1
|
Camargo Tavares L, Lopera-Maya EA, Bonfiglio F, Zheng T, Sinha T, Zanchetta Marques F, Zhernakova A, Sanna S, D'Amato M. Rome III Criteria Capture Higher Irritable Bowel Syndrome SNP-Heritability and Highlight a Novel Genetic Link With Cardiovascular Traits. Cell Mol Gastroenterol Hepatol 2024; 18:101345. [PMID: 38643935 PMCID: PMC11176963 DOI: 10.1016/j.jcmgh.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND & AIMS Irritable bowel syndrome (IBS) shows genetic predisposition, and large-scale genome-wide association studies (GWAS) are emerging, based on heterogeneous disease definitions. We investigated the genetic architecture of IBS defined according to gold standard Rome Criteria. METHODS We conducted GWAS meta-analyses of Rome III IBS and its subtypes in 24,735 IBS cases and 77,149 asymptomatic control subjects from 2 independent European cohorts (UK Biobank and Lifelines). Single-nucleotide polymorphism (SNP)-based heritability (h2SNP) and genetic correlations (rg) with other traits were calculated. IBS risk loci were functionally annotated to identify candidate genes. Sensitivity and conditional analyses were conducted to assess impact of confounders. Polygenic risk scores were computed and tested in independent datasets. RESULTS Rome III IBS showed significant SNP-heritability (up to 13%) and similar genetic architecture across subtypes, including those with manifestations at the opposite ends of the symptom spectrum (rg = 0.48 between IBS-D and IBS-C). Genetic correlations with other traits highlighted commonalities with family history of heart disease and hypertension, coronary artery disease, and angina pectoris (rg = 0.20-0.45), among others. Four independent GWAS signals (P < 5×10-8) were detected, including 2 novel loci for IBS (rs2035380) and IBS-mixed (rs2048419) that had been previously associated with hypertension and coronary artery disease. Functional annotation of GWAS risk loci revealed genes implicated in circadian rhythm (BMAL1), intestinal barrier (CLDN23), immunomodulation (MFHAS1), and the cyclic adenosine monophosphate pathway (ADCY2). Polygenic risk scores allowed the identification of individuals at increased risk of IBS (odds ratio, 1.34; P = 1.1×10-3). CONCLUSIONS Rome III Criteria capture higher SNP-heritability than previously estimated for IBS. The identified link between IBS and cardiovascular traits may contribute to the delineation of alternative therapeutic strategies, warranting further investigation.
Collapse
Affiliation(s)
| | | | - Ferdinando Bonfiglio
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy; CEINGE Biotecnologie Avanzate s.c.ar.l., Naples, Italy
| | - Tenghao Zheng
- School of Biological Sciences, Monash University, Clayton, Australia
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Francine Zanchetta Marques
- School of Biological Sciences, Monash University, Clayton, Australia; Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Serena Sanna
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Mauro D'Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE - BRTA, Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Department of Medicine and Surgery, LUM University, Casamassima, Italy
| |
Collapse
|
2
|
Unusual phototransduction via cross-motif signaling from G q to adenylyl cyclase in intrinsically photosensitive retinalganglion cells. Proc Natl Acad Sci U S A 2023; 120:e2216599120. [PMID: 36584299 PMCID: PMC9910442 DOI: 10.1073/pnas.2216599120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Nonimage-forming vision in mammals is mediated primarily by melanopsin (OPN4)-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, melanopsin predominantly activates, via Gαq,11,14, phospholipase C-β4 to open transient receptor 6 (TRPC6) and TRPC7 channels. In M2- and M4-ipRGCs, however, a prominent phototransduction mechanism involves the opening of hyperpolarization- and cyclic nucleotide-gated channels via cyclic nucleotide, although the upstream steps remain uncertain. We report here experiments, primarily on M4-ipRGCs, with photo-uncaging of cyclic nucleotides and virally expressed CNGA2 channels to conclude that the second messenger is cyclic adenosine monophosphate (cAMP) - very surprising considering that cyclic guanosine monophosphate (cGMP) is used in almost all cyclic nucleotide-mediated phototransduction mechanisms across the animal kingdom. We further found that the upstream G protein is likewise Gq, which via its Gβγ subunits directly activates adenylyl cyclase (AC). Our findings are a demonstration in a native cell of a cross-motif GPCR signaling pathway from Gq directly to AC with a specific function.
Collapse
|
3
|
Tabakoff B, Hoffman PL. The role of the type 7 adenylyl cyclase isoform in alcohol use disorder and depression. Front Pharmacol 2022; 13:1012013. [PMID: 36386206 PMCID: PMC9649618 DOI: 10.3389/fphar.2022.1012013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/07/2022] [Indexed: 10/28/2023] Open
Abstract
The translation of extracellular signals to intracellular responses involves a number of signal transduction molecules. A major component of this signal transducing function is adenylyl cyclase, which produces the intracellular "second messenger," cyclic AMP. What was initially considered as a single enzyme for cyclic AMP generation is now known to be a family of nine membrane-bound enzymes, and one cytosolic enzyme. Each member of the adenylyl cyclase family is distinguished by factors that modulate its catalytic activity, by the cell, tissue, and organ distribution of the family members, and by the physiological/behavioral functions that are subserved by particular family members. This review focuses on the Type 7 adenylyl cyclase (AC7) in terms of its catalytic characteristics and its relationship to alcohol use disorder (AUD, alcoholism), and major depressive disorder (MDD). AC7 may be part of the inherited system predisposing an individual to AUD and/or MDD in a sex-specific manner, or this enzyme may change in its expression or activity in response to the progression of disease or in response to treatment. The areas of brain expressing AC7 are related to responses to stress and evidence is available that CRF1 receptors are coupled to AC7 in the amygdala and pituitary. Interestingly, AC7 is the major form of the cyclase contained in bone marrow-derived cells of the immune system and platelets, and in microglia. AC7 is thus, poised to play an integral role in both peripheral and brain immune function thought to be etiologically involved in both AUD and MDD. Both platelet and lymphocyte adenylyl cyclase activity have been proposed as markers for AUD and MDD, as well as prognostic markers of positive response to medication for MDD. We finish with consideration of paths to medication development that may selectively modulate AC7 activity as treatments for MDD and AUD.
Collapse
Affiliation(s)
- Boris Tabakoff
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
| | - Paula L. Hoffman
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Lohocla Research Corporation, Aurora, CO, United States
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
4
|
Cross-Talk Between the Adenylyl Cyclase/cAMP Pathway and Ca 2+ Homeostasis. Rev Physiol Biochem Pharmacol 2021; 179:73-116. [PMID: 33398503 DOI: 10.1007/112_2020_55] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cyclic AMP and Ca2+ are the first second or intracellular messengers identified, unveiling the cellular mechanisms activated by a plethora of extracellular signals, including hormones. Cyclic AMP generation is catalyzed by adenylyl cyclases (ACs), which convert ATP into cAMP and pyrophosphate. By the way, Ca2+, as energy, can neither be created nor be destroyed; Ca2+ can only be transported, from one compartment to another, or chelated by a variety of Ca2+-binding molecules. The fine regulation of cytosolic concentrations of cAMP and free Ca2+ is crucial in cell function and there is an intimate cross-talk between both messengers to fine-tune the cellular responses. Cancer is a multifactorial disease resulting from a combination of genetic and environmental factors. Frequent cases of cAMP and/or Ca2+ homeostasis remodeling have been described in cancer cells. In those tumoral cells, cAMP and Ca2+ signaling plays a crucial role in the development of hallmarks of cancer, including enhanced proliferation and migration, invasion, apoptosis resistance, or angiogenesis. This review summarizes the cross-talk between the ACs/cAMP and Ca2+ intracellular pathways with special attention to the functional and reciprocal regulation between Orai1 and AC8 in normal and cancer cells.
Collapse
|
5
|
Prata DP, Costa-Neves B, Cosme G, Vassos E. Unravelling the genetic basis of schizophrenia and bipolar disorder with GWAS: A systematic review. J Psychiatr Res 2019; 114:178-207. [PMID: 31096178 DOI: 10.1016/j.jpsychires.2019.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To systematically review findings of GWAS in schizophrenia (SZ) and in bipolar disorder (BD); and to interpret findings, with a focus on identifying independent replications. METHOD PubMed search, selection and review of all independent GWAS in SZ or BD, published since March 2011, i.e. studies using non-overlapping samples within each article, between articles, and with those of the previous review (Li et al., 2012). RESULTS From the 22 GWAS included in this review, the genetic associations surviving standard GWAS-significance were for genetic markers in the regions of ACSL3/KCNE4, ADCY2, AMBRA1, ANK3, BRP44, DTL, FBLN1, HHAT, INTS7, LOC392301, LOC645434/NMBR, LOC729457, LRRFIP1, LSM1, MDM1, MHC, MIR2113/POU3F2, NDST3, NKAPL, ODZ4, PGBD1, RENBP, TRANK1, TSPAN18, TWIST2, UGT1A1/HJURP, WHSC1L1/FGFR1 and ZKSCAN4. All genes implicated across both reviews are discussed in terms of their function and implication in neuropsychiatry. CONCLUSION Taking all GWAS to date into account, AMBRA1, ANK3, ARNTL, CDH13, EFHD1 (albeit with different alleles), MHC, PLXNA2 and UGT1A1 have been implicated in either disorder in at least two reportedly non-overlapping samples. Additionally, evidence for a SZ/BD common genetic basis is most strongly supported by the implication of ANK3, NDST3, and PLXNA2.
Collapse
Affiliation(s)
- Diana P Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal; Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, 16 De Crespigny Park, SE5 8AF, UK; Instituto Universitário de Lisboa (ISCTE-IUL), Centro de Investigação e Intervenção Social, Lisboa, Portugal.
| | - Bernardo Costa-Neves
- Lisbon Medical School, University of Lisbon, Av. Professor Egas Moniz, 1649-028, Lisbon, Portugal; Centro Hospitalar Psiquiátrico de Lisboa, Av. do Brasil, 53 1749-002, Lisbon, Portugal
| | - Gonçalo Cosme
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Portugal
| | - Evangelos Vassos
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, SE5 8AF, UK
| |
Collapse
|
6
|
Civciristov S, Ellisdon AM, Suderman R, Pon CK, Evans BA, Kleifeld O, Charlton SJ, Hlavacek WS, Canals M, Halls ML. Preassembled GPCR signaling complexes mediate distinct cellular responses to ultralow ligand concentrations. Sci Signal 2018; 11:eaan1188. [PMID: 30301787 PMCID: PMC7416780 DOI: 10.1126/scisignal.aan1188] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell surface signaling proteins, participate in nearly all physiological processes, and are the targets of 30% of marketed drugs. Typically, nanomolar to micromolar concentrations of ligand are used to activate GPCRs in experimental systems. We detected GPCR responses to a wide range of ligand concentrations, from attomolar to millimolar, by measuring GPCR-stimulated production of cyclic adenosine monophosphate (cAMP) with high spatial and temporal resolution. Mathematical modeling showed that femtomolar concentrations of ligand activated, on average, 40% of the cells in a population provided that a cell was activated by one to two binding events. Furthermore, activation of the endogenous β2-adrenergic receptor (β2AR) and muscarinic acetylcholine M3 receptor (M3R) by femtomolar concentrations of ligand in cell lines and human cardiac fibroblasts caused sustained increases in nuclear translocation of extracellular signal-regulated kinase (ERK) and cytosolic protein kinase C (PKC) activity, respectively. These responses were spatially and temporally distinct from those that occurred in response to higher concentrations of ligand and resulted in a distinct cellular proteomic profile. This highly sensitive signaling depended on the GPCRs forming preassembled, higher-order signaling complexes at the plasma membrane. Recognizing that GPCRs respond to ultralow concentrations of neurotransmitters and hormones challenges established paradigms of drug action and provides a previously unappreciated aspect of GPCR activation that is quite distinct from that typically observed with higher ligand concentrations.
Collapse
Affiliation(s)
- Srgjan Civciristov
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Andrew M Ellisdon
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Ryan Suderman
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Cindy K Pon
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bronwyn A Evans
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Oded Kleifeld
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Steven J Charlton
- Cell Signalling Research Group, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
- Excellerate Bioscience Ltd, MediCity, Nottingham NG90 6BH, UK
| | - William S Hlavacek
- Theoretical Biology and Biophysics Group, Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Meritxell Canals
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
7
|
Endogenous Gαq-Coupled Neuromodulator Receptors Activate Protein Kinase A. Neuron 2017; 96:1070-1083.e5. [PMID: 29154125 DOI: 10.1016/j.neuron.2017.10.023] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/11/2017] [Accepted: 10/16/2017] [Indexed: 01/09/2023]
Abstract
Protein kinase A (PKA) integrates inputs from G-protein-coupled neuromodulator receptors to modulate synaptic and cellular function. Gαs signaling stimulates PKA activity, whereas Gαi inhibits PKA activity. Gαq, on the other hand, signals through phospholipase C, and it remains unclear whether Gαq-coupled receptors signal to PKA in their native context. Here, using two independent optical reporters of PKA activity in acute mouse hippocampus slices, we show that endogenous Gαq-coupled muscarinic acetylcholine receptors activate PKA. Mechanistically, this effect is mediated by parallel signaling via either calcium or protein kinase C. Furthermore, multiple Gαq-coupled receptors modulate phosphorylation by PKA, a classical Gαs/Gαi effector. Thus, these results highlight PKA as a biochemical integrator of three major types of GPCRs and necessitate reconsideration of classic models used to predict neuronal signaling in response to the large family of Gαq-coupled receptors.
Collapse
|
8
|
Felouzis V, Hermand P, de Laissardière GT, Combadière C, Deterre P. Comprehensive analysis of chemokine-induced cAMP-inhibitory responses using a real-time luminescent biosensor. Cell Signal 2015; 28:120-9. [PMID: 26515128 DOI: 10.1016/j.cellsig.2015.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/23/2015] [Indexed: 01/29/2023]
Abstract
Chemokine receptors are members of the G-protein-coupled receptor (GPCR) family coupled to members of the Gi class, whose primary function is to inhibit the cellular adenylate cyclase. We used a cAMP-related and PKA-based luminescent biosensor (GloSensor™ F-22) to monitor the real-time downstream response of chemokine receptors, especially CX3CR1 and CXCR4, after activation with their cognate ligands CX3CL1 and CXCL12. We found that the amplitudes and kinetic profiles of the chemokine responses were conserved in various cell types and were independent of the nature and concentration of the molecules used for cAMP prestimulation, including either the adenylate cyclase activator forskolin or ligands mediating Gs-mediated responses like prostaglandin E2 or beta-adrenergic agonist. We conclude that the cAMP chemokine response is robustly conserved in various inflammatory conditions. Moreover, the cAMP-related luminescent biosensor appears as a valuable tool to analyze the details of Gi-mediated cAMP-inhibitory cellular responses, even in native conditions and could help to decipher their precise role in cell function.
Collapse
Affiliation(s)
- Virginia Felouzis
- Sorbonne Universités, UPMC Université Paris 06, Inserm U 1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Patricia Hermand
- Sorbonne Universités, UPMC Université Paris 06, Inserm U 1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Guy Trambly de Laissardière
- Université de Cergy-Pontoise, CNRS, UMR 8089, Laboratoire de Physique Théorique et Modélisation, 2 Avenue A. Chauvin, F-95302 Cergy-Pontoise, France
| | - Christophe Combadière
- Sorbonne Universités, UPMC Université Paris 06, Inserm U 1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, 91 Boulevard de l'Hôpital, F-75013 Paris, France
| | - Philippe Deterre
- Sorbonne Universités, UPMC Université Paris 06, Inserm U 1135, CNRS ERL 8255, Centre d'Immunologie et des Maladies Infectieuses, 91 Boulevard de l'Hôpital, F-75013 Paris, France.
| |
Collapse
|
9
|
Brand CS, Sadana R, Malik S, Smrcka AV, Dessauer CW. Adenylyl Cyclase 5 Regulation by Gβγ Involves Isoform-Specific Use of Multiple Interaction Sites. Mol Pharmacol 2015; 88:758-67. [PMID: 26206488 PMCID: PMC4576683 DOI: 10.1124/mol.115.099556] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclase (AC) converts ATP into cyclic AMP (cAMP), an important second messenger in cell signaling. Heterotrimeric G proteins and other regulators are important for control of AC activity. Depending on the AC isoform, Gβγ subunits can either conditionally stimulate or inhibit cAMP synthesis. We previously showed that the Gαs-βγ heterotrimer binds to the N terminus (NT) of type 5 AC (AC5). We now show that Gβγ binds to the NT of a wide variety of AC isoforms. We hypothesized that Gβγ/AC5 interactions involving inactive heterotrimer and Gβγ stimulation of AC5 were separable events. Mutations of the Gβγ "hotspot" show that this site is necessary for AC5 stimulation but not for interactions with the first 198 aa of AC5NT, which is a G protein scaffolding site. This contrasts with AC6, where the Gβγ hotspot is required for both interactions with AC6NT and for stimulation of AC6. Additionally, the SIGK hotspot peptide disrupts Gβγ regulation of AC isoforms 1, 2, and 6, but not AC5. Gβγ also binds the C1/C2 catalytic domains of AC5 and AC6. Finally, cellular interactions with full-length AC5 depend on multiple sites on Gβγ. This suggests an isoform-specific mechanism in which bound Gβγ at the AC5NT is ideally situated for spatiotemporal control of AC5. We propose Gβγ regulation of AC involves multiple binding events, and the role of the AC NT for mechanisms of regulation by heterotrimeric G protein subunits is isoform-specific.
Collapse
Affiliation(s)
- Cameron S Brand
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| | - Rachna Sadana
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| | - Sundeep Malik
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| | - Alan V Smrcka
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas (C.S.B., C.W.D.); Department of Natural Sciences, University of Houston-Downtown, Houston, Texas (R.S.); and Department of Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York (S.M., A.V.S.)
| |
Collapse
|
10
|
Cooper DMF. Store-operated Ca²⁺-entry and adenylyl cyclase. Cell Calcium 2015; 58:368-75. [PMID: 25978874 DOI: 10.1016/j.ceca.2015.04.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 02/06/2023]
Abstract
One of the longest-standing effects of SOCE is in its selective regulation of Ca(2+)-sensitive adenylyl cyclase (AC) activity in non-excitable cells. Remarkably it was this source of Ca(2+) (SOCE) rather than the apparent magnitude of the Ca(2+)-rise that conferred AC responsiveness. The molecular basis for this dependence is now resolved in the case of adenylyl cyclase 8 (AC8). Sensors for Ca(2+) and cAMP targeted to ACs have been particularly useful in dissecting the influences upon and composition of what turn out to be signalling microdomains centred on ACs. A number of physiological processes depend on the regulation by SOCE of ACs, but the issue is under-studied. Here I will expand on these topics and point to some immediate unresolved questions.
Collapse
Affiliation(s)
- Dermot M F Cooper
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, United Kingdom.
| |
Collapse
|
11
|
Liu L, Gritz D, Parent CA. PKCβII acts downstream of chemoattractant receptors and mTORC2 to regulate cAMP production and myosin II activity in neutrophils. Mol Biol Cell 2014; 25:1446-57. [PMID: 24600048 PMCID: PMC4004594 DOI: 10.1091/mbc.e14-01-0037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
mTORC2 has been shown to be involved in cytoskeletal regulation, but the mechanisms by which this takes place are poorly understood. This study shows that PKCβII is specifically required for mTORC2-dependent activation of adenylyl cyclase 9 and back retraction during neutrophil chemotaxis to chemoattractants. Chemotaxis is a process by which cells polarize and move up a chemical gradient through the spatiotemporal regulation of actin assembly and actomyosin contractility, which ultimately control front protrusions and back retractions. We previously demonstrated that in neutrophils, mammalian target of rapamycin complex 2 (mTORC2) is required for chemoattractant-mediated activation of adenylyl cyclase 9 (AC9), which converts ATP into cAMP and regulates back contraction through MyoII phosphorylation. Here we study the mechanism by which mTORC2 regulates neutrophil chemotaxis and AC9 activity. We show that inhibition of protein kinase CβII (PKCβII) by CPG53353 or short hairpin RNA knockdown severely inhibits chemoattractant-induced cAMP synthesis and chemotaxis in neutrophils. Remarkably, PKCβII-inhibited cells exhibit specific and severe tail retraction defects. In response to chemoattractant stimulation, phosphorylated PKCβII, but not PKCα, is transiently translocated to the plasma membrane, where it phosphorylates and activates AC9. mTORC2-mediated PKCβII phosphorylation on its turn motif, but not its hydrophobic motif, is required for membrane translocation of PKCβII. Inhibition of mTORC2 activity by Rictor knockdown not only dramatically decreases PKCβII activity, but it also strongly inhibits membrane translocation of PKCβII. Together our findings show that PKCβII is specifically required for mTORC2-dependent AC9 activation and back retraction during neutrophil chemotaxis.
Collapse
Affiliation(s)
- Lunhua Liu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
12
|
Shen JX, Cooper DMF. AKAP79, PKC, PKA and PDE4 participate in a Gq-linked muscarinic receptor and adenylate cyclase 2 cAMP signalling complex. Biochem J 2013; 455:47-56. [PMID: 23889134 PMCID: PMC3968274 DOI: 10.1042/bj20130359] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AC2 (adenylate cyclase 2) is stimulated by activation of Gq-coupled muscarinic receptors through PKC (protein kinase C) to generate localized cAMP in HEK (human embryonic kidney)-293 cells. In the present study, we utilized a sensitive live-cell imaging technique to unravel the proteins that play essential roles in a Gq-coupled muscarinic receptor-mediated cAMP signalling complex. We reveal that, upon agonist binding to the Gq-coupled muscarinic receptor, AKAP79 (A-kinase-anchoring protein 79) recruits PKC to activate AC2 to produce cAMP. The cAMP formed is degraded by PDE4 (phosphodiesterase 4) activated by an AKAP-anchored PKA (protein kinase A). Calcineurin, a phosphatase bound to AKAP79, is not involved in this regulation. Overall, a transient cAMP increase is generated from AC2 by Gq-coupled muscarinic receptor activation, subject to sophisticated regulation through AKAP79, PKC, PDE4 and PKA, which significantly enhances acetylcholine-mediated signalling.
Collapse
Affiliation(s)
- Jia X. Shen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Dermot M. F. Cooper
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
13
|
Conley JM, Watts VJ. Differential effects of AGS3 expression on D(2L) dopamine receptor-mediated adenylyl cyclase signaling. Cell Mol Neurobiol 2013; 33:551-8. [PMID: 23504261 PMCID: PMC3628818 DOI: 10.1007/s10571-013-9925-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/09/2013] [Indexed: 12/01/2022]
Abstract
Activator of G protein signaling 3 (AGS3) binds Gα(i) subunits in the GDP-bound state, implicating AGS3 as an important regulator of Gα(i)-linked receptor (e.g., D2 dopamine and μ-opioid) signaling. We examined the ability of AGS3 to modulate recombinant adenylyl cyclase (AC) type 1 and 2 signaling in HEK293 cells following both acute and persistent activation of the D(2L) dopamine receptor (D(2L)DR). AGS3 expression modestly enhanced the potency of acute quinpirole-induced D(2L)DR modulation of AC1 or AC2 activity. AGS3 also promoted desensitization of D(2L)DR-mediated inhibition of AC1, whereas desensitization of D(2L)DR-mediated AC2 activation was significantly attenuated. Additionally, AGS3 reduced D(2L)DR-mediated sensitization of AC1 and AC2. These data suggest that AGS3 is involved in altering G protein signaling in a complex fashion that is effector-specific and dependent on the duration of receptor activation.
Collapse
Affiliation(s)
- Jason M. Conley
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Val J. Watts
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|