thirds of rotavirus-associated deaths occur in low-income countries. Currently, the available vaccines in developing countries have lower efficacy in children than those in developed countries. Due to added safety concerns and the high cost of current vaccines, there is a need to develop cost-effective next-generation vaccines with improved safety and efficacy. The reverse genetics system (RGS) is a powerful tool for investigating viral protein functions and developing novel vaccines. Recently, an entirely plasmid-based RGS has been developed for several rotaviruses, and this technological advancement has significantly facilitated novel rotavirus research. Here, we review the recently developed RGS platform and discuss its application in studying infection biology, gene reassortment, and development of vaccines against rotavirus disease.
Collapse
|
19
|
Ohno A, Maita N, Tabata T, Nagano H, Arita K, Ariyoshi M, Uchida T, Nakao R, Ulla A, Sugiura K, Kishimoto K, Teshima-Kondo S, Okumura Y, Nikawa T. Crystal structure of inhibitor-bound human MSPL that can activate high pathogenic avian influenza. Life Sci Alliance 2021; 4:4/6/e202000849. [PMID: 33820827 PMCID: PMC8046417 DOI: 10.26508/lsa.202000849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 11/26/2022] Open
Abstract
The structure of extracellular domain of MSPL and inhibitor complex helps to understand the TTSP functions, including TMPRSS2, and provides the insights of the infection of influenza and SARS-CoV. Infection of certain influenza viruses is triggered when its HA is cleaved by host cell proteases such as proprotein convertases and type II transmembrane serine proteases (TTSP). HA with a monobasic motif is cleaved by trypsin-like proteases, including TMPRSS2 and HAT, whereas the multibasic motif found in high pathogenicity avian influenza HA is cleaved by furin, PC5/6, or MSPL. MSPL belongs to the TMPRSS family and preferentially cleaves [R/K]-K-K-R↓ sequences. Here, we solved the crystal structure of the extracellular region of human MSPL in complex with an irreversible substrate-analog inhibitor. The structure revealed three domains clustered around the C-terminal α-helix of the SPD. The inhibitor structure and its putative model show that the P1-Arg inserts into the S1 pocket, whereas the P2-Lys and P4-Arg interacts with the Asp/Glu-rich 99-loop that is unique to MSPL. Based on the structure of MSPL, we also constructed a homology model of TMPRSS2, which is essential for the activation of the SARS-CoV-2 spike protein and infection. The model may provide the structural insight for the drug development for COVID-19.
Collapse
Affiliation(s)
- Ayako Ohno
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Nobuo Maita
- Division of Disease Proteomics, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, Japan
| | - Takanori Tabata
- Laboratory for Pharmacology, Pharmaceutical Research Center, Asahikasei Pharma, Shizuoka, Japan
| | - Hikaru Nagano
- Department of Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Kyohei Arita
- Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Takayuki Uchida
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Reiko Nakao
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Anayt Ulla
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| | - Kosuke Sugiura
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan.,Department of Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koji Kishimoto
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
| | - Shigetada Teshima-Kondo
- Department of Nutrition, Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka, Japan
| | - Yuushi Okumura
- Department of Nutrition and Health, Faculty of Nutritional Science, Sagami Women's University, Kanagawa, Japan
| | - Takeshi Nikawa
- Department of Nutritional Physiology, Institute of Medical Nutrition, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
20
|
M P, Reddy GJ, Hema K, Dodoala S, Koganti B. Unravelling high-affinity binding compounds towards transmembrane protease serine 2 enzyme in treating SARS-CoV-2 infection using molecular modelling and docking studies. Eur J Pharmacol 2021; 890:173688. [PMID: 33130280 PMCID: PMC7598566 DOI: 10.1016/j.ejphar.2020.173688] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/21/2022]
Abstract
The coronavirus disease-19 (COVID-19) outbreak that is caused by a highly contagious severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a zoonotic pandemic, with approximately 24.5 million positive cases and 8.3 lakhs deaths globally. The lack of effective drugs or vaccine provoked the research for drug candidates that can disrupt the spread and progression of the virus. The identification of drug molecules through experimental studies is time-consuming and expensive, so there is a need for developing alternative strategies like in silico approaches which can yield better outcomes in less time. Herein, we selected transmembrane protease serine 2 (TMPRSS2) enzyme, a potential pharmacological target against SARS-CoV-2, involved in the spread and pathogenesis of the virus. Since 3D structure is not available for this protein, the present study aims at homology modelling and validation of TMPRSS2 using Swiss-model server. Validation of the modelled TMPRSS2 using various online tools confirmed model accuracy, topology and stereochemical plausibility. The catalytic triad consisting of Serine-441, Histidine-296 and Aspartic acid-345 was identified as active binding site of TMPRSS2 using existing ligands. Molecular docking studies of various drugs and phytochemicals against the modelled TMPRSS2 were performed using camostat as a standard drug. The results revealed eight potential drug candidates, namely nafamostat, meloxicam, ganodermanontriol, columbin, myricetin, proanthocyanidin A2, jatrorrhizine and baicalein, which were further studied for ADME/T properties. In conclusion, the study unravelled eight high affinity binding compounds, which may serve as potent antagonists against TMPRSS2 to impact COVID-19 drug therapy.
Collapse
Affiliation(s)
- Pooja M
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, 517502, Andhra Pradesh, India.
| | - Gangavaram Jyothi Reddy
- Department of Pharmacology, SVU College of Pharmaceutical Sciences, Sri Venkateswara University, Tirupati, 517502, Andhra Pradesh, India
| | - Kanipakam Hema
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Sujatha Dodoala
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, 517502, Andhra Pradesh, India
| | - Bharathi Koganti
- Institute of Pharmaceutical Technology, Sri Padmavati Mahila Visvavidyalayam (Women's University), Tirupati, 517502, Andhra Pradesh, India
| |
Collapse
|
21
|
Zhu H, Du W, Song M, Liu Q, Herrmann A, Huang Q. Spontaneous binding of potential COVID-19 drugs (Camostat and Nafamostat) to human serine protease TMPRSS2. Comput Struct Biotechnol J 2020; 19:467-476. [PMID: 33505639 PMCID: PMC7809394 DOI: 10.1016/j.csbj.2020.12.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Effective treatment or vaccine is not yet available for combating SARS coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic. Recent studies showed that two drugs, Camostat and Nafamostat, might be repurposed to treat COVID-19 by inhibiting human TMPRSS2 required for proteolytic activation of viral spike (S) glycoprotein. However, their molecular mechanisms of pharmacological action remain unclear. Here, we perform molecular dynamics simulations to investigate their native binding sites on TMPRSS2. We revealed that both drugs could spontaneously and stably bind to the TMPRSS2 catalytic center, and thereby inhibit its proteolytic processing of the S protein. Also, we found that Nafamostat is more specific than Camostat for binding to the catalytic center, consistent with reported observation that Nafamostat blocks the SARS-CoV-2 infection at a lower concentration. Thus, this study provides mechanistic insights into the Camostat and Nafamostat inhibition of the SARS-CoV-2 infection, and offers useful information for COVID-19 drug development.
Collapse
Affiliation(s)
- Haixia Zhu
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenhao Du
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Menghua Song
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qing Liu
- State Key Laboratory of Quality Research in Chinese Medicines, School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Andreas Herrmann
- Institute for Biology and IRI Lifesciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering, Shanghai Engineering Research Center of Industrial Microorganisms, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai 200438, China.,Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 201203, China
| |
Collapse
|
22
|
Nagu P, Parashar A, Behl T, Mehta V. CNS implications of COVID-19: a comprehensive review. Rev Neurosci 2020; 32:219-234. [PMID: 33550782 DOI: 10.1515/revneuro-2020-0070] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/03/2020] [Indexed: 02/06/2023]
Abstract
COVID-19 was first reported in December 2019 in the Wuhan city of China, and since then it has spread worldwide taking a heavy toll on human life and economy. COVID-19 infection is commonly associated with symptoms like coughing, fever, and shortness of breath, besides, the reports of muscle pain, anosmia, hyposmia, and loss of taste are becoming evident. Recent reports suggest the pathogenic invasion of the SARS-CoV-2 into the CNS, that could thereby result in devastating long term complications, primarily because some of these complications may go unnoticed for a long time. Evidence suggest that the virus could enter the CNS through angiotensin-converting enzyme-2 (ACE-2) receptor, neuronal transport, haematogenous route, and nasal route via olfactory bulb, cribriform plate, and propagates through trans-synaptic signalling, and shows retrograde movement into the CNS along nerve fiber. COVID-19 induces CNS inflammation and neurological degenerative damage through a diverse mechanism which includes ACE-2 receptor damage, cytokine-associated injury or cytokine storm syndrome, secondary hypoxia, demyelination, blood-brain barrier disruption, neurodegeneration, and neuroinflammation. Viral invasion into the CNS has been reported to show association with complications like Parkinsonism, Alzheimer's disorder, meningitis, encephalopathy, anosmia, hyposmia, anxiety, depression, psychiatric symptoms, seizures, stroke, etc. This review provides a detailed discussion of the CNS pathogenesis of COVID-19. Authors conclude that the COVID-19 cannot just be considered as a disorder of the pulmonary or peripheral system, rather it has a significant CNS involvement. Therefore, CNS aspects of the COVID-19 should be monitored very closely to prevent long term CNS complications, even after the patient has recovered from COVID-19.
Collapse
Affiliation(s)
- Priyanka Nagu
- Department of Pharmaceutics, Government College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, India
| | - Arun Parashar
- Faculty of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, District Shimla, Himachal Pradesh, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Vineet Mehta
- Department of Pharmacology, Government College of Pharmacy, Rohru 171207, District Shimla, Himachal Pradesh, India
| |
Collapse
|
23
|
Murza A, Dion SP, Boudreault PL, Désilets A, Leduc R, Marsault É. Inhibitors of type II transmembrane serine proteases in the treatment of diseases of the respiratory tract - A review of patent literature. Expert Opin Ther Pat 2020; 30:807-824. [PMID: 32887532 DOI: 10.1080/13543776.2020.1817390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Type II transmembrane serine proteases (TTSPs) of the human respiratory tract generate high interest owing to their ability, among other roles, to cleave surface proteins of respiratory viruses. This step is critical in the viral invasion of coronaviruses, including SARS-CoV-2 responsible for COVID-19, but also influenza viruses and reoviruses. Accordingly, these cell surface enzymes constitute appealing therapeutic targets to develop host-based therapeutics against respiratory viral diseases. Additionally, their deregulated levels or activity has been described in non-viral diseases such as fibrosis, cancer, and osteoarthritis, making them potential targets in these indications. AREAS COVERED Areas covered: This review includes WIPO-listed patents reporting small molecules and peptide-based inhibitors of type II transmembrane serine proteases of the respiratory tract. EXPERT OPINION Expert opinion: Several TTSPs of the respiratory tract represent attractive pharmacological targets in the treatment of respiratory infectious diseases (notably COVID-19 and influenza), but also against idiopathic pulmonary fibrosis and lung cancer. The current emphasis is primarily on TMPRSS2, matriptase, and hepsin, yet other TTSPs await validation. Compounds listed herein are predominantly peptidomimetic inhibitors, some with covalent reversible mechanisms of action and high potencies. Their selectivity profile, however, are often only partially characterized. Preclinical data are promising and warrant further advancement in the above diseases.
Collapse
Affiliation(s)
- Alexandre Murza
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Sébastien P Dion
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Pierre-Luc Boudreault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Antoine Désilets
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Richard Leduc
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke , Sherbrooke (Québec), Canada.,Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke , Sherbrooke (Québec), Canada
| |
Collapse
|
24
|
Abstract
Enzymatic reactions and noncovalent (i.e., supramolecular) interactions are two fundamental nongenetic attributes of life. Enzymatic noncovalent synthesis (ENS) refers to a process where enzymatic reactions control intermolecular noncovalent interactions for spatial organization of higher-order molecular assemblies that exhibit emergent properties and functions. Like enzymatic covalent synthesis (ECS), in which an enzyme catalyzes the formation of covalent bonds to generate individual molecules, ENS is a unifying theme for understanding the functions, morphologies, and locations of molecular ensembles in cellular environments. This review intends to provide a summary of the works of ENS within the past decade and emphasize ENS for functions. After comparing ECS and ENS, we describe a few representative examples where nature uses ENS, as a rule of life, to create the ensembles of biomacromolecules for emergent properties/functions in a myriad of cellular processes. Then, we focus on ENS of man-made (synthetic) molecules in cell-free conditions, classified by the types of enzymes. After that, we introduce the exploration of ENS of man-made molecules in the context of cells by discussing intercellular, peri/intracellular, and subcellular ENS for cell morphogenesis, molecular imaging, cancer therapy, and other applications. Finally, we provide a perspective on the promises of ENS for developing molecular assemblies/processes for functions. This review aims to be an updated introduction for researchers who are interested in exploring noncovalent synthesis for developing molecular science and technologies to address societal needs.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Adrianna N Shy
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02454, United States
| |
Collapse
|
25
|
Murray AS, Hyland TE, Sala-Hamrick KE, Mackinder JR, Martin CE, Tanabe LM, Varela FA, List K. The cell-surface anchored serine protease TMPRSS13 promotes breast cancer progression and resistance to chemotherapy. Oncogene 2020; 39:6421-6436. [PMID: 32868877 DOI: 10.1038/s41388-020-01436-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Breast cancer progression is accompanied by increased expression of extracellular and cell-surface proteases capable of degrading the extracellular matrix as well as cleaving and activating downstream targets. The type II transmembrane serine proteases (TTSPs) are a family of cell-surface proteases that play critical roles in numerous types of cancers. Therefore, the aim of this study was to identify novel and uncharacterized TTSPs with differential expression in breast cancer and to determine their potential roles in progression. Systematic in silico data analysis followed by immunohistochemical validation identified increased expression of the TTSP family member, TMPRSS13 (transmembrane protease, serine 13), in invasive ductal carcinoma patient tissue samples compared to normal breast tissue. To test whether loss of TMPRSS13 impacts tumor progression, TMPRSS13 was genetically ablated in the oncogene-induced transgenic MMTV-PymT tumor model. TMPRSS13 deficiency resulted in a significant decrease in overall tumor burden and growth rate, as well as a delayed formation of detectable mammary tumors, thus suggesting a causal relationship between TMPRSS13 expression and the progression of breast cancer. Complementary studies using human breast cancer cell culture models revealed that siRNA-mediated silencing of TMPRSS13 expression decreases proliferation, induces apoptosis, and attenuates invasion. Importantly, targeting TMPRSS13 expression renders aggressive triple-negative breast cancer cell lines highly responsive to chemotherapy. At the molecular level, knockdown of TMPRSS13 in breast cancer cells led to increased protein levels of the tumor-suppressive protease prostasin. TMPRSS13/prostasin co-immunoprecipitation and prostasin zymogen activation experiments identified prostasin as a potential novel target for TMPRSS13. Regulation of prostasin levels may be a mechanism that contributes to the pro-oncogenic properties of TMPRSS13 in breast cancer. TMPRSS13 represents a novel candidate for targeted therapy in combination with standard of care chemotherapy agents in patients with hormone receptor-negative breast cancer or in patients with tumors refractory to endocrine therapy.
Collapse
Affiliation(s)
- Andrew S Murray
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Thomas E Hyland
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | | | - Jacob R Mackinder
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Carly E Martin
- Department of Pharmacology, Wayne State University, Detroit, MI, USA.,Department of Oncology, Wayne State University, Detroit, MI, USA
| | - Lauren M Tanabe
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Fausto A Varela
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
| | - Karin List
- Department of Pharmacology, Wayne State University, Detroit, MI, USA. .,Department of Oncology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
26
|
He H, Lin X, Guo J, Wang J, Xu B. Perimitochondrial Enzymatic Self-Assembly for Selective Targeting the Mitochondria of Cancer Cells. ACS NANO 2020; 14:6947-6955. [PMID: 32383849 PMCID: PMC7316614 DOI: 10.1021/acsnano.0c01388] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Emerging evidence indicates that mitochondria contribute to drug resistance in cancer, but how to selectively target the mitochondria of cancer cells remains less explored. Here, we show perimitochondrial enzymatic self-assembly for selectively targeting the mitochondria of liver cancer cells. Nanoparticles of a peptide-lipid conjugate, being a substrate of enterokinase (ENTK), encapsulate chloramphenicol (CLRP), a clinically used antibiotic that is deactivated by glucuronidases in cytosol but not in mitochondria. Perimitochondrial ENTK cleaves the Flag-tag on the conjugate to deliver CLRP selectively into the mitochondria of cancer cells, thus inhibiting the mitochondrial protein synthesis, inducing the release of cytochrome c into the cytosol and resulting in cancer cell death. This strategy selectively targets liver cancer cells over normal liver cells. Moreover, blocking the mitochondrial protein synthesis sensitizes the cancer cells, relying on glycolysis and/or OXPHOS, to cisplatin. This work illustrates a facile approach, selectively targeting mitochondria of cancer cells and repurposing clinically approved ribosome inhibitors, to interrupt the metabolism of cancer cells for cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Bing Xu
- Corresponding Author: Bing Xu-Department of Chemistry, Brandeis University,
| |
Collapse
|
27
|
Wang X, Li D, Wu H, Liu F, Liu F, Zhang Q, Li J. LncRNA TRPC7-AS1 regulates nucleus pulposus cellular senescence and ECM synthesis via competing with HPN for miR-4769-5p binding. Mech Ageing Dev 2020; 190:111293. [PMID: 32585234 DOI: 10.1016/j.mad.2020.111293] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/21/2022]
Abstract
Intervertebral disc (IVD) degeneration (IDD) is identified as an abnormal, cell-mediated, age-dependent and genetics-dependent molecular degeneration process in which NPCs (nucleus pulposus cells) senesce and the balance of ECM (extracellular matrix) synthesis and catabolism is disrupted. Increasing evidence reveals that IDD can be modulated by genetic factors, including non-coding RNAs. In the present study, we downloaded non-coding RNA profiling (GSE56081 and GSE63492) and performed GO annotation and enrichment analysis and association analyses on differentially-expressed genes. LncRNA TRPC7-AS1, miR-4769-5p, and Hepsin (HPN) may form a lncRNA-miRNA-mRNA network that can regulate NPC proliferation, senescence and ECM in IDD. LncRNA TRPC7-AS1 directly targets miR-4769-5p while miR-4769-5p directly targets HPN 3'UTR. miR-4769-5p overexpression inhibited HPN expression, suppressed NPC senescence, promoted NPC viability, and promoted ECM synthesis. The effect of TRPC7-AS1 silence on NPCs was similar as miR-4769-5p overexpression while the effect of HPN overexpression was opposite to miR-4769-5p overexpression. miR-4769-5p suppression or HPN overexpression could significantly attenuate the effect of TRPC7-AS1 silence. LncRNA TRPC7-AS1 relieves miR-4769-5p-induced inhibition on HPN via acting as a ceRNA, thus regulating NPC viability, senescence, and ECM synthesis. In summary, we regard lncRNA-miRNA-mRNA modulation as a new potent target for IDD treatment.
Collapse
Affiliation(s)
- Xiaobin Wang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Dan Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Hailin Wu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Fusheng Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Fubin Liu
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Qianshi Zhang
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Jing Li
- Department of Spine Surgery, The Second Xiangya Hospital, Central South University, Changsha, 410011, China; Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
28
|
Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020; 5:5/47/eabc3582. [PMID: 32404436 DOI: 10.1101/2020.04.21.054015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA are frequently observed in COVID-19 patients. However, it is unclear whether SARS-CoV-2 replicates in the human intestine and contributes to possible fecal-oral transmission. Here, we report productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. Expression of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, facilitated SARS-CoV-2 spike fusogenic activity and promoted virus entry into host cells. We also demonstrate that viruses released into the intestinal lumen were inactivated by simulated human colonic fluid, and infectious virus was not recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.
Collapse
Affiliation(s)
- Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi M Sonnek
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin F Brulois
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harry B Greenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Ciorba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Zang R, Gomez Castro MF, McCune BT, Zeng Q, Rothlauf PW, Sonnek NM, Liu Z, Brulois KF, Wang X, Greenberg HB, Diamond MS, Ciorba MA, Whelan SPJ, Ding S. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020; 5:eabc3582. [PMID: 32404436 PMCID: PMC7285829 DOI: 10.1126/sciimmunol.abc3582] [Citation(s) in RCA: 744] [Impact Index Per Article: 148.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA are frequently observed in COVID-19 patients. However, it is unclear whether SARS-CoV-2 replicates in the human intestine and contributes to possible fecal-oral transmission. Here, we report productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. Expression of two mucosa-specific serine proteases, TMPRSS2 and TMPRSS4, facilitated SARS-CoV-2 spike fusogenic activity and promoted virus entry into host cells. We also demonstrate that viruses released into the intestinal lumen were inactivated by simulated human colonic fluid, and infectious virus was not recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.
Collapse
Affiliation(s)
- Ruochen Zang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Florencia Gomez Castro
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Broc T McCune
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Qiru Zeng
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul W Rothlauf
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Naomi M Sonnek
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhuoming Liu
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kevin F Brulois
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Wang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Harry B Greenberg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew A Ciorba
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sean P J Whelan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA. Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, China. Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA. Program in Virology, Harvard Medical School, 200 Longwood Ave, Boston, MA, USA. Department of Medicine, Division of Gastroenterology, Washington School of Medicine, St. Louis, MO, USA. Department of Pathology, Stanford School of Medicine, Stanford, CA, USA. VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, CA, USA. Department of Medicine, Division of Gastroenterology and Hepatology, and Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA, USA. Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
30
|
An investigation of the relationship between TMPRSS6 gene expression, genetic variants and clinical findings in breast cancer. Mol Biol Rep 2020; 47:4225-4231. [PMID: 32385772 DOI: 10.1007/s11033-020-05498-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/03/2020] [Indexed: 10/24/2022]
Abstract
Breast cancer is one of the most common types of cancer among women worldwide. The TMPRSS6 (Transmembrane Serine Protease 6) gene encodes matriptase-2, which plays an important role in iron hemostasis as the hepcidin regulator and may play a role in breast cancer susceptibility. In this study, we examined the expression levels of the TMPRSS6 gene in healthy tissues and tumor tissues of breast cancer patients; and the relationship between these levels and pathological findings. The relationship between TMPRSS6 polymorphisms (rs733655, rs5756506, rs2413450, rs855791, rs2235324, rs4820268) and patients' hematological parameters. The gene expression study encompassed 47 breast cancer patients and the gene polymorphism study consisted of 181 breast cancer patients and 100 healthy controls. Gene expression analysis was performed by qRT-PCR. The genotyping of TMPRSS6 polymorphisms was performed by RT-PCR. TMPRSS6 gene expression levels in tumor tissues were found to be 1.88 times higher than the expression levels in the control tissues. We examined the relationship between TMPRSS6 gene expression levels and pathological data, statistically significant relationship was found between patient's estrogen receptor (ER) and HER2 findings and TMPRSS6 gene expression (respectively p = 0.02, p = 0.002). When the relationship between TMPRSS6 gene polymorphisms related genotypes distributions and hematological findings was investigated, a significant relationship was identified between mean corpuscular hemoglobin concentration (MCHC) parameter and the polymorphism of only the rs733655. According to our findings, the increase in TMPRSS6 gene expression in cancerous tissues shows that matriptase-2 may be effective in the cancer process. Thus TMPRSS6 gene polymorphisms may affect the disease process by affecting the blood parameters of patients.
Collapse
|
31
|
Glycan-Dependent and -Independent Dual Recognition between DC-SIGN and Type II Serine Protease MSPL/TMPRSS13 in Colorectal Cancer Cells. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A class of glycoproteins such as carcinoembryonic antigen (CEA)/CEA-related cell adhesion molecule 1(CEACAM1), CD26 (DPPIV), and mac-2 binding protein (Mac-2BP) harbor tumor-associated glycans in colorectal cancer. In this study, we identified type II transmembrane mosaic serine protease large-form (MSPL) and its splice variant transmembrane protease serine 13 (TMPRSS13) as ligands of Dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) on the colorectal cancer cells. DC-SIGN is a C-type lectin expressed on dendritic cells, serves as a pattern recognition receptor for numerous pathogens such as human immunodeficiency virus (HIV) and M. tuberculosis. DC-SIGN recognizes these glycoproteins in a Ca2+ dependent manner. Meanwhile, we found that MSPL proteolytically cleaves DC-SIGN in addition to the above glycan-mediated recognition. DC-SIGN was degraded more efficiently by MSPL when treated with ethylenediaminetetraacetic acid (EDTA), suggesting that glycan-dependent interaction of the two molecules partially blocked DC-SIGN degradation. Our findings uncovered a dual recognition system between DC-SIGN and MSPL/TMPRSS13, providing new insight into the mechanism underlying colorectal tumor microenvironment.
Collapse
|
32
|
Abstract
Over the last two decades, a novel subgroup of serine proteases, the cell surface-anchored serine proteases, has emerged as an important component of the human degradome, and several members have garnered significant attention for their roles in cancer progression and metastasis. A large body of literature describes that cell surface-anchored serine proteases are deregulated in cancer and that they contribute to both tumor formation and metastasis through diverse molecular mechanisms. The loss of precise regulation of cell surface-anchored serine protease expression and/or catalytic activity may be contributing to the etiology of several cancer types. There is therefore a strong impetus to understand the events that lead to deregulation at the gene and protein levels, how these precipitate in various stages of tumorigenesis, and whether targeting of selected proteases can lead to novel cancer intervention strategies. This review summarizes current knowledge about cell surface-anchored serine proteases and their role in cancer based on biochemical characterization, cell culture-based studies, expression studies, and in vivo experiments. Efforts to develop inhibitors to target cell surface-anchored serine proteases in cancer therapy will also be summarized.
Collapse
|
33
|
Zuo K, Qi Y, Yuan C, Jiang L, Xu P, Hu J, Huang M, Li J. Specifically targeting cancer proliferation and metastasis processes: the development of matriptase inhibitors. Cancer Metastasis Rev 2020; 38:507-524. [PMID: 31471691 DOI: 10.1007/s10555-019-09802-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Matriptase is a type II transmembrane serine protease, which has been suggested to play critical roles in numerous pathways of biological developments. Matriptase is the activator of several oncogenic proteins, including urokinase-type plasminogen activator (uPA), hepatocyte growth factor (HGF) and protease-activated receptor 2 (PAR-2). The activations of these matriptase substrates subsequently lead to the generation of plasmin, matrix metalloproteases (MMPs), and the triggers for many other signaling pathways related to cancer proliferation and metastasis. Accordingly, matriptase is considered an emerging target for the treatments of cancer. Thus far, inhibitors of matriptase have been developed as potential anti-cancer agents, which include small-molecule inhibitors, peptide-based inhibitors, and monoclonal antibodies. This review covers established literature to summarize the chemical and biochemical aspects, especially the inhibitory mechanisms and structure-activity relationships (SARs) of matriptase inhibitors with the goal of proposing the strategies for their future developments in anti-cancer therapy.
Collapse
Affiliation(s)
- Ke Zuo
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Yingying Qi
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Cai Yuan
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Longguang Jiang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China
| | - Peng Xu
- Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), 61 Biopolis Dr, 138673, Singapore, Singapore.
| | - Jianping Hu
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, People's Republic of China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fuzhou, 350116, Fujian, People's Republic of China.
| |
Collapse
|
34
|
Callies LK, Tadeo D, Simper J, Bugge TH, Szabo R. Iterative, multiplexed CRISPR-mediated gene editing for functional analysis of complex protease gene clusters. J Biol Chem 2019; 294:15987-15996. [PMID: 31501243 DOI: 10.1074/jbc.ra119.009773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Elucidation of gene function by reverse genetics in animal models frequently is complicated by the functional redundancy of homologous genes. This obstacle often is compounded by the tight clustering of homologous genes, which precludes the generation of multigene-deficient animals through standard interbreeding of single-deficient animals. Here, we describe an iterative, multiplexed CRISPR-based approach for simultaneous gene editing in the complex seven-member human airway trypsin-like protease/differentially expressed in a squamous cell carcinoma (HAT/DESC) cluster of membrane-anchored serine proteases. Through four cycles of targeting, we generated a library of 18 unique congenic mouse strains lacking combinations of HAT/DESC proteases, including a mouse strain deficient in all seven proteases. Using this library, we demonstrate that HAT/DESC proteases are dispensable for term development, postnatal health, and fertility and that the recently described function of the HAT-like 4 protease in epidermal barrier formation is unique among all HAT/DESC proteases. The study demonstrates the potential of iterative, multiplexed CRISPR-mediated gene editing for functional analysis of multigene clusters, and it provides a large array of new congenic mouse strains for the study of HAT/DESC proteases in physiological and in pathophysiological processes.
Collapse
Affiliation(s)
- LuLu K Callies
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel Tadeo
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Jan Simper
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Thomas H Bugge
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| | - Roman Szabo
- Proteases and Tissue Remodeling Section, NIDCR, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
35
|
A 2A Receptor Homodimer-Disrupting Sequence Efficiently Delivered by a Protease-Resistant, Cyclic CPP Vector. Int J Mol Sci 2019; 20:ijms20194937. [PMID: 31590403 PMCID: PMC6801510 DOI: 10.3390/ijms20194937] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 09/30/2019] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors associate into dimers/oligomers whose function is not well understood. One approach to investigate this issue is to challenge oligomerization by peptides replicating transmembrane domains and to study their effect on receptor functionality. The disruptor peptides are typically delivered by means of cell-penetrating vectors such as the human immunodeficiency virus (HIV) transcription trans-activation protein Tat. In this paper we report a cyclic, Tat-like peptide that significantly improves its linear analogue in targeting interreceptor sequences in the transmembrane space. The same cyclic Tat-like vector fused to a transmembrane region not involved in receptor oligomerization was totally ineffective. Besides higher efficacy, the cyclic version has enhanced proteolytic stability, as shown by trypsin digestion experiments.
Collapse
|
36
|
Promoter Hypomethylation Is Responsible for Upregulated Expression of HAI-1 in Hepatocellular Carcinoma. DISEASE MARKERS 2019; 2019:9175215. [PMID: 31558918 PMCID: PMC6735181 DOI: 10.1155/2019/9175215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
An upregulated expression of hepatocyte growth factor activator inhibitor type 1 (HAI-1) in hepatocellular carcinomas (HCC) associates with poor prognosis, but the underlying mechanism for expression regulation has not been elucidated. HAI-1 was expressed in HCC cell line Hep3B cells at a high level but absent or has a low level in other HCC cell lines HepG2 and SMMC7721 and immortal normal liver cell line L02 at transcriptional and translational levels, respectively. A dual-luciferase reporter assay showed that transcriptional activity of HAI-1 in the promoter region (-452 bp to -280 bp from the mRNA start site) was strongly enhanced in Hep3B and SMMC7721. Bisulfite genomic sequencing results of the HAI-1 promoter region showed an inverse correlation between levels of promoter methylation and expression in HCC cells. The expression level of HAI-1 in SMMC7721, HepG2, and L02 cells was elevated after 5-Aza-2′-deoxycytidine treatment. Hypomethylation of the HAI-1 promoter region contributed to the elevated HAI-1 expression in HCC tissues. In addition, the hypomethylation of the HAI-1 promoter region correlated with poor differentiation status of HCC tissues. Our findings indicate that promoter hypomethylation is an important mechanism for aberrant HAI-1 expression regulation in HCC.
Collapse
|
37
|
Excess hepsin proteolytic activity limits oncogenic signaling and induces ER stress and autophagy in prostate cancer cells. Cell Death Dis 2019; 10:601. [PMID: 31399560 PMCID: PMC6689070 DOI: 10.1038/s41419-019-1830-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
The serine protease hepsin is frequently overexpressed in human prostate cancer (PCa) and is associated with matrix degradation and PCa progression in mice. Curiously, low expression of hepsin is associated with poor survival in different cancer types, and transgenic overexpression of hepsin leads to loss of viability in various cancer cell lines. Here, by comparing isogenic transfectants of the PCa cell line PC-3 providing inducible overexpression of wild-type hepsin (HPN) vs. the protease-deficient mutant HPNS353A, we were able to attribute hepsin-mediated tumor-adverse effects to its excess proteolytic activity. A stem-like expression signature of surface markers and adhesion molecules, Notch intracellular domain release, and increased pericellular protease activity were associated with low expression levels of wild-type hepsin, but were partially lost in response to overexpression. Instead, overexpression of wild-type hepsin, but not of HPNS353A, induced relocalization of the protein to the cytoplasm, and increased autophagic flux in vitro as well as LC3B punctae frequency in tumor xenografts. Confocal microscopy revealed colocalization of wild-type hepsin with both LC3B punctae as well as with the autophagy cargo receptor p62/SQSTM1. Overexpression of wild type, but not protease-deficient hepsin induced expression and nuclear presence of CHOP, indicating activation of the unfolded protein response and ER-associated protein degradation (ERAD). Whereas inhibitors of ER stress and secretory protein trafficking slightly increased viability, combined inhibition of the ubiquitin-proteasome degradation pathway (by bortezomib) with either ER stress (by salubrinal) or autophagy (by bafilomycin A1) revealed a significant decrease of viability during overexpression of wild-type hepsin in PC-3 cells. Our results demonstrate that a precise control of Hepsin proteolytic activity is critical for PCa cell fate and suggest, that the interference with ERAD could be a promising therapeutic option, leading to induction of proteotoxicity in hepsin-overexpressing tumors.
Collapse
|
38
|
Kim S, Ko D, Lee Y, Jang S, Lee Y, Lee IY, Kim S. Anti-cancer activity of the novel 2-hydroxydiarylamide derivatives IMD-0354 and KRT1853 through suppression of cancer cell invasion, proliferation, and survival mediated by TMPRSS4. Sci Rep 2019; 9:10003. [PMID: 31292507 PMCID: PMC6620293 DOI: 10.1038/s41598-019-46447-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/25/2019] [Indexed: 12/17/2022] Open
Abstract
Elevated expression of transmembrane serine protease 4 (TMPRSS4) correlates with poor prognosis in non-small cell lung cancer, gastric cancer, colorectal cancer, prostate cancer, and other cancer patients. Previously, we demonstrated that TMPRSS4 mediates tumor cell invasion, migration, proliferation, and metastasis. In addition, we reported novel 2-hydroxydiarylamide derivatives, IMD-0354 and KRT1853, as TMPRSS4 serine protease inhibitors. Here, we further evaluated the effects of the representative derivatives on TMPRSS4-mediated cellular function and signaling. IMD-0354 and KRT1853 inhibited cancer cell invasion, migration, and proliferation in TMPRSS4-expressing prostate, colon, and lung cancer cells. Both compounds suppressed TMPRSS4-mediated induction of Sp1/3, AP-1, and NF-κB transcription factors. Furthermore, TMPRSS4 promoted cancer cell survival and drug resistance, and both compounds enhanced anoikis sensitivity as well as reduced bcl-2 and survivin levels. Importantly, KRT1853 efficiently reduced tumor growth in prostate and colon cancer xenograft models. These results strongly recommend KRT1853 for further development as a novel anti-cancer agent.
Collapse
Affiliation(s)
- Solbi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon, 34113, Korea
| | - Dongjoon Ko
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon, 34113, Korea
| | - Yunhee Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, 34141, Korea
| | - Seonghui Jang
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, 34141, Korea
| | - Ill Young Lee
- Division of Drug Discovery Research, Korea Research Institute of Chemical Technology, Daejon, 34114, Korea
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Korea. .,Department of Functional Genomics, Korea University of Science and Technology, Daejon, 34113, Korea. .,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon, 34141, Korea.
| |
Collapse
|
39
|
Exposito F, Villalba M, Redrado M, de Aberasturi AL, Cirauqui C, Redin E, Guruceaga E, de Andrea C, Vicent S, Ajona D, Montuenga LM, Pio R, Calvo A. Targeting of TMPRSS4 sensitizes lung cancer cells to chemotherapy by impairing the proliferation machinery. Cancer Lett 2019; 453:21-33. [DOI: 10.1016/j.canlet.2019.03.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 03/07/2019] [Accepted: 03/18/2019] [Indexed: 01/27/2023]
|
40
|
Recent progress on inhibitors of the type II transmembrane serine proteases, hepsin, matriptase and matriptase-2. Future Med Chem 2019; 11:743-769. [DOI: 10.4155/fmc-2018-0446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Members of the type II transmembrane serine proteases (TTSP) family play a vital role in cell growth and development but many are also implicated in disease. Two of the well-studied TTSPs, matriptase and hepsin proteolytically process multiple protein substrates such as the inactive single-chain zymogens pro-HGF and pro-macrophage stimulating protein into the active heterodimeric forms, HGF and macrophage stimulating protein. These two proteases also have many other substrates which are associated with cancer and tumor progression. Another related TTSP, matriptase-2 is expressed in the liver and functions by regulating iron homoeostasis through the cleavage of hemojuvelin and thus is implicated in iron overload diseases. In the present review, we will discuss inhibitor design strategy and Structure activity relationships of TTSP inhibitors, which have been reported in the literature.
Collapse
|
41
|
Pawar NR, Buzza MS, Antalis TM. Membrane-Anchored Serine Proteases and Protease-Activated Receptor-2-Mediated Signaling: Co-Conspirators in Cancer Progression. Cancer Res 2019; 79:301-310. [PMID: 30610085 DOI: 10.1158/0008-5472.can-18-1745] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/12/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
Abstract
Pericellular proteolysis provides a significant advantage to developing tumors through the ability to remodel the extracellular matrix, promote cell invasion and migration, and facilitate angiogenesis. Recent advances demonstrate that pericellular proteases can also communicate directly to cells by activation of a unique group of transmembrane G-protein-coupled receptors (GPCR) known as protease-activated receptors (PAR). In this review, we discuss the specific roles of one of four mammalian PARs, namely PAR-2, which is overexpressed in advanced stage tumors and is activated by trypsin-like serine proteases that are highly expressed or otherwise dysregulated in many cancers. We highlight recent insights into the ability of different protease agonists to bias PAR-2 signaling and the newly emerging evidence for an interplay between PAR-2 and membrane-anchored serine proteases, which may co-conspire to promote tumor progression and metastasis. Interfering with these pathways might provide unique opportunities for the development of new mechanism-based strategies for the treatment of advanced and metastatic cancers.
Collapse
Affiliation(s)
- Nisha R Pawar
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marguerite S Buzza
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Toni M Antalis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland. .,Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
42
|
Li SL, Chen X, Wu T, Zhang XW, Li H, Zhang Y, Ji ZZ. Knockdown of TMPRSS3 inhibits gastric cancer cell proliferation, invasion and EMT via regulation of the ERK1/2 and PI3K/Akt pathways. Biomed Pharmacother 2018; 107:841-848. [PMID: 30142546 DOI: 10.1016/j.biopha.2018.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 12/23/2022] Open
Abstract
The transmembrane protease, serine 3 (TMPRSS3), a member of the type II transmembrane serine protease family, plays an important role in mediating tissue development, homeostasis and various biological processes. Recently, TMPRSS3 has been reported to be involved in cancer progression. However, the role of TMPRSS3 in gastric cancer (GC) remains largely unknown. In this study, we found that TMPRSS3 was highly expressed in GC tissues and cell lines. Knockdown of TMPRSS3 inhibited GC cell proliferation, invasion and epithelial-mesenchymal transition (EMT) in vitro as well as suppressed GC cell growth and dissemination in vivo. These inhibitory effects were mediated by regulation of the ERK1/2 signaling pathway. Moreover, TMPRSS3-mediated ERK1/2 activation was dependent on the PI3K/Akt pathway. In conclusion, TMPRSS3 contributed to GC progression via activation of the PI3K/Akt/ERK signaling pathway and might act as a therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Shun-Le Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Tao Wu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Xin-Wu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Hua Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Zong-Zheng Ji
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| |
Collapse
|
43
|
Moore PJ, Tarran R. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis lung disease. Expert Opin Ther Targets 2018; 22:687-701. [PMID: 30028216 DOI: 10.1080/14728222.2018.1501361] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for the CFTR anion channel. In the absence of functional CFTR, the epithelial Na+ channel is also dysregulated. Airway surface liquid (ASL) hydration is maintained by a balance between epithelial sodium channel (ENaC)-led Na+ absorption and CFTR-dependent anion secretion. This finely tuned homeostatic mechanism is required to maintain sufficient airway hydration to permit the efficient mucus clearance necessary for a sterile lung environment. In CF airways, the lack of CFTR and increased ENaC activity lead to ASL/mucus dehydration that causes mucus obstruction, neutrophilic infiltration, and chronic bacterial infection. Rehydration of ASL/mucus in CF airways can be achieved by inhibiting Na+ absorption with pharmacological inhibitors of ENaC. Areas covered: In this review, we discuss ENaC structure and function and its role in CF lung disease and focus on ENaC inhibition as a potential therapeutic target to rehydrate CF mucus. We also discuss the failure of the first generation of pharmacological inhibitors of ENaC and recent alternate strategies to attenuate ENaC activity in the CF lung. Expert opinion: ENaC is an attractive therapeutic target to rehydrate CF ASL that may serve as a monotherapy or function in parallel with other treatments. Given the increased number of strategies being employed to inhibit ENaC, this is an exciting and optimistic time to be in this field.
Collapse
Affiliation(s)
- Patrick J Moore
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA
| | - Robert Tarran
- a Marsico Lung Institute , University of North Carolina , Chapel Hill , NC , USA.,b Department of Cell Biology & Physiology , University of North Carolina , Chapel Hill , NC , USA
| |
Collapse
|
44
|
Kreitman M, Noronha A, Yarden Y. Irreversible modifications of receptor tyrosine kinases. FEBS Lett 2018; 592:2199-2212. [PMID: 29790151 DOI: 10.1002/1873-3468.13095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 01/18/2023]
Abstract
Each group of the 56 receptor tyrosine kinases (RTK) binds with one or more soluble growth factors and coordinates a vast array of cellular functions. These outcomes are tightly regulated by inducible post-translational events, such as tyrosine phosphorylation, ubiquitination, ectodomain shedding, and regulated intramembrane proteolysis. Because of the delicate balance required for appropriate RTK function, cells may become pathogenic upon dysregulation of RTKs themselves or their post-translational covalent modifications. For example, reduced ectodomain shedding and decreased ubiquitination of the cytoplasmic region, both of which enhance growth factor signals, characterize malignant cells. Whereas receptor phosphorylation and ubiquitination are reversible, proteolytic cleavage events are irreversible, and either modification might alter the subcellular localization of RTKs. Herein, we focus on ectodomain shedding by metalloproteinases (including ADAM family proteases), cleavage within the membrane or cytoplasmic regions of RTKs (by gamma-secretases and caspases, respectively), and complete receptor proteolysis in lysosomes and proteasomes. Roles of irreversible modifications in RTK signaling, pathogenesis, and pharmacology are highlighted.
Collapse
Affiliation(s)
- Matthew Kreitman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ashish Noronha
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Abstract
PURPOSE Endometrial carcinoma is the sixth most common cancer in women worldwide and the most common invasive cancer of the female genital tract in developed countries. It is hoped that through a better understanding of the alterations implicated in endometrial cancer pathogenesis and prognosis, a more complete profile of risk factors and targeted therapy can be developed. Hepsin is a member of the type II transmembrane serine protease family. The importance of hepsin in prostate cancer has been demonstrated by several studies. However, the role of hepsin in endometrial carcinoma is yet to be identified. This study aimed to evaluate the immunohistochemical expression of hepsin in endometrial carcinoma, trying to explore its diagnostic and prognostic value. MATERIALS AND METHODS This retrospective study was conducted on 27 endometrial carcinoma and 18 endometrial hyperplasia cases. Immunohistochemical expression of hepsin was evaluated in tissue specimens and results were correlated with the available clinicopathlogic parameters. RESULTS Positive hepsin expression was seen in all (100%) carcinoma and 17/18 (94.44%) endometrial hyperplasia cases. The H-score of hepsin expression in endometrial carcinoma was significantly higher than that of hyperplasia cases (P=0.012). A significant negative association was found between hepsin expression in endometrial carcinoma cases regarding the grade and the size of tumors (P=0.018 and 0.008, respectively) as well as myometrial invasion (P=0.027). CONCLUSIONS Hepsin could play an important role in the pathogenesis and the early carcinogenesis of endometrial carcinoma and could serve as a prognostic biomarker in this tumor.
Collapse
|
46
|
Abstract
Idiopathic Pulmonary Fibrosis (IPF) is a devastating chronic, progressive and irreversible disease that remains refractory to current therapies. Matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of MMPs (TIMPs), have been implicated in the development of pulmonary fibrosis since decades. Coagulation signalling deregulation, which influences several key inflammatory and fibro-proliferative responses, is also essential in IPF pathogenesis, and a growing body of evidence indicates that Protease-Activated Receptors (PARs) inhibition in IPF may be promising for future evaluation. Therefore, proteases and anti-proteases aroused great biomedical interest over the past years, owing to the identification of their potential roles in lung fibrosis. During these last decades, numerous other proteases and anti-proteases have been studied in lung fibrosis, such as matriptase, Human airway trypsin-like protease (HAT), Hepatocyte growth factor activator (HGFA)/HGFA activator inhibitor (HAI) system, Plasminogen activator inhibitor (PAI)-1, Protease nexine (PN)-1, cathepsins, calpains, and cystatin C. Herein, we provide a general overview of the proteases and anti-proteases unbalance during lung fibrogenesis and explore potential therapeutics for IPF.
Collapse
|
47
|
Lee Y, Ko D, Min HJ, Kim SB, Ahn HM, Lee Y, Kim S. TMPRSS4 induces invasion and proliferation of prostate cancer cells through induction of Slug and cyclin D1. Oncotarget 2018; 7:50315-50332. [PMID: 27385093 PMCID: PMC5226585 DOI: 10.18632/oncotarget.10382] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 06/17/2016] [Indexed: 11/25/2022] Open
Abstract
TMPRSS4 is a novel type II transmembrane serine protease found at the cell surface that is highly expressed in pancreatic, colon, and other cancer tissues. Previously, we demonstrated that TMPRSS4 mediates tumor cell invasion, migration, and metastasis. We also found that TMPRSS4 activates the transcription factor activating protein-1 (AP-1) to induce cancer cell invasion. Here, we explored TMPRSS4-mediated cellular functions and the underlying mechanisms. TMPRSS4 induced Slug, an epithelial-mesenchymal transition (EMT)-inducing transcription factor, and cyclin D1 through activation of AP-1, composed of c-Jun and activating transcription factor (ATF)-2, which resulted in enhanced invasion and proliferation of PC3 prostate cancer cells. In PC3 cells, not only c-Jun but also Slug was required for TMPRSS4-mediated proliferation and invasion. Interestingly, Slug induced phosphorylation of c-Jun and ATF-2 to activate AP-1 through upregulation of Axl, establishing a positive feedback loop between Slug and AP-1, and thus induced cyclin D1, leading to enhanced proliferation. Using data from The Cancer Genome Atlas, we found that Slug expression positively correlated with that of c-Jun and cyclin D1 in human prostate cancers. Expression of Slug was positively correlated with that of cyclin D1 in various cancer cell lines, whereas expression of other EMT-inducing transcription factors was not. This study demonstrates that TMPRSS4 modulates both invasion and proliferation via Slug and cyclin D1, which is a previously unrecognized pathway that may regulate metastasis and cancer progression.
Collapse
Affiliation(s)
- Yunhee Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea.,Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Dongjoon Ko
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Hye-Jin Min
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Sol Bi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| | - Hye-Mi Ahn
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea
| | - Younghoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon 34141, Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejon 34141, Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejon 34113, Korea
| |
Collapse
|
48
|
Böttcher-Friebertshäuser E, Garten W, Klenk HD. Priming Time: How Cellular Proteases Arm Coronavirus Spike Proteins. ACTIVATION OF VIRUSES BY HOST PROTEASES 2018. [PMCID: PMC7122371 DOI: 10.1007/978-3-319-75474-1_4] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Coronaviruses are enveloped RNA viruses that infect mammals and birds. Infection of humans with globally circulating human coronaviruses is associated with the common cold. In contrast, transmission of animal coronaviruses to humans can result in severe disease: The severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) are responsible for hundreds of deaths in Asia and the Middle East, respectively, and are both caused by members of the genus Betacoronavirus, SARS-CoV, and MERS-CoV that were zoonotically transmitted from an animal host to humans. At present, neither vaccines nor specific treatment is available to combat coronavirus infection in humans, and novel antiviral strategies are urgently sought. The viral spike protein (S) mediates the first essential step in coronavirus infection, viral entry into target cells. For this, the S protein critically depends on priming by host cell proteases, and the responsible enzymes are potential targets for antiviral intervention. Recent studies revealed that the endosomal cysteine protease cathepsin L and the serine proteases furin and TMPRSS2 prime the S proteins of SARS-CoV and MERS-CoV and provided evidence that successive S protein cleavage at two sites is required for S protein priming. Moreover, mechanisms that control protease choice were unraveled, and insights were obtained into which enzyme promotes viral spread in the host. Here, we will provide basic information on S protein function and proteolytic priming, and we will then discuss recent progress in our understanding of the priming of the S proteins of SARS-CoV and MERS-CoV.
Collapse
Affiliation(s)
| | - Wolfgang Garten
- Institut für Virologie, Philipps Universität, Marburg, Germany
| | | |
Collapse
|
49
|
Kataoka H, Kawaguchi M, Fukushima T, Shimomura T. Hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2): Emerging key players in epithelial integrity and cancer. Pathol Int 2018; 68:145-158. [PMID: 29431273 DOI: 10.1111/pin.12647] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
The growth, survival, and metabolic activities of multicellular organisms at the cellular level are regulated by intracellular signaling, systemic homeostasis and the pericellular microenvironment. Pericellular proteolysis has a crucial role in processing bioactive molecules in the microenvironment and thereby has profound effects on cellular functions. Hepatocyte growth factor activator inhibitor type 1 (HAI-1) and HAI-2 are type I transmembrane serine protease inhibitors expressed by most epithelial cells. They regulate the pericellular activities of circulating hepatocyte growth factor activator and cellular type II transmembrane serine proteases (TTSPs), proteases required for the activation of hepatocyte growth factor (HGF)/scatter factor (SF). Activated HGF/SF transduces pleiotropic signals through its receptor tyrosine kinase, MET (coded by the proto-oncogene MET), which are necessary for cellular migration, survival, growth and triggering stem cells for accelerated healing. HAI-1 and HAI-2 are also required for normal epithelial functions through regulation of TTSP-mediated activation of other proteases and protease-activated receptor 2, and also through suppressing excess degradation of epithelial junctional proteins. This review summarizes current knowledge regarding the mechanism of pericellular HGF/SF activation and highlights emerging roles of HAIs in epithelial development and integrity, as well as tumorigenesis and progression of transformed epithelial cells.
Collapse
Affiliation(s)
- Hiroaki Kataoka
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Makiko Kawaguchi
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Tsuyoshi Fukushima
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| | - Takeshi Shimomura
- Section of Oncopathology and Regenerative Biology, Faculty of Medicine, Department of Pathology, University of Miyazaki, 5200 Kihara, Kiyotake, 889-1692 Miyazaki
| |
Collapse
|
50
|
Hepatocyte growth factor activator inhibitor type-2 (HAI-2)/ SPINT2 contributes to invasive growth of oral squamous cell carcinoma cells. Oncotarget 2018; 9:11691-11706. [PMID: 29545930 PMCID: PMC5837738 DOI: 10.18632/oncotarget.24450] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 02/01/2018] [Indexed: 11/25/2022] Open
Abstract
Hepatocyte growth factor activator inhibitor (HAI)-1/SPINT1 and HAI-2/SPINT2 are membrane-anchored protease inhibitors having homologous Kunitz-type inhibitor domains. They regulate membrane-anchored serine proteases, such as matriptase and prostasin. Whereas HAI-1 suppresses the neoplastic progression of keratinocytes to invasive squamous cell carcinoma (SCC) through matriptase inhibition, the role of HAI-2 in keratinocytes is poorly understood. In vitro homozygous knockout of the SPINT2 gene suppressed the proliferation of two oral SCC (OSCC) lines (SAS and HSC3) but not the growth of a non-tumorigenic keratinocyte line (HaCaT). Reversion of HAI-2 abrogated the growth suppression. Matrigel invasion of both OSCC lines was also suppressed by the loss of HAI-2. The levels of prostasin protein were markedly increased in HAI-2-deficient cells, and knockdown of prostasin alleviated the HAI-2 loss-induced suppression of OSCC cell invasion. Therefore, HAI-2 has a pro-invasive role in OSCC cells through suppression of prostasin. In surgically resected OSCC tissues, HAI-2 immunoreactivity increased along with neoplastic progression, showing intense immunoreactivities in invasive OSCC cells. In summary, HAI-2 is required for invasive growth of OSCC cells and may contribute to OSCC progression.
Collapse
|