1
|
Reeder BJ, Svistunenko DA, Wilson MT. Hell's Gate Globin-I from Methylacidiphilum infernorum Displays a Unique Temperature-Independent pH Sensing Mechanism Utililized a Lipid-Induced Conformational Change. Int J Mol Sci 2024; 25:6794. [PMID: 38928500 PMCID: PMC11203436 DOI: 10.3390/ijms25126794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Hell's Gate globin-I (HGb-I) is a thermally stable globin from the aerobic methanotroph Methylacidiphilium infernorum. Here we report that HGb-I interacts with lipids stoichiometrically to induce structural changes in the heme pocket, changing the heme iron distal ligation coordination from hexacoordinate to pentacoordinate. Such changes in heme geometry have only been previously reported for cytochrome c and cytoglobin, linked to apoptosis regulation and enhanced lipid peroxidation activity, respectively. However, unlike cytoglobin and cytochrome c, the heme iron of HGb-I is altered by lipids in ferrous as well as ferric oxidation states. The apparent affinity for lipids in this thermally stable globin is highly pH-dependent but essentially temperature-independent within the range of 20-60 °C. We propose a mechanism to explain these observations, in which lipid binding and stability of the distal endogenous ligand are juxtaposed as a function of temperature. Additionally, we propose that these coupled equilibria may constitute a mechanism through which this acidophilic thermophile senses the pH of its environment.
Collapse
Affiliation(s)
- Brandon J. Reeder
- School of Biological Sciences, University of Essex, Wivenhoe Park Colchester, Essex CO4 3SQ, UK; (D.A.S.); (M.T.W.)
| | | | | |
Collapse
|
2
|
Porto E, Loula P, Strand S, Hankeln T. Molecular analysis of the human cytoglobin mRNA isoforms. J Inorg Biochem 2024; 251:112422. [PMID: 38016326 DOI: 10.1016/j.jinorgbio.2023.112422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/26/2023] [Accepted: 10/29/2023] [Indexed: 11/30/2023]
Abstract
Multiple functions have been proposed for the ubiquitously expressed vertebrate globin cytoglobin (Cygb), including nitric oxide (NO) metabolism, lipid peroxidation/signalling, superoxide dismutase activity, reactive oxygen/nitrogen species (RONS) scavenging, regulation of blood pressure, antifibrosis, and both tumour suppressor and oncogenic effects. Since alternative splicing can expand the biological roles of a gene, we investigated whether this mechanism contributes to the functional diversity of Cygb. By mining of cDNA data and molecular analysis, we identified five alternative mRNA isoforms for the human CYGB gene (V-1 to V-5). Comprehensive RNA-seq analyses of public datasets from human tissues and cells confirmed that the canonical CYGB V-1 isoform is the primary CYGB transcript in the majority of analysed datasets. Interestingly, we revealed that isoform V-3 represented the predominant CYGB variant in hepatoblastoma (HB) cell lines and in the majority of analysed normal and HB liver tissues. CYGB V-3 mRNA is transcribed from an alternate upstream promoter and hypothetically encodes a N-terminally truncated CYGB protein, which is not recognized by some antibodies used in published studies. Little to no transcriptional evidence was found for the other CYGB isoforms. Comparative transcriptomics and flow cytometry on CYGB+/+ and gene-edited CYGB-/- HepG2 HB cells did not unveil a knockout phenotype and, thus, a potential function for CYGB V-3. Our study reveals that the CYGB gene is transcriptionally more complex than previously described as it expresses alternative mRNA isoforms of unknown function. Additional experimental data are needed to clarify the biological meaning of those alternative CYGB transcripts.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Paraskevi Loula
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany
| | - Susanne Strand
- Department of Internal Medicine I, Molecular Hepatology, University Medical Center, Johannes Gutenberg University Mainz, Obere Zahlbacher Strasse 63, 55131 Mainz, Germany
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, D-55128 Mainz, Germany.
| |
Collapse
|
3
|
Porto E, De Backer J, Thuy LTT, Kawada N, Hankeln T. Transcriptomics of a cytoglobin knockout mouse: Insights from hepatic stellate cells and brain. J Inorg Biochem 2024; 250:112405. [PMID: 37977965 DOI: 10.1016/j.jinorgbio.2023.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/19/2023]
Abstract
The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.
Collapse
Affiliation(s)
- Elena Porto
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany
| | - Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, Antwerp 1610, Belgium
| | - Le Thi Thanh Thuy
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Thomas Hankeln
- Institute of Organismic and Molecular Evolution, Molecular Genetics & Genome Analysis Group, Johannes Gutenberg University Mainz, J. J. Becher-Weg 30A, Mainz D-55128, Germany.
| |
Collapse
|
4
|
Rochon ER, Xue J, Mohammed MS, Smith C, Hay-Schmidt A, DeMartino AW, Clark A, Xu Q, Lo CW, Tsang M, Tejero J, Gladwin MT, Corti P. Cytoglobin regulates NO-dependent cilia motility and organ laterality during development. Nat Commun 2023; 14:8333. [PMID: 38097556 PMCID: PMC10721929 DOI: 10.1038/s41467-023-43544-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Cytoglobin is a heme protein with unresolved physiological function. Genetic deletion of zebrafish cytoglobin (cygb2) causes developmental defects in left-right cardiac determination, which in humans is associated with defects in ciliary function and low airway epithelial nitric oxide production. Here we show that Cygb2 co-localizes with cilia and with the nitric oxide synthase Nos2b in the zebrafish Kupffer's vesicle, and that cilia structure and function are disrupted in cygb2 mutants. Abnormal ciliary function and organ laterality defects are phenocopied by depletion of nos2b and of gucy1a, the soluble guanylate cyclase homolog in fish. The defects are rescued by exposing cygb2 mutant embryos to a nitric oxide donor or a soluble guanylate cyclase stimulator, or with over-expression of nos2b. Cytoglobin knockout mice also show impaired airway epithelial cilia structure and reduced nitric oxide levels. Altogether, our data suggest that cytoglobin is a positive regulator of a signaling axis composed of nitric oxide synthase-soluble guanylate cyclase-cyclic GMP that is necessary for normal cilia motility and left-right patterning.
Collapse
Affiliation(s)
- Elizabeth R Rochon
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Jianmin Xue
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Manush Sayd Mohammed
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Caroline Smith
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Anders Hay-Schmidt
- Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anthony W DeMartino
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Adam Clark
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Qinzi Xu
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, Rangos Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15201, USA
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jesus Tejero
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA, 15260, USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Mark T Gladwin
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Paola Corti
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
5
|
Reeder BJ. Insights into the function of cytoglobin. Biochem Soc Trans 2023; 51:1907-1919. [PMID: 37721133 PMCID: PMC10657185 DOI: 10.1042/bst20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Since its discovery in 2001, the function of cytoglobin has remained elusive. Through extensive in vitro and in vivo research, a range of potential physiological and pathological mechanisms has emerged for this multifunctional member of the hemoglobin family. Currently, over 200 research publications have examined different aspects of cytoglobin structure, redox chemistry and potential roles in cell signalling pathways. This research is wide ranging, but common themes have emerged throughout the research. This review examines the current structural, biochemical and in vivo knowledge of cytoglobin published over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid binding and oxidation and the role of an intramolecular disulfide bond on the redox chemistry are examined, together with aspects and roles for Cygb in cancer progression and liver fibrosis.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, U.K
| |
Collapse
|
6
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
7
|
Diuba AV, Vygodina TV, Azarkina NV, Arutyunyan AM, Soulimane T, Vos MH, Konstantinov AA. Individual heme a and heme a 3 contributions to the Soret absorption spectrum of the reduced bovine cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148937. [PMID: 36403793 DOI: 10.1016/j.bbabio.2022.148937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022]
Abstract
Bovine cytochrome c oxidase (CcO) contains two hemes, a and a3, chemically identical but differing in coordination and spin state. The Soret absorption band of reduced aa3-type cytochrome c oxidase consists of overlapping bands of the hemes a2+ and a32+. It shows a peak at ∼444 nm and a distinct shoulder at ∼425 nm. However, attribution of individual spectral lineshapes to hemes a2+ and a32+ in the Soret is controversial. In the present work, we characterized spectral contributions of hemes a2+ and a32+ using two approaches. First, we reconstructed bovine CcO heme a2+ spectrum using a selective Ca2+-induced spectral shift of the heme a2+. Second, we investigated photobleaching of the reduced Thermus thermophilus ba3- and bovine aa3-oxidases in the Soret induced by femtosecond laser pulses in the Q-band. The resolved spectra show splitting of the electronic B0x-, B0y-transitions of both reduced hemes. The heme a2+ spectrum is shifted to the red relative to heme a32+ spectrum. The ∼425 nm shoulder is mostly attributed to heme a32+.
Collapse
Affiliation(s)
- Artem V Diuba
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld.40, Moscow 119992, Russia.
| | - Tatiana V Vygodina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld.40, Moscow 119992, Russia.
| | - Natalia V Azarkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld.40, Moscow 119992, Russia.
| | - Alexander M Arutyunyan
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld.40, Moscow 119992, Russia.
| | - Tewfik Soulimane
- Materials and Surface Science Institute, University of Limerick, V94 T9PX, Ireland.
| | - Marten H Vos
- LOB, CNRS, INSERM, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau 91120, France.
| | - Alexander A Konstantinov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld.40, Moscow 119992, Russia
| |
Collapse
|
8
|
Zheng Y, Deng W, Liu D, Li Y, Peng K, Lorimer GH, Wang J. Redox and spectroscopic properties of mammalian nitrite reductase-like hemoproteins. J Inorg Biochem 2022; 237:111982. [PMID: 36116154 DOI: 10.1016/j.jinorgbio.2022.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 01/18/2023]
Abstract
Besides the canonical pathway of L-arginine oxidation to produce nitric oxide (NO) in vivo, the nitrate-nitrite-NO pathway has been widely accepted as another source for circulating NO in mammals, especially under hypoxia. To date, there have been at least ten heme-containing nitrite reductase-like proteins discovered in mammals with activities mainly identified in vitro, including four globins (hemoglobin, myoglobin, neuroglobin (Ngb), cytoglobin (Cygb)), three mitochondrial respiratory chain enzymes (cytochrome c oxidase, cytochrome bc1, cytochrome c), and three other heme proteins (endothelial nitric oxide synthase, cytochrome P450 and indoleamine 2,3-dioxygenase 1 (IDO1)). The pathophysiological functions of these proteins are closely related to their redox and spectroscopic properties, as well as their protein structure, although the physiological roles of Ngb, Cygb and IDO1 remain unclear. So far, comprehensive summaries of the redox and spectroscopic properties of these nitrite reductase-like hemoproteins are still lacking. In this review, we have mainly summarized the published data on the application of ultraviolet-visible, electron paramagnetic resonance, circular dichroism and resonance Raman spectroscopies, and X-ray crystallography in studying nitrite reductase-like activity of these 10 proteins, in order to sort out the relationships among enzymatic function, structure and spectroscopic characterization, which might help in understanding their roles in redox biology and medicine.
Collapse
Affiliation(s)
- Yunlong Zheng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Wenwen Deng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Di Liu
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Youheng Li
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | - Kang Peng
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China
| | | | - Jun Wang
- Hubei University of Technology Autism & Depression Diagnosis and Intervention Institute, Hubei University of Technology, Wuhan, Hubei, China; International Joint Research Center for General Health, Precision Medicine & Nutrition, Hubei University of Technology, Wuhan, Hubei, China; Department of Biomedicine and Biopharmacology, Hubei University of Technology, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Ukeri J, Wilson MT, Reeder BJ. Modulating Nitric Oxide Dioxygenase and Nitrite Reductase of Cytoglobin through Point Mutations. Antioxidants (Basel) 2022; 11:antiox11091816. [PMID: 36139890 PMCID: PMC9495915 DOI: 10.3390/antiox11091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cytoglobin is a hexacoordinate hemoglobin with physiological roles that are not clearly understood. Previously proposed physiological functions include nitric oxide regulation, oxygen sensing, or/and protection against oxidative stress under hypoxic/ischemic conditions. Like many globins, cytoglobin rapidly consumes nitric oxide under normoxic conditions. Under hypoxia, cytoglobin generates nitric oxide, which is strongly modulated by the oxidation state of the cysteines. This gives a plausible role for this biochemistry in controlling nitric oxide homeostasis. Mutations to control specific properties of hemoglobin and myoglobin, including nitric oxide binding/scavenging and the nitrite reductase activity of various globins, have been reported. We have mapped these key mutations onto cytoglobin, which represents the E7 distal ligand, B2/E9 disulfide, and B10 heme pocket residues, and examined the nitric oxide binding, nitric oxide dioxygenase activity, and nitrite reductase activity. The Leu46Trp mutation decreases the nitric oxide dioxygenase activity > 10,000-fold over wild type, an effect 1000 times greater than similar mutations with other globins. By understanding how particular mutations can affect specific reactivities, these mutations may be used to target specific cytoglobin activities in cell or animal models to help understand the precise role(s) of cytoglobin under physiological and pathophysiological conditions.
Collapse
|
10
|
Kaliszuk SJ, Morgan NI, Ayers TN, Sparacino Watkins CE, DeMartino AW, Bocian K, Ragireddy V, Tong Q, Tejero J. Regulation of nitrite reductase and lipid binding properties of cytoglobin by surface and distal histidine mutations. Nitric Oxide 2022; 125-126:12-22. [PMID: 35667547 PMCID: PMC9283305 DOI: 10.1016/j.niox.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/21/2022] [Accepted: 06/01/2022] [Indexed: 12/30/2022]
Abstract
Cytoglobin is a hemoprotein widely expressed in fibroblasts and related cell lineages with yet undefined physiological function. Cytoglobin, as other heme proteins, can reduce nitrite to nitric oxide (NO) providing a route to generate NO in vivo in low oxygen conditions. In addition, cytoglobin can also bind lipids such as oleic acid and cardiolipin with high affinity. These two processes are potentially relevant to cytoglobin function. Little is known about how specific amino acids contribute to nitrite reduction and lipid binding. Here we investigate the role of the distal histidine His81 (E7) and several surface residues on the regulation of nitrite reduction and lipid binding. We observe that the replacement of His81 (E7) greatly increases heme reactivity towards nitrite, with nitrite reduction rate constants of up to 1100 M-1s-1 for the His81Ala mutant. His81 (E7) mutation causes a small decrease in lipid binding affinity, however experiments on the presence of imidazole indicate that His81 (E7) does not compete with the lipid for the binding site. Mutations of the surface residues Arg84 and Lys116 largely impair lipid binding. Our results suggest that dissociation of His81 (E7) from the heme mediates the formation of a hydrophobic cavity in the proximal heme side that can accommodate the lipid, with important contributions of the hydrophobic patch around residues Thr91, Val105, and Leu108, whereas the positive charges from Arg84 and Lys116 stabilize the carboxyl group of the fatty acid. Gain and loss-of-function mutations described here can serve as tools to study in vivo the physiological role of these putative cytoglobin functions.
Collapse
Affiliation(s)
- Stefan J Kaliszuk
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Natasha I Morgan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Taylor N Ayers
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Courtney E Sparacino Watkins
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Anthony W DeMartino
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kaitlin Bocian
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Venkata Ragireddy
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qin Tong
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA; Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
11
|
Dent MR, DeMartino AW, Tejero J, Gladwin MT. Endogenous Hemoprotein-Dependent Signaling Pathways of Nitric Oxide and Nitrite. Inorg Chem 2021; 60:15918-15940. [PMID: 34313417 PMCID: PMC9167621 DOI: 10.1021/acs.inorgchem.1c01048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interdisciplinary research at the interface of chemistry, physiology, and biomedicine have uncovered pivotal roles of nitric oxide (NO) as a signaling molecule that regulates vascular tone, platelet aggregation, and other pathways relevant to human health and disease. Heme is central to physiological NO signaling, serving as the active site for canonical NO biosynthesis in nitric oxide synthase (NOS) enzymes and as the highly selective NO binding site in the soluble guanylyl cyclase receptor. Outside of the primary NOS-dependent biosynthetic pathway, other hemoproteins, including hemoglobin and myoglobin, generate NO via the reduction of nitrite. This auxiliary hemoprotein reaction unlocks a "second axis" of NO signaling in which nitrite serves as a stable NO reservoir. In this Forum Article, we highlight these NO-dependent physiological pathways and examine complex chemical and biochemical reactions that govern NO and nitrite signaling in vivo. We focus on hemoprotein-dependent reaction pathways that generate and consume NO in the presence of nitrite and consider intermediate nitrogen oxides, including NO2, N2O3, and S-nitrosothiols, that may facilitate nitrite-based signaling in blood vessels and tissues. We also discuss emergent therapeutic strategies that leverage our understanding of these key reaction pathways to target NO signaling and treat a wide range of diseases.
Collapse
Affiliation(s)
- Matthew R Dent
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
12
|
DeMartino AW, Amdahl MB, Bocian K, Rose JJ, Tejero J, Gladwin MT. Redox sensor properties of human cytoglobin allosterically regulate heme pocket reactivity. Free Radic Biol Med 2021; 162:423-434. [PMID: 33144263 PMCID: PMC7889637 DOI: 10.1016/j.freeradbiomed.2020.10.321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Cytoglobin is a conserved hemoprotein ubiquitously expressed in mammalian tissues, which conducts electron transfer reactions with proposed signaling functions in nitric oxide (NO) and lipid metabolism. Cytoglobin has an E7 distal histidine (His81), which unlike related globins such as myoglobin and hemoglobin, is in equilibrium between a bound, hexacoordinate state and an unbound, pentacoordinate state. The His81 binding equilibrium appears to be allosterically modulated by the presence of an intramolecular disulfide between two cysteines (Cys38 and Cys83). The formation of this disulfide bridge regulates nitrite reductase activity and lipid binding. Herein, we attempt to clarify the effects of defined thiol oxidation states on small molecule binding of cytoglobin heme, using cyanide binding to probe the ferric state. Cyanide binding kinetics to wild-type cytoglobin reveal at least two kinetically distinct subpopulations, depending on thiol oxidation states. Experiments with covalent thiol modification by NEM, glutathione, and amino acid substitutions (C38S, C83S and H81A), indicate that subpopulations ranging from fully reduced thiols, single thiol oxidation, and intramolecular disulfide formation determine heme binding properties by modulating the histidine-heme affinity and ligand binding. The redox modulation of ligand binding is sensitive to physiological levels of hydrogen peroxide, with a functional midpoint redox potential for the native cytoglobin intramolecular disulfide bond of -189 ± 4 mV, a value within the boundaries of intracellular redox potentials. These results support the hypothesis that Cys38 and Cys83 on cytoglobin serve as sensitive redox sensors that modulate the cytoglobin distal heme pocket reactivity and ligand binding.
Collapse
Affiliation(s)
- Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaitlin Bocian
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jason J Rose
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, United States.
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15260, United States.
| |
Collapse
|
13
|
Amdahl MB, DeMartino AW, Gladwin MT. Inorganic nitrite bioactivation and role in physiological signaling and therapeutics. Biol Chem 2020; 401:201-211. [PMID: 31747370 DOI: 10.1515/hsz-2019-0349] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/02/2019] [Indexed: 01/23/2023]
Abstract
The bioactivation of inorganic nitrite refers to the conversion of otherwise 'inert' nitrite to the diatomic signaling molecule nitric oxide (NO), which plays important roles in human physiology and disease, notably in the regulation of vascular tone and blood flow. While the most well-known sources of NO are the nitric oxide synthase (NOS) enzymes, another source of NO is the nitrate-nitrite-NO pathway, whereby nitrite (obtained from reduction of dietary nitrate) is further reduced to form NO. The past few decades have seen extensive study of the mechanisms of NO generation through nitrate and nitrite bioactivation, as well as growing appreciation of the contribution of this pathway to NO signaling in vivo. This review, prepared for the volume 400 celebration issue of Biological Chemistry, summarizes some of the key reactions of the nitrate-nitrite-NO pathway such as reduction, disproportionation, dehydration, and oxidative denitrosylation, as well as current evidence for the contribution of the pathway to human cardiovascular physiology. Finally, ongoing efforts to develop novel medical therapies for multifarious conditions, especially those related to pathologic vasoconstriction and ischemia/reperfusion injury, are also explored.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anthony W DeMartino
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Lessons from the post-genomic era: Globin diversity beyond oxygen binding and transport. Redox Biol 2020; 37:101687. [PMID: 32863222 PMCID: PMC7475203 DOI: 10.1016/j.redox.2020.101687] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Vertebrate hemoglobin (Hb) and myoglobin (Mb) were among the first proteins whose structures and sequences were determined over 50 years ago. In the subsequent pregenomic period, numerous related proteins came to light in plants, invertebrates and bacteria, that shared the myoglobin fold, a signature sequence motif characteristic of a 3-on-3 α-helical sandwich. Concomitantly, eukaryote and bacterial globins with a truncated 2-on-2 α-helical fold were discovered. Genomic information over the last 20 years has dramatically expanded the list of known globins, demonstrating their existence in a limited number of archaeal genomes, a majority of bacterial genomes and an overwhelming majority of eukaryote genomes. In vertebrates, 6 additional globin types were identified, namely neuroglobin (Ngb), cytoglobin (Cygb), globin E (GbE), globin X (GbX), globin Y (GbY) and androglobin (Adgb). Furthermore, functions beyond the familiar oxygen transport and storage have been discovered within the vertebrate globin family, including NO metabolism, peroxidase activity, scavenging of free radicals, and signaling functions. The extension of the knowledge on globin functions suggests that the original roles of bacterial globins must have been enzymatic, involved in defense against NO toxicity, and perhaps also as sensors of O2, regulating taxis away or towards high O2 concentrations. In this review, we aimed to discuss the evolution and remarkable functional diversity of vertebrate globins with particular focus on the variety of non-canonical expression sites of mammalian globins and their according impressive variability of atypical functions.
Collapse
|
15
|
Mie Y, Takahashi K, Torii R, Jingkai S, Tanaka T, Sueyoshi K, Tsujino H, Yamashita T. Redox State Control of Human Cytoglobin by Direct Electrochemical Method to Investigate Its Function in Molecular Basis. Chem Pharm Bull (Tokyo) 2020; 68:806-809. [PMID: 32461519 DOI: 10.1248/cpb.c20-00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The direct electron transfer between human cytoglobin (Cygb) and the electrode surface, which would allow manipulating the oxidation states of the heme iron in Cygb, was first observed by immobilizing Cygb on a nanoporous gold (NPG) electrode via a carboxy-terminated alkanethiol. The voltammetric performances of the wild type and mutated Cygb-immobilized NPG electrodes were evaluated in the absence or presence of potential substrates. The obtained results demonstrated that the usefulness of the proposed method in understanding the function of Cygb in molecular basis.
Collapse
Affiliation(s)
- Yasuhiro Mie
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Kyoka Takahashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ryo Torii
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Shen Jingkai
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Takumi Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Kenta Sueyoshi
- Graduate School of Pharmaceutical Sciences, Osaka University
| | | | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University
| |
Collapse
|
16
|
Abstract
Significance: Cytoglobin (Cygb) was discovered as a new addition to the globin superfamily and subsequently identified to have potent nitric oxide (NO) dioxygenase function. Cygb plays a critical role in the oxygen-dependent regulation of NO levels and vascular tone. Recent Advances: In recent years, the mechanism of the Cygb-mediated NO dioxygenation has been studied in isolated protein, smooth muscle cell, isolated blood vessel, and in vivo animal model systems. Studies in Cygb-/- mice have demonstrated that Cygb plays a critical role in regulating blood pressure and vascular tone. This review summarizes advances in the knowledge of NO dioxygenation/metabolism regulated by Cygb. Advances in measurement of NO diffusion dynamics across blood vessels and kinetic modeling of Cygb-mediated NO dioxygenation are summarized. The oxygen-dependent regulation of NO degradation by Cygb is also reviewed along with how Cygb paradoxically generates NO from nitrite under anaerobic conditions. The important role of Cygb in the regulation of vascular function and disease is reviewed. Critical Issues: Cygb is a more potent NO dioxygenase (NOD) than previously known globins with structural differences in heme coordination and environment, conferring it with a higher rate of reduction and more rapid process of NO dioxygenation with unique oxygen dependence. Various cellular reducing systems regenerate the catalytic oxyferrous Cygb species, supporting a high rate of NO dioxygenation. Future Directions: There remains a critical need to further characterize the factors and processes that modulate Cygb-mediated NOD function, and to develop pharmacological or other approaches to modulate Cygb function and expression.
Collapse
Affiliation(s)
- Jay L Zweier
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Govindasamy Ilangovan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Davis Heart and Lung Research Institute, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
17
|
Mathai C, Jourd'heuil FL, Lopez-Soler RI, Jourd'heuil D. Emerging perspectives on cytoglobin, beyond NO dioxygenase and peroxidase. Redox Biol 2020; 32:101468. [PMID: 32087552 PMCID: PMC7033357 DOI: 10.1016/j.redox.2020.101468] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/18/2022] Open
Abstract
Cytoglobin is an evolutionary ancient hemoglobin with poor functional annotation. Rather than constrained to penta coordination, cytoglobin's heme iron may exist either as a penta or hexacoordinated arrangement when exposed to different intracellular environments. Two cysteine residues at the surface of the protein form an intramolecular disulfide bond that regulates iron coordination, ligand binding, and peroxidase activity. Overall, biochemical results do not support a role for cytoglobin as a direct antioxidant enzyme that scavenges hydrogen peroxide because the rate of the reaction of cytoglobin with hydrogen peroxide is several orders of magnitude slower than metal and thiol-based peroxidases. Thus, alternative substrates such as fatty acids have been suggested and regulation of nitric oxide bioavailability through nitric oxide dioxygenase and nitrite reductase activities has received experimental support. Cytoglobin is broadly expressed in connective, muscle, and nervous tissues. Rational for differential cellular distribution is poorly understood but inducibility in response to hypoxia is one of the most established features of cytoglobin expression with regulation through the transcription factor hypoxia-inducible factor (HIF). Phenotypic characterization of cytoglobin deletion in the mouse have indicated broad changes that include a heightened inflammatory response and fibrosis, increase tumor burden, cardiovascular dysfunction, and hallmarks of senescence. Some of these changes might be reversed upon inhibition of nitric oxide synthase. However, subcellular and molecular interactions have been seldom characterized. In addition, specific molecular mechanisms of action are still lacking. We speculate that cytoglobin functionality will extend beyond nitric oxide handling and will have to encompass indirect regulatory antioxidant and redox sensing functions.
Collapse
Affiliation(s)
- Clinton Mathai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Frances L Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | | | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
18
|
Daane JM, Giordano D, Coppola D, di Prisco G, Detrich HW, Verde C. Adaptations to environmental change: Globin superfamily evolution in Antarctic fishes. Mar Genomics 2019; 49:100724. [PMID: 31735579 DOI: 10.1016/j.margen.2019.100724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/27/2019] [Accepted: 11/01/2019] [Indexed: 02/08/2023]
Abstract
The ancient origins and functional versatility of globins make them ideal subjects for studying physiological adaptation to environmental change. Our goals in this review are to describe the evolution of the vertebrate globin gene superfamily and to explore the structure/function relationships of hemoglobin, myoglobin, neuroglobin and cytoglobin in teleost fishes. We focus on the globins of Antarctic notothenioids, emphasizing their adaptive features as inferred from comparisons with human proteins. We dedicate this review to Guido di Prisco, our co-author, colleague, friend, and husband of C.V. Ever thoughtful, creative, and enthusiastic, Guido spearheaded study of the structure, function, and evolution of the hemoglobins of polar fishes - this review is testimony to his wide-ranging contributions. Throughout his career, Guido inspired younger scientists to embrace polar biological research, and he challenged researchers of all ages to explore evolutionary adaptation in the context of global climate change. Beyond his scientific contributions, we will miss his warmth, his culture, and his great intellect. Guido has left an outstanding legacy, one that will continue to inspire us and our research.
Collapse
Affiliation(s)
- Jacob M Daane
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Daniela Giordano
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Daniela Coppola
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University Marine Science Center, Nahant, MA 01908, USA
| | - Cinzia Verde
- Institute of Biosciences and BioResources (IBBR), CNR, Via Pietro Castellino 111, 80131 Napoli, Italy; Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
19
|
Thi Thanh Hai N, Thuy LTT, Shiota A, Kadono C, Daikoku A, Hoang DV, Dat NQ, Sato-Matsubara M, Yoshizato K, Kawada N. Selective overexpression of cytoglobin in stellate cells attenuates thioacetamide-induced liver fibrosis in mice. Sci Rep 2018; 8:17860. [PMID: 30552362 PMCID: PMC6294752 DOI: 10.1038/s41598-018-36215-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cytoglobin (CYGB), discovered in hepatic stellate cells (HSCs), is known to possess a radical scavenger function, but its pathophysiological roles remain unclear. Here, for the first time, we generated a new transgenic (TG) mouse line in which both Cygb and mCherry reporter gene expression were under the control of the native Cygb gene promoter. We demonstrated that the expression of Cygb-mCherry was related to endogenous Cygb in adult tissues by tracing mCherry fluorescence together with DNA, mRNA, and protein analyses. Administration of a single dose (50 mg/kg) of thioacetamide (TAA) in Cygb-TG mice resulted in lower levels of alanine transaminase and oxidative stress than those in WT mice. After 10 weeks of TAA administration, Cygb-TG livers exhibited reduced neutrophil accumulation, cytokine expression and fibrosis but high levels of quiescent HSCs. Primary HSCs isolated from Cygb-TG mice (HSCCygb-TG) exhibited significantly decreased mRNA levels of α-smooth muscle actin (αSMA), collagen 1α1, and transforming growth factor β-3 after 4 days in culture relative to WT cells. HSCsCygb-TG were resistant to H2O2-induced αSMA expression. Thus, cell-specific overexpression of Cygb attenuates HSC activation and protects mice against TAA-induced liver fibrosis presumably by maintaining HSC quiescence. Cygb is a potential new target for antifibrotic approaches.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Hai
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- Department of Biochemistry, Hanoi Medical University, Hanoi, Vietnam
| | - Le Thi Thanh Thuy
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | - Chiho Kadono
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Atsuko Daikoku
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Dinh Viet Hoang
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Ninh Quoc Dat
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Misako Sato-Matsubara
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Katsutoshi Yoshizato
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan
- PhoenixBio Co. Ltd., Hiroshima, Japan
- Endowed Laboratory of Synthetic Biology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Norifumi Kawada
- Departments of Hepatology, Graduate School of Medicine, Osaka City University, Osaka, Japan.
| |
Collapse
|
20
|
De Backer J, Razzokov J, Hammerschmid D, Mensch C, Hafideddine Z, Kumar N, van Raemdonck G, Yusupov M, Van Doorslaer S, Johannessen C, Sobott F, Bogaerts A, Dewilde S. The effect of reactive oxygen and nitrogen species on the structure of cytoglobin: A potential tumor suppressor. Redox Biol 2018; 19:1-10. [PMID: 30081385 PMCID: PMC6084017 DOI: 10.1016/j.redox.2018.07.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/15/2018] [Accepted: 07/22/2018] [Indexed: 12/12/2022] Open
Abstract
Many current anti-cancer therapies rely on increasing the intracellular reactive oxygen and nitrogen species (RONS) contents with the aim to induce irreparable damage, which subsequently results in tumor cell death. A novel tool in cancer therapy is the use of cold atmospheric plasma (CAP), which has been found to be very effective in the treatment of many different cancer cell types in vitro as well as in vivo, mainly through the vast generation of RONS. One of the key determinants of the cell's fate will be the interaction of RONS, generated by CAP, with important proteins, i.e. redox-regulatory proteins. One such protein is cytoglobin (CYGB), a recently discovered globin proposed to be involved in the protection of the cell against oxidative stress. In this study, the effect of plasma-produced RONS on CYGB was investigated through the treatment of CYGB with CAP for different treatment times. Spectroscopic analysis of CYGB showed that although chemical modifications occur, its secondary structure remains intact. Mass spectrometry experiments identified these modifications as oxidations of mainly sulfur-containing and aromatic amino acids. With longer treatment time, the treatment was also found to induce nitration of the heme. Furthermore, the two surface-exposed cysteine residues of CYGB were oxidized upon treatment, leading to the formation of intermolecular disulfide bridges, and potentially also intramolecular disulfide bridges. In addition, molecular dynamics and docking simulations confirmed, and further show, that the formation of an intramolecular disulfide bond, due to oxidative conditions, affects the CYGB 3D structure, thereby opening the access to the heme group, through gate functioning of His117. Altogether, the results obtained in this study (1) show that plasma-produced RONS can extensively oxidize proteins and (2) that the oxidation status of two redox-active cysteines lead to different conformations of CYGB.
Collapse
Affiliation(s)
- Joey De Backer
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium.
| | - Jamoliddin Razzokov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium
| | - Dietmar Hammerschmid
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium; Biomolecular & Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Carl Mensch
- Research Group Molecular Spectroscopy, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Zainab Hafideddine
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium; The Laboratory of Biophysics and Biomedical Physics, Department of Physics, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium
| | - Naresh Kumar
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium
| | - Geert van Raemdonck
- Center for Proteomics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium
| | - Sabine Van Doorslaer
- The Laboratory of Biophysics and Biomedical Physics, Department of Physics, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium
| | - Christian Johannessen
- Research Group Molecular Spectroscopy, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium
| | - Sylvia Dewilde
- Research Group PPES, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Wilrijk, 1610 Antwerp, Belgium.
| |
Collapse
|
21
|
Strong modulation of nitrite reductase activity of cytoglobin by disulfide bond oxidation: Implications for nitric oxide homeostasis. Nitric Oxide 2018; 72:16-23. [DOI: 10.1016/j.niox.2017.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 11/22/2022]
|
22
|
Hanai S, Tsujino H, Yamashita T, Torii R, Sawai H, Shiro Y, Oohora K, Hayashi T, Uno T. Roles of N- and C-terminal domains in the ligand-binding properties of cytoglobin. J Inorg Biochem 2017; 179:1-9. [PMID: 29149638 DOI: 10.1016/j.jinorgbio.2017.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/04/2017] [Accepted: 11/04/2017] [Indexed: 01/12/2023]
Abstract
Cytoglobin (Cygb) is a member of the hexacoordinated globin protein family and is expressed ubiquitously in rat and human tissues. Although Cygb is reportedly upregulated under hypoxic conditions both in vivo and in vitro, suggesting a physiological function to protect cells under hypoxic/ischemic conditions by scavenging reactive oxygen species or by signal transduction, the mechanisms associated with this function have not been fully elucidated. Recent studies comparing Cygbs among several species suggest that mammalian Cygbs show a distinctly longer C-terminal domain potentially involved in unique physiological functions. In this study, we prepared human Cygb mutants (ΔC, ΔN, and ΔNC) with either one or both terminal domains truncated and investigated the enzymatic functions and structural features by spectroscopic methods. Evaluation of the superoxide-scavenging activity between Cygb variants showed that the ΔC and ΔNC mutants exhibited slightly higher activity involving superoxide scavenging as compared with wild-type Cygb. Subsequent experiments involving ligand titration, flash photolysis, and resonance Raman spectroscopic studies suggested that the truncation of the C- and N-terminal domains resulted in less effective to dissociation constants and binding rates for carbon monoxide, respectively. Furthermore, structural stability was assessed by guanidine hydrochloride and revealed that the C-terminal domain might play a vital role in improving structure, whereas the N-terminal domain did not exert a similar effect. These findings indicated that long terminal domains could be important not only in regulating enzymatic activity but also for structural stability, and that the domains might be relevant to other hypothesized physiological functions for Cygb.
Collapse
Affiliation(s)
- Shumpei Hanai
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, Hyogo, Japan.
| | - Ryo Torii
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Hitomi Sawai
- Graduate School of Life Science, University of Hyogo, Hyogo, Japan
| | | | - Koji Oohora
- Department of Applied Chemistry, Osaka University, Osaka, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Osaka University, Osaka, Japan
| | - Tadayuki Uno
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|
23
|
Amdahl MB, Sparacino-Watkins CE, Corti P, Gladwin MT, Tejero J. Efficient Reduction of Vertebrate Cytoglobins by the Cytochrome b 5/Cytochrome b 5 Reductase/NADH System. Biochemistry 2017; 56:3993-4004. [PMID: 28671819 DOI: 10.1021/acs.biochem.7b00224] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytoglobin is a heme-containing protein ubiquitous in mammalian tissues. Unlike the evolutionarily related proteins hemoglobin and myoglobin, cytoglobin shows a six-coordinated heme binding, with the heme iron coordinated by two histidine side chains. Cytoglobin is involved in cytoprotection pathways through yet undefined mechanisms, and it has recently been demonstrated that cytoglobin has redox signaling properties via nitric oxide (NO) and nitrite metabolism. The reduced, ferrous cytoglobin can bind oxygen and will react with NO in a dioxygenation reaction to form nitrate, which dampens NO signaling. When deoxygenated, cytoglobin can bind nitrite and reduce it to NO. This oxidoreductase activity could be catalytic if an effective reduction system exists to regenerate the reduced heme species. The nature of the physiological cytoglobin reducing system is unknown, although it has been proposed that ascorbate and cytochrome b5 could fulfill this role. Here we describe that physiological concentrations of cytochrome b5 and cytochrome b5 reductase can reduce human and fish cytoglobins at rates up to 250-fold higher than those reported for their known physiological substrates, hemoglobin and myoglobin, and up to 100-fold faster than 5 mM ascorbate. These data suggest that the cytochrome b5/cytochrome b5 reductase system is a viable reductant for cytoglobin in vivo, allowing for catalytic oxidoreductase activity.
Collapse
Affiliation(s)
- Matthew B Amdahl
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.,Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | - Courtney E Sparacino-Watkins
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | - Paola Corti
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| | - Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
24
|
Zhou D, Hemann C, Boslett J, Luo A, Zweier JL, Liu X. Oxygen binding and nitric oxide dioxygenase activity of cytoglobin are altered to different extents by cysteine modification. FEBS Open Bio 2017; 7:845-853. [PMID: 28593139 PMCID: PMC5458454 DOI: 10.1002/2211-5463.12230] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/24/2017] [Accepted: 04/05/2017] [Indexed: 12/24/2022] Open
Abstract
Cytoglobin (Cygb), like other members of the globin family, is a nitric oxide (NO) dioxygenase, metabolizing NO in an oxygen (O2)‐dependent manner. We examined the effect of modification of cysteine sulfhydryl groups of Cygb on its O2 binding and NO dioxygenase activity. The two cysteine sulfhydryls of Cygb were modified to form either an intramolecular disulfide bond (Cygb_SS), thioether bonds to N‐ethylmaleimide (NEM; Cygb_SC), or were maintained as free SH groups (Cygb_SH). It was observed that the NO dioxygenase activity of Cygb only slightly changed (~ 25%) while the P50 of O2 binding to Cygb changed over four‐fold with these modifications. Our results suggest that it is possible to separately regulate one Cygb function (such as O2 binding) without largely affecting the other Cygb functions (such as its NO dioxygenase activity).
Collapse
Affiliation(s)
- Danlei Zhou
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA.,School of Life Science Beijing Institute of Technology Haidian District China
| | - Craig Hemann
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA
| | - James Boslett
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA
| | - Aiqin Luo
- School of Life Science Beijing Institute of Technology Haidian District China
| | - Jay L Zweier
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA
| | - Xiaoping Liu
- Davis Heart and Lung Research Institute and Division of Cardiovascular Medicine Department of Internal Medicine College of Medicine The Ohio State University Columbus OH USA
| |
Collapse
|
25
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
26
|
Cuypers B, Vermeylen S, Hammerschmid D, Trashin S, Rahemi V, Konijnenberg A, De Schutter A, Cheng CHC, Giordano D, Verde C, De Wael K, Sobott F, Dewilde S, Van Doorslaer S. Antarctic fish versus human cytoglobins - The same but yet so different. J Inorg Biochem 2017; 173:66-78. [PMID: 28501743 DOI: 10.1016/j.jinorgbio.2017.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 03/23/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
The cytoglobins of the Antarctic fish Chaenocephalus aceratus and Dissostichus mawsoni have many features in common with human cytoglobin. These cytoglobins are heme proteins in which the ferric and ferrous forms have a characteristic hexacoordination of the heme iron, i.e. axial ligation of two endogenous histidine residues, as confirmed by electron paramagnetic resonance, resonance Raman and optical absorption spectroscopy. The combined spectroscopic analysis revealed only small variations in the heme-pocket structure, in line with the small variations observed for the redox potential. Nevertheless, some striking differences were also discovered. Resonance Raman spectroscopy showed that the stabilization of an exogenous heme ligand, such as CO, occurs differently in human cytoglobin in comparison with Antarctic fish cytoglobins. Furthermore, while it has been extensively reported that human cytoglobin is essentially monomeric and can form an intramolecular disulfide bridge that can influence the ligand binding kinetics, 3D modeling of the Antarctic fish cytoglobins indicates that the cysteine residues are too far apart to form such an intramolecular bridge. Moreover, gel filtration and mass spectrometry reveal the occurrence of non-covalent multimers (up to pentamers) in the Antarctic fish cytoglobins that are formed at low concentrations. Stabilization of these oligomers by disulfide-bridge formation is possible, but not essential. If intermolecular disulfide bridges are formed, they influence the heme-pocket structure, as is shown by EPR measurements.
Collapse
Affiliation(s)
- Bert Cuypers
- BIMEF Laboratory, Department of Physics, University of Antwerp, Belgium
| | - Stijn Vermeylen
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium
| | - Dietmar Hammerschmid
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium; BAMS Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Stanislav Trashin
- AXES Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Vanoushe Rahemi
- AXES Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | | | - Amy De Schutter
- BIMEF Laboratory, Department of Physics, University of Antwerp, Belgium
| | | | - Daniela Giordano
- Institute of Biosciences and BioResources, CNR, Naples, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, CNR, Naples, Italy; Department of Biology, University Roma 3, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Karolien De Wael
- AXES Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Frank Sobott
- BAMS Laboratory, Department of Chemistry, University of Antwerp, Belgium
| | - Sylvia Dewilde
- PPES Laboratory, Department of Biomedical Sciences, University of Antwerp, Belgium
| | | |
Collapse
|
27
|
Vlasova II, Kapralov AA, Michael ZP, Burkert SC, Shurin MR, Star A, Shvedova AA, Kagan VE. Enzymatic oxidative biodegradation of nanoparticles: Mechanisms, significance and applications. Toxicol Appl Pharmacol 2016; 299:58-69. [PMID: 26768553 PMCID: PMC4811710 DOI: 10.1016/j.taap.2016.01.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/01/2016] [Accepted: 01/02/2016] [Indexed: 12/22/2022]
Abstract
Biopersistence of carbon nanotubes, graphene oxide (GO) and several other types of carbonaceous nanomaterials is an essential determinant of their health effects. Successful biodegradation is one of the major factors defining the life span and biological responses to nanoparticles. Here, we review the role and contribution of different oxidative enzymes of inflammatory cells - myeloperoxidase, eosinophil peroxidase, lactoperoxidase, hemoglobin, and xanthine oxidase - to the reactions of nanoparticle biodegradation. We further focus on interactions of nanomaterials with hemoproteins dependent on the specific features of their physico-chemical and structural characteristics. Mechanistically, we highlight the significance of immobilized peroxidase reactive intermediates vs diffusible small molecule oxidants (hypochlorous and hypobromous acids) for the overall oxidative biodegradation process in neutrophils and eosinophils. We also accentuate the importance of peroxynitrite-driven pathways realized in macrophages via the engagement of NADPH oxidase- and NO synthase-triggered oxidative mechanisms. We consider possible involvement of oxidative machinery of other professional phagocytes such as microglial cells, myeloid-derived suppressor cells, in the context of biodegradation relevant to targeted drug delivery. We evaluate the importance of genetic factors and their manipulations for the enzymatic biodegradation in vivo. Finally, we emphasize a novel type of biodegradation realized via the activation of the "dormant" peroxidase activity of hemoproteins by the nano-surface. This is exemplified by the binding of GO to cyt c causing the unfolding and 'unmasking' of the peroxidase activity of the latter. We conclude with the strategies leading to safe by design carbonaceous nanoparticles with optimized characteristics for mechanism-based targeted delivery and regulatable life-span of drugs in circulation.
Collapse
Affiliation(s)
- Irina I Vlasova
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States; Research Institute for Physico-Chemical Medicine, Federal Medico-Biological Agency, Moscow 119453, Russia
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Zachary P Michael
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Seth C Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, United States; Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Anna A Shvedova
- Pathology and Physiology Research Branch, Health Effects Laboratory Division (HELD), National Institute for Occupational Safety and Health (NIOSH) and Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26505, United States.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, Center for Free Radical and Antioxidant Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, United States; Departments of Pharmacology and Chemical Biology and Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
28
|
Tejero J, Kapralov AA, Baumgartner MP, Sparacino-Watkins CE, Anthonymutu TS, Vlasova II, Camacho CJ, Gladwin MT, Bayir H, Kagan VE. Peroxidase activation of cytoglobin by anionic phospholipids: Mechanisms and consequences. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:391-401. [PMID: 26928591 PMCID: PMC4821708 DOI: 10.1016/j.bbalip.2016.02.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/02/2016] [Accepted: 02/24/2016] [Indexed: 10/22/2022]
Abstract
Cytoglobin (Cygb) is a hexa-coordinated hemoprotein with yet to be defined physiological functions. The iron coordination and spin state of the Cygb heme group are sensitive to oxidation of two cysteine residues (Cys38/Cys83) and/or the binding of free fatty acids. However, the roles of redox vs lipid regulators of Cygb's structural rearrangements in the context of the protein peroxidase competence are not known. Searching for physiologically relevant lipid regulators of Cygb, here we report that anionic phospholipids, particularly phosphatidylinositolphosphates, affect structural organization of the protein and modulate its iron state and peroxidase activity both conjointly and/or independently of cysteine oxidation. Thus, different anionic lipids can operate in cysteine-dependent and cysteine-independent ways as inducers of the peroxidase activity. We establish that Cygb's peroxidase activity can be utilized for the catalysis of peroxidation of anionic phospholipids (including phosphatidylinositolphosphates) yielding mono-oxygenated molecular species. Combined with the computational simulations we propose a bipartite lipid binding model that rationalizes the modes of interactions with phospholipids, the effects on structural re-arrangements and the peroxidase activity of the hemoprotein.
Collapse
Affiliation(s)
- Jesús Tejero
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Alexandr A Kapralov
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Matthew P Baumgartner
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Courtney E Sparacino-Watkins
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Tamil S Anthonymutu
- Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Irina I Vlasova
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Mark T Gladwin
- Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hülya Bayir
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Center for Free Radical and Antioxidant Health and Center for Medical Countermeasures against Radiation, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Radiation Oncology, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
29
|
Corti P, Ieraci M, Tejero J. Characterization of zebrafish neuroglobin and cytoglobins 1 and 2: Zebrafish cytoglobins provide insights into the transition from six-coordinate to five-coordinate globins. Nitric Oxide 2015; 53:22-34. [PMID: 26721561 DOI: 10.1016/j.niox.2015.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/11/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022]
Abstract
Neuroglobin (Ngb) and cytoglobin (Cygb) are two six-coordinate heme proteins of unknown physiological function. Although studies on the mammalian proteins have elucidated aspects of Ngb and Cygb biophysics and indicated potential functions, the properties of non-mammalian Ngbs and Cygbs are largely uncharacterized. We have expressed the recombinant zebrafish proteins Ngb, Cygb1, and Cygb2 in Escherichia coli and characterized their nitrite reduction rates, spectral properties, autoxidation rate constants, redox potentials and lipid binding properties. The three zebrafish proteins can catalyze the reduction of nitrite to nitric oxide with a broad range of reaction rate constants. (Ngb, 0.68 ± 0.04 M(-1) s(-1); Cygb1, 28.6 ± 3.1 M(-1) s(-1); Cygb2, 0.94 ± 0.18 M(-1) s(-1)). We observe that zebrafish Ngb and Cygb2 have comparable spectral features to those of human Ngb and Cygb, consistent with a six-coordinate heme, whereas unexpectedly Cygb1 has a five-coordinate heme, a slower autoxidation and in general has properties more akin to oxygen transport proteins. In agreement with a possible oxygen carrier and nitrite reductase role, we detect mRNA transcript for Cygb1 but not Cygb2 or Ngb in zebrafish blood. Unlike human Cygb, neither of the zebrafish globins binds oleic acid with high affinity. This finding suggests that lipid binding may be a trait acquired later during evolution and not an ancestral property of cytoglobins. Altogether, our results uncover unexpected properties of zebrafish globins and reveal the pivotal role of cytoglobins in the transition of heme globins from six-coordinate to five-coordinate oxygen carriers and nitrite reductases.
Collapse
Affiliation(s)
- Paola Corti
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Matthew Ieraci
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jesús Tejero
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
30
|
Ferreira JC, Marcondes MF, Icimoto MY, Cardoso THS, Tofanello A, Pessoto FS, Miranda EGA, Prieto T, Nascimento OR, Oliveira V, Nantes IL. Intermediate Tyrosyl Radical and Amyloid Structure in Peroxide-Activated Cytoglobin. PLoS One 2015; 10:e0136554. [PMID: 26312997 PMCID: PMC4552303 DOI: 10.1371/journal.pone.0136554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/04/2015] [Indexed: 11/22/2022] Open
Abstract
We characterized the peroxidase mechanism of recombinant rat brain cytoglobin (Cygb) challenged by hydrogen peroxide, tert-butylhydroperoxide and by cumene hydroperoxide. The peroxidase mechanism of Cygb is similar to that of myoglobin. Cygb challenged by hydrogen peroxide is converted to a Fe4+ oxoferryl π cation, which is converted to Fe4+ oxoferryl and tyrosyl radical detected by direct continuous wave-electron paramagnetic resonance and by 3,5-dibromo-4-nitrosobenzene sulfonate spin trapping. When organic peroxides are used as substrates at initial reaction times, and given an excess of peroxide present, the EPR signals of the corresponding peroxyl radicals precede those of the direct tyrosyl radical. This result is consistent with the use of peroxide as a reducing agent for the recycling of Cygb high-valence species. Furthermore, we found that the Cygb oxidation by peroxides leads to the formation of amyloid fibrils. This result suggests that Cygb possibly participates in the development of degenerative diseases; our findings also support the possible biological role of Cygb related to peroxidase activity.
Collapse
Affiliation(s)
- Juliana C. Ferreira
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo F. Marcondes
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Marcelo Y. Icimoto
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Thyago H. S. Cardoso
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Aryane Tofanello
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Felipe S. Pessoto
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Erica G. A. Miranda
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Tatiana Prieto
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
- Grupo de Biofísica Molecular “Sérgio Mascarenhas,” Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Otaciro R. Nascimento
- Grupo de Biofísica Molecular “Sérgio Mascarenhas,” Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Vitor Oliveira
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Iseli L. Nantes
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
- Laboratório de Nanoestruturas para Biologia e Materiais Avançados, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, Brazil
- * E-mail:
| |
Collapse
|
31
|
Beckerson P, Svistunenko D, Reeder B. Effect of the distal histidine on the peroxidatic activity of monomeric cytoglobin. F1000Res 2015; 4:87. [PMID: 26069730 PMCID: PMC4431388 DOI: 10.12688/f1000research.5971.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 01/29/2023] Open
Abstract
The reaction of hydrogen peroxide with ferric human cytoglobin and a number of distal histidine variants were studied. The peroxidase activity of the monomeric wildtype protein with an internal disulfide bond, likely to be the form of the protein
in vivo, exhibits a high peroxidase-like activity above that of other globins such as myoglobin. Furthermore, the peroxidatic activity of wildtype cytoglobin shows increased resistance to radical-based degradation compared to myoglobin. The ferryl form of wildtype cytoglobin is unstable, but is able to readily oxidize substrates such as guaiacol. In contrast distal histidine mutants of cytoglobin (H81Y and H81V) show very low peroxidase activity but enhanced radical-induced degradation. Therefore, the weakly bound distal histidine appears to modulate ferryl stability and limit haem degradation. These data are consistent with a role of a peroxidase activity of cytoglobin in cell stress response mechanisms.
Collapse
Affiliation(s)
- Penny Beckerson
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Dimitri Svistunenko
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Brandon Reeder
- School of Biological Sciences, University of Essex, Colchester, Essex, CO4 3SQ, UK
| |
Collapse
|
32
|
Zeliger HI, Lipinski B. Physiochemical basis of human degenerative disease. Interdiscip Toxicol 2015; 8:15-21. [PMID: 27486355 PMCID: PMC4961921 DOI: 10.1515/intox-2015-0003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 11/16/2022] Open
Abstract
The onset of human degenerative diseases in humans, including type 2 diabetes, cardiovascular disease, neurological disorders, neurodevelopmental disease and neurodegenerative disease has been shown to be related to exposures to persistent organic pollutants, including polychlorinated biphenyls, chlorinated pesticides, polybrominated diphenyl ethers and others, as well as to polynuclear aromatic hydrocarbons, phthalates, bisphenol-A and other aromatic lipophilic species. The onset of these diseases has also been related to exposures to transition metal ions. A physiochemical mechanism for the onset of degenerative environmental disease dependent upon exposure to a combination of lipophilic aromatic hydrocarbons and transition metal ions is proposed here. The findings reported here also, for the first time, explain why aromatic hydrocarbons exhibit greater toxicity than aliphatic hydrocarbons of equal carbon numbers.
Collapse
Affiliation(s)
| | - Boguslaw Lipinski
- Harvard Medical School, Joslin Diabetes Center, Boston, Massachusetts, USA
| |
Collapse
|
33
|
Beckerson P, Reeder BJ, Wilson MT. Coupling of disulfide bond and distal histidine dissociation in human ferrous cytoglobin regulates ligand binding. FEBS Lett 2015; 589:507-12. [DOI: 10.1016/j.febslet.2015.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/08/2015] [Accepted: 01/10/2015] [Indexed: 10/24/2022]
|