1
|
Coelho A, Silva JM, Cantini F, Piccioli M, Louro RO, Paquete CM. Resonance assignments of cytochrome MtoD from the extracellular electron uptake pathway of sideroxydans lithotrophicus ES-1. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:139-146. [PMID: 38844727 PMCID: PMC11511738 DOI: 10.1007/s12104-024-10180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/31/2024] [Indexed: 10/27/2024]
Abstract
The contribution of Fe(II)-oxidizing bacteria to iron cycling in freshwater, groundwater, and marine environments has been widely recognized in recent years. These organisms perform extracellular electron transfer (EET), which constitutes the foundations of bioelectrochemical systems for the production of biofuels and bioenergy. It was proposed that the Gram-negative bacterium Sideroxydans lithotrophicus ES-1 oxidizes soluble ferrous Fe(II) at the surface of the cell and performs EET through the Mto redox pathway. This pathway is composed by the periplasmic monoheme cytochrome MtoD that is proposed to bridge electron transfer between the cell exterior and the cytoplasm. This makes its functional and structural characterization, as well as evaluating the interaction process with its physiological partners, essential for understanding the mechanisms underlying EET. Here, we report the complete assignment of the heme proton and carbon signals together with a near-complete assignment of 1H, 13C and 15N backbone and side chain resonances for the reduced, diamagnetic form of the protein. These data pave the way to identify and structurally map the molecular interaction regions between the cytochrome MtoD and its physiological redox partners, to explore the EET processes of S. lithotrophicus ES-1.
Collapse
Affiliation(s)
- Anaísa Coelho
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), Oeiras, 2780-157, Portugal
| | - José M Silva
- Department of Chemistry, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Francesca Cantini
- Department of Chemistry, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino, 50019, Italy
| | - Mario Piccioli
- Department of Chemistry, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino, 50019, Italy.
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino, 50019, Italy.
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), Oeiras, 2780-157, Portugal.
| | - Catarina M Paquete
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), Oeiras, 2780-157, Portugal
| |
Collapse
|
2
|
Kneuer L, Wurst R, Gescher J. Shewanella oneidensis: Biotechnological Application of Metal-Reducing Bacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024. [PMID: 39579226 DOI: 10.1007/10_2024_272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
What is an unconventional organism in biotechnology? The γ-proteobacterium Shewanella oneidensis might fall into this category as it was initially established as a laboratory model organism for a process that was not seen as potentially interesting for biotechnology. The reduction of solid-state extracellular electron acceptors such as iron and manganese oxides is highly relevant for many biogeochemical cycles, although it turned out in recent years to be quite relevant for many potential biotechnological applications as well. Applications started with the production of nanoparticles and dramatically increased after understanding that electrodes in bioelectrochemical systems can also be used by these organisms. From the potential production of current and hydrogen in these systems and the development of biosensors, the field expanded to anode-assisted fermentations enabling fermentation reactions that were - so far - dependent on oxygen as an electron acceptor. Now the field expands further to cathode-dependent production routines. As a side product to all these application endeavors, S. oneidensis was understood more and more, and our understanding and genetic repertoire is at eye level to E. coli. Corresponding to this line of thought, this chapter will first summarize the available arsenal of tools in molecular biology that was established for working with the organism and thereafter describe so far established directions of application. Last but not least, we will highlight potential future directions of work with the unconventional model organism S. oneidensis.
Collapse
Affiliation(s)
- Lukas Kneuer
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - René Wurst
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, University of Technology Hamburg, Hamburg, Germany.
| |
Collapse
|
3
|
Soares R, Fonseca BM, Nash BW, Paquete CM, Louro RO. A survey of the Desulfuromonadia "cytochromome" provides a glimpse of the unexplored diversity of multiheme cytochromes in nature. BMC Genomics 2024; 25:982. [PMID: 39428470 PMCID: PMC11492766 DOI: 10.1186/s12864-024-10872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/07/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Multiheme cytochromes c (MHC) provide prokaryotes with a broad metabolic versatility that contributes to their role in the biogeochemical cycling of the elements and in energy production in bioelectrochemical systems. However, MHC have only been isolated and studied in detail from a limited number of species. Among these, Desulfuromonadia spp. are particularly MHC-rich. To obtain a broad view of the diversity of MHC, we employed bioinformatic tools to study the cytochromome encoded in the genomes of the Desulfuromonadia class. RESULTS We found that the distribution of the MHC families follows a different pattern between the two orders of the Desulfuromonadia class and that there is great diversity in the number of heme-binding motifs in MHC. However, the vast majority of MHC have up to 12 heme-binding motifs. MHC predicted to be extracellular are the least conserved and show high diversity, whereas inner membrane MHC are well conserved and show lower diversity. Although the most prevalent MHC have homologues already characterized, nearly half of the MHC families in the Desulforomonadia class have no known characterized homologues. AlphaFold2 was employed to predict their 3D structures. This provides an atlas of novel MHC, including examples with high beta-sheet content and nanowire MHC with unprecedented high numbers of putative heme cofactors per polypeptide. CONCLUSIONS This work illuminates for the first time the universe of experimentally uncharacterized cytochromes that are likely to contribute to the metabolic versatility and to the fitness of Desulfuromonadia in diverse environmental conditions and to drive biotechnological applications of these organisms.
Collapse
Affiliation(s)
- Ricardo Soares
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Bruno M Fonseca
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Benjamin W Nash
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Catarina M Paquete
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal
| | - Ricardo O Louro
- Av da República (EAN), Instituto de Tecnologia Química e Bioloógica António Xavier da Universidade Nova de Lisboa, Oeiras, 2780-157, Portugal.
| |
Collapse
|
4
|
Zhao J, Wang C, Liu J, Zhang N, Zhao Y, Zhao J, Wang X, Wei W. A biocompatible surface display approach in Shewanella promotes current output efficiency. Biosens Bioelectron 2024; 259:116422. [PMID: 38797034 DOI: 10.1016/j.bios.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/04/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
The biology-material hybrid method for chemical-electricity conversion via microbial fuel cells (MFCs) has garnered significant attention in addressing global energy and environmental challenges. However, the efficiency of these systems remains unsatisfactory due to the complex manufacturing process and limited biocompatibility. To overcome these challenges, here, we developed a simple bio-inorganic hybrid system for bioelectricity generation in Shewanella oneidensis (S. oneidensis) MR-1. A biocompatible surface display approach was designed, and silver-binding peptide AgBP2 was expressed on the cell surface. Notably, the engineered Shewanella showed a higher electrochemical sensitivity to Ag+, and a 60 % increase in power density was achieved even at a low concentration of 10 μM Ag+. Further analysis revealed significant upregulations of cell surface negative charge intensity, ATP metabolism, and reducing equivalent (NADH/NAD+) ratio in the engineered S. oneidensis-Ag nanoparticles biohybrid. This work not only provides a novel insight for electrochemical biosensors to detect metal ions, but also offers an alternative biocompatible surface display approach by combining compatible biomaterials with electricity-converting bacteria for advancements in biohybrid MFCs.
Collapse
Affiliation(s)
- Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Chen Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingjing Liu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Nuo Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuqin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jing Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| | - Xiuxiu Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| | - Wei Wei
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing, 210023, China; NJU Xishan Institute of Applied Biotechnology, Wuxi, 214000, China.
| |
Collapse
|
5
|
Zhao F, Niman CM, Ostovar G, Chavez MS, Atkinson JT, Bonis BM, Gralnick JA, El-Naggar MY, Boedicker JQ. Red-Light-Induced Genetic System for Control of Extracellular Electron Transfer. ACS Synth Biol 2024; 13:1467-1476. [PMID: 38696739 DOI: 10.1021/acssynbio.3c00684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Optogenetics is a powerful tool for spatiotemporal control of gene expression. Several light-inducible gene regulators have been developed to function in bacteria, and these regulatory circuits have been ported to new host strains. Here, we developed and adapted a red-light-inducible transcription factor for Shewanella oneidensis. This regulatory circuit is based on the iLight optogenetic system, which controls gene expression using red light. A thermodynamic model and promoter engineering were used to adapt this system to achieve differential gene expression in light and dark conditions within a S. oneidensis host strain. We further improved the iLight optogenetic system by adding a repressor to invert the genetic circuit and activate gene expression under red light illumination. The inverted iLight genetic circuit was used to control extracellular electron transfer within S. oneidensis. The ability to use both red- and blue-light-induced optogenetic circuits simultaneously was also demonstrated. Our work expands the synthetic biology capabilities in S. oneidensis, which could facilitate future advances in applications with electrogenic bacteria.
Collapse
Affiliation(s)
- Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Ghazaleh Ostovar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08540, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08540, United States
| | - Benjamin M Bonis
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota─Twin Cities, St. Paul, Minnesota 55108, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
6
|
Kou B, Yuan Y, Zhu X, Ke Y, Wang H, Yu T, Tan W. Effect of soil organic matter-mediated electron transfer on heavy metal remediation: Current status and perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170451. [PMID: 38296063 DOI: 10.1016/j.scitotenv.2024.170451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/05/2024]
Abstract
Soil contamination by heavy metals poses major risks to human health and the environment. Given the current status of heavy metal pollution, many remediation techniques have been tested at laboratory and contaminated sites. The effects of soil organic matter-mediated electron transfer on heavy metal remediation have not been adequately studied, and the key mechanisms underlying this process have not yet been elucidated. In this review, microbial extracellular electron transfer pathways, organic matter electron transfer for heavy metal reduction, and the factors affecting these processes were discussed to enhance our understanding of heavy metal pollution. It was found that microbial extracellular electrons delivered by electron shuttles have the longest distance among the three electron transfer pathways, and the application of exogenous electron shuttles lays the foundation for efficient and persistent remediation of heavy metals. The organic matter-mediated electron transfer process, wherein organic matter acts as an electron shuttle, promotes the conversion of high valence state metal ions, such as Cr(VI), Hg(II), and U(VI), into less toxic and morphologically stable forms, which inhibits their mobility and bioavailability. Soil type, organic matter structural and content, heavy metal concentrations, and environmental factors (e.g., pH, redox potential, oxygen conditions, and temperature) all influence organic matter-mediated electron transfer processes and bioremediation of heavy metals. Organic matter can more effectively mediate electron transfer for heavy metal remediation under anaerobic conditions, as well as when the heavy metal content is low and the redox potential is suitable under fluvo-aquic/paddy soil conditions. Organic matter with high aromaticity, quinone groups, and phenol groups has a stronger electron transfer ability. This review provides new insights into the control and management of soil contamination and heavy metal remediation technologies.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Ying Yuan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hui Wang
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tingqiao Yu
- International Education College, Beijing Vocational College of Agriculture, Beijing 102442, China
| | - Wenbing Tan
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
7
|
Pimenta AI, Paquete CM, Morgado L, Edwards MJ, Clarke TA, Salgueiro CA, Pereira IAC, Duarte AG. Characterization of the inner membrane cytochrome ImcH from Geobacter reveals its importance for extracellular electron transfer and energy conservation. Protein Sci 2023; 32:e4796. [PMID: 37779214 PMCID: PMC10601379 DOI: 10.1002/pro.4796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/30/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Electroactive bacteria combine the oxidation of carbon substrates with an extracellular electron transfer (EET) process that discharges electrons to an electron acceptor outside the cell. This process involves electron transfer through consecutive redox proteins that efficiently connect the inner membrane to the cell exterior. In this study, we isolated and characterized the quinone-interacting membrane cytochrome c ImcH from Geobacter sulfurreducens, which is involved in the EET process to high redox potential acceptors. Spectroscopic and electrochemical studies show that ImcH hemes have low midpoint redox potentials, ranging from -150 to -358 mV, and connect the oxidation of the quinol-pool to EET, transferring electrons to the highly abundant periplasmic cytochrome PpcA with higher affinity than to its homologues. Despite the larger number of hemes and transmembrane helices, the ImcH structural model has similarities with the NapC/NirT/NrfH superfamily, namely the presence of a quinone-binding site on the P-side of the membrane. In addition, the first heme, likely involved on the quinol oxidation, has apparently an unusual His/Gln coordination. Our work suggests that ImcH is electroneutral and transfers electrons and protons to the same side of the membrane, contributing to the maintenance of a proton motive force and playing a central role in recycling the menaquinone pool.
Collapse
Affiliation(s)
- Andreia I. Pimenta
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Leonor Morgado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | | | - Thomas A. Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| | - Américo G. Duarte
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaOeirasPortugal
| |
Collapse
|
8
|
Fernandes TM, Silva MA, Morgado L, Salgueiro CA. Hemes on a string: insights on the functional mechanisms of PgcA from Geobacter sulfurreducens. J Biol Chem 2023; 299:105167. [PMID: 37595873 PMCID: PMC10570954 DOI: 10.1016/j.jbc.2023.105167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023] Open
Abstract
Microbial extracellular reduction of insoluble compounds requires soluble electron shuttles that diffuse in the environment, freely diffusing cytochromes, or direct contact with cellular conductive appendages that release or harvest electrons to assure a continuous balance between cellular requirements and environmental conditions. In this work, we produced and characterized the three cytochrome domains of PgcA, an extracellular triheme cytochrome that contributes to Fe(III) and Mn(IV) oxides reduction in Geobacter sulfurreducens. The three monoheme domains are structurally homologous, but their heme groups show variable axial coordination and reduction potential values. Electron transfer experiments monitored by NMR and visible spectroscopy show the variable extent to which the domains promiscuously exchange electrons while reducing different electron acceptors. The results suggest that PgcA is part of a new class of cytochromes - microbial heme-tethered redox strings - that use low-complexity protein stretches to bind metals and promote intra- and intermolecular electron transfer events through its cytochrome domains.
Collapse
Affiliation(s)
- Tomás M Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Marta A Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal.
| |
Collapse
|
9
|
Calisto F, Todorovic S, Louro RO, Pereira MM. Exploring substrate interaction in respiratory alternative complex III from Rhodothermus marinus. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148983. [PMID: 37127243 DOI: 10.1016/j.bbabio.2023.148983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/04/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Rhodothermus marinus is a thermohalophilic organism that has optimized its microaerobic metabolism at 65 °C. We have been exploring its respiratory chain and observed the existence of a quinone:cytochrome c oxidoreductase complex, named Alternative Complex III, structurally different from the bc1 complex. In the present work, we took profit from nanodiscs and liposomes technology to investigate ACIII activity in membrane-mimicking systems. In addition, we studied the interaction of ACIII with menaquinone, its potential electron acceptors (HiPIP and cytochrome c) and the caa3 oxygen reductase.
Collapse
Affiliation(s)
- Filipa Calisto
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal
| | - Smilja Todorovic
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da República EAN, 2780-157 Oeiras, Portugal
| | - Manuela M Pereira
- University of Lisbon, Faculty of Sciences, Department of Chemistry and Biochemistry and BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
10
|
Deciphering Molecular Factors That Affect Electron Transfer at the Cell Surface of Electroactive Bacteria: The Case of OmcA from Shewanella oneidensis MR-1. Microorganisms 2022; 11:microorganisms11010079. [PMID: 36677373 PMCID: PMC9861303 DOI: 10.3390/microorganisms11010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Multiheme cytochromes play a central role in extracellular electron transfer, a process that allows microorganisms to sustain their metabolism with external electron acceptors or donors. In Shewanella oneidensis MR-1, the decaheme cytochromes OmcA and MtrC show functional specificity for interaction with soluble and insoluble redox partners. In this work, the capacity of extracellular electron transfer by mutant variants of S. oneidensis MR-1 OmcA was investigated. The results show that amino acid mutations can affect protein stability and alter the redox properties of the protein, without affecting the ability to perform extracellular electron transfer to methyl orange dye or a poised electrode. The results also show that there is a good correlation between the reduction of the dye and the current generated at the electrode for most but not all mutants. This observation opens the door for investigations of the molecular mechanisms of interaction with different electron acceptors to tailor these surface exposed cytochromes towards specific bio-based applications.
Collapse
|
11
|
Edel M, Philipp LA, Lapp J, Reiner J, Gescher J. Electron transfer of extremophiles in bioelectrochemical systems. Extremophiles 2022; 26:31. [PMID: 36222927 PMCID: PMC9556394 DOI: 10.1007/s00792-022-01279-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022]
Abstract
The interaction of bacteria and archaea with electrodes is a relatively new research field which spans from fundamental to applied research and influences interdisciplinary research in the fields of microbiology, biochemistry, biotechnology as well as process engineering. Although a substantial understanding of electron transfer processes between microbes and anodes and between microbes and cathodes has been achieved in mesophilic organisms, the mechanisms used by microbes under extremophilic conditions are still in the early stages of discovery. Here, we review our current knowledge on the biochemical solutions that evolved for the interaction of extremophilic organisms with electrodes. To this end, the available knowledge on pure cultures of extremophilic microorganisms has been compiled and the study has been extended with the help of bioinformatic analyses on the potential distribution of different electron transfer mechanisms in extremophilic microorganisms.
Collapse
Affiliation(s)
- Miriam Edel
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Laura-Alina Philipp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Jonas Lapp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Johannes Reiner
- Karlsruhe Institute of Technology, Engler-Bunte-Institute, Karlsruhe, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany.
| |
Collapse
|
12
|
Teixeira LR, Fernandes TM, Silva MA, Morgado L, Salgueiro CA. Characterization of a Novel Cytochrome Involved in
Geobacter sulfurreducens’
Electron Harvesting Pathways. Chemistry 2022; 28:e202202333. [DOI: 10.1002/chem.202202333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Liliana R. Teixeira
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| | - Tomás M. Fernandes
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| | - Marta A. Silva
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| | - Carlos A. Salgueiro
- Associate Laboratory i4HB-Institute for Health and Bioeconomy NOVA School of Science and Technology NOVA University Lisbon 2819-516 Caparica Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Chemistry Department NOVA School of Science and Technology NOVA University Lisbon 2829-516 Caparica Portugal
| |
Collapse
|
13
|
Fan Y, Tang Q, Sun H, Yu H. A designed plasmid‐transition strategy enables rapid construction of robust and versatile synthetic exoelectrogens for environmental applications. Environ Microbiol 2022; 24:5292-5305. [DOI: 10.1111/1462-2920.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Yang‐Yang Fan
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences University of Science and Technology of China Hefei China
- Department of Environmental Science and Engineering University of Science & Technology of China Hefei China
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology Anhui University Hefei China
| | - Qiang Tang
- Department of Environmental Science and Engineering University of Science & Technology of China Hefei China
| | - Hong Sun
- CAS Key Laboratory of Urban Pollutant Conversion, School of Life Sciences University of Science and Technology of China Hefei China
- Department of Environmental Science and Engineering University of Science & Technology of China Hefei China
| | - Han‐Qing Yu
- Department of Environmental Science and Engineering University of Science & Technology of China Hefei China
| |
Collapse
|
14
|
Zhao F, Chavez MS, Naughton KL, Niman CM, Atkinson JT, Gralnick JA, El-Naggar MY, Boedicker JQ. Light-Induced Patterning of Electroactive Bacterial Biofilms. ACS Synth Biol 2022; 11:2327-2338. [PMID: 35731987 DOI: 10.1021/acssynbio.2c00024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Electroactive bacterial biofilms can function as living biomaterials that merge the functionality of living cells with electronic components. However, the development of such advanced living electronics has been challenged by the inability to control the geometry of electroactive biofilms relative to solid-state electrodes. Here, we developed a lithographic strategy to pattern conductive biofilms of Shewanella oneidensis by controlling aggregation protein CdrAB expression with a blue light-induced genetic circuit. This controlled deposition enabled S. oneidensis biofilm patterning on transparent electrode surfaces, and electrochemical measurements allowed us to both demonstrate tunable conduction dependent on pattern size and quantify the intrinsic conductivity of the living biofilms. The intrinsic biofilm conductivity measurements enabled us to experimentally confirm predictions based on simulations of a recently proposed collision-exchange electron transport mechanism. Overall, we developed a facile technique for controlling electroactive biofilm formation on electrodes, with implications for both studying and harnessing bioelectronics.
Collapse
Affiliation(s)
- Fengjie Zhao
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Marko S Chavez
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Kyle L Naughton
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Christina M Niman
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Jeffrey A Gralnick
- BioTechnology Institute and Department of Plant and Microbial Biology, University of Minnesota-Twin Cities, St. Paul, Minnesota 55108, United States
| | - Mohamed Y El-Naggar
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States.,Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - James Q Boedicker
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States.,Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
15
|
Campbell IJ, Atkinson JT, Carpenter MD, Myerscough D, Su L, Ajo-Franklin CM, Silberg JJ. Determinants of Multiheme Cytochrome Extracellular Electron Transfer Uncovered by Systematic Peptide Insertion. Biochemistry 2022; 61:1337-1350. [PMID: 35687533 DOI: 10.1021/acs.biochem.2c00148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The multiheme cytochrome MtrA enables microbial respiration by transferring electrons across the outer membrane to extracellular electron acceptors. While structural studies have identified residues that mediate the binding of MtrA to hemes and to other cytochromes that facilitate extracellular electron transfer (EET), the relative importance of these interactions for EET is not known. To better understand EET, we evaluated how insertion of an octapeptide across all MtrA backbone locations affects Shewanella oneidensis MR-1 respiration on Fe(III). The EET efficiency was found to be inversely correlated with the proximity of the insertion to the heme prosthetic groups. Mutants with decreased EET efficiencies also arose from insertions in a subset of the regions that make residue-residue contacts with the porin MtrB, while all sites contacting the extracellular cytochrome MtrC presented high peptide insertion tolerance. MtrA variants having peptide insertions within the CXXCH motifs that coordinate heme cofactors retained some ability to support respiration on Fe(III), although these variants presented significantly decreased EET efficiencies. Furthermore, the fitness of cells expressing different MtrA variants under Fe(III) respiration conditions correlated with anode reduction. The peptide insertion profile, which represents the first comprehensive sequence-structure-function map for a multiheme cytochrome, implicates MtrA as a strategic protein engineering target for the regulation of EET.
Collapse
Affiliation(s)
- Ian J Campbell
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Joshua T Atkinson
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Matthew D Carpenter
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Dru Myerscough
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Lin Su
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Caroline M Ajo-Franklin
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States.,Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| |
Collapse
|
16
|
Antunes JMA, Silva MA, Salgueiro CA, Morgado L. Electron Flow From the Inner Membrane Towards the Cell Exterior in Geobacter sulfurreducens: Biochemical Characterization of Cytochrome CbcL. Front Microbiol 2022; 13:898015. [PMID: 35620088 PMCID: PMC9129911 DOI: 10.3389/fmicb.2022.898015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/25/2022] Open
Abstract
Exoelectrogenic microorganisms are in the spotlight due to their unique respiratory mechanisms and potential applications in distinct biotechnological fields, including bioremediation, bioenergy production and microbial electrosynthesis. These applications rely on the capability of these microorganisms to perform extracellular electron transfer, a mechanism that allows the bacteria to transfer electrons to the cell’s exterior by establishing functional interfaces between different multiheme cytochromes at the inner membrane, periplasmic space, and outer membrane. The multiheme cytochrome CbcL from Geobacter sulfurreducens is associated to the inner membrane and plays an essential role in the transfer of electrons to final electron acceptors with a low redox potential, as Fe(III) oxides and electrodes poised at −100 mV. CbcL has a transmembranar di-heme b-type cytochrome domain with six helices, linked to a periplasmic cytochrome domain with nine c-type heme groups. The complementary usage of ultraviolet-visible, circular dichroism and nuclear magnetic resonance permitted the structural and functional characterization of CbcL’s periplasmic domain. The protein was found to have a high percentage of disordered regions and its nine hemes are low-spin and all coordinated by two histidine residues. The apparent midpoint reduction potential of the CbcL periplasmic domain was determined, suggesting a thermodynamically favorable transfer of electrons to the putative redox partner in the periplasm − the triheme cytochrome PpcA. The establishment of a redox complex between the two proteins was confirmed by probing the electron transfer reaction and the molecular interactions between CbcL and PpcA. The results obtained show for the first time how electrons are injected into the periplasm of Geobacter sulfurreducens for subsequent transfer to the cell’s exterior.
Collapse
Affiliation(s)
- Jorge M A Antunes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Marta A Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Carlos A Salgueiro
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Leonor Morgado
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,UCIBIO - Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
17
|
Morgado L, Salgueiro CA. Elucidation of complex respiratory chains: a straightforward strategy to monitor electron transfer between cytochromes. Metallomics 2022; 14:6539350. [DOI: 10.1093/mtomcs/mfac012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/17/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Cytochromes are electron transfer proteins essential in various biological systems, playing crucial roles in the respiratory chains of bacteria. These proteins are particularly abundant in electrogenic microorganisms and are responsible for the efficient delivery of electrons to the cells’ exterior. The capability of sending electron outside the cells open new avenues to be explored for emerging biotechnological applications in bioremediation, microbial electrosynthesis and bioenergy fields. To develop these applications, it is critical to identify the different redox partners and elucidate the stepwise electron transfer along the respiratory paths. However, investigating direct electron transfer events between proteins with identical features in nearly all spectroscopic techniques is extremely challenging. NMR spectroscopy offers the possibility to overcome this difficulty by analysing the alterations of the spectral signatures of each protein caused by electron exchange events. The uncrowded NMR spectral regions containing the heme resonances of the cytochromes display unique and distinct signatures in the reduced and oxidized states, which can be explored to monitor electron transfer within the redox complex. In this study, we present a strategy for a fast and straightforward monitorization of electron transfer between c-type cytochromes, using as model a triheme periplasmic cytochrome (PpcA) and a membrane associated monoheme cytochrome (OmcF) from the electrogenic bacterium Geobacter sulfurreducens. The comparison between the 1D 1H NMR spectra obtained for samples containing the two cytochromes and for samples containing the individual proteins clearly demonstrated a unidirectional electron transfer within the redox complex. This strategy provides a simple and straightforward means to elucidate complex biologic respiratory electron transfer chains.
Collapse
Affiliation(s)
- Leonor Morgado
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Carlos A Salgueiro
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
18
|
Partipilo G, Graham AJ, Belardi B, Keitz BK. Extracellular Electron Transfer Enables Cellular Control of Cu(I)-Catalyzed Alkyne-Azide Cycloaddition. ACS CENTRAL SCIENCE 2022; 8:246-257. [PMID: 35233456 PMCID: PMC8875427 DOI: 10.1021/acscentsci.1c01208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 05/03/2023]
Abstract
Extracellular electron transfer (EET) is an anaerobic respiration process that couples carbon oxidation to the reduction of metal species. In the presence of a suitable metal catalyst, EET allows for cellular metabolism to control a variety of synthetic transformations. Here, we report the use of EET from the electroactive bacterium Shewanella oneidensis for metabolic and genetic control over Cu(I)-catalyzed alkyne-azide cycloaddition (CuAAC). CuAAC conversion under anaerobic and aerobic conditions was dependent on live, actively respiring S. oneidensis cells. The reaction progress and kinetics were manipulated by tailoring the central carbon metabolism. Similarly, EET-CuAAC activity was dependent on specific EET pathways that could be regulated via inducible expression of EET-relevant proteins: MtrC, MtrA, and CymA. EET-driven CuAAC exhibited modularity and robustness in the ligand and substrate scope. Furthermore, the living nature of this system could be exploited to perform multiple reaction cycles without regeneration, something inaccessible to traditional chemical reductants. Finally, S. oneidensis enabled bioorthogonal CuAAC membrane labeling on live mammalian cells without affecting cell viability, suggesting that S. oneidensis can act as a dynamically tunable biocatalyst in complex environments. In summary, our results demonstrate how EET can expand the reaction scope available to living systems by enabling cellular control of CuAAC.
Collapse
Affiliation(s)
- Gina Partipilo
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Austin J. Graham
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Brian Belardi
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
| | - Benjamin K. Keitz
- McKetta
Department of Chemical Engineering, University
of Texas at Austin, Austin, Texas 78712, United States
- Center
for Dynamics and Control of Materials, University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
19
|
Zhu TT, Cheng ZH, Yu SS, Li WW, Liu DF, Yu HQ. Unexpected role of electron-transfer hub in direct degradation of pollutants by exoelectrogenic bacteria. Environ Microbiol 2022; 24:1838-1848. [PMID: 35170205 DOI: 10.1111/1462-2920.15939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 01/28/2022] [Accepted: 02/11/2022] [Indexed: 11/25/2022]
Abstract
Exoelectrogenic bacteria (EEB) are capable of anaerobic respiration with diverse extracellular electron acceptors including insoluble minerals, electrodes and flavins, but the detailed electron transfer pathways and reaction mechanisms remain elusive. Here, we discover that CymA, which is usually considered to solely serve as an inner-membrane electron transfer hub in Shewanella oneidensis MR-1 (a model EEB), might also function as a reductase for direct reducing diverse nitroaromatic compounds (e.g., 2,4-dichloronitrobenzene) and azo dyes. Such a process can be accelerated by dosing anthraquinone-2,6-disulfonate. The CymA-based reduction pathways in S. oneidensis MR-1 for different contaminants could be functionally reconstructed and strengthened in Escherichia coli. The direct reduction of lowly polar contaminants by quinol oxidases like CymA homologs might be universal in diverse microbes. This work offers new insights into the pollutant reduction mechanisms of EEB and unveils a new function of CymA to act as a terminal reductase. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhou-Hua Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Sheng-Song Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,University of Science and Technology of China-City University of Hong Kong Joint Advanced Research Center, Suzhou Institute for Advance Research of USTC, Suzhou, 215123, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.,Anhui Key Laboratory of Sewage Purification and Ecological Rehabilitation Materials, Hefei, 230601, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
20
|
Clarke TA. Plugging into bacterial nanowires: a comparison of model electrogenic organisms. Curr Opin Microbiol 2022; 66:56-62. [PMID: 34999354 DOI: 10.1016/j.mib.2021.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022]
Abstract
Extracellular electron transport (EET) is an important metabolic process used by many bacteria to remove excess electrons generated through cellular metabolism. However, there is still limited understanding about how the molecular mechanisms used to export electrons impact cellular metabolism. Here the EET pathways of two of the best-studied electrogenic organisms, Shewanella oneidensis and Geobacter sulferreducens, are described. Both organisms have superficially similar overall EET routes, but differ in the mechanisms used to oxidise menaquinol, transfer electrons across the outer membrane and reduce extracellular substrates. These mechanistic differences substantially impact both substrate choice and bacterial lifestyle.
Collapse
Affiliation(s)
- Thomas Andrew Clarke
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom.
| |
Collapse
|
21
|
Sun W, Lin Z, Yu Q, Cheng S, Gao H. Promoting Extracellular Electron Transfer of Shewanella oneidensis MR-1 by Optimizing the Periplasmic Cytochrome c Network. Front Microbiol 2021; 12:727709. [PMID: 34675900 PMCID: PMC8524038 DOI: 10.3389/fmicb.2021.727709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The low efficiency of extracellular electron transfer (EET) is a major bottleneck for Shewanella oneidensis MR-1 acting as an electroactive biocatalyst in bioelectrochemical systems. Although it is well established that a periplasmic c-type cytochrome (c-Cyt) network plays a critical role in regulating EET efficiency, the understanding of the network in terms of structure and electron transfer activity is obscure and partial. In this work, we attempted to systematically investigate the impacts of the network components on EET in their absence and overproduction individually in microbial fuel cell (MFC). We found that overexpression of c-Cyt CctA leads to accelerated electron transfer between CymA and the Mtr system, which function as the primary quinol oxidase and the outer-membrane (OM) electron hub in EET. In contrast, NapB, FccA, and TsdB in excess severely impaired EET, reducing EET capacity in MFC by more than 50%. Based on the results from both strategies, a series of engineered strains lacking FccA, NapB, and TsdB in combination while overproducing CctA were tested for a maximally optimized c-Cyt network. A strain depleted of all NapB, FccA, and TsdB with CctA overproduction achieved the highest maximum power density in MFCs (436.5 mW/m2), ∼3.62-fold higher than that of wild type (WT). By revealing that optimization of periplasmic c-Cyt composition is a practical strategy for improving EET efficiency, our work underscores the importance in understanding physiological and electrochemical characteristics of c-Cyts involved in EET.
Collapse
Affiliation(s)
- Weining Sun
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhufan Lin
- Department of Energy Engineering, State Key Laboratory of Clean Energy, Zhejiang University, Hangzhou, China
| | - Qingzi Yu
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shaoan Cheng
- Department of Energy Engineering, State Key Laboratory of Clean Energy, Zhejiang University, Hangzhou, China
| | - Haichun Gao
- Institute of Microbiology and College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
D'Ugo E, Bertuccini L, Spadaro F, Giuseppetti R, Iosi F, Santavenere F, Giuliani F, Gricia M, Rodomonte A, Lovecchio N, Mukherjee A, Bucci P, Bruno M, Stellacci E, Bernardo A, Magurano F. Electrogenic and hydrocarbonoclastic biofilm at the oil-water interface as microbial responses to oil spill. WATER RESEARCH 2021; 197:117092. [PMID: 33831774 DOI: 10.1016/j.watres.2021.117092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The oil-water interface formed during an oil spill represents a challenging environment for pelagic communities living in aquatic ecosystems. At this anoxic barrier, we report the formation of a microbial hydrocarbonoclastic biofilm capable of electron transfer along the water column. This biofilm generated a membrane of surface-active compounds that allowed the spontaneous separation of electrical charges, causing the establishment of an anodic and a cathodic region and, as a result, the spontaneous creation of a liquid microbial fuel cell. Such floating biofilm was connected to the water column underneath by floating filaments that could contribute to oxygen reduction at distance. The filaments revealed an unusual lipid content induced by anoxic conditions, with prominent ultrastructural features similar to myelin found in oligodendrocytes of the vertebrate nervous system. Furthermore, these filaments showed an interesting cross-reactivity towards different epitopes of the myelin basic protein (MBP) and Claudin 11 (O4) of human oligodendrocytes. The presence of a network of filaments similar to myelin suggests the probable existence of evolutionary connections between very distant organisms. Collectively these results suggest a possible mechanism for how lake microbial communities can adapt to oil spills while offering an interesting starting point for technological developments of liquid microbial fuel cells related to the study of hydrocarbon-water interfaces. The data that support the findings of this study are openly available in figshare at https://figshare.com/s/72bc73ae14011dc7920d.
Collapse
Affiliation(s)
- Emilio D'Ugo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | - Roberto Giuseppetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Iosi
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Santavenere
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fausto Giuliani
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Gricia
- National Center for Innovative Technologies in Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Andrea Rodomonte
- National Centre for the Control and Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Nicola Lovecchio
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Rome, Italy
| | - Arghya Mukherjee
- Centre for Genetic Engineering and the Department of Biotechnology, University of Calcutta, Kolkata, India
| | - Paola Bucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Milena Bruno
- Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Emilia Stellacci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonietta Bernardo
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Magurano
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
23
|
Kouzuma A. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1. Biosci Biotechnol Biochem 2021; 85:1572-1581. [PMID: 33998649 DOI: 10.1093/bbb/zbab088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/17/2021] [Indexed: 11/14/2022]
Abstract
Electrochemically active bacteria (EAB) interact electrochemically with electrodes via extracellular electron transfer (EET) pathways. These bacteria have attracted significant attention due to their utility in environmental-friendly bioelectrochemical systems (BESs), including microbial fuel cells and electrofermentation systems. The electrochemical activity of EAB is dependent on their carbon catabolism and respiration; thus, understanding how these processes are regulated will provide insights into the development of a more efficient BES. The process of biofilm formation by EAB on BES electrodes is also important for electric current generation because it facilitates physical and electrochemical interactions between EAB cells and electrodes. This article summarizes the current knowledge on EET-related metabolic and cellular functions of a model EAB, Shewanella oneidensis MR-1, focusing specifically on regulatory systems for carbon catabolism, EET pathways, and biofilm formation. Based on recent developments, the author also discusses potential uses of engineered S. oneidensis strains for various biotechnological applications.
Collapse
Affiliation(s)
- Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| |
Collapse
|
24
|
Trindade IB, Hernandez G, Lebègue E, Barrière F, Cordeiro T, Piccioli M, Louro RO. Conjuring up a ghost: structural and functional characterization of FhuF, a ferric siderophore reductase from E. coli. J Biol Inorg Chem 2021; 26:313-326. [PMID: 33559753 PMCID: PMC8068687 DOI: 10.1007/s00775-021-01854-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 01/23/2021] [Indexed: 10/27/2022]
Abstract
Iron is a fundamental element for virtually all forms of life. Despite its abundance, its bioavailability is limited, and thus, microbes developed siderophores, small molecules, which are synthesized inside the cell and then released outside for iron scavenging. Once inside the cell, iron removal does not occur spontaneously, instead this process is mediated by siderophore-interacting proteins (SIP) and/or by ferric-siderophore reductases (FSR). In the past two decades, representatives of the SIP subfamily have been structurally and biochemically characterized; however, the same was not achieved for the FSR subfamily. Here, we initiate the structural and functional characterization of FhuF, the first and only FSR ever isolated. FhuF is a globular monomeric protein mainly composed by α-helices sheltering internal cavities in a fold resembling the "palm" domain found in siderophore biosynthetic enzymes. Paramagnetic NMR spectroscopy revealed that the core of the cluster has electronic properties in line with those of previously characterized 2Fe-2S ferredoxins and differences appear to be confined to the coordination of Fe(III) in the reduced protein. In particular, the two cysteines coordinating this iron appear to have substantially different bond strengths. In similarity with the proteins from the SIP subfamily, FhuF binds both the iron-loaded and the apo forms of ferrichrome in the micromolar range and cyclic voltammetry reveals the presence of redox-Bohr effect, which broadens the range of ferric-siderophore substrates that can be thermodynamically accessible for reduction. This study suggests that despite the structural differences between FSR and SIP proteins, mechanistic similarities exist between the two classes of proteins.
Collapse
Affiliation(s)
- I B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‑NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780‑157, Oeiras, Portugal
| | - G Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‑NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780‑157, Oeiras, Portugal
| | - E Lebègue
- Université de Nantes, CNRS, CEISAM UMR 6230, 44000, Nantes, France
| | - F Barrière
- Institut des Sciences Chimiques de Rennes-UMR 6226, Université Rennes, CNRS, 35000, Rennes, France
| | - T Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‑NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780‑157, Oeiras, Portugal
| | - M Piccioli
- Department of Chemistry, Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - R O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB‑NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780‑157, Oeiras, Portugal.
| |
Collapse
|
25
|
Lin Z, Long M, Liu W, Liu T, Li F, Wu Y. Distinct biofilm formation regulated by different culture media: Implications to electricity generation. Bioelectrochemistry 2021; 140:107826. [PMID: 33984692 DOI: 10.1016/j.bioelechem.2021.107826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 10/21/2022]
Abstract
Biofilm of Shewanella oneidensis MR-1 is extensively studied as it can transform organic compounds directly into electricity. Although revealing the biofilm regulation mechanism is crucial for enhancing bio-current, studies regarding the mechanism by which the culture condition affects biofilm formation are still lacking. The biofilm formation of S. oneidensis MR-1 in two typical media with same electron donor was investigated in this study. Bio-electricity increased 1.8 times in medium with phosphate-buffered saline (PBS) than in piperazine-1,4-bisethanesulfonic acid (PIPES). Biofilm total protein has 1.5-fold of difference between two media at day 3, and biofilm structures also differed; a fluffy biofilm with curled cells was formed in medium with PBS, whereas a compact, ordered, and closely attached biofilm was formed in medium with PIPES. Transcriptome studies clarified that the expression of genes beneficial for cell aggregation [e.g., aggA (2.3 fold), bpfA (2.8 fold) and csgB (3.9 fold)] in medium with PIPES was significantly upregulated, thus provided an explanation for the specific biofilm structure. Buffer concentration was proved to be a critical factor impacted cell morphology and current generation. The maximum current density in 30 mM of PBS and PIPES is 165 and 159 μA·cm-2 respectively, but it increased to 327 and 274 μA·cm-2 in 200 mM of PBS and PIPES. This study provides new insights into the mechanism of medium-dependent biofilm regulation, which will be beneficial for developing simple and efficient strategies to enhance bio-electricity generation.
Collapse
Affiliation(s)
- Zhixin Lin
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Mingliang Long
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China; Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Wei Liu
- College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.
| | - Tongxu Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China; National-Regional Joint Engineering ResearchCenter for Soil Pollution Control and Remediation in South China,Guangzhou 510650, China
| | - Yundang Wu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
26
|
Evidence for Horizontal and Vertical Transmission of Mtr-Mediated Extracellular Electron Transfer among the Bacteria. mBio 2021; 13:e0290421. [PMID: 35100867 PMCID: PMC8805035 DOI: 10.1128/mbio.02904-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some bacteria and archaea have evolved the means to use extracellular electron donors and acceptors for energy metabolism, a phenomenon broadly known as extracellular electron transfer (EET). One such EET mechanism is the transmembrane electron conduit MtrCAB, which has been shown to transfer electrons derived from metabolic substrates to electron acceptors, like Fe(III) and Mn(IV) oxides, outside the cell. Although most studies of MtrCAB-mediated EET have been conducted in Shewanella oneidensis MR-1, recent investigations in Vibrio and Aeromonas species have revealed that the electron-donating proteins that support MtrCAB in Shewanella are not as representative as previously thought. This begs the question of how widespread the capacity for MtrCAB-mediated EET is, the changes it has accrued in different lineages, and where these lineages persist today. Here, we employed a phylogenetic and comparative genomics approach to identify the MtrCAB system across all domains of life. We found mtrCAB in the genomes of numerous diverse Bacteria from a wide range of environments, and the patterns therein strongly suggest that mtrCAB was distributed through both horizontal and subsequent vertical transmission, and with some cases indicating downstream modular diversification of both its core and accessory components. Our data point to an emerging evolutionary story about metal-oxidizing and -reducing metabolism, demonstrates that this capacity for EET has broad relevance to a diversity of taxa and the biogeochemical cycles they drive, and lays the foundation for further studies to shed light on how this mechanism may have coevolved with Earth's redox landscape. IMPORTANCE While many metabolisms make use of soluble, cell-permeable substrates like oxygen or hydrogen, there are other substrates, like iron or manganese, that cannot be brought into the cell. Some bacteria and archaea have evolved the means to directly "plug in" to such environmental electron reservoirs in a process known as extracellular electron transfer (EET), making them powerful agents of biogeochemical change and promising vehicles for bioremediation and alternative energy. Yet the diversity, distribution, and evolution of EET mechanisms are poorly constrained. Here, we present findings showing that the genes encoding one such EET system (mtrCAB) are present in a broad diversity of bacteria found in a wide range of environments, emphasizing the ubiquity and potential impact of EET in our biosphere. Our results suggest that these genes have been disseminated largely through horizontal transfer, and the changes they have accrued in these lineages potentially reflect adaptations to changing environments.
Collapse
|
27
|
Ding D, Wu M, Liu Y. Genome-scale mutant fitness reveals versatile c-type cytochromes in Shewanella oneidensis MR-1. Mol Omics 2021; 17:288-295. [PMID: 33554980 DOI: 10.1039/d0mo00107d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Shewanella has been widely investigated for its metabolic versatility and use of a large number of extracellular electron acceptors. Many c-type cytochromes are responsible for this diversity, mainly in condition-specific fashions. By using genome-scale mutant fitness data, we studied which genes (particularly c-type cytochromes) were used to coordinate various electron transfer processes in the present work. First, by integrating fitness profiles with protein-protein interaction (PPI) networks, we showed that the genes with a high total fitness value were generally more important in PPI networks than those with low fitness values. Then, we identified genes that are important across many experiments, and further fitness analysis confirmed five versatile c-type cytochromes: ScyA (SO0264), PetC (SO0610), CcoP (SO2361), CcoO (SO2363) and CytcB (SO4666), which are considered to be crucial in most experimental conditions. Finally, we demonstrated a mediating role in the periplasm for the less-reported CytcB by combining protein structure, subcellular localization and disordered region analysis. Comparative genome analysis further revealed that it is distinctive in Shewanella species. Collectively, these results suggest that periplasmic electron transfer processes are more diverse and flexible than previously reported, giving insight for further experimental studies of Shewanella oneidensis MR-1.
Collapse
Affiliation(s)
- Dewu Ding
- School of Mathematics and Computer Science, Yichun University, Yichun, 336000, P. R. China.
| | | | | |
Collapse
|
28
|
Xiao X, Yu HQ. Molecular mechanisms of microbial transmembrane electron transfer of electrochemically active bacteria. Curr Opin Chem Biol 2020; 59:104-110. [DOI: 10.1016/j.cbpa.2020.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 10/23/2022]
|
29
|
Beblawy S, Philipp LA, Gescher J. Accelerated Electro-Fermentation of Acetoin in Escherichia coli by Identifying Physiological Limitations of the Electron Transfer Kinetics and the Central Metabolism. Microorganisms 2020; 8:microorganisms8111843. [PMID: 33238546 PMCID: PMC7700339 DOI: 10.3390/microorganisms8111843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 11/16/2022] Open
Abstract
Anode-assisted fermentations offer the benefit of an anoxic fermentation routine that can be applied to produce end-products with an oxidation state independent from the substrate. The whole cell biocatalyst transfers the surplus of electrons to an electrode that can be used as a non-depletable electron acceptor. So far, anode-assisted fermentations were shown to provide high carbon efficiencies but low space-time yields. This study aimed at increasing space-time yields of an Escherichia coli-based anode-assisted fermentation of glucose to acetoin. The experiments build on an obligate respiratory strain, that was advanced using selective adaptation and targeted strain development. Several transfers under respiratory conditions led to point mutations in the pfl, aceF and rpoC gene. These mutations increased anoxic growth by three-fold. Furthermore, overexpression of genes encoding a synthetic electron transport chain to methylene blue increased the electron transfer rate by 2.45-fold. Overall, these measures and a medium optimization increased the space-time yield in an electrode-assisted fermentation by 3.6-fold.
Collapse
Affiliation(s)
- Sebastian Beblawy
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
| | - Laura-Alina Philipp
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany; (S.B.); (L.-A.P.)
- Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| |
Collapse
|
30
|
Paquete CM. Electroactivity across the cell wall of Gram-positive bacteria. Comput Struct Biotechnol J 2020; 18:3796-3802. [PMID: 33335679 PMCID: PMC7720022 DOI: 10.1016/j.csbj.2020.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
The growing interest on sustainable biotechnological processes for the production of energy and industrial relevant organic compounds have increased the discovery of electroactive organisms (i.e. organisms that are able to exchange electrons with an electrode) and the characterization of their extracellular electron transfer mechanisms. While most of the knowledge on extracellular electron transfer processes came from studies on Gram-negative bacteria, less is known about the processes performed by Gram-positive bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria lack an outer-membrane and contain a thick cell wall, which were thought to prevent extracellular electron transfer. However, in the last decade, an increased number of Gram-positive bacteria have been found to perform extracellular electron transfer, and exchange electrons with an electrode. In this mini-review the current knowledge on the extracellular electron transfer processes performed by Gram-positive bacteria is introduced, emphasising their electroactive role in bioelectrochemical systems. Also, the existent information of the molecular processes by which these bacteria exchange electrons with an electrode is highlighted. This understanding is fundamental to advance the implementation of these organisms in sustainable biotechnological processes, either through modification of the systems or through genetic engineering, where the organisms can be optimized to become better catalysts.
Collapse
Affiliation(s)
- Catarina M. Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Portugal
| |
Collapse
|
31
|
A Hybrid Extracellular Electron Transfer Pathway Enhances the Survival of Vibrio natriegens. Appl Environ Microbiol 2020; 86:AEM.01253-20. [PMID: 32737131 DOI: 10.1128/aem.01253-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Vibrio natriegens is the fastest-growing microorganism discovered to date, making it a useful model for biotechnology and basic research. While it is recognized for its rapid aerobic metabolism, less is known about anaerobic adaptations in V. natriegens or how the organism survives when oxygen is limited. Here, we describe and characterize extracellular electron transfer (EET) in V. natriegens, a metabolism that requires movement of electrons across protective cellular barriers to reach the extracellular space. V. natriegens performs extracellular electron transfer under fermentative conditions with gluconate, glucosamine, and pyruvate. We characterized a pathway in V. natriegens that requires CymA, PdsA, and MtrCAB for Fe(III) citrate and Fe(III) oxide reduction, which represents a hybrid of strategies previously discovered in Shewanella and Aeromonas Expression of these V. natriegens genes functionally complemented Shewanella oneidensis mutants. Phylogenetic analysis of the inner membrane quinol dehydrogenases CymA and NapC in gammaproteobacteria suggests that CymA from Shewanella diverged from Vibrionaceae CymA and NapC. Analysis of sequenced Vibrionaceae revealed that the genetic potential to perform EET is conserved in some members of the Harveyi and Vulnificus clades but is more variable in other clades. We provide evidence that EET enhances anaerobic survival of V. natriegens, which may be the primary physiological function for EET in Vibrionaceae IMPORTANCE Bacteria from the genus Vibrio occupy a variety of marine and brackish niches with fluctuating nutrient and energy sources. When oxygen is limited, fermentation or alternative respiration pathways must be used to conserve energy. In sedimentary environments, insoluble oxide minerals (primarily iron and manganese) are able to serve as electron acceptors for anaerobic respiration by microorganisms capable of extracellular electron transfer, a metabolism that enables the use of these insoluble substrates. Here, we identify the mechanism for extracellular electron transfer in Vibrio natriegens, which uses a combination of strategies previously identified in Shewanella and Aeromonas We show that extracellular electron transfer enhanced survival of V. natriegens under fermentative conditions, which may be a generalized strategy among Vibrio spp. predicted to have this metabolism.
Collapse
|
32
|
Philipp LA, Edel M, Gescher J. Genetic engineering for enhanced productivity in bioelectrochemical systems. ADVANCES IN APPLIED MICROBIOLOGY 2020; 111:1-31. [PMID: 32446410 DOI: 10.1016/bs.aambs.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A shift from petrochemical processes toward a bio-based economy is one of the most advocated developments for a sustainable future. To achieve this will require the biotechnological production of platform chemicals that can be further processed by chemical engineering. Bioelectrochemical systems (BESs) are a novel tool within the biotechnology field. In BESs, microbes serve as biocatalysts for the production of biofuels and value-added compounds, as well as for the production of electricity. Although the general feasibility of bioelectrochemical processes has been demonstrated in recent years, much research has been conducted to develop biocatalysts better suited to meet industrial demands. Initially, mainly natural exoelectrogenic organisms were investigated for their performance in BESs. Driven by possibilities of recent developments in genetic engineering and synthetic biology, the spectrum of microbial catalysts and their versatility (substrate and product range) have expanded significantly. Despite these developments, there is still a tremendous gap between currently achievable space-time yields and current densities on the one hand and the theoretical limits of BESs on the other. It will be necessary to move the performance of the biocatalysts closer to the theoretical possibilities in order to establish viable production routines. This review summarizes the status quo of engineering microbial biocatalysts for anode-applications with high space-time yields. Furthermore, we will address some of the theoretical limitations of these processes exemplarily and discuss which of the present strategies might be combined to achieve highly synergistic effects and, thus, meet industrial demands.
Collapse
Affiliation(s)
- Laura-Alina Philipp
- Karlsruhe Institute of Technology, Institute for Applied Biosciences-Department of Applied Biology, Karlsruhe, Germany
| | - Miriam Edel
- Karlsruhe Institute of Technology, Institute for Applied Biosciences-Department of Applied Biology, Karlsruhe, Germany
| | - Johannes Gescher
- Karlsruhe Institute of Technology, Institute for Applied Biosciences-Department of Applied Biology, Karlsruhe, Germany; Karlsruhe Institute of Technology, Institute for Biological Interfaces, Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
33
|
Kong G, Song D, Guo J, Sun G, Zhu C, Chen F, Yang Y, Xu M. Lack of Periplasmic Non-heme Protein SorA Increases Shewanella decolorationis Current Generation. Front Microbiol 2020; 11:262. [PMID: 32158435 PMCID: PMC7052111 DOI: 10.3389/fmicb.2020.00262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/04/2020] [Indexed: 11/13/2022] Open
Abstract
Bacterial extracellular electron transport (EET) plays an important role in many natural and engineering processes. Some periplasmic non-heme redox proteins usually coexist with c-type cytochromes (CTCs) during the EET process. However, in contrast to CTCs, little is known about the roles of these non-heme redox proteins in EET. In this study, the transcriptome of Shewanella decolorationis S12 showed that the gene encoding a periplasmic sulfite dehydrogenase molybdenum-binding subunit SorA was significantly up-regulated during electrode respiration in microbial fuel cells (MFCs) compared with that during azo-dye reduction. The maximum current density of MFCs catalyzed by a mutant strain lacking SorA (ΔsorA) was 25% higher than that of wild strain S12 (20 vs. 16 μA/cm2). Both biofilm formation and the current generation of the anodic biofilms were increased by the disruption of sorA, which suggests that the existence of SorA in S. decolorationis S12 inhibits electrode respiration. In contrast, disruption of sorA had no effect on respiration by S. decolorationis S12 with oxygen, fumarate, azo dye, or ferric citrate as electron acceptors. This is the first report of the specific effect of a periplasmic non-heme redox protein on EET to electrode and provides novel information for enhancing bacterial current generation.
Collapse
Affiliation(s)
- Guannan Kong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Da Song
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Jun Guo
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Guoping Sun
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chunjie Zhu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Fusheng Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yonggang Yang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangzhou, China
| | - Meiying Xu
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| |
Collapse
|
34
|
Blake RC, White RA. In situ absorbance measurements: a new means to study respiratory electron transfer in chemolithotrophic microorganisms. Adv Microb Physiol 2020; 76:81-127. [PMID: 32408948 DOI: 10.1016/bs.ampbs.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Absorbance measurements on intact chemolithotrophic microorganisms that respire aerobically on soluble iron are described that used a novel integrating cavity absorption meter to eliminate the effects of light scattering on the experimental results. Steady state kinetic measurements on ferric iron production by intact cells revealed that the Michaelis Menten equation described the initial rates of product formation for at least 8 different chemolithotrophic microorganisms in 6 phyla distributed equally among the archaea and the Gram negative and Gram positive eubacteria. Cell-monitored turnover measurements during aerobic respiration on soluble iron by the same 12 intact microorganisms revealed six different patterns of iron-dependent absorbance changes, suggesting that there may be at least six different sets of prosthetic groups and biomolecules that can accomplish aerobic respiration on soluble iron. Detailed kinetic studies revealed that the 3-component iron respiratory chain of Acidithiobacillus ferrooxidans functioned as an ensemble with a single macroscopic rate constant when the iron-reduced proteins were oxidized in the presence of excess molecular oxygen. The principal member of this 3-component system was a cupredoxin called rusticyanin that was present in the periplasm of At. ferrooxidans at an approximate concentration of 350 mg/mL, an observation that provides new insights into the crowded environments in the periplasms of Gram negative eubacteria that conduct electrons across their periplasm. The ability to conduct direct spectrophotometric measurements under noninvasive physiological conditions represents a new and powerful approach to examine the rates and extents of biological events in situ without disrupting the complexity of the live cellular environment.
Collapse
Affiliation(s)
- Robert C Blake
- College of Pharmacy, Xavier University of Louisiana, New Orleans, United States
| | - Richard A White
- Department of Plant Pathology, Washington State University, Pullman, WA, United States; RAW Molecular Systems (RMS) LLC, Spokane, WA, United States; Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
35
|
Su L, Fukushima T, Prior A, Baruch M, Zajdel TJ, Ajo-Franklin CM. Modifying Cytochrome c Maturation Can Increase the Bioelectronic Performance of Engineered Escherichia coli. ACS Synth Biol 2020; 9:115-124. [PMID: 31880923 DOI: 10.1021/acssynbio.9b00379] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic circuits that encode extracellular electron transfer (EET) pathways allow the intracellular state of Escherichia coli to be electronically monitored and controlled. However, relatively low electron flux flows through these pathways, limiting the degree of control by these circuits. Since the EET pathway is composed of multiple multiheme cytochromes c (cyts c) from Shewanella oneidensis MR-1, we hypothesized that lower expression levels of cyt c may explain this low EET flux and may be caused by the differences in the cyt c maturation (ccm) machinery between these two species. Here, we constructed random mutations within ccmH by error-prone PCR and screened for increased cyt c production. We identified two ccmH mutants, ccmH-132 and ccmH-195, that exhibited increased heterologous cyt c expression, but had different effects on EET. The ccmH-132 strain reduced WO3 nanoparticles faster than the parental control, whereas the ccmH-195 strain reduced more slowly. The same trend is reflected in electrical current generation: ccmH-132, which has only a single mutation from WT, drastically increased current production by 77%. The percentage of different cyt c proteins in these two mutants suggests that the stoichiometry of the S. oneidensis cyts c is a key determinant of current production by Mtr-expressing E. coli. Thus, we conclude that modulating cyt c maturation effectively improves genetic circuits governing EET in engineered biological systems, enabling better bioelectronic control of E. coli.
Collapse
Affiliation(s)
- Lin Su
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210018, China
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tatsuya Fukushima
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrew Prior
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Moshe Baruch
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tom J. Zajdel
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Caroline M. Ajo-Franklin
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Secreted Flavin Cofactors for Anaerobic Respiration of Fumarate and Urocanate by Shewanella oneidensis: Cost and Role. Appl Environ Microbiol 2019; 85:AEM.00852-19. [PMID: 31175188 DOI: 10.1128/aem.00852-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/01/2019] [Indexed: 11/20/2022] Open
Abstract
Shewanella oneidensis strain MR-1, a facultative anaerobe and model organism for dissimilatory metal reduction, uses a periplasmic flavocytochrome, FccA, both as a terminal fumarate reductase and as a periplasmic electron transfer hub for extracellular respiration of a variety of substrates. It is currently unclear how maturation of FccA and other periplasmic flavoproteins is achieved, specifically in the context of flavin cofactor loading, and the fitness cost of flavin secretion has not been quantified. We demonstrate that deletion of the inner membrane flavin adenine dinucleotide (FAD) exporter Bfe results in a 23% slower growth rate than that of the wild type during fumarate respiration and an 80 to 90% loss in fumarate reductase activity. Exogenous flavin supplementation does not restore FccA activity in a Δbfe mutant unless the gene encoding the periplasmic FAD hydrolase UshA is also deleted. We demonstrate that the small Bfe-independent pool of FccA is sufficient for anaerobic growth with fumarate. Strains lacking Bfe were unable to grow using urocanate as the sole electron acceptor, which relies on the periplasmic flavoprotein UrdA. We show that periplasmic flavoprotein maturation occurs in careful balance with periplasmic FAD hydrolysis, and that the current model for periplasmic flavin cofactor loading must account for a Bfe-independent mechanism for flavin transport. Finally, we determine that the metabolic burden of flavin secretion is not significant during growth with flavin-independent anaerobic electron acceptors. Our work helps frame the physiological motivations that drove evolution of flavin secretion by Shewanella IMPORTANCE Shewanella species are prevalent in marine and aquatic environments, throughout stratified water columns, in mineral-rich sediments, and in association with multicellular marine and aquatic organisms. The diversity of niches shewanellae can occupy are due largely to their respiratory versatility. Shewanella oneidensis is a model organism for dissimilatory metal reduction and can respire a diverse array of organic and inorganic compounds, including dissolved and solid metal oxides. The fumarate reductase FccA is a highly abundant multifunctional periplasmic protein that acts to bridge the periplasm and temporarily store electrons in a variety of respiratory nodes, including metal, nitrate, and dimethyl sulfoxide respiration. However, maturation of this central protein, particularly flavin cofactor acquisition, is poorly understood. Here, we quantify the fitness cost of flavin secretion and describe how free flavins are acquired by FccA and a homologous periplasmic flavoprotein, UrdA.
Collapse
|
37
|
Improvement of the electron transfer rate in Shewanella oneidensis MR-1 using a tailored periplasmic protein composition. Bioelectrochemistry 2019; 129:18-25. [PMID: 31075535 DOI: 10.1016/j.bioelechem.2019.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/28/2019] [Accepted: 04/28/2019] [Indexed: 11/23/2022]
Abstract
Periplasmic c-type cytochromes are essential for the electron transport between the cytoplasmic membrane bound menquinol oxidase CymA and the terminal ferric iron reductase MtrABC in the outer membrane of Shewanella oneidensis cells. Either STC or FccA are necessary for periplasmic electron transfer. We followed the hypothesis that the elimination of potential competing reactions in the periplasm and the simultaneous overexpression of STC (cctA) could lead to an accelerated electron transfer to the cell surface. The genes nrfA, ccpA, napB and napA were replaced by cctA. This led to a 1.7-fold increased ferric iron reduction rate and a 23% higher current generation in a bioelectrochemical system. Moreover, the quadruple mutant had a higher periplasmic flavin content. Further deletion of fccA and its replacement by cctA resulted in a strain with ferric iron reduction rates similar to the wild type and a lower concentration of periplasmic flavin compared to the quadruple mutant. A transcriptomic analysis revealed that the quadruple mutant had a 3.7-fold higher cctA expression which could not be further increased by the replacement of fccA. This work indicates that a synthetic adaptation of Shewanella towards extracellular respiration holds potential for increased respiratory rates and consequently higher current densities.
Collapse
|
38
|
DING DEWU. NETWORK ANALYSIS OF COMMON DIFFERENTIAL GENES IDENTIFIES KEY GENES AND IMPORTANT MODULES UNDERLYING EXTRACELLULAR ELECTRON TRANSFER PROCESSES. J BIOL SYST 2019. [DOI: 10.1142/s0218339019500037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electricigens can transfer electrons that produced in intracellular metabolic processes to cellular surface to restore extracellular insoluble electron acceptors (extracellular electron transfer, EET). To uncover the molecular mechanisms underlying EET processes, we integrated transcriptome changes accompanying such processes with molecular network. Firstly, time-series expression datasets for Shewanella oneidensis MR-1 under limited/changed [Formula: see text] conditions were obtained from the GEO database, and a total of 336 common differentially expressed genes (DEGs) were identified. Then, we constructed the protein–protein interaction (PPI) network that involved in EET processes from these DEGs. Furthermore, by using centralization analysis and community detection, network analysis of the PPI network was performed. Although the fundamental EET genes are similar to previous studies, important new genes have been discovered. Taking together, our study identified many literature-validated genes critical to EET processes, and also proposed some novel genes that were putatively involved in EET processes.
Collapse
Affiliation(s)
- DEWU DING
- School of Mathematics and Computer Science, Yichun University, Yichun 336000, P. R. China
| |
Collapse
|
39
|
Paquete CM, Rusconi G, Silva AV, Soares R, Louro RO. A brief survey of the "cytochromome". Adv Microb Physiol 2019; 75:69-135. [PMID: 31655743 DOI: 10.1016/bs.ampbs.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Multihaem cytochromes c are widespread in nature where they perform numerous roles in diverse anaerobic metabolic pathways. This is achieved in two ways: multihaem cytochromes c display a remarkable diversity of ways to organize multiple hemes within the protein frame; and the hemes possess an intrinsic reactive versatility derived from diverse spin, redox and coordination states. Here we provide a brief survey of multihaem cytochromes c that have been characterized in the context of their metabolic role. The contribution of multihaem cytochromes c to dissimilatory pathways handling metallic minerals, nitrogen compounds, sulfur compounds, organic compounds and phototrophism are described. This aims to set the stage for the further exploration of the vast unknown "cytochromome" that can be anticipated from genomic databases.
Collapse
|
40
|
Zhong Y, Shi L. Genomic Analyses of the Quinol Oxidases and/or Quinone Reductases Involved in Bacterial Extracellular Electron Transfer. Front Microbiol 2018; 9:3029. [PMID: 30619124 PMCID: PMC6295460 DOI: 10.3389/fmicb.2018.03029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
To exchange electrons with extracellular substrates, some microorganisms employ extracellular electron transfer (EET) pathways that physically connect extracellular redox reactions to intracellular metabolic activity. These pathways are made of redox and structural proteins that work cooperatively to transfer electrons between extracellular substrates and the cytoplasmic membrane. Crucial to the bacterial and archaeal EET pathways are the quinol oxidases and/or quinone reductases in the cytoplasmic membrane where they recycle the quinone/quinol pool in the cytoplasmic membrane during EET reaction. Up to date, three different families of quinol oxidases and/or quinone reductases involved in bacterial EET have been discovered. They are the CymA, CbcL/MtrH/MtoC, and ImcH families of quinol oxidases and/or quinone reductases that are all multiheme c-type cytochromes (c-Cyts). To investigate to what extent they are distributed among microorganisms, we search the bacterial as well as archaeal genomes for the homologs of these c-Cyts. Search results reveal that the homologs of these c-Cyts are only found in the Domain Bacteria. Moreover, the CymA homologs are only found in the phylum of Proteobacteria and most of them are in the Shewanella genus. In addition to Shewanella sp., CymA homologs are also found in other Fe(III)-reducing bacteria, such as of Vibrio parahaemolyticus. In contrast to CymA, CbcL/MtrH/MtoC, and ImcH homologs are much more widespread. CbcL/MtrH/MtoC homologs are found in 15 phyla, while ImcH homologs are found in 12 phyla. Furthermore, the heme-binding motifs of CbcL/MtrH/MtoC and ImcH homologs vary greatly, ranging from 3 to 23 and 6 to 10 heme-binding motifs for CbcL/MtrH/MtoC and ImcH homologs, respectively. Moreover, CymA and CbcL/MtrH/MtoC homologs are found in both Fe(III)-reducing and Fe(II)-oxidizing bacteria, suggesting that these families of c-Cyts catalyze both quinol-oxidizing and quinone-reducing reactions. ImcH homologs are only found in the Fe(III)-reducing bacteria, implying that they are only the quinol oxidases. Finally, some bacteria have the homologs of two different families of c-Cyts, which may improve the bacterial capability to exchange electrons with extracellular substrates.
Collapse
Affiliation(s)
- Yuhong Zhong
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China
| | - Liang Shi
- Department of Biological Sciences and Technology, School of Environmental Studies, China University of Geosciences, Wuhan, China.,State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| |
Collapse
|
41
|
Trindade IB, Silva JM, Fonseca BM, Catarino T, Fujita M, Matias PM, Moe E, Louro RO. Structure and reactivity of a siderophore-interacting protein from the marine bacterium Shewanella reveals unanticipated functional versatility. J Biol Chem 2018; 294:157-167. [PMID: 30420426 DOI: 10.1074/jbc.ra118.005041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/05/2018] [Indexed: 01/23/2023] Open
Abstract
Siderophores make iron accessible under iron-limited conditions and play a crucial role in the survival of microorganisms. Because of their remarkable metal-scavenging properties and ease in crossing cellular envelopes, siderophores hold great potential in biotechnological applications, raising the need for a deeper knowledge of the molecular mechanisms underpinning the siderophore pathway. Here, we report the structural and functional characterization of a siderophore-interacting protein from the marine bacterium Shewanella frigidimarina NCIBM400 (SfSIP). SfSIP is a flavin-containing ferric-siderophore reductase with FAD- and NAD(P)H-binding domains that have high homology with other characterized SIPs. However, we found here that it mechanistically departs from what has been described for this family of proteins. Unlike other FAD-containing SIPs, SfSIP did not discriminate between NADH and NADPH. Furthermore, SfSIP required the presence of the Fe2+-scavenger, ferrozine, to use NAD(P)H to drive the reduction of Shewanella-produced hydroxamate ferric-siderophores. Additionally, this is the first SIP reported that also uses a ferredoxin as electron donor, and in contrast to NAD(P)H, its utilization did not require the mediation of ferrozine, and electron transfer occurred at fast rates. Finally, FAD oxidation was thermodynamically coupled to deprotonation at physiological pH values, enhancing the solubility of ferrous iron. On the basis of these results and the location of the SfSIP gene downstream of a sequence for putative binding of aerobic respiration control protein A (ArcA), we propose that SfSIP contributes an additional layer of regulation that maintains cellular iron homeostasis according to environmental cues of oxygen availability and cellular iron demand.
Collapse
Affiliation(s)
- Inês B Trindade
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - José M Silva
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Bruno M Fonseca
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal
| | - Masaki Fujita
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal; Instituto de Biologia Experimental e Tecnológica (iBET), Apartado 12, 2780-901 Oeiras, Portugal
| | - Elin Moe
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal
| | - Ricardo O Louro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB-NOVA), Universidade Nova de Lisboa, Av. da República (EAN), 2780-157 Oeiras, Portugal.
| |
Collapse
|
42
|
Lienemann M, TerAvest MA, Pitkänen J, Stuns I, Penttilä M, Ajo‐Franklin CM, Jäntti J. Towards patterned bioelectronics: facilitated immobilization of exoelectrogenic Escherichia coli with heterologous pili. Microb Biotechnol 2018; 11:1184-1194. [PMID: 30296001 PMCID: PMC6196383 DOI: 10.1111/1751-7915.13309] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/02/2018] [Accepted: 08/07/2018] [Indexed: 12/01/2022] Open
Abstract
Biosensors detect signals using biological sensing components such as redox enzymes and biological cells. Although cellular versatility can be beneficial for different applications, limited stability and efficiency in signal transduction at electrode surfaces represent a challenge. Recent studies have shown that the Mtr electron conduit from Shewanella oneidensis MR-1 can be produced in Escherichia coli to generate an exoelectrogenic model system with well-characterized genetic tools. However, means to specifically immobilize this organism at solid substrates as electroactive biofilms have not been tested previously. Here, we show that mannose-binding Fim pili can be produced in exoelectrogenic E. coli and can be used to selectively attach cells to a mannose-coated material. Importantly, cells expressing fim genes retained current production by the heterologous Mtr electron conduit. Our results demonstrate the versatility of the exoelectrogenic E. coli system and motivate future work that aims to produce patterned biofilms for bioelectronic devices that can respond to various biochemical signals.
Collapse
Affiliation(s)
| | - Michaela A. TerAvest
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
- The Molecular FoundryLawrence Berkeley National LaboratoryMolecular Biophysics and Integrated Bioimaging DivisionSynthetic Biology InstituteBerkeleyCAUSA
| | - Juha‐Pekka Pitkänen
- VTT Technical Research Centre of Finland LtdEspooFinland
- Current affiliation: Solar Foods LtdHelsinkiFinland
| | - Ingmar Stuns
- VTT Technical Research Centre of Finland LtdEspooFinland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland LtdEspooFinland
| | - Caroline M. Ajo‐Franklin
- The Molecular FoundryLawrence Berkeley National LaboratoryMolecular Biophysics and Integrated Bioimaging DivisionSynthetic Biology InstituteBerkeleyCAUSA
| | - Jussi Jäntti
- VTT Technical Research Centre of Finland LtdEspooFinland
| |
Collapse
|
43
|
Beblawy S, Bursac T, Paquete C, Louro R, Clarke TA, Gescher J. Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol Microbiol 2018; 109:571-583. [PMID: 29995975 DOI: 10.1111/mmi.14067] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Shewanella oneidensis is the best understood model organism for the study of dissimilatory iron reduction. This review focuses on the current state of our knowledge regarding this extracellular respiratory process and highlights its physiologic, regulatory and biochemical requirements. It seems that we have widely understood how respiratory electrons can reach the cell surface and what the minimal set of electron transport proteins to the cell surface is. Nevertheless, even after decades of work in different research groups around the globe there are still several important questions that were not answered yet. In particular, the physiology of this organism, the possible evolutionary benefit of some responses to anoxic conditions, as well as the exact mechanism of electron transfer onto solid electron acceptors are yet to be addressed. The elucidation of these questions will be a great challenge for future work and important for the application of extracellular respiration in biotechnological processes.
Collapse
Affiliation(s)
- Sebastian Beblawy
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany
| | - Thea Bursac
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany
| | - Catarina Paquete
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República-EAN, Oeiras, 2780-157, Portugal
| | - Ricardo Louro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Av. da República-EAN, Oeiras, 2780-157, Portugal
| | - Thomas A Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Johannes Gescher
- Department of Applied Biology, Institute for Applied Biosciences, Karlsruhe Institute of Technology (CS), Karlsruhe, Germany.,Institute for Biological Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
44
|
Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer. Biotechnol Adv 2018; 36:1815-1827. [PMID: 30196813 DOI: 10.1016/j.biotechadv.2018.07.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 11/21/2022]
Abstract
Redox mediator plays an important role in extracellular electron transfer (EET) in many environments wherein microbial electrocatalysis occurs actively. Because of the block of cell envelope and the low difference of redox potential between the intracellular and extracellular surroundings, the proceeding of EET depends mainly on the help of a variety of mediators that function as an electron carrier or bridge. In this Review, we will summarize a wide range of redox mediators and further discuss their functional mechanisms in EET that drives a series of microbial electrocatalytic reactions. Studying these mediators adds to our knowledge of how charge transport and electrochemical reactions occur at the microorganism-electrode interface. This understanding would promote the widespread applications of microbial electrocatalysis in microbial fuel cells, bioremediation, bioelectrosynthesis, biomining, nanomaterial productions, etc. These improved applications will greatly benefit the sustainable development of the environmental-friendly biochemical industries.
Collapse
|
45
|
Lusk BG, Peraza I, Albal G, Marcus AK, Popat SC, Torres CI. pH Dependency in Anode Biofilms of Thermincola ferriacetica Suggests a Proton-Dependent Electrochemical Response. J Am Chem Soc 2018; 140:5527-5534. [DOI: 10.1021/jacs.8b01734] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bradley G. Lusk
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
- ScienceTheEarth, Mesa, Arizona 85201, United States
| | - Isaias Peraza
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Gaurav Albal
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Andrew K. Marcus
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
| | - Sudeep C. Popat
- Department of Environmental Engineering and Earth Sciences, Clemson University, 342 Computer Court, Anderson, South Carolina 29625, United States
| | - Cesar I. Torres
- Swette Center for Environmental Biotechnology, The Biodesign Institute at Arizona State University, P.O. Box 875701, Tempe, Arizona 85287, United States
- School for Engineering of Matter, Transport and Energy, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
46
|
Edwards MJ, White GF, Lockwood CW, Lawes MC, Martel A, Harris G, Scott DJ, Richardson DJ, Butt JN, Clarke TA. Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners. J Biol Chem 2018; 293:8103-8112. [PMID: 29636412 PMCID: PMC5971433 DOI: 10.1074/jbc.ra118.001850] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/19/2018] [Indexed: 11/06/2022] Open
Abstract
Many subsurface microorganisms couple their metabolism to the reduction or oxidation of extracellular substrates. For example, anaerobic mineral-respiring bacteria can use external metal oxides as terminal electron acceptors during respiration. Porin-cytochrome complexes facilitate the movement of electrons generated through intracellular catabolic processes across the bacterial outer membrane to these terminal electron acceptors. In the mineral-reducing model bacterium Shewanella oneidensis MR-1, this complex is composed of two decaheme cytochromes (MtrA and MtrC) and an outer-membrane β-barrel (MtrB). However, the structures and mechanisms by which porin-cytochrome complexes transfer electrons are unknown. Here, we used small-angle neutron scattering (SANS) to study the molecular structure of the transmembrane complexes MtrAB and MtrCAB. Ab initio modeling of the scattering data yielded a molecular envelope with dimensions of ∼105 × 60 × 35 Å for MtrAB and ∼170 × 60 × 45 Å for MtrCAB. The shapes of these molecular envelopes suggested that MtrC interacts with the surface of MtrAB, extending ∼70 Å from the membrane surface and allowing the terminal hemes to interact with both MtrAB and an extracellular acceptor. The data also reveal that MtrA fully extends through the length of MtrB, with ∼30 Å being exposed into the periplasm. Proteoliposome models containing membrane-associated MtrCAB and internalized small tetraheme cytochrome (STC) indicate that MtrCAB could reduce Fe(III) citrate with STC as an electron donor, disclosing a direct interaction between MtrCAB and STC. Taken together, both structural and proteoliposome experiments support porin-cytochrome-mediated electron transfer via periplasmic cytochromes such as STC.
Collapse
Affiliation(s)
- Marcus J Edwards
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Gaye F White
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Colin W Lockwood
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Matthew C Lawes
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Anne Martel
- Institut Laue-Langevin, 38042 Grenoble, France
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom
| | - David J Scott
- Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire OX11 0FA, United Kingdom; ISIS Spallation Neutron and Muon Source, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX, United Kingdom; School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire LE12 5RD, United Kingdom
| | - David J Richardson
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Julea N Butt
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Thomas A Clarke
- Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
| |
Collapse
|
47
|
Meibom KL, Cabello EM, Bernier-Latmani R. The Small RNA RyhB Is a Regulator of Cytochrome Expression in Shewanella oneidensis. Front Microbiol 2018. [PMID: 29515549 PMCID: PMC5826389 DOI: 10.3389/fmicb.2018.00268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Shewanella oneidensis produces an extensive electron transfer network that results in metabolic flexibility. A large number of c-type cytochromes are expressed by S. oneidensis and these function as the fundamental electron transport chain proteins. Although several S. oneidensis cytochromes have been well-characterized, little is known about how their expression is regulated. In this study, we investigate the role of the ferric uptake regulator (Fur) and the sRNA RyhB in regulation. Our results demonstrate that loss of Fur leads to diminished growth and an apparent decrease in heme-containing proteins. Remarkably, deleting the Fur-repressed ryhB gene almost completely reverses these physiological changes, indicating that the phenotypes resulting from loss of Fur are (at least partially) dependent on RyhB. RNA sequencing identified a number of possible RyhB repressed genes. A large fraction of these encode c-type cytochromes, among them two of the most abundant periplasmic cytochromes CctA (also known as STC) and ScyA. We show that RyhB destabilizes the mRNA of four of its target genes, cctA, scyA, omp35, and nrfA and this requires the presence of the RNA chaperone Hfq. Iron limitation decreases the expression of the RyhB target genes cctA and scyA and this regulation relies on the presence of both Fur and RyhB. Overall, this study suggests that controlling cytochrome expression is of importance to maintain iron homeostasis and that sRNAs molecules are important players in the regulation of fundamental processes in S. oneidensis MR-1.
Collapse
Affiliation(s)
- Karin L Meibom
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elena M Cabello
- Bioinformatics and Biostatistics Core Facility, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
48
|
JAK2/STAT3 pathway is involved in the protective effects of epidermal growth factor receptor activation against cerebral ischemia/reperfusion injury in rats. Neurosci Lett 2017; 662:219-226. [PMID: 29061394 DOI: 10.1016/j.neulet.2017.10.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Cerebral ischemia and reperfusion is a common pathophysiologic process, which is involved in stroke and brain trauma. Recent studies revealed that activating epidermal growth factor receptor (EGFR) ameliorates cerebral ischemia/reperfusion (I/R) injury, however, the precise mechanisms remain to be illuminated. In this study, the neurological behavior was evaluated by Longa score. The infarct volume was performed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the expression of p-EGFR, p-STAT3, connexin (Cx43), Bax and Bcl-2 were detected by Western blot. The neurological behavior and infarct volume were increased in rats with cerebral I/R injury. Epidermal growth factor (EGF) pretreatment significantly decreased neurological deficit and infarct volume. However, the antagonist of EGFR, AG1478 attenuated the EGF-induced reduction of neurological deficit and infarct volume. Moreover, the inhibitor of JAK2/STAT3, AG490 undermined the protective effects stimulated by activating EGFR in rats with I/R injury. In addition, EGF pretreatment increased the expression of Bcl-2 and reduced the expression of Bax and Cx43, and the effects were abolished after using AG1478 and AG490. These findings implicate that JAK2/STAT3 pathway plays the vital role in I/R injury protection from activating EGFR. And the neuroprotective effects may associate with inhibiting the Cx43 expression and the inhibition of apoptosis.
Collapse
|
49
|
A portable bioelectronic sensing system (BESSY) for environmental deployment incorporating differential microbial sensing in miniaturized reactors. PLoS One 2017; 12:e0184994. [PMID: 28915277 PMCID: PMC5600388 DOI: 10.1371/journal.pone.0184994] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/04/2017] [Indexed: 02/08/2023] Open
Abstract
Current technologies are lacking in the area of deployable, in situ monitoring of complex chemicals in environmental applications. Microorganisms metabolize various chemical compounds and can be engineered to be analyte-specific making them naturally suited for robust chemical sensing. However, current electrochemical microbial biosensors use large and expensive electrochemistry equipment not suitable for on-site, real-time environmental analysis. Here we demonstrate a miniaturized, autonomous bioelectronic sensing system (BESSY) suitable for deployment for instantaneous and continuous sensing applications. We developed a 2x2 cm footprint, low power, two-channel, three-electrode electrochemical potentiostat which wirelessly transmits data for on-site microbial sensing. Furthermore, we designed a new way of fabricating self-contained, submersible, miniaturized reactors (m-reactors) to encapsulate the bacteria, working, and counter electrodes. We have validated the BESSY’s ability to specifically detect a chemical amongst environmental perturbations using differential current measurements. This work paves the way for in situ microbial sensing outside of a controlled laboratory environment.
Collapse
|
50
|
Cao Y, Li X, Li F, Song H. CRISPRi-sRNA: Transcriptional-Translational Regulation of Extracellular Electron Transfer in Shewanella oneidensis. ACS Synth Biol 2017; 6:1679-1690. [PMID: 28616968 DOI: 10.1021/acssynbio.6b00374] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Extracellular electron transfer (EET) in Shewanella oneidensis MR-1, which is one of the most well-studied exoelectrogens, underlies many microbial electrocatalysis processes, including microbial fuel cells, microbial electrolysis cells, and microbial electrosynthesis. However, regulating the efficiency of EET remains challenging due to the lack of efficient genome regulation tools that regulate gene expression levels in S. oneidensis. Here, we systematically established a transcriptional regulation technology, i.e., clustered regularly interspaced short palindromic repeats interference (CRISPRi), in S. oneidensis MR-1 using green fluorescent protein (GFP) as a reporter. We used this CRISPRi technology to repress the expression levels of target genes, individually and in combination, in the EET pathways (e.g., the MtrCAB pathway and genes affecting the formation of electroactive biofilms in S. oneidensis), which in turn enabled the efficient regulation of EET efficiency. We then established a translational regulation technology, i.e., Hfq-dependent small regulatory RNA (sRNA), in S. oneidensis by repressing the GFP reporter and mtrA, which is a critical gene in the EET pathways in S. oneidensis. To achieve coordinated transcriptional and translational regulation at the genomic level, the CRISPRi and Hfq-dependent sRNA systems were incorporated into a single plasmid harbored in a recombinant S. oneidensis strain, which enabled an even higher efficiency of mtrA gene repression in the EET pathways than that achieved by the CRISPRi and Hfq-dependent sRNA system alone, as exhibited by the reduced electricity output. Overall, we developed a combined CRISPRi-sRNA method that enabled the synergistic transcriptional and translational regulation of target genes in S. oneidensis. This technology involving CRISPRi-sRNA transcriptional-translational regulation of gene expression at the genomic level could be applied to other microorganisms.
Collapse
Affiliation(s)
- Yingxiu Cao
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaofei Li
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Feng Li
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Hao Song
- Key Laboratory of Systems
Bioengineering (Ministry of Education), SynBio Research Platform,
Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|