1
|
Di Filippo ES, Chiappalupi S, Falone S, Dolo V, Amicarelli F, Marchianò S, Carino A, Mascetti G, Valentini G, Piccirillo S, Balsamo M, Vukich M, Fiorucci S, Sorci G, Fulle S. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue. NPJ Microgravity 2024; 10:92. [PMID: 39362881 PMCID: PMC11450100 DOI: 10.1038/s41526-024-00432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/22/2024] [Indexed: 10/05/2024] Open
Abstract
Microgravity (µG) experienced during space flights promotes adaptation in several astronauts' organs and tissues, with skeletal muscles being the most affected. In response to reduced gravitational loading, muscles (especially, lower limb and antigravity muscles) undergo progressive mass loss and alteration in metabolism, myofiber size, and composition. Skeletal muscle precursor cells (MPCs), also known as satellite cells, are responsible for the growth and maintenance of muscle mass in adult life as well as for muscle regeneration following damage and may have a major role in µG-induced muscle wasting. Despite the great relevance for astronaut health, very few data are available about the effects of real µG on human muscles. Based on the MyoGravity project, this study aimed to analyze: (i) the cellular and transcriptional alterations induced by real µG in human MPCs (huMPCs) and (ii) the response of human skeletal muscle to normal gravitational loading after prolonged exposure to µG. We evaluated the transcriptomic changes induced by µG on board the International Space Station (ISS) in differentiating huMPCs isolated from Vastus lateralis muscle biopsies of a pre-flight astronaut and an age- and sex-matched volunteer, in comparison with the same cells cultured on the ground in standard gravity (1×g) conditions. We found that huMPCs differentiated under real µG conditions showed: (i) upregulation of genes related to cell adhesion, plasma membrane components, and ion transport; (ii) strong downregulation of genes related to the muscle contraction machinery and sarcomere organization; and (iii) downregulation of muscle-specific microRNAs (myomiRs). Moreover, we had the unique opportunity to analyze huMPCs and skeletal muscle tissue of the same astronaut before and 30 h after a long-duration space flight on board the ISS. Prolonged exposure to real µG strongly affected the biology and functionality of the astronaut's satellite cells, which showed a dramatic reduction of responsiveness to activating stimuli and proliferation rate, morphological changes, and almost inability to fuse into myotubes. RNA-Seq analysis of post- vs. pre-flight muscle tissue showed that genes involved in muscle structure and remodeling are promptly activated after landing following a long-duration space mission. Conversely, genes involved in the myelination process or synapse and neuromuscular junction organization appeared downregulated. Although we have investigated only one astronaut, these results point to a prompt readaptation of the skeletal muscle mechanical components to the normal gravitational loading, but the inability to rapidly recover the physiological muscle myelination/innervation pattern after landing from a long-duration space flight. Together with the persistent functional deficit observed in the astronaut's satellite cells after prolonged exposure to real µG, these results lead us to hypothesize that a condition of inefficient regeneration is likely to occur in the muscles of post-flight astronauts following damage.
Collapse
Affiliation(s)
- Ester Sara Di Filippo
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
| | - Sara Chiappalupi
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Vincenza Dolo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Silvia Marchianò
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Adriana Carino
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | | | | | | | - Michele Balsamo
- Kayser Italia S.r.l, Via di Popogna, 501, 57128, Livorno, Italy
| | - Marco Vukich
- European Space Agency, Keplerlaan 1, NL-2200, AG, Noordwijk, The Netherlands
| | - Stefano Fiorucci
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
| | - Guglielmo Sorci
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy
- Department Medicine and Surgery, University of Perugia, 06132, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB), 34127, Trieste, Italy
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" Chieti-Pescara, 66100, Chieti, Italy.
- Interuniversity Institute of Myology (IIM), 06132, Perugia, Italy.
| |
Collapse
|
2
|
Wu CC, Chen WC, Hsiao WP, Huang KF, Liao YS, Lin HB, Wu YJ, Kao CH, Chen SL. Reciprocal Regulation of Peroxisome Biogenesis and Myogenic Factors Is Critical for Myogenesis. Int J Mol Sci 2023; 24:12262. [PMID: 37569637 PMCID: PMC10419124 DOI: 10.3390/ijms241512262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Mitochondria (MITO) and peroxisomes (PEXO) are the major organelles involved in the oxidative metabolism of cells, but detailed examination of their dynamics and functional adaptations during skeletal muscle (SKM) development (myogenesis) is still lacking. In this study, we found that during myogenesis, MITO DNA, ROS level, and redox ratio increased in myotubes, but the membrane potential (Δψm) and ATP content reduced, implying that the MITO efficiency might reduce during myogenesis. The PEXO number and density both increased during myogenesis, which probably resulted from the accumulation and increased biogenesis of PEXO. The expression of PEXO biogenesis factors was induced during myogenesis in vitro and in utero, and their promoters were also activated by MyoD. Knockdown of the biogenesis factors Pex3 repressed not only the PEXO density and functions but also the levels of MITO genes and functions, suggesting a close coupling between PEXO biogenesis and MITO functions. Surprisingly, Pex3 knockdown by the CRISPRi system repressed myogenic differentiation, indicating critical involvement of PEXO biogenesis in myogenesis. Taken together, these observations suggest that the dynamics and functions of both MITO and PEXO are coupled with each other and with the metabolic changes that occur during myogenesis, and these metabolic couplings are critical to myogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Shen-Liang Chen
- Department of Life Sciences, College of Health Sciences and Technology, National Central University, Taoyuan 320317, Taiwan; (C.-C.W.); (W.-C.C.); (W.-P.H.); (K.-F.H.); (Y.-S.L.); (H.-B.L.); (Y.-J.W.); (C.-H.K.)
| |
Collapse
|
3
|
The cooperation of cis-elements during M-cadherin promoter activation. Biochem J 2021; 478:911-926. [PMID: 33527978 DOI: 10.1042/bcj20200535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 01/26/2023]
Abstract
M-cadherin is a skeletal muscle-specific transmembrane protein mediating the cell-cell adhesion of myoblasts during myogenesis. It is expressed in the proliferating satellite cells and highly induced by myogenic regulatory factors (MRFs) during terminal myogenic differentiation. Several conserved cis-elements, including 5 E-boxes, 2 GC boxes, and 1 conserved downstream element (CDE) were identified in the M-cadherin proximal promoter. We found that E-box-3 and -4 close to the transcription initiation site (TIS) mediated most of its transactivation by MyoD, the strongest myogenic MRF. Including of any one of the other E-boxes restored the full activation by MyoD, suggesting an essential collaboration between E-boxes. Stronger activation of M-cadherin promoter than that of muscle creatine kinase (MCK) by MyoD was observed regardless of culture conditions and the presence of E47. Furthermore, MyoD/E47 heterodimer and MyoD ∼ E47 fusion protein achieved similar levels of activation in differentiation medium (DM), suggesting high affinity of MyoD/E47 to E-boxes 3/4 under DM. We also found that GC boxes and CDE positively affected MyoD mediated activation. The CDE element was predicted to be the target of the chromatin-modifying factor Meis1/Pbx1 heterodimer. Knockdown of Pbx1 significantly reduced the expression level of M-cadherin, but increased that of N-cadherin. Using ChIP assay, we further found significant reduction in MyoD recruitment to M-cadherin promoter when CDE was deleted. Taken together, these observations suggest that the chromatin-modifying function of Pbx1/Meis1 is critical to M-cadherin promoter activation before MyoD is recruited to E-boxes to trigger transcription.
Collapse
|
4
|
Chang HC, Kao CH, Chung SY, Chen WC, Aninda LP, Chen YH, Juan YA, Chen SL. Bhlhe40 differentially regulates the function and number of peroxisomes and mitochondria in myogenic cells. Redox Biol 2018; 20:321-333. [PMID: 30391825 PMCID: PMC6218633 DOI: 10.1016/j.redox.2018.10.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 12/26/2022] Open
Abstract
PGC-1α is a key regulator of oxidative metabolism facilitating the expression of genes critical for the function and biogenesis of the two key oxidative organelles, mitochondria and peroxisomes, in skeletal muscle (SKM) and other organs. Our recent studies have found that the transcription factor Bhlhe40 negatively regulates PGC-1α gene expression and its coactivational activity, therefore, this factor should have profound influence on the biogenesis and metabolic activity of mitochondria and peroxisomes. Here we found that both the number and activity of peroxisomes were increased upon knockdown of Bhlhe40 expression but were repressed by its over-expression. Mitochondrial efficiency was significantly reduced by Bhlhe40 knockdown, resulting in the burst of ROS. Over-expression of a constitutively active PGC-1α-interactive domain (named as VBH135) of Bhlhe40 mimicked the effects of its knockdown on peroxisomes but simultaneously reduced ROS level. Furthermore, the efficiency, but not the number, of mitochondria was also increased by VBH135, suggesting differential regulation of peroxisomes and mitochondria by Bhlhe40. Unsaturated fatty acid oxidation, insulin response, and oxidative respiration were highly enhanced in Bhlhe40 knockdown or VBH135 over-expressed cells, suggesting the importance of Bhlhe40 in the regulation of unsaturated fatty acid and glucose oxidative metabolism. Expression profiling of genes important for either organelle also supports differential regulation of peroxisomes and mitochondria by Bhlhe40. These observations have established the important role of Bhlhe40 in SKM oxidative metabolism as the critical regulator of peroxisome and mitochondrion biogenesis and functions, and thus should provide a novel route for developing drugs targeting SKM metabolic diseases. Knockout of Bhlhe40 increased ROS but over-expression of Bhlhe40 reduced ROS. Peroxisome number was increased by Bhlhe40 knockout or VBH135 overexpression. Mitochondrial efficiency was reduced by Bhlhe40 knockout but increased by VBH135. Oxidative respiration was enhanced by Bhlhe40 knockdown or VBH135 overexpression. Bhlhe40 repressed PGC-1α coactivation of nuclear gene expression.
Collapse
Affiliation(s)
- Hsuan Chia Chang
- Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Chien Han Kao
- Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Shih Ying Chung
- Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Wei Cheng Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Lulus Putri Aninda
- Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Yi Huan Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Yi An Juan
- Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan, ROC.
| |
Collapse
|
5
|
COMP-Angiopoietin-1 accelerates muscle regeneration through N-cadherin activation. Sci Rep 2018; 8:12323. [PMID: 30120297 PMCID: PMC6098079 DOI: 10.1038/s41598-018-30513-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/27/2018] [Indexed: 11/17/2022] Open
Abstract
Angiopoietin-1 modulates vascular stability via Tie2 on endothelial cells. In our previous study, we also showed it acts as an inhibitor of cardiomyocyte death. However, it remains poorly understood how Ang1 regulates myogenesis during muscle regeneration. Here we found that COMP-Ang1 (cAng1) enhances muscle regeneration through N-cadherin activation. Muscle fiber regeneration after limb muscle damage by ischemic injury was enhanced with cAng1 treatment. Mechanistically cAng1 directly bound to N-cadherin on the myoblast surface in a Ca2+ dependent manner. The interaction enhanced N-cadherin activation via N-cadherin/p120-catenin complex formation, which in turn activated p38MAPK (but not AKT or ERK) and myogenin expression (but not myoD) as well as increasing myogenin+ cells in/ex vivo. After transplantation of GFP-expressing myoblasts (GFP-MB), we showed an increased generation of GFP+ myotubes with adenovirus cAng1 (Adv-cAng1) injection. Adv-cAng1, however, could not stimulate myotube formation in N-cadherin-depleted GFP-MB. Taken together, this study uncovers the mechanism of how cAng1 promotes myoblast differentiation and muscle regeneration through the N-cadherin/p120-catenin/p38MAPK/myogenin axis.
Collapse
|
6
|
Tang Z, Qiu H, Luo L, Liu N, Zhong J, Kang K, Gou D. miR-34b Modulates Skeletal Muscle Cell Proliferation and Differentiation. J Cell Biochem 2017; 118:4285-4295. [PMID: 28422320 DOI: 10.1002/jcb.26079] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/18/2017] [Indexed: 12/22/2022]
Abstract
Myogenesis involves myoblast proliferation and differentiation to myocytes, followed by fusion and hypertrophy to form myotubes during muscle development. Increasing evidence showed that microRNAs (miRNAs) play important roles in the regulation of myogenesis. We have previously revealed that miR-34b is steadily increased during this process. This miRNA regulates differentiation in various cell types, though its function in myogenesis remains to be elucidated. In this study, we show that miR-34b represses muscle cell proliferation and promotes myotube formation. Our quantitative iTRAQ-based proteomic analysis reveals 97 proteins are regulated by miR-34b in mouse myoblast C2C12. We identified that miR-34b targets 14-3-3 protein gamma, adenosylhomocysteinase and nucleolin by binding to their 3'UTR. Further analysis of these proteins expression patterns show that nucleolin is a cognate target of miR-34b during myogenic differentiation. Here, we proved that a moderate reduction of nucleolin in cells enhanced the myotube formation. However, nucleolin is required for myogenesis, as cells with low levels of nucleolin reduced cell proliferation rate and are unable to differentiate. Our data demonstrated that nucleolin regulates myogenesis in a protein-abundance-dependent manner. J. Cell. Biochem. 118: 4285-4295, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhixiong Tang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Huiling Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
- Biomedical Engineering, Health and Environmental Engineering, Shenzhen Technology University, Shenzhen, Guangdong, 518000, China
| | - Lan Luo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Nian Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jiasheng Zhong
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Kang Kang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, 518000, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
7
|
Newman R, Ahlfors H, Saveliev A, Galloway A, Hodson DJ, Williams R, Besra GS, Cook CN, Cunningham AF, Bell SE, Turner M. Maintenance of the marginal-zone B cell compartment specifically requires the RNA-binding protein ZFP36L1. Nat Immunol 2017; 18:683-693. [PMID: 28394372 PMCID: PMC5438597 DOI: 10.1038/ni.3724] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022]
Abstract
RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.
Collapse
Affiliation(s)
- Rebecca Newman
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
- Immune Receptor Activation Laboratory, The Francis Crick Institute,
1 Midland Road, London, NW1 1AT, United Kingdom
| | - Helena Ahlfors
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Alexander Saveliev
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Alison Galloway
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Daniel J Hodson
- Department of Haematology, University of Cambridge, The Clifford
Allbutt Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0AH,
United Kingdom
| | - Robert Williams
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Gurdyal S. Besra
- School of Biosciences, University of Birmingham, Birmingham, B15
2TT, United Kingdom
| | - Charlotte N Cook
- MRC Centre for Immune Regulation, School of Immunity and Infection,
University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Adam F Cunningham
- MRC Centre for Immune Regulation, School of Immunity and Infection,
University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Sarah E Bell
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham
Institute, Babraham Research Campus, Cambridge, CB22 3AT, United Kingdom
| |
Collapse
|
8
|
Ponnaluri VKC, Ehrlich KC, Zhang G, Lacey M, Johnston D, Pradhan S, Ehrlich M. Association of 5-hydroxymethylation and 5-methylation of DNA cytosine with tissue-specific gene expression. Epigenetics 2017; 12:123-138. [PMID: 27911668 PMCID: PMC5330441 DOI: 10.1080/15592294.2016.1265713] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/10/2016] [Accepted: 11/21/2016] [Indexed: 12/15/2022] Open
Abstract
Differentially methylated or hydroxymethylated regions (DMRs) in mammalian DNA are often associated with tissue-specific gene expression but the functional relationships are still being unraveled. To elucidate these relationships, we studied 16 human genes containing myogenic DMRs by analyzing profiles of their epigenetics and transcription and quantitatively assaying 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) at specific sites in these genes in skeletal muscle (SkM), myoblasts, heart, brain, and diverse other samples. Although most human promoters have little or no methylation regardless of expression, more than half of the genes that we chose to study-owing to their myogenic DMRs-overlapped tissue-specific alternative or cryptic promoters displaying corresponding tissue-specific differences in histone modifications. The 5mC levels in myoblast DMRs were significantly associated with 5hmC levels in SkM at the same site. Hypermethylated myogenic DMRs within CDH15, a muscle- and cerebellum-specific cell adhesion gene, and PITX3, a homeobox gene, were used for transfection in reporter gene constructs. These intragenic DMRs had bidirectional tissue-specific promoter activity that was silenced by in vivo-like methylation. The CDH15 DMR, which was previously associated with an imprinted maternal germline DMR in mice, had especially strong promoter activity in myogenic host cells. These findings are consistent with the controversial hypothesis that intragenic DNA methylation can facilitate transcription and is not just a passive consequence of it. Our results support varied roles for tissue-specific 5mC- or 5hmC-enrichment in suppressing inappropriate gene expression from cryptic or alternative promoters and in increasing the plasticity of gene expression required for development and rapid responses to tissue stress or damage.
Collapse
Affiliation(s)
| | - Kenneth C. Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA, USA
| | | | - Michelle Lacey
- Department of Mathematics, Tulane Health Sciences Center and Tulane University, New Orleans, LA, USA
| | - Douglas Johnston
- Department of Microbiology, Immunology and Parasitology, LSU Health Sciences Center, New Orleans, LA, USA
| | | | - Melanie Ehrlich
- Center for Bioinformatics and Genomics, Tulane University Health Sciences Center, New Orleans, LA, USA
- Hayward Genetics Center and Tulane Cancer Center, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
9
|
Che X, Guo J, Li X, Wang L, Wei S. Intramuscular injection of bone marrow mononuclear cells contributes to bone repair following midpalatal expansion in rats. Mol Med Rep 2015; 13:681-8. [PMID: 26648442 PMCID: PMC4686095 DOI: 10.3892/mmr.2015.4578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Healing from injury requires the activation and proliferation of stem cells for tissue repair. Previous studies have demonstrated that bone marrow is a central pool of stem cells. The present study aimed to investigate the route undertaken by bone marrow mononuclear cells (BMMCs) following BMMC transplantation by masseter injection in a rat model of midpalatal expansion. The rats were divided into five groups according to the types of midpalatal expansion, incision and BMMC transplantation. Samples of midpalatal bone from the rats in each group were used for histological and immunohistochemical assessments to track and evaluate the differential potentials of the transplanted BMMCs in the masseter muscle and midpalatal bone. Bromodeoxyuridine was used as a BMMC tracing label, and M-cadherin was used to detect muscle satellite cells. The BMMCs injected into the masseter were observed, not only in the masseter, but also in the blood vessels and oral mucosa, and enveloped the midpalatal bone. A number of the BMMCs transformed into osteoblasts at the boundary of the neuromuscular bundle, and were embedded in the newly formed bone during midpalatal bone regeneration. The results of the present study suggested that BMMCs entered the circulation and migrated from muscle to the bone tissue, where they were involved in bone repair. Therefore, BMMCs may prove useful in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Xiaoxia Che
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Jie Guo
- Department of Orthodontics, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Biomedicine, Jinan, Shandong 250012, P.R. China
| | - Xiangdong Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| | - Lve Wang
- Department of Microbiology, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Silong Wei
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
10
|
Bhlhe40 Represses PGC-1α Activity on Metabolic Gene Promoters in Myogenic Cells. Mol Cell Biol 2015; 35:2518-29. [PMID: 25963661 DOI: 10.1128/mcb.00387-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 11/20/2022] Open
Abstract
PGC-1α is a transcriptional coactivator promoting oxidative metabolism in many tissues. Its expression in skeletal muscle (SKM) is induced by hypoxia and reactive oxidative species (ROS) generated during exercise, suggesting that PGC-1α might mediate the cross talk between oxidative metabolism and cellular responses to hypoxia and ROS. Here we found that PGC-1α directly interacted with Bhlhe40, a basic helix-loop-helix (bHLH) transcriptional repressor induced by hypoxia, and protects SKM from ROS damage, and they cooccupied PGC-1α-targeted gene promoters/enhancers, which in turn repressed PGC-1α transactivational activity. Bhlhe40 repressed PGC-1α activity through recruiting histone deacetylases (HDACs) and preventing the relief of PGC-1α intramolecular repression caused by its own intrinsic suppressor domain. Knockdown of Bhlhe40 mRNA increased levels of ROS, fatty acid oxidation, mitochondrial DNA, and expression of PGC-1α target genes. Similar effects were also observed when the Bhlhe40-mediated repression was rescued by a dominantly active form of the PGC-1α-interacting domain (PID) from Bhlhe40. We further found that Bhlhe40-mediated repression can be largely relieved by exercise, in which its recruitment to PGC-1α-targeted cis elements was significantly reduced. These observations suggest that Bhlhe40 is a novel regulator of PGC-1α activity repressing oxidative metabolism gene expression and mitochondrion biogenesis in sedentary SKM.
Collapse
|
11
|
Wu YJ, Fang YH, Chi HC, Chang LC, Chung SY, Huang WC, Wang XW, Lee KW, Chen SL. Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One 2014; 9:e88450. [PMID: 24551104 PMCID: PMC3923792 DOI: 10.1371/journal.pone.0088450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 01/07/2014] [Indexed: 12/02/2022] Open
Abstract
Most recent studies reported that FoxO1 transcription factor was a negative regulator of myogenesis under serum withdrawal condition, a situation not actually found in vivo. Therefore, the role of FoxO1 in myogenesis should be re-examined under more physiologically relevant conditions. Here we found that FoxO1 was preferentially localized to nucleus in proliferating (PMB) and confluent myoblasts (CMB) and its nuclear exclusion was a prerequisite for formation of multinucleated myotubes (MT). The nuclear shuttling of FoxO1 in PMB could be prevented by leptomycin B and we further found that cytoplasmic accumulation of FoxO1 in myotubes was caused by the blockade of its nuclear import. Although over-expression of wildtype FoxO1 in C2C12 myoblasts significantly blocked their myogenic differentiation under serum withdrawal condition, application of insulin and LiCl, an activator of Wnt signaling pathway, to these cells successfully rescued their myogenic differentiation and generated myotubes with larger diameters. Interestingly, insulin treatment significantly reduced FoxO1 level and also delayed nuclear re-accumulation of FoxO1 triggered by mitogen deprivation. We further found that FoxO1 directly repressed the promoter activity of myogenic genes and this repression can be relieved by insulin and LiCl treatment. These results suggest that FoxO1 inhibits myogenesis in serum withdrawal condition but turns into a hypertrophy potentiator when other myogenic signals, such as Wnt and insulin, are available.
Collapse
Affiliation(s)
- Yi Ju Wu
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Yen Hsin Fang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Hsiang Cheng Chi
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Li Chiung Chang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shih Ying Chung
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Wei Chieh Huang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Xiao Wen Wang
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Kuan Wei Lee
- Department of Life Sciences, National Central University, Jhongli, Taiwan
| | - Shen Liang Chen
- Department of Life Sciences, National Central University, Jhongli, Taiwan
- * E-mail:
| |
Collapse
|
12
|
SH2B1β interacts with STAT3 and enhances fibroblast growth factor 1-induced gene expression during neuronal differentiation. Mol Cell Biol 2014; 34:1003-19. [PMID: 24396070 DOI: 10.1128/mcb.00940-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurite outgrowth is an essential process during neuronal differentiation as well as neuroregeneration. Thus, understanding the molecular and cellular control of neurite outgrowth will benefit patients with neurological diseases. We have previously shown that overexpression of the signaling adaptor protein SH2B1β promotes fibroblast growth factor 1 (FGF1)-induced neurite outgrowth (W. F. Lin, C. J. Chen, Y. J. Chang, S. L. Chen, I. M. Chiu, and L. Chen, Cell. Signal. 21:1060-1072, 2009). SH2B1β also undergoes nucleocytoplasmic shuttling and regulates a subset of neurotrophin-induced genes. Although these findings suggest that SH2B1β regulates gene expression, the nuclear role of SH2B1β was not known. In this study, we show that SH2B1β interacts with the transcription factor, signal transducer, and activator of transcription 3 (STAT3) in neuronal PC12 cells, cortical neurons, and COS7 fibroblasts. By affecting the subcellular distribution of STAT3, SH2B1β increased serine phosphorylation and the concomitant transcriptional activity of STAT3. As a result, overexpressing SH2B1β enhanced FGF1-induced expression of STAT3 target genes Egr1 and Cdh2. Chromatin immunoprecipitation assays further reveal that, in response to FGF1, overexpression of SH2B1β promotes the in vivo occupancy of STAT3-Sp1 heterodimers at the promoter of Egr1 and Cdh2. These findings establish a central role of SH2B1β in orchestrating signaling events to transcriptional activation through interacting and regulating STAT3-containing complexes during neuronal differentiation.
Collapse
|
13
|
Kato Y, Kawamoto T, Fujimoto K, Noshiro M. DEC1/STRA13/SHARP2 and DEC2/SHARP1 coordinate physiological processes, including circadian rhythms in response to environmental stimuli. Curr Top Dev Biol 2014; 110:339-72. [PMID: 25248482 DOI: 10.1016/b978-0-12-405943-6.00010-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Daily physiological and behavioral rhythms are regulated by endogenous circadian molecular clocks. Clock proteins DEC1 (BHLHe40) and DEC2 (BHLHe41) belong to the basic helix-loop-helix protein superfamily, which contains other clock proteins CLOCK and BMAL1. DEC1 and DEC2 are induced by CLOCK:BMAL1 heterodimer via the CACGTG E-box in the promoter and, thereafter, suppress their own expression by competing with CLOCK:BMAL1 for the DNA binding. This negative feedback DEC loop together with the PER loop involving PER and CRY, the other negative clock regulators, maintains the circadian rhythm of Dec1 and Dec2 expression. DEC1 is induced by light pulse and adjusts the circadian phase of the central clock in the suprachiasmatic nucleus, whereas DEC1 upregulation by TGF-β resets the circadian phase of the peripheral clocks in tissues. Furthermore, DEC1 and DEC2 modulate the clock output signals to control circadian rhythms in behavior and metabolism. In addition to the functions in the clocks, DEC1 and DEC2 are involved in hypoxia responses, immunological reactions, and carcinogenesis. These DEC actions are mediated by the direct binding to the E-box elements in target genes or by protein-protein interactions with transcription factors such as HIF-1α, RXRα, MyoD, and STAT. Notably, numerous growth factors, hormones, and cytokines, along with ionizing radiation and DNA-damaging agents, induce Dec1 and/or Dec2 in a tissue-specific manner. These findings suggest that DEC1 and DEC2 play a critical role in animal adaptation to various environmental stimuli.
Collapse
Affiliation(s)
- Yukio Kato
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan.
| | - Takeshi Kawamoto
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Katsumi Fujimoto
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mitsuhide Noshiro
- Department of Dental and Medical Biochemistry, Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
14
|
Abstract
Transcription factors of the FoxO (forkhead box O) family regulate a wide range of cellular physiological processes, including metabolic adaptation and myogenic differentiation. The transcriptional activity of most FoxO members is inhibitory to myogenic differentiation and overexpression of FoxO1 inhibits the development of oxidative type I fibres in vivo. In this study, we found that FoxO6, the last discovered FoxO family member, is expressed ubiquitously in various tissues but with higher expression levels in oxidative tissues, such as brain and oxidative muscles. Both the expression level and promoter activity of FoxO6 were found to be enhanced by PGC-1α (peroxisome-proliferator-activated receptor γ co-activator 1α), thus explained its enriched expression in oxidative tissues. We further demonstrated that FoxO6 represses the expression of PGC-1α via direct binding to an upstream A/T-rich element (AAGATATCAAAACA,−2228–2215) in the PGC-1α promoter. Oxidative low-intensity exercise induced PGC-1α but reduced FoxO6 expression levels in hind leg muscles, and the binding of FoxO6 to PGC-1α promoter was also prevented by exercise. As FoxO6 promoter can be co-activated by PGC-1α and its promoter in turn can be repressed by FoxO6, it suggests that FoxO6 and PGC-1α form a regulatory loop for setting oxidative metabolism level in the skeletal muscle, which can be entrained by exercise.
Collapse
|
15
|
Tsao J, Vernet DA, Gelfand R, Kovanecz I, Nolazco G, Bruhn KW, Gonzalez-Cadavid NF. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle. Stem Cell Res Ther 2013; 4:4. [PMID: 23295128 PMCID: PMC3706886 DOI: 10.1186/scrt152] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 01/03/2013] [Indexed: 01/07/2023] Open
Abstract
Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs.
Collapse
|
16
|
Chen SJ, Wu YH, Huang HY, Wang CC. Saccharomyces cerevisiae possesses a stress-inducible glycyl-tRNA synthetase gene. PLoS One 2012; 7:e33363. [PMID: 22438917 PMCID: PMC3306390 DOI: 10.1371/journal.pone.0033363] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/13/2012] [Indexed: 12/04/2022] Open
Abstract
Aminoacyl-tRNA synthetases are a large family of housekeeping enzymes that are pivotal in protein translation and other vital cellular processes. Saccharomyces cerevisiae possesses two distinct nuclear glycyl-tRNA synthetase (GlyRS) genes, GRS1 and GRS2. GRS1 encodes both cytoplasmic and mitochondrial activities, while GRS2 is essentially silent and dispensable under normal conditions. We herein present evidence that expression of GRS2 was drastically induced upon heat shock, ethanol or hydrogen peroxide addition, and high pH, while expression of GRS1 was somewhat repressed under those conditions. In addition, GlyRS2 (the enzyme encoded by GRS2) had a higher protein stability and a lower KM value for yeast tRNAGly under heat shock conditions than under normal conditions. Moreover, GRS2 rescued the growth defect of a GRS1 knockout strain when highly expressed by a strong promoter at 37°C, but not at the optimal temperature of 30°C. These results suggest that GRS2 is actually an inducible gene that may function to rescue the activity of GRS1 under stress conditions.
Collapse
Affiliation(s)
| | | | | | - Chien-Chia Wang
- Department of Life Sciences, National Central University, Jung-li, Taiwan
- * E-mail:
| |
Collapse
|
17
|
Li Z, Fan J, Zhao W, Jin L, Ma L. The specific binding of peptide ligands to cardiomyocytes derived from mouse embryonic stem cells. J Pept Sci 2011; 17:771-82. [DOI: 10.1002/psc.1401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 07/07/2011] [Accepted: 07/07/2011] [Indexed: 02/05/2023]
Affiliation(s)
- Zhuokun Li
- Department of Biological sciences and Biotechnology; Tsinghua University; Beijing China
- Life Science Division, Graduate School at Shenzhen; Tsinghua University; Shenzhen China
| | - Jiusong Fan
- Department of Biological sciences and Biotechnology; Tsinghua University; Beijing China
- Life Science Division, Graduate School at Shenzhen; Tsinghua University; Shenzhen China
| | - Wenxiu Zhao
- Life Science Division, Graduate School at Shenzhen; Tsinghua University; Shenzhen China
| | - Lei Jin
- Department of Biological sciences and Biotechnology; Tsinghua University; Beijing China
- Life Science Division, Graduate School at Shenzhen; Tsinghua University; Shenzhen China
| | - Lan Ma
- Life Science Division, Graduate School at Shenzhen; Tsinghua University; Shenzhen China
| |
Collapse
|
18
|
Green YS, Vetter ML. EBF proteins participate in transcriptional regulation of Xenopus muscle development. Dev Biol 2011; 358:240-50. [PMID: 21839736 DOI: 10.1016/j.ydbio.2011.07.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 07/24/2011] [Accepted: 07/27/2011] [Indexed: 01/08/2023]
Abstract
EBF proteins have diverse functions in the development of multiple lineages, including neurons, B cells and adipocytes. During Drosophila muscle development EBF proteins are expressed in muscle progenitors and are required for muscle cell differentiation, but there is no known function of EBF proteins in vertebrate muscle development. In this study, we examine the expression of ebf genes in Xenopus muscle tissue and show that EBF activity is necessary for aspects of Xenopus skeletal muscle development, including somite organization, migration of hypaxial muscle anlagen toward the ventral abdomen, and development of jaw muscle. From a microarray screen, we have identified multiple candidate targets of EBF activity with known roles in muscle development. The candidate targets we have verified are MYOD, MYF5, M-Cadherin and SEB-4. In vivo overexpression of the ebf2 and ebf3 genes leads to ectopic expression of these candidate targets, and knockdown of EBF activity causes downregulation of the endogenous expression of the candidate targets. Furthermore, we found that MYOD and MYF5 are likely to be direct targets. Finally we show that MYOD can upregulate the expression of ebf genes, indicating the presence of a positive feedback loop between EBF and MYOD that we find to be important for maintenance of MYOD expression in Xenopus. These results suggest that EBF activity is important for both stabilizing commitment and driving aspects of differentiation in Xenopus muscle cells.
Collapse
Affiliation(s)
- Yangsook Song Green
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
19
|
Molecular and cellular mechanisms of mammalian cell fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:33-64. [PMID: 21432013 DOI: 10.1007/978-94-007-0763-4_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fusion of one cell with another occurs in development, injury and disease. Despite the diversity of fusion events, five steps in sequence appear common. These steps include programming fusion-competent status, chemotaxis, membrane adhesion, membrane fusion, and post-fusion resetting. Recent advances in the field start to reveal the molecules involved in each step. This review focuses on some key molecules and cellular events of cell fusion in mammals. Increasing evidence demonstrates that membrane lipid rafts, adhesion proteins and actin rearrangement are critical in the final step of membrane fusion. Here we propose a new model for the formation and expansion of membrane fusion pores based on recent observations on myotube formation. In this model, membrane lipid rafts first recruit adhesion molecules and align with opposing membranes, with the help of a cortical actin "wall" as a rigid supportive platform. Second, the membrane adhesion proteins interact with each other and trigger actin rearrangement, which leads to rapid dispersion of lipid rafts and flow of a highly fluidic phospholipid bilayer into the site. Finally, the opposing phospholipid bilayers are then pushed into direct contact leading to the formation of fusion pores by the force generated through actin polymerization. The actin polymerization generated force also drives the expansion of the fusion pores. However, several key questions about the process of cell fusion still remain to be explored. The understanding of the mechanisms of cell fusion may provide new opportunities in correcting development disorders or regenerating damaged tissues by inhibiting or promoting molecular events associated with fusion.
Collapse
|
20
|
Balan OV, Ozernuk ND. Expression of the gene MyoD and m-cadherin in the myogenic precursor cell culture isolated from muscles of rats at different stages of ontogenesis. BIOL BULL+ 2011. [DOI: 10.1134/s1062359011020026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|