1
|
Mandelli AP, Magri G, Tortoli M, Torricelli S, Laera D, Bagnoli F, Finco O, Bensi G, Brazzoli M, Chiarot E. Vaccination with staphylococcal protein A protects mice against systemic complications of skin infection recurrences. Front Immunol 2024; 15:1355764. [PMID: 38529283 PMCID: PMC10961379 DOI: 10.3389/fimmu.2024.1355764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Skin and soft tissue infections (SSTIs) are the most common diseases caused by Staphylococcus aureus (S. aureus), which can progress to threatening conditions due to recurrences and systemic complications. Staphylococcal protein A (SpA) is an immunomodulator antigen of S. aureus, which allows bacterial evasion from the immune system by interfering with different types of immune responses to pathogen antigens. Immunization with SpA could potentially unmask the pathogen to the immune system, leading to the production of antibodies that can protect from a second encounter with S. aureus, as it occurs in skin infection recurrences. Here, we describe a study in which mice are immunized with a mutated form of SpA mixed with the Adjuvant System 01 (SpAmut/AS01) before a primary S. aureus skin infection. Although mice are not protected from the infection under these conditions, they are able to mount a broader pathogen-specific functional immune response that results in protection against systemic dissemination of bacteria following an S. aureus second infection (recurrence). We show that this "hidden effect" of SpA can be partially explained by higher functionality of induced anti-SpA antibodies, which promotes better phagocytic activity. Moreover, a broader and stronger humoral response is elicited against several S. aureus antigens that during an infection are masked by SpA activity, which could prevent S. aureus spreading from the skin through the blood.
Collapse
Affiliation(s)
| | - Greta Magri
- Bacterial Vx Unit, GlaxoSmithKline, Siena, Italy
| | - Marco Tortoli
- Animal Resource Center, GlaxoSmithKline, Siena, Italy
| | | | | | - Fabio Bagnoli
- Infectious Disease Research Unit, GlaxoSmithKline, Upper Providence, PA, United States
| | - Oretta Finco
- Bacterial Vx Unit, GlaxoSmithKline, Siena, Italy
| | | | | | | |
Collapse
|
2
|
Haag AF, Liljeroos L, Donato P, Pozzi C, Brignoli T, Bottomley MJ, Bagnoli F, Delany I. In Vivo Gene Expression Profiling of Staphylococcus aureus during Infection Informs Design of Stemless Leukocidins LukE and -D as Detoxified Vaccine Candidates. Microbiol Spectr 2023; 11:e0257422. [PMID: 36688711 PMCID: PMC9927290 DOI: 10.1128/spectrum.02574-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/02/2023] [Indexed: 01/24/2023] Open
Abstract
Staphylococcus aureus is a clinically important bacterial pathogen that has become resistant to treatment with most routinely used antibiotics. Alternative strategies, such as vaccination and phage therapy, are therefore actively being investigated to prevent or combat staphylococcal infections. Vaccination requires that vaccine targets are expressed at sufficient quantities during infection so that they can be targeted by the host's immune system. While our knowledge of in vitro expression levels of putative vaccine candidates is comprehensive, crucial in vivo expression data are scarce and promising vaccine candidates during in vitro assessment often prove ineffective in preventing S. aureus infection. Here, we show how a newly developed high-throughput quantitative reverse transcription-PCR (qRT-PCR) assay monitoring the expression of 84 staphylococcal genes encoding mostly virulence factors can inform the selection and design of effective vaccine candidates against staphylococcal infections. We show that this assay can accurately quantify mRNA expression levels of these genes in several host organs relying only on very limited amounts of bacterial mRNA in each sample. We selected two highly expressed genes, lukE and lukD, encoding pore-forming leukotoxins, to inform the design of detoxified recombinant proteins and showed that immunization with recombinant genetically detoxified LukED antigens conferred protection against staphylococcal skin infection in mice. Consequently, knowledge of in vivo-expressed virulence determinants can be successfully deployed to identify and select promising candidates for optimized design of effective vaccine antigens against S. aureus. Notably, this approach should be broadly applicable to numerous other pathogens. IMPORTANCE Vaccination is an attractive strategy for preventing bacterial infections in an age of increased antimicrobial resistance. However, vaccine development frequently suffers significant setbacks when candidate antigens that show promising results in in vitro experimentation fail to protect from disease. An alluring strategy is to focus resources on developing bacterial virulence factors that are expressed during disease establishment or maintenance and are critical for bacterial in-host survival as vaccine targets. While expression profiles of many virulence factors have been characterized in detail in vitro, our knowledge of their in vivo expression profiles is still scarce. Here, using a high-throughput qRT-PCR approach, we identified two highly expressed leukotoxins in a murine infection model and showed that genetically detoxified derivatives of these elicited a protective immune response in a murine skin infection model. Therefore, in vivo gene expression can inform the selection of promising candidates for the design of effective vaccine antigens.
Collapse
Affiliation(s)
- Andreas F. Haag
- GSK, Siena, Italy
- School of Medicine, University of St. Andrews, St. Andrews, United Kingdom
| | | | | | | | - Tarcisio Brignoli
- GSK, Siena, Italy
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | | | | |
Collapse
|
3
|
Pan N, Liu Y, Zhang H, Xu Y, Bao X, Sheng S, Liang Y, Liu B, Lyu Y, Li H, Ma F, Pan H, Wang X. Oral Vaccination with Engineered Probiotic Limosilactobacillus reuteri Has Protective Effects against Localized and Systemic Staphylococcus aureus Infection. Microbiol Spectr 2023; 11:e0367322. [PMID: 36723073 PMCID: PMC10100842 DOI: 10.1128/spectrum.03673-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/14/2023] [Indexed: 02/02/2023] Open
Abstract
Staphylococcus aureus is a Gram-positive bacterium responsible for most hospital-acquired (nosocomial) and community-acquired infections worldwide. The only therapeutic strategy against S. aureus-induced infections, to date, is antibiotic treatment. A protective vaccine is urgently needed in view of the emergence of antibiotic-resistant strains associated with high-mortality cases; however, no such vaccine is currently available. In our previous work, the feasibility of implementing a Lactobacillus delivery system for development of S. aureus oral vaccine was first discussed. Here, we describe systematic screening and evaluation of protective effects of engineered Lactobacillus against S. aureus infection in terms of different delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Limosilactobacillus reuteri WXD171 was selected as the delivery vehicle strain based on its tolerance of the gastrointestinal environment, adhesion ability, and antimicrobial activities in vitro and in vivo. We designed, constructed, and evaluated engineered L. reuteri strains expressing various S. aureus antigens. Among these, engineered L. reuteri WXD171-IsdB displayed effective protection against S. aureus-induced localized infection (pneumonia and skin infection) and, furthermore, a substantial survival benefit in systemic infection (sepsis). WXD171-IsdB induced mucosal responses in gut-associated lymphoid tissues, as evidenced by increased production of secretory IgA and interleukin 17A (IL-17A) and proliferation of lymphocytes derived from Peyer's patches. The probiotic L. reuteri-based oral vaccine appears to have strong potential as a prophylactic agent against S. aureus infections. Our findings regarding utilization of Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development. IMPORTANCE We systematically screened and evaluated protective effects of engineered Lactobacillus against S. aureus infection in terms of differing delivery vehicle strains and S. aureus antigens and in localized and systemic infection models. Engineered L. reuteri was developed and showed strong protective effects against both types of S. aureus-induced infection. Our findings regarding the utilization of a Lactobacillus delivery system in S. aureus vaccine development support the usefulness of this live vaccination strategy and its potential application in next-generation vaccine development.
Collapse
Affiliation(s)
- Na Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haochi Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Ying Xu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xuemei Bao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Shouxin Sheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yanchen Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Bohui Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yueqing Lyu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haotian Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Fangfei Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Haiting Pan
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Xiao Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| |
Collapse
|
4
|
Thomas S, Doytchinova I. In Silico Identification of the B-Cell and T-Cell Epitopes of the Antigenic Proteins of Staphylococcus aureus for Potential Vaccines. Methods Mol Biol 2022; 2412:439-447. [PMID: 34918260 DOI: 10.1007/978-1-0716-1892-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Staphylococcus aureus is a leading cause of community-acquired, healthcare-associated, and hospital-acquired infections. S. aureus bacteremia is a common and serious infection with significant morbidity and mortality in older patients. The rise of antibiotic-resistant strains of S. aureus has resulted in substantial loss and effective treatment in hospitalized patients. Thus, there is a need in the development of a vaccine that would provide protection against S. aureus. The antigens of our interest include proteins that are essential for bacterial attachment and colonization (ClfA and ClfB), dermonecrosis-driven toxin (Hla), antigens that are essential for abscess formation (EsxA and EsxB), and antigens that are essential for nutrient acquisition and resistance to phagocytes killing induced by reactive oxygen species (FhuD2 and MntC). Development of a structure-based vaccine based on the antigenic protein epitopes is a novel strategy to provide protection against S. aureus. Using bioinformatic tools, we have determined the B-cell and T-cell epitopes of the antigenic proteins of S. aureus. This chapter reports identification of B-cell and T-cell epitopes of the antigenic protein that could be used in the development of effective structure-based vaccines to protect against S. aureus.
Collapse
Affiliation(s)
- Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, USA.
| | - Irini Doytchinova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Sofia, Bulgaria
| |
Collapse
|
5
|
Lentini G, Famà A, De Gaetano GV, Galbo R, Coppolino F, Venza M, Teti G, Beninati C. Role of Endosomal TLRs in Staphylococcus aureus Infection. THE JOURNAL OF IMMUNOLOGY 2021; 207:1448-1455. [PMID: 34362834 DOI: 10.4049/jimmunol.2100389] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/06/2021] [Indexed: 02/04/2023]
Abstract
Identification of the receptors involved in innate immune recognition of Staphylococcus aureus, a major cause of morbidity and mortality in humans, is essential to develop alternative strategies to treat infections caused by antibiotic-resistant strains. In the current study, we examine the role of endosomal TLRs, which sense the presence of prokaryotic-type nucleic acids, in anti-staphylococcal host defenses using infection models involving genetically defective mice. Single deficiencies in TLR7, 9, or 13 resulted in mild or no decrease in host defenses. However, the simultaneous absence of TLR7, 9, and 13 resulted in markedly increased susceptibility to cutaneous and systemic S. aureus infection concomitantly with decreased production of proinflammatory chemokines and cytokines, neutrophil recruitment to infection sites, and reduced production of reactive oxygen species. This phenotype was significantly more severe than that of mice lacking TLR2, which senses the presence of staphylococcal lipoproteins. Notably, the combined absence of TLR7, 9, and 13 resulted in complete abrogation of IL-12 p70 and IFN-β responses to staphylococcal stimulation in macrophages. Taken together, our data highlight the presence of a highly integrated endosomal detection system, whereby TLR7, 9, and 13 cooperate in sensing the presence of staphylococcal nucleic acids. We demonstrate that the combined absence of these receptors cannot be compensated for by cell surface-associated TLRs, such as TLR2, or cytosolic receptors. These data may be useful to devise strategies aimed at stimulating innate immune receptors to treat S. aureus infections.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Mario Venza
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy; and
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Belikova D, Jochim A, Power J, Holden MTG, Heilbronner S. "Gene accordions" cause genotypic and phenotypic heterogeneity in clonal populations of Staphylococcus aureus. Nat Commun 2020; 11:3526. [PMID: 32665571 PMCID: PMC7360770 DOI: 10.1038/s41467-020-17277-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/15/2020] [Indexed: 12/18/2022] Open
Abstract
Gene tandem amplifications are thought to drive bacterial evolution, but they are transient in the absence of selection, making their investigation challenging. Here, we analyze genomic sequences of Staphylococcus aureus USA300 isolates from the same geographical area to identify variations in gene copy number, which we confirm by long-read sequencing. We find several hotspots of variation, including the csa1 cluster encoding lipoproteins known to be immunogenic. We also show that the csa1 locus expands and contracts during bacterial growth in vitro and during systemic infection of mice, and recombination creates rapid heterogeneity in initially clonal cultures. Furthermore, csa1 copy number variants differ in their immunostimulatory capacity, revealing a mechanism by which gene copy number variation can modulate the host immune response. Gene tandem amplifications can drive bacterial evolution. Here, Belikova et al. identify copy number variations of lipoprotein-encoding genes in Staphylococcus aureus clinical isolates, and show that the loci expand and contract during bacterial growth in vitro and in mice, leading to changes in immunostimulatory capacity.
Collapse
Affiliation(s)
- Darya Belikova
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | - Angelika Jochim
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | - Jeffrey Power
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany
| | | | - Simon Heilbronner
- Interfaculty Institute of Microbiology and Infection Medicine, Department of Infection Biology, University of Tübingen, Tübingen, Germany. .,German Centre for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany. .,(DFG) Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany.
| |
Collapse
|
7
|
Bacterial outer membrane vesicles engineered with lipidated antigens as a platform for Staphylococcus aureus vaccine. Proc Natl Acad Sci U S A 2019; 116:21780-21788. [PMID: 31591215 PMCID: PMC6815149 DOI: 10.1073/pnas.1905112116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial outer membrane vesicles (OMVs) represent an interesting vaccine platform for their built-in adjuvanticity and simplicity of production process. Moreover, OMVs can be decorated with foreign antigens using different synthetic biology approaches. However, the optimal OMV engineering strategy, which should guarantee the OMV compartmentalization of most heterologous antigens in quantities high enough to elicit protective immune responses, remains to be validated. In this work we exploited the lipoprotein transport pathway to engineer OMVs with foreign proteins. Using 5 Staphylococcus aureus protective antigens expressed in Escherichia coli as fusions to a lipoprotein leader sequence, we demonstrated that all 5 antigens accumulated in the vesicular compartment at a concentration ranging from 5 to 20% of total OMV proteins, suggesting that antigen lipidation could be a universal approach for OMV manipulation. Engineered OMVs elicited high, saturating antigen-specific antibody titers when administered to mice in quantities as low as 0.2 μg/dose. Moreover, the expression of lipidated antigens in E. coli BL21(DE3)ΔompAΔmsbBΔpagP was shown to affect the lipopolysaccharide structure, with the result that the TLR4 agonist activity of OMVs was markedly reduced. These results, together with the potent protective activity of engineered OMVs observed in mice challenged with S. aureus Newman strain, makes the 5-combo-OMVs a promising vaccine candidate to be tested in clinics.
Collapse
|
8
|
Abstract
We developed a new approach that couples Southwestern blotting and mass spectrometry to discover proteins that bind extracellular DNA (eDNA) in bacterial biofilms. Using Staphylococcus aureus as a model pathogen, we identified proteins with known DNA-binding activity and uncovered a series of lipoproteins with previously unrecognized DNA-binding activity. We demonstrated that expression of these lipoproteins results in an eDNA-dependent biofilm enhancement. Additionally, we found that while deletion of lipoproteins had a minimal impact on biofilm accumulation, these lipoprotein mutations increased biofilm porosity, suggesting that lipoproteins and their associated interactions contribute to biofilm structure. For one of the lipoproteins, SaeP, we showed that the biofilm phenotype requires the lipoprotein to be anchored to the outside of the cellular membrane, and we further showed that increased SaeP expression correlates with more retention of high-molecular-weight DNA on the bacterial cell surface. SaeP is a known auxiliary protein of the SaeRS system, and we also demonstrated that the levels of SaeP correlate with nuclease production, which can further impact biofilm development. It has been reported that S. aureus biofilms are stabilized by positively charged cytoplasmic proteins that are released into the extracellular environment, where they make favorable electrostatic interactions with the negatively charged cell surface and eDNA. In this work we extend this electrostatic net model to include secreted eDNA-binding proteins and membrane-attached lipoproteins that can function as anchor points between eDNA in the biofilm matrix and the bacterial cell surface.IMPORTANCE Many bacteria are capable of forming biofilms encased in a matrix of self-produced extracellular polymeric substances (EPS) that protects them from chemotherapies and the host defenses. As a result of these inherent resistance mechanisms, bacterial biofilms are extremely difficult to eradicate and are associated with chronic wounds, orthopedic and surgical wound infections, and invasive infections, such as infective endocarditis and osteomyelitis. It is therefore important to understand the nature of the interactions between the bacterial cell surface and EPS that stabilize biofilms. Extracellular DNA (eDNA) has been recognized as an EPS constituent for many bacterial species and has been shown to be important in promoting biofilm formation. Using Staphylococcus aureus biofilms, we show that membrane-attached lipoproteins can interact with the eDNA in the biofilm matrix and promote biofilm formation, which suggests that lipoproteins are potential targets for novel therapies aimed at disrupting bacterial biofilms.
Collapse
|
9
|
β-Lactam Antibiotics Enhance the Pathogenicity of Methicillin-Resistant Staphylococcus aureus via SarA-Controlled Lipoprotein-Like Cluster Expression. mBio 2019; 10:mBio.00880-19. [PMID: 31186320 PMCID: PMC6561022 DOI: 10.1128/mbio.00880-19] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
β-Lactam antibiotics are widely applied to treat infectious diseases. However, certain poor disease outcomes caused by β-lactams remain poorly understood. In this study, we have identified a cluster of lipoprotein-like genes (lpl, sa2275–sa2273) that is upregulated in the major clinically prevalent MRSA clones in response to subinhibitory concentrations of β-lactam induction. The major highlight of this work is that β-lactams stimulate the expression of SarA, which directly binds to the lpl cluster promoter region and upregulates lpl expression in MRSA. Deletion of lpl significantly decreases proinflammatory cytokine levels in vitro and in vivo. The β-lactam-induced Lpls enhance host inflammatory responses by triggering the Toll-like-receptor-2-mediated expressions of interleukin-6 and tumor necrosis factor alpha. The β-lactam-induced Lpls are important virulence factors that enhance MRSA pathogenicity. These data elucidate that subinhibitory concentrations of β-lactams can exacerbate the outcomes of MRSA infection through induction of lpl controlled by the global regulator SarA. Methicillin-resistant Staphylococcus aureus (MRSA) resists nearly all β-lactam antibiotics that have a bactericidal activity. However, whether the empirically used β-lactams enhance MRSA pathogenicity in vivo remains unclear. In this study, we showed that a cluster of lipoprotein-like genes (lpl, sa2275 to sa2273 [sa2275–sa2273]) was upregulated in MRSA in response to subinhibitory concentrations of β-lactam induction. The increasing expression of lpl by β-lactams was directly controlled by the global regulator SarA. The β-lactam-induced Lpls stimulated the production of interleukin-6 and tumor necrosis factor alpha in RAW 264.7 macrophages. The lpl deletion mutants (N315Δlpl and USA300Δlpl) decreased the proinflammatory cytokine levels in vitro and in vivo. Purified lipidated SA2275-his proteins could trigger a Toll-like-receptor-2 (TLR2)-dependent immune response in primary mouse bone marrow-derived macrophages and C57BL/6 mice. The bacterial loads of N315Δlpl in the mouse kidney were lower than those of the wild-type N315. The β-lactam-treated MRSA exacerbated cutaneous infections in both BALB/c and C57BL/6 mice, presenting increased lesion size; destroyed skin structure; and easily promoted abscess formation compared with those of the untreated MRSA. However, the size of abscesses caused by the β-lactam-treated N315 was negligibly different from those caused by the untreated N315Δlpl in C57BL/6 TLR2−/− mice. Our findings suggest that β-lactams must be used carefully because they might aggravate the outcome of MRSA infection compared to inaction in treatment.
Collapse
|
10
|
Lu R, Xu W, Lu Q, Li P, Losh J, Hina F, Li E, Qiu Y. Generation and classification of transcriptomes in two Croomia species and molecular evolution of CYC/TB1 genes in Stemonaceae. PLANT DIVERSITY 2018; 40:253-264. [PMID: 30740572 PMCID: PMC6317509 DOI: 10.1016/j.pld.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 05/21/2023]
Abstract
The genus Croomia (Stemonaceae) is an excellent model for studying the evolution of the Eastern Asia (EA)-Eastern North America (ENA) floristic disjunction and the genetic mechanisms of floral zygomorphy formation. In addition to the presence of both actinomorphic and zygomorphic flowers within the genus, species are disjunctively distributed between EA and ENA. However, due to the limited availability of genomic resources, few studies of Croomia have examined these questions. In this study, we sequenced the floral and leaf transcriptomes of the zygomorphic flowered C roomia heterosepala and the actinomorphic flowered Croomia japonica, and used comparative genomic approaches to investigate the transcriptome evolution of the two closely related species. The sequencing and de novo assembly of transcriptomes from flowers of C. heterosepala (ChFlower), flowers of C. japonica (CjFlower), and leaves of C. japonica (CjLeaf) yielded 57,193, 62,131 and 64,448 unigenes, respectively. In addition, estimation of Ka/Ks ratios for 11,566 potential orthologous groups between ChFlower and CjFlower revealed that only six pairs had Ka/Ks ratios significantly greater than 1 and are likely under positive selection. A total of 429 single copy nuclear genes (SCNGs) and 21,460 expression sequence tags-simple sequence repeats (EST-SSRs) were identified in this study. Specifically, we identified seven CYC/TB1-like genes from Stemonaceae. Phylogenetic and molecular evolution analyses indicated that these CYC/TB1-like genes formed a monophyletic clade (SteTBL1) and were subject to strong purifying selection. The shifts of floral symmetry in Stemonaceae do not appear to be correlated with TBL copy number.
Collapse
Affiliation(s)
- Ruisen Lu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wuqin Xu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qixiang Lu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Pan Li
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jocelyn Losh
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Faiza Hina
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Enxiang Li
- College of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yingxiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Corresponding author.
| |
Collapse
|
11
|
Manara S, Pasolli E, Dolce D, Ravenni N, Campana S, Armanini F, Asnicar F, Mengoni A, Galli L, Montagnani C, Venturini E, Rota-Stabelli O, Grandi G, Taccetti G, Segata N. Whole-genome epidemiology, characterisation, and phylogenetic reconstruction of Staphylococcus aureus strains in a paediatric hospital. Genome Med 2018; 10:82. [PMID: 30424799 PMCID: PMC6234625 DOI: 10.1186/s13073-018-0593-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/29/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is an opportunistic pathogen and a leading cause of nosocomial infections. It can acquire resistance to all the antibiotics that entered the clinics to date, and the World Health Organization defined it as a high-priority pathogen for research and development of new antibiotics. A deeper understanding of the genetic variability of S. aureus in clinical settings would lead to a better comprehension of its pathogenic potential and improved strategies to contrast its virulence and resistance. However, the number of comprehensive studies addressing clinical cohorts of S. aureus infections by simultaneously looking at the epidemiology, phylogenetic reconstruction, genomic characterisation, and transmission pathways of infective clones is currently low, thus limiting global surveillance and epidemiological monitoring. METHODS We applied whole-genome shotgun sequencing (WGS) to 184 S. aureus isolates from 135 patients treated in different operative units of an Italian paediatric hospital over a timespan of 3 years, including both methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) from different infection types. We typed known and unknown clones from their genomes by multilocus sequence typing (MLST), Staphylococcal Cassette Chromosome mec (SCCmec), Staphylococcal protein A gene (spa), and Panton-Valentine Leukocidin (PVL), and we inferred their whole-genome phylogeny. We explored the prevalence of virulence and antibiotic resistance genes in our cohort, and the conservation of genes encoding vaccine candidates. We also performed a timed phylogenetic investigation for a potential outbreak of a newly emerging nosocomial clone. RESULTS The phylogeny of the 135 single-patient S. aureus isolates showed a high level of diversity, including 80 different lineages, and co-presence of local, global, livestock-associated, and hypervirulent clones. Five of these clones do not have representative genomes in public databases. Variability in the epidemiology is mirrored by variability in the SCCmec cassettes, with some novel variants of the type IV cassette carrying extra antibiotic resistances. Virulence and resistance genes were unevenly distributed across different clones and infection types, with highly resistant and lowly virulent clones showing strong association with chronic diseases, and highly virulent strains only reported in acute infections. Antigens included in vaccine formulations undergoing clinical trials were conserved at different levels in our cohort, with only a few highly prevalent genes fully conserved, potentially explaining the difficulty of developing a vaccine against S. aureus. We also found a recently diverged ST1-SCCmecIV-t127 PVL- clone suspected to be hospital-specific, but time-resolved integrative phylogenetic analysis refuted this hypothesis and suggested that this quickly emerging lineage was acquired independently by patients. CONCLUSIONS Whole genome sequencing allowed us to study the epidemiology and genomic repertoire of S. aureus in a clinical setting and provided evidence of its often underestimated complexity. Some virulence factors and clones are specific of disease types, but the variability and dispensability of many antigens considered for vaccine development together with the quickly changing epidemiology of S. aureus makes it very challenging to develop full-coverage therapies and vaccines. Expanding WGS-based surveillance of S. aureus to many more hospitals would allow the identification of specific strains representing the main burden of infection and therefore reassessing the efforts for the discovery of new treatments and clinical practices.
Collapse
Affiliation(s)
- Serena Manara
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Edoardo Pasolli
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Daniela Dolce
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Novella Ravenni
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Silvia Campana
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | | | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| | - Luisa Galli
- Department of Health Sciences, University of Florence, Florence, Italy
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Carlotta Montagnani
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Elisabetta Venturini
- Infectious Diseases Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Guido Grandi
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Giovanni Taccetti
- Cystic Fibrosis Center, Interdisciplinary Specialist Department, Anna Meyer Children's University Hospital, Florence, Italy
| | - Nicola Segata
- Centre for Integrative Biology, University of Trento, Trento, Italy.
| |
Collapse
|
12
|
Bartual SG, Alcorlo M, Martínez-Caballero S, Molina R, Hermoso JA. Three-dimensional structures of Lipoproteins from Streptococcus pneumoniae and Staphylococcus aureus. Int J Med Microbiol 2018; 308:692-704. [DOI: 10.1016/j.ijmm.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/21/2017] [Indexed: 01/01/2023] Open
|
13
|
Graf A, Lewis RJ, Fuchs S, Pagels M, Engelmann S, Riedel K, Pané-Farré J. The hidden lipoproteome of Staphylococcus aureus. Int J Med Microbiol 2018; 308:569-581. [PMID: 29454809 DOI: 10.1016/j.ijmm.2018.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/28/2017] [Accepted: 01/27/2018] [Indexed: 01/11/2023] Open
Abstract
Lipoproteins are attached to the outer leaflet of the membrane by a di- or tri-acylglyceryl moiety and are thus positioned in the membrane-cell wall interface. Consequently, lipoproteins are involved in many surface associated functions, including cell wall synthesis, electron transport, uptake of nutrients, surface stress response, signal transduction, and they represent a reservoir of bacterial virulence factors. Inspection of 123 annotated Staphylococcus aureus genome sequences in the public domain revealed that this organism devotes about 2-3% of its coding capacity to lipoproteins, corresponding to about 70 lipoproteins per genome. 60 of these lipoproteins were identified in 95% of the genomes analyzed, which thus constitute the core lipoproteome of S. aureus. 30% of the conserved staphylococcal lipoproteins are substrate-binding proteins of ABC transporters with roles in nutrient transport. With a few exceptions, much less is known about the function of the remaining lipoproteins, representing a large gap in our knowledge of this functionally important group of proteins. Here, we summarize current knowledge, and integrate information from genetic context analysis, expression and regulatory data, domain architecture, sequence and structural information, and phylogenetic distribution to provide potential starting points for experimental evaluation of the biological function of the poorly or uncharacterized lipoproteome of S. aureus.
Collapse
Affiliation(s)
- Anica Graf
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Richard J Lewis
- Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Stephan Fuchs
- FG13 Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institut (RKI), Burgstr. 37, 38855 Wernigerode, Germany
| | - Martin Pagels
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Susanne Engelmann
- Helmholtz Center for Infection Research GmbH, Microbial Proteomics, Inhoffenstraße 7, 38124 Braunschweig, Germany; Institute for Microbiology, Department of Microbial Proteomics, Technical University Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany
| | - Jan Pané-Farré
- Institute of Microbiology, Department of Microbial Physiology and Molecular Biology, Center for Functional Genomics of Microbes (CFGM), University of Greifswald, Felix-Hausdorff-Str. 8, 17489 Greifswald, Germany.
| |
Collapse
|
14
|
Ushijima Y, Ohniwa RL, Morikawa K. Identification of nucleoid associated proteins (NAPs) under oxidative stress in Staphylococcus aureus. BMC Microbiol 2017; 17:207. [PMID: 28969590 PMCID: PMC5625760 DOI: 10.1186/s12866-017-1114-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/13/2017] [Indexed: 01/25/2023] Open
Abstract
Background Bacterial nucleoid consists of genome DNA, RNA, and hundreds of nucleoid-associated proteins (NAPs). Escherichia coli nucleoid is compacted towards the stationary phase, replacing most log-phase NAPs with the major stationary-phase nucleoid protein, Dps. In contrast, Staphylococcus aureus nucleoid sustains the fiber structures throughout the growth. Instead, the Dps homologue, MrgA, expresses under oxidative stress conditions to clump the nucleoid, but the composition of the clumped nucleoid was elusive. Results The staphylococcal nucleoid under oxidative stress was isolated by sucrose gradient centrifugation, and the proteins were analyzed by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). We identified 299 proteins in the nucleoid under oxidative stress, including 113 csNAPs (contaminant-subtracted NAPs). Comparison with the previously identified csNAPs in log- and stationary phase indicated that one fifth of the csNAPs under oxidative stress were the constitutive nucleoid components; importantly, several factors including HU, SarA, FabZ, and ribosomes were sustained under oxidative stress. Some factors (e.g. SA1663 and SA0092/SA0093) with unknown functions were included in the csNAPs list specifically under oxidative stress condition. Conclusion Nucleoid constitutively holds Hu, SarA, FabG, and ribosomal proteins even under the oxidative stress, reflecting the active functions of the clumped nucleoid, unlikely to the dormant E. coli nucleoid compacted in the stationary phase or starvation. Electronic supplementary material The online version of this article (10.1186/s12866-017-1114-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuri Ushijima
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan. .,Present address: Department of Emerging Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Ryosuke L Ohniwa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan. .,Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan, Republic of China.
| | - Kazuya Morikawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| |
Collapse
|
15
|
Environmental fatty acids enable emergence of infectious Staphylococcus aureus resistant to FASII-targeted antimicrobials. Nat Commun 2016; 7:12944. [PMID: 27703138 PMCID: PMC5059476 DOI: 10.1038/ncomms12944] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 08/16/2016] [Indexed: 01/11/2023] Open
Abstract
The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. This strategy is based on previous reports indicating that self-synthesized fatty acids appear to be indispensable for Staphylococcus aureus growth and virulence, although other bacteria can use exogenous fatty acids to compensate FASII inhibition. Here we report that staphylococci can become resistant to the FASII-targeted inhibitor triclosan via high frequency mutations in fabD, one of the FASII genes. The fabD mutants can be conditional for FASII and not require exogenous fatty acids for normal growth, and can use diverse fatty acid combinations (including host fatty acids) when FASII is blocked. These mutants show cross-resistance to inhibitors of other FASII enzymes and are infectious in mice. Clinical isolates bearing fabD polymorphisms also bypass FASII inhibition. We propose that fatty acid-rich environments within the host, in the presence of FASII inhibitors, might favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors. The bacterial pathway for fatty acid biosynthesis, FASII, is a target for development of new anti-staphylococcal drugs. Here, Morvan et al. show that exogenous fatty acids can favour the emergence of staphylococcal strains displaying resistance to multiple FASII inhibitors.
Collapse
|
16
|
Shahmirzadi SV, Nguyen MT, Götz F. Evaluation of Staphylococcus aureus Lipoproteins: Role in Nutritional Acquisition and Pathogenicity. Front Microbiol 2016; 7:1404. [PMID: 27679612 PMCID: PMC5020093 DOI: 10.3389/fmicb.2016.01404] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/24/2016] [Indexed: 01/22/2023] Open
Abstract
Bacterial lipoproteins (Lpp) represent a major class of membrane proteins. They are distinguished by a lipid moiety at the N-terminus by which they are anchored either in the outer leaflet of the cytoplasmic membrane or, in Gram-negative bacteria, also in the inner leaflet of the outer membrane. In Gram-positive bacteria Lpp significantly contribute to nutrient transport, Toll-like receptor 2 activation and pathogenicity. Here we examine the Lpp of Staphylococcus aureus USA300, as a prototype for a multiple antibiotic resistant and community-acquired pathogen that is rapidly spreading worldwide. The compiled Lpp were grouped according to the postulated function and dissemination of homologs in the genus Staphylococcus and beyond. Based on this evaluation we also point out Lpp as promising vaccine candidates.
Collapse
Affiliation(s)
- Shideh V Shahmirzadi
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Tübingen, Germany
| | - Minh-Thu Nguyen
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Tübingen, Germany
| | - Friedrich Götz
- Microbial Genetics, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Tübingen, Germany
| |
Collapse
|
17
|
Lipoproteins of Gram-Positive Bacteria: Key Players in the Immune Response and Virulence. Microbiol Mol Biol Rev 2016; 80:891-903. [PMID: 27512100 DOI: 10.1128/mmbr.00028-16] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the discovery in 1973 of the first of the bacterial lipoproteins (Lpp) in Escherichia coli, Braun's lipoprotein, the ever-increasing number of publications indicates the importance of these proteins. Bacterial Lpp belong to the class of lipid-anchored proteins that in Gram-negative bacteria are anchored in both the cytoplasmic and outer membranes and in Gram-positive bacteria are anchored only in the cytoplasmic membrane. In contrast to the case for Gram-negative bacteria, in Gram-positive bacteria lipoprotein maturation and processing are not vital. Physiologically, Lpp play an important role in nutrient and ion acquisition, allowing particularly pathogenic species to better survive in the host. Bacterial Lpp are recognized by Toll-like receptor 2 (TLR2) of the innate immune system. The important role of Lpp in Gram-positive bacteria, particularly in the phylum Firmicutes, as key players in the immune response and pathogenicity has emerged only in recent years. In this review, we address the role of Lpp in signaling and modulating the immune response, in inflammation, and in pathogenicity. We also address the potential of Lpp as promising vaccine candidates.
Collapse
|
18
|
Waryah CB, Gogoi-Tiwari J, Wells K, Mukkur T. An immunological assay for identification of potential biofilm-associated antigens of Staphylococcus aureus. Folia Microbiol (Praha) 2016; 61:473-478. [PMID: 27106696 DOI: 10.1007/s12223-016-0459-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/14/2016] [Indexed: 01/08/2023]
Abstract
Attachment of bacterial pathogens to the niche tissue in the host is the first step in biofilm formation leading to colonization and establishment of infection in the host. While the most common method used for determining the potential role of a bacterial antigen in biofilm formation has been demonstration of loss of this property using specific knockout mutants, it is an expensive and a laborious procedure. This study describes an alternative immunological assay for identification of attachment antigens of Staphylococcus aureus, potentially important in the development of an effective vaccine against infections caused by this pathogen. The method is based upon the concept of inhibition of attachment of S. aureus to PEGs coated with virulence antigen-specific antibodies. Antibodies used for validation of this assay were specific for ClfA, FnBPA, SdrD, PNAG and α-toxin, accredited biofilm-associated antigens of S. aureus.
Collapse
Affiliation(s)
- Charlene Babra Waryah
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia.,Department of Medicine, Albert Einstein College of Medicine, Bronx, 10461, NY, USA.,Department of Cell Biology, Albert Einstein College of Medicine, Bronx, 10461, NY, USA
| | - Jully Gogoi-Tiwari
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia
| | - Kelsi Wells
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia
| | - Trilochan Mukkur
- School of Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, 6102, Western Australia, Australia.
| |
Collapse
|
19
|
Mancini F, Monaci E, Lofano G, Torre A, Bacconi M, Tavarini S, Sammicheli C, Arcidiacono L, Galletti B, Laera D, Pallaoro M, Tuscano G, Fontana MR, Bensi G, Grandi G, Rossi-Paccani S, Nuti S, Rappuoli R, De Gregorio E, Bagnoli F, Soldaini E, Bertholet S. One Dose of Staphylococcus aureus 4C-Staph Vaccine Formulated with a Novel TLR7-Dependent Adjuvant Rapidly Protects Mice through Antibodies, Effector CD4+ T Cells, and IL-17A. PLoS One 2016; 11:e0147767. [PMID: 26812180 PMCID: PMC4727907 DOI: 10.1371/journal.pone.0147767] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/07/2016] [Indexed: 12/27/2022] Open
Abstract
A rapidly acting, single dose vaccine against Staphylococcus aureus would be highly beneficial for patients scheduled for major surgeries or in intensive care units. Here we show that one immunization with a multicomponent S. aureus candidate vaccine, 4C-Staph, formulated with a novel TLR7-dependent adjuvant, T7-alum, readily protected mice from death and from bacterial dissemination, both in kidney abscess and peritonitis models, outperforming alum-formulated vaccine. This increased efficacy was paralleled by higher vaccine-specific and α-hemolysin-neutralizing antibody titers and Th1/Th17 cell responses. Antibodies played a crucial protective role, as shown by the lack of protection of 4C-Staph/T7-alum vaccine in B-cell-deficient mice and by serum transfer experiments. Depletion of effector CD4+ T cells not only reduced survival but also increased S. aureus load in kidneys of mice immunized with 4C-Staph/T7-alum. The role of IL-17A in the control of bacterial dissemination in 4C-Staph/T7-alum vaccinated mice was indicated by in vivo neutralization experiments. We conclude that single dose 4C-Staph/T7-alum vaccine promptly and efficiently protected mice against S. aureus through the combined actions of antibodies, CD4+ effector T cells, and IL-17A. These data suggest that inclusion of an adjuvant that induces not only fast antibody responses but also IL-17-producing cell-mediated effector responses could efficaciously protect patients scheduled for major surgeries or in intensive care units.
Collapse
Affiliation(s)
- Francesca Mancini
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Elisabetta Monaci
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Giuseppe Lofano
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, University of Rome “La Sapienza”, Rome, Italy
| | - Antonina Torre
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Marta Bacconi
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Simona Tavarini
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Chiara Sammicheli
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | | | - Bruno Galletti
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Donatello Laera
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Michele Pallaoro
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Giovanna Tuscano
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Maria Rita Fontana
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Giuliano Bensi
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Guido Grandi
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | | | - Sandra Nuti
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Rino Rappuoli
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Ennio De Gregorio
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Fabio Bagnoli
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| | - Elisabetta Soldaini
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
- * E-mail:
| | - Sylvie Bertholet
- Novartis Vaccines and Diagnostics, S.r.l., Research Center, Siena, Italy
| |
Collapse
|
20
|
Abstract
Staphylococcus aureus is a leading pathogen in surgical site, intensive care unit, and skin infections, as well as healthcare-associated pneumonias. These infections are associated with an enormous burden of morbidity, mortality, and increase of hospital length of stay and patient cost. S. aureus is impressively fast in acquiring antibiotic resistance, and multidrug-resistant strains are a serious threat to human health. Due to resistance or insufficient effectiveness, antibiotics and bundle measures leave a tremendous unmet medical need worldwide. There are no licensed vaccines on the market despite the significant efforts done by public and private initiatives. Indeed, vaccines tested in clinical trials in the last two decades have failed to show efficacy. However, they targeted single antigens and contained no adjuvants and efficacy trials were performed in severely ill subjects. Herein, we provide a comprehensive evaluation of potential target populations for efficacy trials taking into account key factors such as population size, incidence of S. aureus infection, disease outcome, primary endpoints, as well as practical advantages and disadvantages. We describe the whole-blood assay as a potential surrogate of protection, and we show the link between phase III clinical trial data of failed vaccines with their preclinical observations. Finally, we give our perspective on how new vaccine formulations and clinical development approaches may lead to successful S. aureus vaccines.
Collapse
|
21
|
Monaci E, Mancini F, Lofano G, Bacconi M, Tavarini S, Sammicheli C, Arcidiacono L, Giraldi M, Galletti B, Rossi Paccani S, Torre A, Fontana MR, Grandi G, de Gregorio E, Bensi G, Chiarot E, Nuti S, Bagnoli F, Soldaini E, Bertholet S. MF59- and Al(OH)3-Adjuvanted Staphylococcus aureus (4C-Staph) Vaccines Induce Sustained Protective Humoral and Cellular Immune Responses, with a Critical Role for Effector CD4 T Cells at Low Antibody Titers. Front Immunol 2015; 6:439. [PMID: 26441955 PMCID: PMC4561515 DOI: 10.3389/fimmu.2015.00439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/13/2015] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important opportunistic pathogen that may cause invasive life-threatening infections, like sepsis and pneumonia. Due to the increasing antibiotic resistance, the development of an effective vaccine against S. aureus is needed. Although a correlate of protection against staphylococcal diseases is not yet established, several findings suggest that both antibodies and CD4 T cells might contribute to optimal immunity. In this study, we show that adjuvanting a multivalent vaccine (4C-Staph) with MF59, an oil-in-water emulsion licensed in human vaccines, further potentiated antigen-specific IgG titers and CD4 T-cell responses compared to alum and conferred protection in the peritonitis model of S. aureus infection. Moreover, we showed that MF59- and alum-adjuvanted 4C-Staph vaccines induced persistent antigen-specific humoral and T-cell responses, and protected mice from infection up to 4 months after immunization. Furthermore, 4C-Staph formulated with MF59 was used to investigate which immune compartment is involved in vaccine-induced protection. Using CD4 T cell-depleted mice or B cell-deficient mice, we demonstrated that both T and B-cell responses contributed to 4C-Staph vaccine-mediated protective immunity. However, the role of CD4 T cells seemed more evident in the presence of low-antibody responses. This study provides preclinical data further supporting the use of the adjuvanted 4C-Staph vaccines against S. aureus diseases, and provides critical insights on the correlates of protective immunity necessary to combat this pathogen.
Collapse
Affiliation(s)
- Elisabetta Monaci
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Francesca Mancini
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy ; Department of Biomedical Sciences, University of Padua , Padua , Italy
| | - Giuseppe Lofano
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy ; Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome , Rome , Italy
| | - Marta Bacconi
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy ; Department of Biotechnology, Chemistry and Pharmacy, University of Siena , Siena , Italy
| | - Simona Tavarini
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Chiara Sammicheli
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | | | - Monica Giraldi
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Bruno Galletti
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | | | - Antonina Torre
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Maria Rita Fontana
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Guido Grandi
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Ennio de Gregorio
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Giuliano Bensi
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Emiliano Chiarot
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Sandra Nuti
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | - Fabio Bagnoli
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| | | | - Sylvie Bertholet
- Research Center, Novartis Vaccines and Diagnostics S.r.l. , Siena , Italy
| |
Collapse
|
22
|
Vaccine composition formulated with a novel TLR7-dependent adjuvant induces high and broad protection against Staphylococcus aureus. Proc Natl Acad Sci U S A 2015; 112:3680-5. [PMID: 25775551 DOI: 10.1073/pnas.1424924112] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Both active and passive immunization strategies against Staphylococcus aureus have thus far failed to show efficacy in humans. With the attempt to develop an effective S. aureus vaccine, we selected five conserved antigens known to have different roles in S. aureus pathogenesis. They include the secreted factors α-hemolysin (Hla), ess extracellular A (EsxA), and ess extracellular B (EsxB) and the two surface proteins ferric hydroxamate uptake D2 and conserved staphylococcal antigen 1A. The combined vaccine antigens formulated with aluminum hydroxide induced antibodies with opsonophagocytic and functional activities and provided consistent protection in four mouse models when challenged with a panel of epidemiologically relevant S. aureus strains. The importance of antibodies in protection was demonstrated by passive transfer experiments. Furthermore, when formulated with a toll-like receptor 7-dependent (TLR7) agonist recently designed and developed in our laboratories (SMIP.7-10) adsorbed to alum, the five antigens provided close to 100% protection against four different staphylococcal strains. The new formulation induced not only high antibody titers but also a Th1 skewed immune response as judged by antibody isotype and cytokine profiles. In addition, low frequencies of IL-17-secreting T cells were also observed. Altogether, our data demonstrate that the rational selection of mixtures of conserved antigens combined with Th1/Th17 adjuvants can lead to promising vaccine formulations against S. aureus.
Collapse
|
23
|
Altindis E, Cozzi R, Di Palo B, Necchi F, Mishra RP, Fontana MR, Soriani M, Bagnoli F, Maione D, Grandi G, Liberatori S. Protectome analysis: a new selective bioinformatics tool for bacterial vaccine candidate discovery. Mol Cell Proteomics 2014; 14:418-29. [PMID: 25368410 DOI: 10.1074/mcp.m114.039362] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
New generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines). The limiting step of such approaches is the number of antigens to be tested in in vivo models. Several laboratories have been trying to refine the original approach in order to get to the identification of the relevant antigens straight from the genome. Here we report a new bioinformatics tool that moves a first step in this direction. The tool has been developed by identifying structural/functional features recurring in known bacterial protective antigens, the so called "Protectome space," and using such "protective signatures" for protective antigen discovery. In particular, we applied this new approach to Staphylococcus aureus and Group B Streptococcus and we show that not only already known protective antigens were re-discovered, but also two new protective antigens were identified.
Collapse
Affiliation(s)
- Emrah Altindis
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Roberta Cozzi
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Benedetta Di Palo
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Francesca Necchi
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Ravi P Mishra
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Maria Rita Fontana
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Marco Soriani
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Fabio Bagnoli
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Domenico Maione
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Guido Grandi
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| | - Sabrina Liberatori
- From the ‡Research Department, Novartis Vaccines and Diagnostics, 53100 Siena, Italy
| |
Collapse
|