1
|
Qu M, Liu X, Wang X, Li Z, Zhou L, Li H. Palmitoylation of vacuole membrane protein 1 promotes small extracellular vesicle secretion via interaction with ALIX and influences intercellular communication. Cell Commun Signal 2024; 22:150. [PMID: 38403678 PMCID: PMC10895845 DOI: 10.1186/s12964-024-01529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND Small extracellular vesicles (EVs), exemplified by exosomes, mediate intercellular communication by transporting proteins, mRNAs, and miRNAs. Post-translational modifications are involved in controlling small EV secretion process. However, whether palmitoylation regulates small EV secretion, remains largely unexplored. METHODS Vacuole Membrane Protein 1 (VMP1) was testified to be S-palmitoylated by Palmitoylation assays. VMP1 mutant plasmids were constructed to screen out the exact palmitoylation sites. Small EVs were isolated, identified and compared between wild-type VMP1 or mutant VMP1 transfected cells. Electron microscope and immunofluorescence were used to detect multivesicular body (MVB) number and morphology change when VMP1 was mutated. Immunoprecipitation and Mass spectrum were adopted to identify the protein that interacted with palmitoylated VMP1, while knock down experiment was used to explore the function of targeted protein ALIX. Taking human Sertoli cells (SCs) and human spermatogonial stem cell like cells (SSCLCs) as a model of intercellular communication, SSCLC maintenance was detected by flow cytometry and qPCR at 12 days of differentiation. In vivo, mouse model was established by intraperitoneal injection with palmitoylation inhibitor, 2-bromopalmitate (2BP) for 3 months. RESULTS VMP1 was identified to be palmitoylated at cysteine 263,278 by ZDHHC3. Specifically, palmitoylation of VMP1 regulated its subcellular location and enhanced the amount of small EV secretion. Mutation of VMP1 palmitoylation sites interfered with the morphology and biogenesis of MVBs through suppressing intraluminal vesicle formation. Furthermore, inhibition of VMP1 palmitoylation impeded small EV secretion by affecting the interaction of VMP1 with ALIX, an accessory protein of the ESCRT machinery. Taking SCs and SSCLCs as a model of intercellular communication, we discovered VMP1 palmitoylation in SCs was vital to the growth status of SSCLCs in a co-culture system. Inhibition of VMP1 palmitoylation caused low self-maintenance, increased apoptosis, and decreased proliferation rate of SSCLCs. In vivo, intraperitoneal injection of 2BP inhibited VMP1 palmitoylation and exosomal marker expression in mouse testes, which were closely associated with the level of spermatogenic cell apoptosis and proliferation. CONCLUSIONS Our study revealed a novel mechanism for small EV secretion regulated by VMP1 palmitoylation in Sertoli cells, and demonstrated its pivotal role in intercellular communication and SSC niche.
Collapse
Affiliation(s)
- Mengyuan Qu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
- The Reproduction Medical Center, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital), 47 Youyi Road, Shenzhen, 518000, Guangdong, China.
| | - Xinyu Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiaotong Wang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zili Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Liquan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
| | - Honggang Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China.
- Wuhan Huake Reproductive Medicine Hospital, Wuhan, China.
| |
Collapse
|
2
|
Dai J, Feng Y, Liao Y, Tan L, Sun Y, Song C, Qiu X, Ding C. ESCRT machinery and virus infection. Antiviral Res 2024; 221:105786. [PMID: 38147902 DOI: 10.1016/j.antiviral.2023.105786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery plays a significant role in the spread of human viruses. However, our understanding of how the host ESCRT machinery responds to viral infection remains limited. Emerging evidence suggests that the ESCRT machinery can be hijacked by viruses of different families to enhance their replication. Throughout their life cycle, these viruses can interfere with or exploit ESCRT-mediated physiological processes to increase their chances of infecting the host. In contrast, to counteract virus infection, the interferon-stimulated gene 15 (ISG15) or the E3 ISG15-protein ligase (HERC5) system within the infected cells is activated to degrade the ESCRT proteins. Many retroviral and RNA viral proteins have evolved "late (L) domain" motifs, which enable them to recruit host ESCRT subunit proteins to facilitate virus transport, replication, budding, mature, and even endocytosis, Therefore, the L domain motifs and ESCRT subunit proteins could serve as promising drug targets for antiviral therapy. This review investigated the composition and essential functions of the ESCRT, shedding light on the impact of ESCRT subunits and viral L domain motifs on the replication of viruses. Furthermore, the antiviral effects facilitated by the ESCRT machinery have been investigated, aiming to provide valuable insights to guide the development and utilization of antiviral drugs.
Collapse
Affiliation(s)
- Jun Dai
- Experimental Animal Center, Zunyi Medical University, Zunyi, 563099, China; Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yiyi Feng
- Laboratory of Veterinary Microbiology and Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Ying Liao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Lei Tan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Yingjie Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Cuiping Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Xusheng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Chan Ding
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
The Roles of Exosomal Proteins: Classification, Function, and Applications. Int J Mol Sci 2023; 24:ijms24043061. [PMID: 36834471 PMCID: PMC9961790 DOI: 10.3390/ijms24043061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
Exosome, a subpopulation of extracellular vesicles, plays diverse roles in various biological processes. As one of the most abundant components of exosomes, exosomal proteins have been revealed to participate in the development of many diseases, such as carcinoma, sarcoma, melanoma, neurological disorders, immune responses, cardiovascular diseases, and infection. Thus, understanding the functions and mechanisms of exosomal proteins potentially assists clinical diagnosis and targeted delivery of therapies. However, current knowledge about the function and application of exosomal proteins is still limited. In this review, we summarize the classification of exosomal proteins, and the roles of exosomal proteins in exosome biogenesis and disease development, as well as in the clinical applications.
Collapse
|
4
|
Qiu X, Campos Y, van de Vlekkert D, Gomero E, Tanwar A, Kalathur R, Weesner JA, Bongiovanni A, Demmers J, d'Azzo A. Distinct functions of dimeric and monomeric scaffold protein Alix in regulating F-actin assembly and loading of exosomal cargo. J Biol Chem 2022; 298:102425. [PMID: 36030822 PMCID: PMC9531180 DOI: 10.1016/j.jbc.2022.102425] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Alix is a ubiquitously expressed scaffold protein that participates in numerous cellular processes related to the remodeling/repair of membranes and the actin cytoskeleton. Alix exists in monomeric and dimeric/multimeric configurations, but how dimer formation occurs and what role the dimer has in Alix-mediated processes are still largely elusive. Here, we reveal a mechanism for Alix homodimerization mediated by disulfide bonds under physiological conditions, and demonstrate that the Alix dimer is enriched in exosomes and F-actin cytoskeleton subcellular fractions. Proteomic analysis of exosomes derived from Alix-/- primary cells underlined the indispensable role of Alix in loading syntenin into exosomes, thereby regulating the cellular levels of this protein. Using a set of deletion mutants, we define the function of Alix Bro1 domain, which is solely required for its exosomal localization, and that of the V domain, which is needed for recruiting syntenin into exosomes. We reveal an essential role for Cys814 within the disordered proline rich domain (PRD) for Alix dimerization. By mutating this residue, we show that Alix remains exclusively monomeric and, in this configuration, is effective in loading syntenin into exosomes. In contrast, loss of dimerization affects the ability of Alix to associate with F-actin, thereby compromising Alix-mediated cytoskeleton remodeling. We propose that dimeric and monomeric forms of Alix selectively execute two of the protein's main functions: exosomal cargo loading and cytoskeleton remodeling.
Collapse
Affiliation(s)
- Xiaohui Qiu
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA
| | - Yvan Campos
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA
| | - Diantha van de Vlekkert
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA
| | - Elida Gomero
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA
| | - Ajay Tanwar
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ravi Kalathur
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Jason A Weesner
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA; Department of Anatomy and Neurobiology, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Antonella Bongiovanni
- Institute of Biomedical Research and Innovation (IRIB), National Research Council (CNR) of Italy, Palermo, Italy
| | - Jeroen Demmers
- Proteomics Center, Erasmus Medical Center, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands
| | - Alessandra d'Azzo
- Department of Genetics, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis Tennessee 38105, USA.
| |
Collapse
|
5
|
Mechanistic roles of tyrosine phosphorylation in reversible amyloids, autoinhibition, and endosomal membrane association of ALIX. J Biol Chem 2021; 297:101328. [PMID: 34688656 PMCID: PMC8577116 DOI: 10.1016/j.jbc.2021.101328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/26/2022] Open
Abstract
Human apoptosis-linked gene-2 interacting protein X (ALIX), a versatile adapter protein, regulates essential cellular processes by shuttling between late endosomal membranes and the cytosol, determined by its interactions with Src kinase. Here, we investigate the molecular basis of these transitions and the effects of tyrosine phosphorylation on the interplay between structure, assembly, and intramolecular and intermolecular interactions of ALIX. As evidenced by transmission electron microscopy, fluorescence and circular dichroism spectroscopy, the proline-rich domain of ALIX, which encodes binding epitopes of multiple cellular partners, formed rope-like β-sheet–rich reversible amyloid fibrils that dissolved upon Src-mediated phosphorylation and were restored on protein-tyrosine phosphatase 1B–mediated dephosphorylation of its conserved tyrosine residues. Analyses of the Bro1 domain of ALIX by solution NMR spectroscopy elucidated the conformational changes originating from its phosphorylation by Src and established that Bro1 binds to hyperphosphorylated proline-rich domain and to analogs of late endosomal membranes via its highly basic surface. These results uncover the autoinhibition mechanism that relocates ALIX to the cytosol and the diverse roles played by tyrosine phosphorylation in cellular and membrane functions of ALIX.
Collapse
|
6
|
Meng B, Vallejo Ramirez PP, Scherer KM, Bruggeman E, Kenyon JC, Kaminski CF, Lever AM. EAP45 association with budding HIV-1: Kinetics and domain requirements. Traffic 2021; 22:439-453. [PMID: 34580994 DOI: 10.1111/tra.12820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/25/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022]
Abstract
A number of viruses including HIV use the ESCRT system to bud from the infected cell. We have previously confirmed biochemically that ESCRT-II is involved in this process in HIV-1 and have defined the molecular domains that are important for this. Here, using SNAP-tag fluorescent labelling and both fixed and live cell imaging we show that the ESCRT-II component EAP45 colocalises with the HIV protein Gag at the plasma membrane in a temporal and quantitative manner, similar to that previously shown for ALIX and Gag. We show evidence that a proportion of EAP45 may be packaged within virions, and we confirm the importance of the N terminus of EAP45 and specifically the H0 domain in this process. By contrast, the Glue domain of EAP45 is more critical for recruitment during cytokinesis, emphasising that viruses have ways of recruiting cellular components that may be distinct from those used by some cellular processes. This raises the prospect of selective interference with the pathway to inhibit viral function while leaving cellular functions relatively unperturbed.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Pedro P Vallejo Ramirez
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Katharina M Scherer
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Ezra Bruggeman
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julia C Kenyon
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Microbiology and Immunology, National University of Singapore, Singapore, Singapore.,Homerton College, University of Cambridge, Cambridge, UK
| | - Clemens F Kaminski
- Laser Analytics Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Andrew M Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Department of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
7
|
The Role of Exosome and the ESCRT Pathway on Enveloped Virus Infection. Int J Mol Sci 2021; 22:ijms22169060. [PMID: 34445766 PMCID: PMC8396519 DOI: 10.3390/ijms22169060] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) system consists of peripheral membrane protein complexes ESCRT-0, -I, -II, -III VPS4-VTA1, and ALIX homodimer. This system plays an important role in the degradation of non-essential or dangerous plasma membrane proteins, the biogenesis of lysosomes and yeast vacuoles, the budding of most enveloped viruses, and promoting membrane shedding of cytokinesis. Recent results show that exosomes and the ESCRT pathway play important roles in virus infection. This review mainly focuses on the roles of exosomes and the ESCRT pathway in virus assembly, budding, and infection of enveloped viruses. The elaboration of the mechanism of exosomes and the ESCRT pathway in some enveloped viruses provides important implications for the further study of the infection mechanism of other enveloped viruses.
Collapse
|
8
|
Larios J, Mercier V, Roux A, Gruenberg J. ALIX- and ESCRT-III-dependent sorting of tetraspanins to exosomes. J Cell Biol 2020; 219:133723. [PMID: 32049272 PMCID: PMC7054990 DOI: 10.1083/jcb.201904113] [Citation(s) in RCA: 221] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 10/31/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022] Open
Abstract
The intraluminal vesicles (ILVs) of endosomes mediate the delivery of activated signaling receptors and other proteins to lysosomes for degradation, but they also modulate intercellular communication when secreted as exosomes. The formation of ILVs requires four complexes, ESCRT-0, -I, -II, and -III, with ESCRT-0, -I, and -II presumably involved in cargo sorting and ESCRT-III in membrane deformation and fission. Here, we report that an active form of the ESCRT-associated protein ALIX efficiently recruits ESCRT-III proteins to endosomes. This recruitment occurs independently of other ESCRTs but requires lysobisphosphatidic acid (LBPA) in vivo, and can be reconstituted on supported bilayers in vitro. Our data indicate that this ALIX- and ESCRT-III-dependent pathway promotes the sorting and delivery of tetraspanins to exosomes. We conclude that ALIX provides an additional pathway of ILV formation, secondary to the canonical pathway, and that this pathway controls the targeting of exosomal proteins.
Collapse
Affiliation(s)
- Jorge Larios
- Department of Biochemistry, Université de Genève, Geneva, Switzerland
| | - Vincent Mercier
- Department of Biochemistry, Université de Genève, Geneva, Switzerland
| | - Aurélien Roux
- Department of Biochemistry, Université de Genève, Geneva, Switzerland
| | - Jean Gruenberg
- Department of Biochemistry, Université de Genève, Geneva, Switzerland
| |
Collapse
|
9
|
Elias RD, Ma W, Ghirlando R, Schwieters CD, Reddy VS, Deshmukh L. Proline-rich domain of human ALIX contains multiple TSG101-UEV interaction sites and forms phosphorylation-mediated reversible amyloids. Proc Natl Acad Sci U S A 2020; 117:24274-24284. [PMID: 32917811 PMCID: PMC7533887 DOI: 10.1073/pnas.2010635117] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Proline-rich domains (PRDs) are among the most prevalent signaling modules of eukaryotes but often unexplored by biophysical techniques as their heterologous recombinant expression poses significant difficulties. Using a "divide-and-conquer" approach, we present a detailed investigation of a PRD (166 residues; ∼30% prolines) belonging to a human protein ALIX, a versatile adaptor protein involved in essential cellular processes including ESCRT-mediated membrane remodeling, cell adhesion, and apoptosis. In solution, the N-terminal fragment of ALIX-PRD is dynamically disordered. It contains three tandem sequentially similar proline-rich motifs that compete for a single binding site on its signaling partner, TSG101-UEV, as evidenced by heteronuclear NMR spectroscopy. Global fitting of relaxation dispersion data, measured as a function of TSG101-UEV concentration, allowed precise quantitation of these interactions. In contrast to the soluble N-terminal portion, the C-terminal tyrosine-rich fragment of ALIX-PRD forms amyloid fibrils and viscous gels validated using dye-binding assays with amyloid-specific probes, congo red and thioflavin T (ThT), and visualized by transmission electron microscopy. Remarkably, fibrils dissolve at low temperatures (2 to 6 °C) or upon hyperphosphorylation with Src kinase. Aggregation kinetics monitored by ThT fluorescence shows that charge repulsion dictates phosphorylation-mediated fibril dissolution and that the hydrophobic effect drives fibril formation. These data illuminate the mechanistic interplay between interactions of ALIX-PRD with TSG101-UEV and polymerization of ALIX-PRD and its central role in regulating ALIX function. This study also demonstrates the broad functional repertoires of PRDs and uncovers the impact of posttranslational modifications in the modulation of reversible amyloids.
Collapse
Affiliation(s)
- Ruben D Elias
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Wen Ma
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Charles D Schwieters
- Division of Computational Biosciences, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892
| | - Vijay S Reddy
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Lalit Deshmukh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093;
| |
Collapse
|
10
|
Dissecting the role of His domain protein tyrosine phosphatase/PTPN23 and ESCRTs in sorting activated epidermal growth factor receptor to the multivesicular body. Biochem Soc Trans 2018; 46:1037-1046. [PMID: 30190330 PMCID: PMC6195633 DOI: 10.1042/bst20170443] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Sorting of activated epidermal growth factor receptor (EGFR) into intraluminal vesicles (ILVs) within the multivesicular body (MVB) is an essential step during the down-regulation of the receptor. The machinery that drives EGFR sorting attaches to the cytoplasmic face of the endosome and generates vesicles that bud into the endosome lumen, but somehow escapes encapsulation itself. This machinery is termed the ESCRT (endosomal sorting complexes required for transport) pathway, a series of multi-protein complexes and accessory factors first identified in yeast. Here, we review the yeast ESCRT pathway and describe the corresponding components in mammalian cells that sort EGFR. One of these is His domain protein tyrosine phosphatase (HD-PTP/PTPN23), and we review the interactions involving HD-PTP and ESCRTs. Finally, we describe a working model for how this ESCRT pathway might overcome the intrinsic topographical problem of EGFR sorting to the MVB lumen.
Collapse
|
11
|
Abstract
Viral-like nanovesicles of endosomal origin, or “exosomes,” are newly recognized vehicles of signals that cells use to communicate, in various systemic diseases, including cancer. Yet the molecular mechanisms that regulate the biogenesis and activity of exosomes remain obscure. Here, we establish that the oncogenic protein SRC stimulates the secretion of exosomes loaded with syntenin and syndecans, known co-receptors for a plethora of signaling and adhesion molecules. SRC phosphorylates conserved tyrosine residues in the syndecans and syntenin and stimulates their endosomal budding. Moreover, SRC-dependent exosomes have a promigratory activity that strictly depends on syntenin expression. This work sheds light on a function of SRC in cell-to-cell communication and mechanisms of exosome biogenesis and activity, with potential broad impact for physiopathology. The cytoplasmic tyrosine kinase SRC controls cell growth, proliferation, adhesion, and motility. The current view is that SRC acts primarily downstream of cell-surface receptors to control intracellular signaling cascades. Here we reveal that SRC functions in cell-to-cell communication by controlling the biogenesis and the activity of exosomes. Exosomes are viral-like particles from endosomal origin that can reprogram recipient cells. By gain- and loss-of-function studies, we establish that SRC stimulates the secretion of exosomes having promigratory activity on endothelial cells and that syntenin is mandatory for SRC exosomal function. Mechanistically, SRC impacts on syndecan endocytosis and on syntenin–syndecan endosomal budding, upstream of ARF6 small GTPase and its effector phospholipase D2, directly phosphorylating the conserved juxtamembrane DEGSY motif of the syndecan cytosolic domain and syntenin tyrosine 46. Our study uncovers a function of SRC in cell–cell communication, supported by syntenin exosomes, which is likely to contribute to tumor–host interactions.
Collapse
|
12
|
Gahloth D, Heaven G, Jowitt TA, Mould AP, Bella J, Baldock C, Woodman P, Tabernero L. The open architecture of HD-PTP phosphatase provides new insights into the mechanism of regulation of ESCRT function. Sci Rep 2017; 7:9151. [PMID: 28831121 PMCID: PMC5567221 DOI: 10.1038/s41598-017-09467-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/26/2017] [Indexed: 11/16/2022] Open
Abstract
HD-PTP is a tumour suppressor phosphatase that controls endocytosis, down-regulation of mitogenic receptors and cell migration. Central to its role is the specific recruitment of critical endosomal sorting complexes required for transport (ESCRTs). However, the molecular mechanisms that enable HD-PTP to regulate ESCRT function are unknown. We have characterised the molecular architecture of the entire ESCRT binding region of HD-PTP using small angle X-ray scattering and hydrodynamic analyses. We show that HD-PTP adopts an open and extended conformation, optimal for concomitant interactions with multiple ESCRTs, which contrasts with the compact conformation of the related ESCRT regulator Alix. We demonstrate that the HD-PTP open conformation is functionally competent for binding cellular protein partners. Our analyses rationalise the functional cooperation of HD-PTP with ESCRT-0, ESCRT-I and ESCRT-III and support a model for regulation of ESCRT function by displacement of ESCRT subunits, which is crucial in determining the fate of ubiquitinated cargo.
Collapse
Affiliation(s)
- Deepankar Gahloth
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Graham Heaven
- School of Chemistry and Photon Science Institute, University of Manchester, Manchester, UK
| | - Thomas A Jowitt
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - A Paul Mould
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Biomolecular Analysis Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jordi Bella
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Clair Baldock
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Lydia Tabernero
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
13
|
Maki M, Takahara T, Shibata H. Multifaceted Roles of ALG-2 in Ca(2+)-Regulated Membrane Trafficking. Int J Mol Sci 2016; 17:ijms17091401. [PMID: 27571067 PMCID: PMC5037681 DOI: 10.3390/ijms17091401] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/15/2022] Open
Abstract
ALG-2 (gene name: PDCD6) is a penta-EF-hand Ca2+-binding protein and interacts with a variety of proteins in a Ca2+-dependent fashion. ALG-2 recognizes different types of identified motifs in Pro-rich regions by using different hydrophobic pockets, but other unknown modes of binding are also used for non-Pro-rich proteins. Most ALG-2-interacting proteins associate directly or indirectly with the plasma membrane or organelle membranes involving the endosomal sorting complex required for transport (ESCRT) system, coat protein complex II (COPII)-dependent ER-to-Golgi vesicular transport, and signal transduction from membrane receptors to downstream players. Binding of ALG-2 to targets may induce conformational change of the proteins. The ALG-2 dimer may also function as a Ca2+-dependent adaptor to bridge different partners and connect the subnetwork of interacting proteins.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Terunao Takahara
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| | - Hideki Shibata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
14
|
Sun S, Sun L, Zhou X, Wu C, Wang R, Lin SH, Kuang J. Phosphorylation-Dependent Activation of the ESCRT Function of ALIX in Cytokinetic Abscission and Retroviral Budding. Dev Cell 2016; 36:331-43. [PMID: 26859355 DOI: 10.1016/j.devcel.2016.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 11/08/2015] [Accepted: 01/04/2016] [Indexed: 11/28/2022]
Abstract
The modular adaptor protein ALIX is a key player in multiple ESCRT-III-mediated membrane remodeling processes. ALIX is normally present in a closed conformation due to an intramolecular interaction that renders ALIX unable to perform its ESCRT functions. Here we demonstrate that M phase-specific phosphorylation of the intramolecular interaction site within the proline-rich domain (PRD) of ALIX transforms cytosolic ALIX from closed to open conformation. Defining the role of this mechanism of ALIX regulation in three classical ESCRT-mediated processes revealed that phosphorylation of the intramolecular interaction site in the PRD is required for ALIX to function in cytokinetic abscission and retroviral budding, but not in multivesicular body sorting of activated epidermal growth factor receptor. Thus, phosphorylation of the intramolecular interaction site in the PRD is one of the major mechanisms that activates the ESCRT function of ALIX.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Experimental Therapeutics Academic Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Le Sun
- AbMax Biotechnology, Beijing 100085, China
| | - Xi Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Chuanfen Wu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Ruoning Wang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Sue-Hwa Lin
- Experimental Therapeutics Academic Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA; Experimental Therapeutics Academic Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Peñalva MA, Lucena-Agell D, Arst HN. Liaison alcaline: Pals entice non-endosomal ESCRTs to the plasma membrane for pH signaling. Curr Opin Microbiol 2015; 22:49-59. [PMID: 25460796 DOI: 10.1016/j.mib.2014.09.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 12/21/2022]
Abstract
The alkaline pH-responsive Pal/Rim signal transduction pathway mediating regulation of gene expression by ambient pH has been extensively studied in Aspergillus nidulans and Saccharomyces cerevisiae. In A. nidulans, PalH, PalI, PalF, PalC, PalA and PalB are required for the proteolytic activation of the executing transcription factor PacC. Although necessary, Pal proteins are insufficient to transmit the signal, which additionally requires ESCRT-I, II and Vps20 with Snf7 in ESCRT-III. Although this initially suggested cooperation between a plasma membrane sensor and an ESCRT-containing Pal complex on endosomes, recent evidence convincingly indicates that pH signaling actually takes place in plasma membrane-associated foci in which Pal proteins and an ESCRT-III polymer scaffold cooperate for pH signaling purposes, representing another non-endosomal role of ESCRT components.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| | | | | |
Collapse
|
16
|
Sun S, Zhou X, Corvera J, Gallick GE, Lin SH, Kuang J. ALG-2 activates the MVB sorting function of ALIX through relieving its intramolecular interaction. Cell Discov 2015; 1:15018. [PMID: 27462417 PMCID: PMC4860835 DOI: 10.1038/celldisc.2015.18] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/14/2015] [Indexed: 12/31/2022] Open
Abstract
The modular adaptor protein ALIX is critically involved in endosomal sorting complexes required for transport (ESCRT)-mediated multivesicular body (MVB) sorting of activated epidermal growth factor receptor (EGFR); however, ALIX contains a default intramolecular interaction that renders ALIX unable to perform this ESCRT function. The ALIX partner protein ALG-2 is a calcium-binding protein that belongs to the calmodulin superfamily. Prompted by a defined biological function of calmodulin, we determined the role of ALG-2 in regulating ALIX involvement in MVB sorting of activated EGFR. Our results show that calcium-dependent ALG-2 interaction with ALIX completely relieves the intramolecular interaction of ALIX and promotes CHMP4-dependent ALIX association with the membrane. EGFR activation induces increased ALG-2 interaction with ALIX, and this increased interaction is responsible for increased ALIX association with the membrane. Functionally, inhibition of ALIX activation by ALG-2 inhibits MVB sorting of activated EGFR as effectively as inhibition of ALIX interaction with CHMP4 does; however, inhibition of ALIX activation by ALG-2 does not affect cytokinetic abscission or equine infectious anemia virus (EIAV) budding. These findings indicate that calcium-dependent ALG-2 interaction with ALIX is specifically responsible for generating functional ALIX that supports MVB sorting of ubiquitinated membrane receptors.
Collapse
Affiliation(s)
- Sheng Sun
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Xi Zhou
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center , Houston, TX, USA
| | - Joe Corvera
- A&G Pharmaceuticals, Inc. , Baltimore, MD, USA
| | - Gary E Gallick
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sue-Hwa Lin
- The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Kuang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
17
|
Conserved Mode of Interaction between Yeast Bro1 Family V Domains and YP(X)nL Motif-Containing Target Proteins. EUKARYOTIC CELL 2015; 14:976-82. [PMID: 26150415 DOI: 10.1128/ec.00091-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/02/2015] [Indexed: 11/20/2022]
Abstract
Yeast Bro1 and Rim20 belong to a family of proteins which possess a common architecture of Bro1 and V domains. Alix and His domain protein tyrosine phosphatase (HD-PTP), mammalian Bro1 family proteins, bind YP(X)nL (n = 1 to 3) motifs in their target proteins through their V domains. In Alix, the Phe residue, which is located in the hydrophobic groove of the V domain, is critical for binding to the YP(X)nL motif. Although the overall sequences are not highly conserved between mammalian and yeast V domains, we show that the conserved Phe residue in the yeast Bro1 V domain is important for binding to its YP(X)nL-containing target protein, Rfu1. Furthermore, we show that Rim20 binds to its target protein Rim101 through the interaction between the V domain of Rim20 and the YPIKL motif of Rim101. The mutation of either the critical Phe residue in the Rim20 V domain or the YPIKL motif of Rim101 affected the Rim20-mediated processing of Rim101. These results suggest that the interactions between V domains and YP(X)nL motif-containing proteins are conserved from yeast to mammalian cells. Moreover, the specificities of each V domain to their target protein suggest that unidentified elements determine the binding specificity.
Collapse
|
18
|
Han Z, Madara JJ, Liu Y, Liu W, Ruthel G, Freedman BD, Harty RN. ALIX Rescues Budding of a Double PTAP/PPEY L-Domain Deletion Mutant of Ebola VP40: A Role for ALIX in Ebola Virus Egress. J Infect Dis 2015; 212 Suppl 2:S138-45. [PMID: 25786915 DOI: 10.1093/infdis/jiu838] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Ebola (EBOV) is an enveloped, negative-sense RNA virus belonging to the family Filoviridae that causes hemorrhagic fever syndromes with high-mortality rates. To date, there are no licensed vaccines or therapeutics to control EBOV infection and prevent transmission. Consequently, the need to better understand the mechanisms that regulate virus transmission is critical to developing countermeasures. The EBOV VP40 matrix protein plays a central role in late stages of virion assembly and egress, and independent expression of VP40 leads to the production of virus-like particles (VLPs) by a mechanism that accurately mimics budding of live virus. VP40 late (L) budding domains mediate efficient virus-cell separation by recruiting host ESCRT and ESCRT-associated proteins to complete the membrane fission process. L-domains consist of core consensus amino acid motifs including PPxY, P(T/S)AP, and YPx(n)L/I, and EBOV VP40 contains overlapping PPxY and PTAP motifs whose interactions with Nedd4 and Tsg101, respectively, have been characterized extensively. Here, we present data demonstrating for the first time that EBOV VP40 possesses a third L-domain YPx(n)L/I consensus motif that interacts with the ESCRT-III protein Alix. We show that the YPx(n)L/I motif mapping to amino acids 18-26 of EBOV VP40 interacts with the Alix Bro1-V fragment, and that siRNA knockdown of endogenous Alix expression inhibits EBOV VP40 VLP egress. Furthermore, overexpression of Alix Bro1-V rescues VLP production of the budding deficient EBOV VP40 double PTAP/PPEY L-domain deletion mutant to wild-type levels. Together, these findings demonstrate that EBOV VP40 recruits host Alix via a YPx(n)L/I motif that can function as an alternative L-domain to promote virus egress.
Collapse
Affiliation(s)
- Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Jonathan J Madara
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Yuliang Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Wenbo Liu
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia
| |
Collapse
|
19
|
Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites. PLoS Pathog 2015; 11:e1004677. [PMID: 25710462 PMCID: PMC4339578 DOI: 10.1371/journal.ppat.1004677] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/12/2015] [Indexed: 11/19/2022] Open
Abstract
The cellular endosomal sorting complex required for transport (ESCRT) machinery is involved in membrane budding processes, such as multivesicular biogenesis and cytokinesis. In HIV-infected cells, HIV-1 hijacks the ESCRT machinery to drive HIV release. Early in the HIV-1 assembly process, the ESCRT-I protein Tsg101 and the ESCRT-related protein ALIX are recruited to the assembly site. Further downstream, components such as the ESCRT-III proteins CHMP4 and CHMP2 form transient membrane associated lattices, which are involved in virus-host membrane fission. Although various geometries of ESCRT-III assemblies could be observed, the actual membrane constriction and fission mechanism is not fully understood. Fission might be driven from inside the HIV-1 budding neck by narrowing the membranes from the outside by larger lattices surrounding the neck, or from within the bud. Here, we use super-resolution fluorescence microscopy to elucidate the size and structure of the ESCRT components Tsg101, ALIX, CHMP4B and CHMP2A during HIV-1 budding below the diffraction limit. To avoid the deleterious effects of using fusion proteins attached to ESCRT components, we performed measurements on the endogenous protein or, in the case of CHMP4B, constructs modified with the small HA tag. Due to the transient nature of the ESCRT interactions, the fraction of HIV-1 assembly sites with colocalizing ESCRT complexes was low (1.5%-3.4%). All colocalizing ESCRT clusters exhibited closed, circular structures with an average size (full-width at half-maximum) between 45 and 60 nm or a diameter (determined using a Ripley's L-function analysis) of roughly 60 to 100 nm. The size distributions for colocalizing clusters were narrower than for non-colocalizing clusters, and significantly smaller than the HIV-1 bud. Hence, our results support a membrane scission process driven by ESCRT protein assemblies inside a confined structure, such as the bud neck, rather than by large lattices around the neck or in the bud lumen. In the case of ALIX, a cloud of individual molecules surrounding the central clusters was often observed, which we attribute to ALIX molecules incorporated into the nascent HIV-1 Gag shell. Experiments performed using YFP-tagged Tsg101 led to an over 10-fold increase in ESCRT structures colocalizing with HIV-1 budding sites indicating an influence of the fusion protein tag on the function of the ESCRT protein.
Collapse
|
20
|
Abstract
Enveloped viruses escape infected cells by budding through limiting membranes. In the decade since the discovery that HIV recruits cellular ESCRT (endosomal sorting complexes required for transport) machinery to facilitate viral budding, this pathway has emerged as the major escape route for enveloped viruses. In cells, the ESCRT pathway catalyzes analogous membrane fission events required for the abscission stage of cytokinesis and for a series of "reverse topology" vesiculation events. Studies of enveloped virus budding are therefore providing insights into the complex cellular mechanisms of cell division and membrane protein trafficking (and vice versa). Here, we review how viruses mimic cellular recruiting signals to usurp the ESCRT pathway, discuss mechanistic models for ESCRT pathway functions, and highlight important research frontiers.
Collapse
Affiliation(s)
- Jörg Votteler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112-5650, USA
| | | |
Collapse
|
21
|
Pashkova N, Gakhar L, Winistorfer SC, Sunshine AB, Rich M, Dunham MJ, Yu L, Piper RC. The yeast Alix homolog Bro1 functions as a ubiquitin receptor for protein sorting into multivesicular endosomes. Dev Cell 2013; 25:520-33. [PMID: 23726974 DOI: 10.1016/j.devcel.2013.04.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 04/09/2013] [Indexed: 12/23/2022]
Abstract
Sorting of ubiquitinated membrane proteins into lumenal vesicles of multivesicular bodies is mediated by the Endosomal Sorting Complex Required for Transport (ESCRT) apparatus and accessory proteins such as Bro1, which recruits the deubiquitinating enzyme Doa4 to remove ubiquitin from cargo. Here we propose that Bro1 works as a receptor for the selective sorting of ubiquitinated cargoes. We found synthetic genetic interactions between BRO1 and ESCRT-0, suggesting that Bro1 functions similarly to ESCRT-0. Multiple structural approaches demonstrated that Bro1 binds ubiquitin via the N-terminal trihelical arm of its middle V domain. Mutants of Bro1 that lack the ability to bind Ub were dramatically impaired in their ability to sort Ub-cargo membrane proteins, but only when combined with hypomorphic alleles of ESCRT-0. These data suggest that Bro1 and other Bro1 family members function in parallel with ESCRT-0 to recognize and sort Ub-cargoes.
Collapse
Affiliation(s)
- Natasha Pashkova
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Maemoto Y, Kiso S, Shibata H, Maki M. Analysis of limited proteolytic activity of calpain-7 using non-physiological substrates in mammalian cells. FEBS J 2013; 280:2594-607. [DOI: 10.1111/febs.12243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/27/2013] [Accepted: 03/11/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Maemoto
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa-ku; Japan
| | - Satomi Kiso
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa-ku; Japan
| | - Hideki Shibata
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa-ku; Japan
| | - Masatoshi Maki
- Department of Applied Molecular Biosciences; Graduate School of Bioagricultural Sciences; Nagoya University; Chikusa-ku; Japan
| |
Collapse
|
23
|
Abstract
The endosomal sorting complexes required for transport (ESCRT) pathway was initially defined in yeast genetic screens that identified the factors necessary to sort membrane proteins into intraluminal endosomal vesicles. Subsequent studies have revealed that the mammalian ESCRT pathway also functions in a series of other key cellular processes, including formation of extracellular microvesicles, enveloped virus budding, and the abscission stage of cytokinesis. The core ESCRT machinery comprises Bro1 family proteins and ESCRT-I, ESCRT-II, ESCRT-III, and VPS4 complexes. Site-specific adaptors recruit these soluble factors to assemble on different cellular membranes, where they carry out membrane fission reactions. ESCRT-III proteins form filaments that draw membranes together from the cytoplasmic face, and mechanistic models have been advanced to explain how ESCRT-III filaments and the VPS4 ATPase can work together to catalyze membrane fission.
Collapse
Affiliation(s)
- John McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112-5650, USA
| | | | | |
Collapse
|
24
|
Meng B, Lever AM. Wrapping up the bad news: HIV assembly and release. Retrovirology 2013; 10:5. [PMID: 23305486 PMCID: PMC3558412 DOI: 10.1186/1742-4690-10-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/21/2012] [Indexed: 02/02/2023] Open
Abstract
The late Nobel Laureate Sir Peter Medawar once memorably described viruses as ‘bad news wrapped in protein’. Virus assembly in HIV is a remarkably well coordinated process in which the virus achieves extracellular budding using primarily intracellular budding machinery and also the unusual phenomenon of export from the cell of an RNA. Recruitment of the ESCRT system by HIV is one of the best documented examples of the comprehensive way in which a virus hijacks a normal cellular process. This review is a summary of our current understanding of the budding process of HIV, from genomic RNA capture through budding and on to viral maturation, but centering on the proteins of the ESCRT pathway and highlighting some recent advances in our understanding of the cellular components involved and the complex interplay between the Gag protein and the genomic RNA.
Collapse
Affiliation(s)
- Bo Meng
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | |
Collapse
|
25
|
In vitro reconstitution of the ordered assembly of the endosomal sorting complex required for transport at membrane-bound HIV-1 Gag clusters. Proc Natl Acad Sci U S A 2012; 109:16928-33. [PMID: 23027949 DOI: 10.1073/pnas.1211759109] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most membrane-enveloped viruses depend on host proteins of the endosomal sorting complex required for transport (ESCRT) machinery for their release. HIV-1 is the prototypic ESCRT-dependent virus. The direct interactions between HIV-1 and the early ESCRT factors TSG101 and ALIX have been mapped in detail. However, the full pathway of ESCRT recruitment to HIV-1 budding sites, which culminates with the assembly of the late-acting CHMP4, CHMP3, CHMP2, and CHMP1 subunits, is less completely understood. Here, we report the biochemical reconstitution of ESCRT recruitment to viral assembly sites, using purified proteins and giant unilamellar vesicles. The myristylated full-length Gag protein of HIV-1 was purified to monodispersity. Myr-Gag forms clusters on giant unilamellar vesicle membranes containing the plasma membrane lipid PI(4,5)P(2). These Gag clusters package a fluorescent oligonucleotide, and recruit early ESCRT complexes ESCRT-I or ALIX with the appropriate dependence on the Gag PTAP and LYP(X)(n)L motifs. ALIX directly recruits the key ESCRT-III subunit CHMP4. ESCRT-I can only recruit CHMP4 when ESCRT-II and CHMP6 are present as intermediary factors. Downstream of CHMP4, CHMP3 and CHMP2 assemble synergistically, with the presence of both subunits required for efficient recruitment. The very late-acting factor CHMP1 is not recruited unless the pathway is completed through CHMP3 and CHMP2. These findings define the minimal sets of components needed to complete ESCRT assembly at HIV-1 budding sites, and provide a starting point for in vitro structural and biophysical dissection of the system.
Collapse
|
26
|
Abstract
Multivesicular bodies (MVBs) are unique organelles in the endocytic pathway that contain vesicles in their lumen. Sorting and incorporation of material into such vesicles is a critical cellular process that has been intensely studied following discovery of the ESCRT (endosomal sorting complex required for transport) machinery just more than a decade ago. In this review, we summarize current understanding of the cellular functions of MVBs and how the ESCRT machinery contributes to MVB morphogenesis. We also highlight the importance of MVBs and ESCRTs in human health. We identify critical areas in which further mechanistic and spatiotemporal studies in living cells will advance this exciting area of research.
Collapse
Affiliation(s)
- Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
27
|
Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E, Zimmermann P, David G. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012; 14:677-85. [PMID: 22660413 DOI: 10.1038/ncb2502] [Citation(s) in RCA: 1282] [Impact Index Per Article: 106.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 04/16/2012] [Indexed: 11/09/2022]
Abstract
The biogenesis of exosomes, small secreted vesicles involved in signalling processes, remains incompletely understood. Here, we report evidence that the syndecan heparan sulphate proteoglycans and their cytoplasmic adaptor syntenin control the formation of exosomes. Syntenin interacts directly with ALIX through LYPX(n)L motifs, similarly to retroviral proteins, and supports the intraluminal budding of endosomal membranes. Syntenin exosomes depend on the availability of heparan sulphate, syndecans, ALIX and ESCRTs, and impact on the trafficking and confinement of FGF signals. This study identifies a key role for syndecan-syntenin-ALIX in membrane transport and signalling processes.
Collapse
Affiliation(s)
- Maria Francesca Baietti
- Laboratory for Glycobiology and Developmental Genetics, Department of Human Genetics, KULeuven, Campus Gasthuisberg, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Maki M, Maemoto Y, Osako Y, Shibata H. Evolutionary and physical linkage between calpains and penta-EF-hand Ca2+-binding proteins. FEBS J 2012; 279:1414-21. [PMID: 22404899 DOI: 10.1111/j.1742-4658.2012.08560.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The name calpain was historically given to a protease that is activated by Ca(2+) and whose primary structure contains a Ca(2+)-binding penta-EF-hand (PEF) as well as a calpain cysteine protease (CysPc) domain and a C2-domain-like (C2L) domain. In the human genome, CysPc domains are found in 15 genes, but only nine of them encode PEF domains. Fungi and budding yeasts have calpain-like sequences that lack the PEF domain, and each protein (designated PalB and Rim13, respectively) is orthologous to human calpain-7, indicating that the calpain-7 orthologs are evolutionarily more conserved than classical calpains possessing PEF domains. An N-terminal region of calpain-7 has a tandem repeat of microtubule-interacting and transport domains that interact with a subset of endosomal sorting complex required for transport (ESCRT) III proteins. In addition to calpains, PEF domains are found in other Ca(2+)-binding proteins including ALG-2 that associates with ALIX (an ESCRT-III accessory protein) and TSG101 (an ESCRT-I subunit). Phylogenetic comparison of dissected domain structures of calpains and experimentally confirmed protein-protein interaction networks imply that there is an evolutionary and physical linkage between mammalian calpains and PEF proteins involving the ESCRT system.
Collapse
Affiliation(s)
- Masatoshi Maki
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Japan.
| | | | | | | |
Collapse
|
29
|
EhADH112 is a Bro1 domain-containing protein involved in the Entamoeba histolytica multivesicular bodies pathway. J Biomed Biotechnol 2012; 2012:657942. [PMID: 22500103 PMCID: PMC3303925 DOI: 10.1155/2012/657942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 10/03/2011] [Indexed: 12/21/2022] Open
Abstract
EhADH112 is an Entamoeba histolytica Bro1 domain-containing protein, structurally related to mammalian ALIX and yeast BRO1, both involved in the Endosomal Sorting Complexes Required for Transport (ESCRT)-mediated multivesicular bodies (MVB) biogenesis. Here, we investigated an alternative role for EhADH112 in the MVB protein trafficking pathway by overexpressing 166 amino acids of its N-terminal Bro1 domain in trophozoites. Trophozoites displayed diminished phagocytosis rates and accumulated exogenous Bro1 at cytoplasmic vesicles which aggregated into aberrant complexes at late stages of phagocytosis, probably preventing EhADH112 function. Additionally, the existence of a putative E. histolytica ESCRT-III subunit (EhVps32) presumably interacting with EhADH112, led us to perform pull-down experiments with GST-EhVps32 and [35S]-labeled EhADH112 or EhADH112 derivatives, confirming EhVps32 binding to EhADH112 through its Bro1 domain. Our overall results define EhADH112 as a novel member of ESCRT-accessory proteins transiently present at cellular surface and endosomal compartments, probably contributing to MVB formation during phagocytosis.
Collapse
|
30
|
Sette P, Mu R, Dussupt V, Jiang J, Snyder G, Smith P, Xiao TS, Bouamr F. The Phe105 loop of Alix Bro1 domain plays a key role in HIV-1 release. Structure 2011; 19:1485-95. [PMID: 21889351 PMCID: PMC3195861 DOI: 10.1016/j.str.2011.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 07/19/2011] [Indexed: 01/07/2023]
Abstract
Alix and cellular paralogs HD-PTP and Brox contain N-terminal Bro1 domains that bind ESCRT-III CHMP4. In contrast to HD-PTP and Brox, expression of the Bro1 domain of Alix alleviates HIV-1 release defects that result from interrupted access to ESCRT. In an attempt to elucidate this functional discrepancy, we solved the crystal structures of the Bro1 domains of HD-PTP and Brox. They revealed typical "boomerang" folds they share with the Bro1 Alix domain. However, they each contain unique structural features that may be relevant to their specific function(s). In particular, phenylalanine residue in position 105 (Phe105) of Alix belongs to a long loop that is unique to its Bro1 domain. Concurrently, mutation of Phe105 and surrounding residues at the tip of the loop compromise the function of Alix in HIV-1 budding without affecting its interactions with Gag or CHMP4. These studies identify a new functional determinant in the Bro1 domain of Alix.
Collapse
Affiliation(s)
- Paola Sette
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Ruiling Mu
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Vincent Dussupt
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Jiansheng Jiang
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Greg Snyder
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Patrick Smith
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
| | - Tsan. Sam Xiao
- Laboratory of Immunology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
- Corresponding authors. Laboratory of Molecular Microbiology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 496 4099, Fax: 301 402 0226, . Laboratory of Immunology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 402 9782, Fax: 301 480 1291,
| | - Fadila Bouamr
- Laboratory of Molecular Microbiology, Structural Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, 20892, MD, USA
- Corresponding authors. Laboratory of Molecular Microbiology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 496 4099, Fax: 301 402 0226, . Laboratory of Immunology, NIAID, NIH, 4 Center Dr, Bethesda, MD, 20892, Phone: 301 402 9782, Fax: 301 480 1291,
| |
Collapse
|
31
|
Abstract
Most membrane-enveloped viruses bud from infected cells by hijacking the host ESCRT machinery. The ESCRTs are recruited to the budding sites by viral proteins that contain short proline (Pro)-rich motifs (PRMs) known as late domains. The late domains probably evolved by co-opting host PRMs involved in the normal functions of ESCRTs in endosomal sorting and cytokinesis. The solution and crystal structures of PRMs bound to their interaction partners explain the conserved roles of Pro and other residues that predominate in these sequences. PRMs are often grouped together in much larger Pro-rich regions (PRRs) of as many as 150 residues. The PRR of the ESCRT-associated protein, ALIX, autoregulates its conformation and activity. The robustness of different viral budding and host pathways to impairments in Pro-based interactions varies considerably. The known biology of PRM recognition in the ESCRT pathway seems, in principle, compatible with antiviral development, given our increasingly nuanced understanding of the relative weakness and robustness of the host and viral processes.
Collapse
Affiliation(s)
- Xuefeng Ren
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H. Hurley
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Abstract
The cellular ALIX protein functions within the ESCRT pathway to facilitate intralumenal endosomal vesicle formation, the abscission stage of cytokinesis, and enveloped virus budding. Here, we report that the C-terminal proline-rich region (PRR) of ALIX folds back against the upstream domains and auto-inhibits V domain binding to viral late domains. Mutations designed to destabilize the closed conformation of the V domain opened the V domain, increased ALIX membrane association, and enhanced virus budding. These observations support a model in which ALIX activation requires dissociation of the autoinhibitory PRR and opening of the V domain arms.
Collapse
|