1
|
Al-Noshokaty TM, Abdelhamid R, Reda T, Alaaeldien A, Abdellatif N, Mansour A, Gendi D, Abdelmaksoud NM, Elshaer SS, Doghish AS, Sobhy MH, Mohammed OA, Abulsoud AI. Exploring the clinical potential of circulating LncRNAs in breast cancer: insights into primary signaling pathways and therapeutic interventions. Funct Integr Genomics 2024; 24:209. [PMID: 39508907 DOI: 10.1007/s10142-024-01476-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 11/15/2024]
Abstract
Breast cancer (BC) occupies the top spot among women on a global scale. The tumor has a significant degree of heterogeneity, displaying a notable prevalence of medication resistance, recurrence, and metastasis, rendering it one of the most lethal forms of malignant neoplasms. The timely identification, ongoing evaluation of therapeutic interventions, and accurate prediction of outcomes play crucial roles in determining the overall survival rates of women with BC. Nevertheless, the absence of precise biomarkers remains a significant determinant impacting the overall well-being and both the physical and emotional health of BC patients. Long noncoding RNA (lncRNA) exerts regulatory control over several genes and signaling pathways, hence assuming crucial roles in the development of neoplastic growth. Recently, research has indicated that the atypical expression of circulating lncRNAs in various biological bodily fluids has a noteworthy impact on the early detection, pathological categorization, staging, monitoring of therapy outcomes, and evaluation of prognosis in cases of BC. This article aims to assess the potential clinical utility of circulating lncRNAs in the context of BC focusing on specific primary signaling pathways; Wnt/β-catenin, Notch, TGF-β, and hedgehog (Hh), in addition to some therapeutic interventions.
Collapse
Affiliation(s)
- Tohada M Al-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Tasnim Reda
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Ayat Alaaeldien
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan Abdellatif
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Abdallah Mansour
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - David Gendi
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Nourhan M Abdelmaksoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, 11823, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr, Cairo, 11829, Egypt.
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt.
| | - Mohamed Hossam Sobhy
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Ahmed I Abulsoud
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo, 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| |
Collapse
|
2
|
Alshammari QA, Alshammari SO, Alshammari A, Alfarhan M, Baali FH. Unraveling the mechanisms of glioblastoma’s resistance: investigating the influence of tumor suppressor p53 and non-coding RNAs. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024. [DOI: 10.1007/s00210-024-03564-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/22/2024] [Indexed: 01/04/2025]
|
3
|
Iliadis S, Papanikolaou NA. Reactive Oxygen Species Mechanisms that Regulate Protein-Protein Interactions in Cancer. Int J Mol Sci 2024; 25:9255. [PMID: 39273204 PMCID: PMC11395503 DOI: 10.3390/ijms25179255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Reactive oxygen species (ROS) are produced during cellular metabolism and in response to environmental stress. While low levels of ROS play essential physiological roles, excess ROS can damage cellular components, leading to cell death or transformation. ROS can also regulate protein interactions in cancer cells, thereby affecting processes such as cell growth, migration, and angiogenesis. Dysregulated interactions occur via various mechanisms, including amino acid modifications, conformational changes, and alterations in complex stability. Understanding ROS-mediated changes in protein interactions is crucial for targeted cancer therapies. In this review, we examine the role that ROS mechanisms in regulating pathways through protein-protein interactions.
Collapse
Affiliation(s)
- Stavros Iliadis
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| | - Nikolaos A Papanikolaou
- Laboratory of Biological Chemistry, Department of Medicine, Section of Biological Sciences and Preventive Medicine, Aristotle University of Thessaloniki School of Medicine, 54124 Thessaloniki, Macedonia, Greece
| |
Collapse
|
4
|
Duranti E, Villa C. Insights into Dysregulated Neurological Biomarkers in Cancer. Cancers (Basel) 2024; 16:2680. [PMID: 39123408 PMCID: PMC11312413 DOI: 10.3390/cancers16152680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The link between neurodegenerative diseases (NDs) and cancer has generated greater interest in biomedical research, with decades of global studies investigating neurodegenerative biomarkers in cancer to better understand possible connections. Tau, amyloid-β, α-synuclein, SOD1, TDP-43, and other proteins associated with nervous system diseases have also been identified in various types of solid and malignant tumors, suggesting a potential overlap in pathological processes. In this review, we aim to provide an overview of current evidence on the role of these proteins in cancer, specifically examining their effects on cell proliferation, apoptosis, chemoresistance, and tumor progression. Additionally, we discuss the diagnostic and therapeutic implications of this interconnection, emphasizing the importance of further research to completely comprehend the clinical implications of these proteins in tumors. Finally, we explore the challenges and opportunities in targeting these proteins for the development of new targeted anticancer therapies, providing insight into how to integrate knowledge of NDs in oncology research.
Collapse
Affiliation(s)
| | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| |
Collapse
|
5
|
Zhang Z, Lv ZG, Lu M, Li H, Zhou J. Nerve-tumor crosstalk in tumor microenvironment: From tumor initiation and progression to clinical implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189121. [PMID: 38796026 DOI: 10.1016/j.bbcan.2024.189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/25/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
The autonomic nerve system (ANS) innervates organs and tissues throughout the body and maintains functional balance among various systems. Further investigations have shown that excessive activation of ANS not only causes disruption of homeostasis, but also may promote tumor formation. In addition, the dynamic interaction between nerve and tumor cells in the tumor microenvironment also regulate tumor progression. On the one hand, nerves are passively invaded by tumor cells, that is, perineural invasion (PNI). On the other hand, compared with normal tissues, tumor tissues are subject to more abundant innervation, and nerves can influence tumor progression through regulating tumor proliferation, metastasis and drug resistance. A large number of studies have shown that nerve-tumor crosstalk, including PNI and innervation, is closely related to the prognosis of patients, and contributes to the formation of cancer pain, which significantly deteriorates the quality of life for patients. These findings suggest that nerve-tumor crosstalk represents a potential target for anti-tumor therapies and the management of cancer pain in the future. In this review, we systematically describe the mechanism by which nerve-tumor crosstalk regulates tumorigenesis and progression.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Surgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Zhen Gang Lv
- Department of Surgery, School of Medicine, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Miao Lu
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Haifeng Li
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Jiahua Zhou
- Department of Hepato-Pancreatico-Biliary Surgery, Zhongda Hospital Southeast University, Nanjing 210009, Jiangsu Province, China.
| |
Collapse
|
6
|
Vessella T, Xiang S, Xiao C, Stilwell M, Fok J, Shohet J, Rozen E, Zhou HS, Wen Q. DDR2 signaling and mechanosensing orchestrate neuroblastoma cell fate through different transcriptome mechanisms. FEBS Open Bio 2024; 14:867-882. [PMID: 38538106 PMCID: PMC11073507 DOI: 10.1002/2211-5463.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/24/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
The extracellular matrix (ECM) regulates carcinogenesis by interacting with cancer cells via cell surface receptors. Discoidin Domain Receptor 2 (DDR2) is a collagen-activated receptor implicated in cell survival, growth, and differentiation. Dysregulated DDR2 expression has been identified in various cancer types, making it as a promising therapeutic target. Additionally, cancer cells exhibit mechanosensing abilities, detecting changes in ECM stiffness, which is particularly important for carcinogenesis given the observed ECM stiffening in numerous cancer types. Despite these, whether collagen-activated DDR2 signaling and ECM stiffness-induced mechanosensing exert similar effects on cancer cell behavior and whether they operate through analogous mechanisms remain elusive. To address these questions, we performed bulk RNA sequencing (RNA-seq) on human SH-SY5Y neuroblastoma cells cultured on collagen-coated substrates. Our results show that DDR2 downregulation induces significant changes in the cell transcriptome, with changes in expression of 15% of the genome, specifically affecting the genes associated with cell division and differentiation. We validated the RNA-seq results by showing that DDR2 knockdown redirects the cell fate from proliferation to senescence. Like DDR2 knockdown, increasing substrate stiffness diminishes cell proliferation. Surprisingly, RNA-seq indicates that substrate stiffness has no detectable effect on the transcriptome. Furthermore, DDR2 knockdown influences cellular responses to substrate stiffness changes, highlighting a crosstalk between these two ECM-induced signaling pathways. Based on our results, we propose that the ECM could activate DDR2 signaling and mechanosensing in cancer cells to orchestrate their cell fate through distinct mechanisms, with or without involving gene expression, thus providing novel mechanistic insights into cancer progression.
Collapse
Affiliation(s)
- Theadora Vessella
- Department of Chemical EngineeringWorcester Polytechnic InstituteMAUSA
| | | | - Cong Xiao
- Nash Family Department of Neuroscience, Friedman Brain InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
- Black Family Stem Cell InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Madelyn Stilwell
- Department of Biomedical EngineeringWichita State UniversityKSUSA
| | - Jaidyn Fok
- Department of NeurobiologyUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Jason Shohet
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Esteban Rozen
- Department of PediatricsUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Crnic Institute Boulder Branch, BioFrontiers InstituteUniversity of Colorado BoulderCOUSA
| | - H. Susan Zhou
- Department of Chemical EngineeringWorcester Polytechnic InstituteMAUSA
| | - Qi Wen
- Department of PhysicsWorcester Polytechnic InstituteMAUSA
| |
Collapse
|
7
|
K AR, Arumugam S, Muninathan N, Baskar K, S D, D DR. P53 Gene as a Promising Biomarker and Potential Target for the Early Diagnosis of Reproductive Cancers. Cureus 2024; 16:e60125. [PMID: 38864057 PMCID: PMC11165294 DOI: 10.7759/cureus.60125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024] Open
Abstract
One of the crucial aspects of cancer research is diagnosis with specificity and accuracy. Early cancer detection mostly helps make appropriate decisions regarding treatment and metastasis. The well-studied transcription factor tumor suppressor protein p53 is essential for maintaining genetic integrity. p53 is a key tumor suppressor that recognizes the carcinogenic biological pathways and eradicates them by apoptosis. A wide range of carcinomas, especially gynecological such as ovarian, cervical, and endometrial cancers, frequently undergo TP53 gene mutations. This study evaluates the potential of the p53 gene as a biological marker for the diagnosis of reproductive system neoplasms. Immunohistochemistry of p53 is rapid, easy to accomplish, cost-effective, and preferred by pathologists as a surrogate for the analysis of TP53 mutation. Thus, this review lays a groundwork for future efforts to develop techniques using p53 for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Aswathi R K
- Medical Biochemistry, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Suresh Arumugam
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Natrajan Muninathan
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Kuppusamy Baskar
- Central Research Laboratory, Meenakshi Medical College Hospital and Research Institute, Kanchipuram, IND
| | - Deepthi S
- Research and Development, Meenakshi Academy of Higher Education and Research, Chennai, IND
| | - Dinesh Roy D
- Centre for Advanced Genetic Studies, Genetika, Thiruvananthapuram, IND
| |
Collapse
|
8
|
Khan R, Pari B, Puszynski K. Comprehensive Bioinformatic Investigation of TP53 Dysregulation in Diverse Cancer Landscapes. Genes (Basel) 2024; 15:577. [PMID: 38790205 PMCID: PMC11121236 DOI: 10.3390/genes15050577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
P53 overexpression plays a critical role in cancer pathogenesis by disrupting the intricate regulation of cellular proliferation. Despite its firmly established function as a tumor suppressor, elevated p53 levels can paradoxically contribute to tumorigenesis, influenced by factors such as exposure to carcinogens, genetic mutations, and viral infections. This phenomenon is observed across a spectrum of cancer types, including bladder (BLCA), ovarian (OV), cervical (CESC), cholangiocarcinoma (CHOL), colon adenocarcinoma (COAD), diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney chromophobe (KICH), kidney renal clear cell carcinoma (KIRC), liver hepatocellular carcinoma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), and uterine corpus endometrial carcinoma (UCEC). This broad spectrum of cancers is often associated with increased aggressiveness and recurrence risk. Effective therapeutic strategies targeting tumors with p53 overexpression require a comprehensive approach, integrating targeted interventions aimed at the p53 gene with conventional modalities such as chemotherapy, radiation therapy, and targeted drugs. In this extensive study, we present a detailed analysis shedding light on the multifaceted role of TP53 across various cancers, with a specific emphasis on its impact on disease-free survival (DFS). Leveraging data from the TCGA database and the GTEx dataset, along with GEPIA, UALCAN, and STRING, we identify TP53 overexpression as a significant prognostic indicator, notably pronounced in prostate adenocarcinoma (PRAD). Supported by compelling statistical significance (p < 0.05), our analysis reveals the distinct influence of TP53 overexpression on DFS outcomes in PRAD. Additionally, graphical representations of overall survival (OS) underscore the notable disparity in OS duration between tumors exhibiting elevated TP53 expression (depicted by the red line) and those with lower TP53 levels (indicated by the blue line). The hazard ratio (HR) further emphasizes the profound impact of TP53 on overall survival. Moreover, our investigation delves into the intricate TP53 protein network, unveiling genes exhibiting robust positive correlations with TP53 expression across 13 out of 27 cancers. Remarkably, negative correlations emerge with pivotal tumor suppressor genes. This network analysis elucidates critical proteins, including SIRT1, CBP, p300, ATM, DAXX, HSP 90-alpha, Mdm2, RPA70, 14-3-3 protein sigma, p53, and ASPP2, pivotal in regulating cell cycle dynamics, DNA damage response, and transcriptional regulation. Our study underscores the paramount importance of deciphering TP53 dynamics in cancer, providing invaluable insights into tumor behavior, disease-free survival, and potential therapeutic avenues.
Collapse
Affiliation(s)
- Ruby Khan
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Bakht Pari
- Principal, Nursing School, Lady Reading Hospital Peshawar, Peshawar 25000, Pakistan;
| | - Krzysztof Puszynski
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
9
|
Shreeya T, Ansari MS, Kumar P, Saifi M, Shati AA, Alfaifi MY, Elbehairi SEI. Senescence: A DNA damage response and its role in aging and Neurodegenerative Diseases. FRONTIERS IN AGING 2024; 4:1292053. [PMID: 38596783 PMCID: PMC11002673 DOI: 10.3389/fragi.2023.1292053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024]
Abstract
Senescence is a complicated, multi-factorial, irreversible cell cycle halt that has a tumor-suppressing effect in addition to being a significant factor in aging and neurological diseases. Damaged DNA, neuroinflammation, oxidative stress and disrupted proteostasis are a few of the factors that cause senescence. Senescence is triggered by DNA damage which initiates DNA damage response. The DNA damage response, which includes the formation of DNA damage foci containing activated H2AX, which is a key factor in cellular senescence, is provoked by a double strand DNA break. Oxidative stress impairs cognition, inhibits neurogenesis, and has an accelerated aging effect. Senescent cells generate pro-inflammatory mediators known as senescence-associated secretory phenotype (SASP). These pro-inflammatory cytokines and chemokines have an impact on neuroinflammation, neuronal death, and cell proliferation. While it is tempting to think of neurodegenerative diseases as manifestations of accelerated aging and senescence, this review will present information on brain ageing and neurodegeneration as a result of senescence and DNA damage response.
Collapse
Affiliation(s)
- Tejal Shreeya
- Institute of Biophysics, Biological Research Center, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Mohd Saifullah Ansari
- Institute of Genetics, Biological Research Center, Szeged, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Prabhat Kumar
- Institute of Physiology, Medical School, University of Pécs, Pécs, Hungary
- Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | | | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
10
|
Ma YQ, Zhang M, Sun ZH, Tang HY, Wang Y, Liu JX, Zhang ZX, Wang C. Identification of anti-gastric cancer effects and molecular mechanisms of resveratrol: From network pharmacology and bioinformatics to experimental validation. World J Gastrointest Oncol 2024; 16:493-513. [PMID: 38425392 PMCID: PMC10900166 DOI: 10.4251/wjgo.v16.i2.493] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most aggressive malignancies with limited therapeutic options and a poor prognosis. Resveratrol, a non-flavonoid polyphenolic compound found in a variety of Chinese medicinal materials, has shown excellent anti-GC effect. However, its exact mechanisms of action in GC have not been clarified. AIM To identify the effects of resveratrol on GC progression and explore the related molecular mechanisms. METHODS Action targets of resveratrol and GC-related targets were screened from public databases. The overlapping targets between the two were confirmed using a Venn diagram, and a "Resveratrol-Target-GC" network was constructed using Cytoscape software version 3.9.1. The protein-protein interaction (PPI) network was constructed using STRING database and core targets were identified by PPI network analysis. The Database for Annotation, Visualization and Integrated Discovery database was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. A "Target-Pathway" network was created by using Cytoscape 3.9.1. The RNA and protein expression levels of core target genes were observed using the Cancer Genome Atlas and the Human Protein Atlas databases. DriverDBv3 and Timer2.0 databases were used for survival and immune infiltration analysis. Subsequently, the findings were further verified by molecular docking technology and in vitro experiments. RESULTS A total of 378 resveratrol action targets and 2154 GC disease targets were obtained from public databases, and 181 intersection targets between the two were screened by Venn diagram. The top 20 core targets were identified by PPI network analysis of the overlapping targets. GO function analysis mainly involved protein binding, identical protein binding, cytoplasm, nucleus, negative regulation of apoptotic process and response to xenobiotic stimulus. KEGG enrichment analysis suggested that the involved signaling pathways mainly included PI3K-AKT signaling pathway, MAPK signaling pathway, IL-17 signaling pathway, TNF signaling pathway, ErbB signaling pathway, etc. FBJ murine osteosarcoma viral oncogene homolog (FOS) and matrix metallopeptidase 9 (MMP9) were selected by differential expression analysis, and they were closely associated with immune infiltration. Molecular docking results showed that resveratrol docked well with these two targets. Resveratrol treatment arrested the cell cycle at the S phase, induced apoptosis, and weakened viability, migration and invasion in a dose-dependent manner. Furthermore, resveratrol could exhibit anti-GC effect by regulating FOS and MMP9 expression. CONCLUSION The anti-GC effects of resveratrol are related to the inhibition of cell proliferation, migration, invasion and induction of cell cycle arrest and apoptosis by targeting FOS and MMP9.
Collapse
Affiliation(s)
- Ying-Qian Ma
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Ming Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Zhen-Hua Sun
- Department of Oncology, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Hong-Yue Tang
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| | - Ying Wang
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Jiang-Xue Liu
- School of Graduate Studies, Hebei Medical University, Shijiazhuang 050017, Hebei Province, China
| | - Zhan-Xue Zhang
- Department of Gastrointestinal Surgery, Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Chao Wang
- Clinical Medical Research Center, Hebei General Hospital, Shijiazhuang 050051, Hebei Province, China
| |
Collapse
|
11
|
Fauteux M, Côté N, Bergeron S, Maréchal A, Gaudreau L. Differential effects of pesticides on dioxin receptor signaling and p53 activation. Sci Rep 2023; 13:21211. [PMID: 38040841 PMCID: PMC10692357 DOI: 10.1038/s41598-023-48555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
As modern agricultural practices increase their use of chemical pesticides, it is inevitable that we will find a number of these xenobiotics within drinking water supplies and disseminated throughout the food chain. A major problem that arises from this pollution is that the effects of most of these pesticides on cellular mechanisms in general, and how they interact with each other and affect human cells are still poorly understood. In this study we make use of cultured human cancer cells to measure by qRT-PCR how pesticides affect gene expression of stress pathways. Immunoblotting studies were performed to monitor protein expression levels and activation of signaling pathways. We make use of immunofluorescence and microscopy to visualize and quantify DNA damage events in those cells. In the current study, we evaluate the potential of a subset of widely used pesticides to activate the dioxin receptor pathway and affect its crosstalk with estrogen receptor signaling. We quantify the impact of these chemicals on the p53-dependent cellular stress response. We find that, not only can the different pesticides activate the dioxin receptor pathway, most of them have better than additive effects on this pathway when combined at low doses. We also show that different pesticides have the ability to trigger crosstalk events that may generate genotoxic estrogen metabolites. Finally, we show that some, but not all of the tested pesticides can induce a p53-dependent stress response. Taken together our results provide evidence that several xenobiotics found within the environment have the potential to interact together to elicit significant effects on cell systems. Our data warrants caution when the toxicity of substances that are assessed simply for individual chemicals, since important biological effects could be observed only in the presence of other compounds, and that even at very low concentrations.
Collapse
Affiliation(s)
- Myriam Fauteux
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Nadia Côté
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sandra Bergeron
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Luc Gaudreau
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
12
|
Chen Q, Sun M, Cheng H, Qi J, Tan J, Gu Y, Yu T, Li M, Xu H, He Y, Wen W. Inorganic arsenic-mediated upregulation of TUG1 promotes apoptosis in human bronchial epithelial cells by activating the p53 signaling pathway. Toxicol Ind Health 2023; 39:700-711. [PMID: 37864286 DOI: 10.1177/07482337231209349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Exposure to arsenic, an environmental contaminant, is known to cause arsenicosis and cancer. Although considerable research has been conducted to understand the underlying mechanism responsible for arsenic-induced cancers, the precise molecular mechanisms remain unknown, especially at the epigenetic regulation level. Long non-coding RNAs (LncRNAs) that have been shown to mediate various biological processes, including proliferation, apoptosis, necrosis, and mutagenesis. There are few studies on LncRNAs and biological damage caused by environmental pollutants. The LncRNAs taurine upregulated gene 1 (TUG1) regulates cell growth both in vitro and in vivo, and contributes its oncogenic role. However, the precise roles and related mechanisms of arsenic-induced cell apoptosis are still not fully understood owing to controversial findings in the literature. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed higher expression levels of TUG1 in people occupationally exposed to arsenic than in individuals living away from the source of arsenic exosure (N = 25). In addition, the results suggested that TUG1 was involved in arsenic-induced apoptosis. Furthermore, knockdown experiments showed that silencing of TUG1 markedly inhibited proliferation, whereas depletion of TUG1 led to increased apoptosis. The TUG1-small interfering RNA (siRNA) combination with arsenic (3 μM/L) slightly increased apoptosis compared with the TUG1-siRNA. Additionally, the knockdown experiments showed that the silencing of TUG1 by siRNA inhibited proliferation and promoted apoptosis by inducing p53, p-p53 (ser392), FAS, BCL2, MDM2, cleaved-caspase7 proteins in 16HBE cells. These results indicated that arsenic mediates the upregulation of TUG1 and induces cell apoptosis via activating the p53 signaling pathway.
Collapse
Affiliation(s)
- Qian Chen
- School of Public Health, Dali University, Dali, China
| | - Mingjun Sun
- Southeast University, Nanjing, China
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Huirong Cheng
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Jun Qi
- Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yun Gu
- School of Public Health, Dali University, Dali, China
| | - Tianle Yu
- Weihai Central Hospital, Weihai, China
| | - Ming Li
- Haida Hospital, Weihai, China
| | - Hao Xu
- Tibet Kangcheng Cancer Hospital, Tibet, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weihua Wen
- Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
13
|
Al-Gazally ME, Khan R, Imran M, Ramírez-Coronel AA, Alshahrani SH, Altalbawy FMA, Turki Jalil A, Romero-Parra RM, Zabibah RS, Shahid Iqbal M, Karampoor S, Mirzaei R. The role and mechanism of action of microRNA-122 in cancer: Focusing on the liver. Int Immunopharmacol 2023; 123:110713. [PMID: 37523968 DOI: 10.1016/j.intimp.2023.110713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/08/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
microRNA-122 (miR-122) is a highly conserved microRNA that is predominantly expressed in the liver and plays a critical role in the regulation of liver metabolism. Recent studies have shown that miR-122 is involved in the pathogenesis of various types of cancer, particularly liver cancer. In this sense, The current findings highlighted the potential role of miR-122 in regulating many vital processes in cancer pathophysiology, including apoptosis, signaling pathway, cell metabolism, immune system response, migration, and invasion. These results imply that miR-122, which has been extensively studied for its biological functions and potential therapeutic applications, acts as a tumor suppressor or oncogene in cancer development. We first provide an overview and summary of the physiological function and mode of action of miR-122 in liver cancer. We will examine the various signaling pathways and molecular mechanisms through which miR-122 exerts its effects on cancer cells, including the regulation of oncogenic and tumor suppressor genes, the modulation of cell proliferation and apoptosis, and the regulation of metastasis. Most importantly, we will also discuss the potential diagnostic and therapeutic applications of miR-122 in cancer, including the development of miRNA-based biomarkers for cancer diagnosis and prognosis, and the potential use of miR-122 as a therapeutic target for cancer treatment.
Collapse
Affiliation(s)
| | - Ramsha Khan
- MBBS, Nawaz Sharif Medical College, Gujrat, Pakistan
| | - Muhammad Imran
- MBBS, Multan Medical and Dental College, Multan, Pakistan
| | | | | | - Farag M A Altalbawy
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza 12613, Egypt; Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla 51001, Iraq
| | | | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam bin Abdulaziz University, 11942 Alkharj, Saudi Arabia
| | - Sajad Karampoor
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Yang FF, Xu XL, Hu T, Liu JQ, Zhou JZ, Ma LY, Liu HM. Lysine-Specific Demethylase 1 Promises to Be a Novel Target in Cancer Drug Resistance: Therapeutic Implications. J Med Chem 2023; 66:4275-4293. [PMID: 37014989 DOI: 10.1021/acs.jmedchem.2c01527] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Chemotherapy, targeted therapy, and immunotherapy are effective against most tumors, but drug resistance remains a barrier to successful treatment. Lysine-specific demethylase 1 (LSD1), a member of histone demethylation modifications, can regulate invasion, metastasis, apoptosis, and immune escape of tumor cells, which are associated with tumorigenesis and tumor progression. Recent studies suggest that LSD1 ablation regulates resensitivity of tumor cells to anticarcinogens containing immune checkpoint inhibitors (ICIs) via multiple upstream and downstream pathways. In this review, we describe the recent findings about LSD1 biology and its role in the development and progression of cancer drug resistance. Further, we summarize LSD1 inhibitors that have a reversal or resensitive effect on drug resistance and discuss the possibility of targeting LSD1 in combination with other agents to surmount resistance.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xue-Li Xu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin-Zhu Zhou
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
- Key Laboratory of Cardio-Cerebrovascular Drug, China Meheco Topfond Pharmaceutical Company, Zhumadian 463000, China
| | - Hong-Min Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
15
|
Sun M, Cheng H, Yu T, Tan J, Li M, Chen Q, Gu Y, Jiang C, Li S, He Y, Wen W. Involvement of a AS3MT/c-Fos/p53 signaling axis in arsenic-induced tumor in human lung cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:615-627. [PMID: 36399430 DOI: 10.1002/tox.23708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Arsenite methyltransferase (AS3MT) is an enzyme that catalyzes the dimethylation of arsenite (+3 oxidation state). At present, the studies on arsenic carcinogenicity mainly focus on studying the polymorphisms of AS3MT and measuring their catalytic activities. We recently showed that AS3MT was overexpressed in lung cancer patients who had not been exposed to arsenic. However, little is known about the molecular mechanisms of AS3MT in arsenite-induced tumorigenesis. In this study, we showed that AS3MT protein expression was higher in the arsenic-exposed population compared to the unexposed population. AS3MT was also overexpressed in human lung adenocarcinoma (A549) and human bronchial epithelial (16HBE) cells exposed to arsenic (A549: 20-60 μmol/L; 16HBE: 2-6 μmol/L) for 48 h. Furthermore, we investigated the effects of AS3MT on cell proliferation and apoptosis using siRNA. The downregulation of AS3MT inhibited the proliferation and promoted the apoptosis of cells. Mechanistically, AS3MT was found to specifically bind to c-Fos, thereby inhibiting the binding of c-Fos to c-Jun. Additionally, the siRNA-mediated knockdown of AS3MT enhanced the phosphorylation of Ser392 in p53 by upregulating p38 MAPK expression. This led to the activation of p53 signaling and the upregulated expression of downstream targets, such as p21, Fas, PUMA, and Bax. Together, these studies revealed that the inorganic arsenic-mediated upregulation of AS3MT expression directly affected the proliferation and apoptosis of cells, leading to arsenic-induced toxicity or carcinogenicity.
Collapse
Affiliation(s)
- Mingjun Sun
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Huirong Cheng
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Tianle Yu
- Cardiovascular medicine, Weihai Central Hospital, Weihai, China
| | - Jingwen Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - Ming Li
- Elderly Health Management Center, Haida Hospital, Weihai, China
| | - Qian Chen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Yun Gu
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
- School of Public Health, Dali University, Dali, China
| | - Chenglan Jiang
- School of Public Health, Kunming Medical University, Kunming, China
| | - Shuting Li
- School of Public Health, Kunming Medical University, Kunming, China
| | - Yuefeng He
- School of Public Health, Kunming Medical University, Kunming, China
| | - Weihua Wen
- Occupational Health and Launch Health Institute, Yunnan Center for Disease Control and Prevention, Kunming, China
| |
Collapse
|
16
|
Huang Y, Liang L, Zhao YX, Yao BH, Zhang RM, Song L, Zhang ZT. RUNX2 Reverses p53-Induced Chemotherapy Resistance in Gastric Cancer. Pharmgenomics Pers Med 2023; 16:253-261. [PMID: 37009416 PMCID: PMC10065424 DOI: 10.2147/pgpm.s394393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/25/2023] [Indexed: 03/29/2023] Open
Abstract
Objective Gastric cancer is one of the most common malignancies worldwide; however, its overall mortality has not improved significantly over the last decade. Chemoresistance plays a critical role in this issue. This study aimed to clarify the role and mechanism of runt-related transcription factor 2 (RUNX2) in platinum-based chemotherapy resistance. Methods First, a drug-resistant model of gastric cancer cells was established to evaluate the relative expression level of the RUNX2 as a potential biomarker of chemotherapy resistance. Next, exogenous silencing was conducted to study whether RUNX2 could reverse drug resistance and understand the underlying mechanisms. Simultaneously, the correlation between the clinical outcomes of 40 patients after chemotherapy and the RUNX2 expression levels in tumor samples was analyzed. Results We discovered that RUNX2 was significantly expressed in drug-resistant gastric cancer cells and tissues; it was also reversibly resistant to transformation treatment by exogenous RUNX2 silencing. It is confirmed that RUNX2 negatively regulates the apoptosis pathway of the p53 to reduce the chemotherapeutic effects of gastric cancer. Conclusion RUNX2 is a possible target for platinum-based chemotherapy resistance.
Collapse
Affiliation(s)
- Yuan Huang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
| | - Lu Liang
- Department of General Surgery, Baotou Central Hospital, Baotou, 014000, People’s Republic of Chin
| | - Yong-Xiang Zhao
- Department of Pediatrics and Urology Surgery, Baotou No.4 Hospital, Baotou, 014000, People’s Republic of China
| | - Bi-Hui Yao
- Department of General Surgery, Baotou Central Hospital, Baotou, 014000, People’s Republic of Chin
| | - Rui-Min Zhang
- Department of Pediatrics and Urology Surgery, Baotou No.4 Hospital, Baotou, 014000, People’s Republic of China
| | - Lei Song
- Department of General Surgery, Baotou Central Hospital, Baotou, 014000, People’s Republic of Chin
| | - Zhong-Tao Zhang
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, People’s Republic of China
- Correspondence: Zhong-Tao Zhang, Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, Xicheng District, Beijing, 100050, People’s Republic of China, Tel +8613801060364, Email
| |
Collapse
|
17
|
Ramesh V, Suwanmajo T, Krishnan J. Network regulation meets substrate modification chemistry. J R Soc Interface 2023; 20:20220510. [PMID: 36722169 PMCID: PMC9890324 DOI: 10.1098/rsif.2022.0510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/16/2022] [Indexed: 02/02/2023] Open
Abstract
Biochemical networks are at the heart of cellular information processing. These networks contain distinct facets: (i) processing of information from the environment via cascades/pathways along with network regulation and (ii) modification of substrates in different ways, to confer protein functionality, stability and processing. While many studies focus on these factors individually, how they interact and the consequences for cellular systems behaviour are poorly understood. We develop a systems framework for this purpose by examining the interplay of network regulation (canonical feedback and feed-forward circuits) and multisite modification, as an exemplar of substrate modification. Using computational, analytical and semi-analytical approaches, we reveal distinct and unexpected ways in which the substrate modification and network levels combine and the emergent behaviour arising therefrom. This has important consequences for dissecting the behaviour of specific signalling networks, tracing the origins of systems behaviour, inference of networks from data, robustness/evolvability and multi-level engineering of biomolecular networks. Overall, we repeatedly demonstrate how focusing on only one level (say network regulation) can lead to profoundly misleading conclusions about all these aspects, and reveal a number of important consequences for experimental/theoretical/data-driven interrogations of cellular signalling systems.
Collapse
Affiliation(s)
- Vaidhiswaran Ramesh
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thapanar Suwanmajo
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - J. Krishnan
- Department of Chemical Engineering, Sargent Centre for Process Systems Engineering, Imperial College London, London SW7 2AZ, UK
- Institute for Systems and Synthetic Biology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
18
|
Xiong Y, Wang L, Xu S, Fu B, Che Y, Zaky MY, Tian R, Yao R, Guo D, Sha Z, Lin F, Lin X, Wu H. Small molecule Z363 co-regulates TAF10 and MYC via the E3 ligase TRIP12 to suppress tumour growth. Clin Transl Med 2023; 13:e1153. [PMID: 36639831 PMCID: PMC9839843 DOI: 10.1002/ctm2.1153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 08/12/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The MYC oncoprotein, also known as the master regulator of genes, is a transcription factor that regulates numerous physiological processes, including cell cycle control, apoptosis, protein synthesis and cell adhesion, among others. MYC is overexpressed in approximately 70% of human cancers. Given its pervasive role in cancer biology, MYC down-regulation has become an attractive cancer treatment strategy. METHODS The CRISPR/Cas9 method was used to produce KO cell models. Western blot was used to analyzed the expressions of MYC and TATA-binding proteinassociated factors 10 (TAF10) in cancer cells (MCF7, A549, HepG2 cells) Cell culture studies were performed to determine the mechanisms by which small molecules (Z363119456, Z363) affects MYC and TAF10 expressions and functions. Mouse studies were carried out to investigate the impact of Z363 regulation on tumor growth. RESULTS Z363 activate Thyroid hormone Receptor-interacting Protein 12 (TRIP12), which phosphorylates MYC at Thr58, resulting in MYC ubiquitination and degradation and thereby regulating MYC target genes. Importantly, TRIP12 also induces TAF10 degradation, which reduces MYC protein levels. TRIP12, an E3 ligase, controls MYC levels both directly and indirectly by inhibiting MYC or TAF10 activity. CONCLUSIONS In summary,these results demonstrate the anti-cancer properties of Z363, a small molecule that is co-regulated by TAF10 and MYC.
Collapse
Affiliation(s)
- Yan Xiong
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Lulu Wang
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Shiyao Xu
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Beibei Fu
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Yuchen Che
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Mohamed Y. Zaky
- Molecular Physiology DivisionZoology DepartmentFaculty of ScienceBeni‐Suef UniversityBeni‐SuefEgypt,Department of OncologyFaculty of MedicineLinköping UniversitySweden,Department of Biomedical and Clinical SciencesFaculty of MedicineLinköping UniversitySweden
| | - Rong Tian
- Department of Biomedical and Clinical SciencesFaculty of MedicineLinköping UniversitySweden
| | - Rui Yao
- Department of PathologyChongqing Hygeia HospitalChongqingChina
| | - Dong Guo
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Zhou Sha
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Feng Lin
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Xiaoyuan Lin
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| | - Haibo Wu
- Department of Physiology, School of Life SciencesChongqing UniversityChongqingChina
| |
Collapse
|
19
|
Prime SS, Cirillo N, Parkinson EK. Escape from Cellular Senescence Is Associated with Chromosomal Instability in Oral Pre-Malignancy. BIOLOGY 2023; 12:biology12010103. [PMID: 36671795 PMCID: PMC9855962 DOI: 10.3390/biology12010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
An escape from cellular senescence through the development of unlimited growth potential is one of the hallmarks of cancer, which is thought to be an early event in carcinogenesis. In this review, we propose that the molecular effectors of senescence, particularly the inactivation of TP53 and CDKN2A, together with telomere attrition and telomerase activation, all lead to aneuploidy in the keratinocytes from oral potentially malignant disorders (OPMD). Premalignant keratinocytes, therefore, not only become immortal but also develop genotypic and phenotypic cellular diversity. As a result of these changes, certain clonal cell populations likely gain the capacity to invade the underlying connective tissue. We review the clinical implications of these changes and highlight a new PCR-based assay to identify aneuploid cell in fluids such as saliva, a technique that is extremely sensitive and could facilitate the regular monitoring of OPMD without the need for surgical biopsies and may avoid potential biopsy sampling errors. We also draw attention to recent studies designed to eliminate aneuploid tumour cell populations that, potentially, is a new therapeutic approach to prevent malignant transformations in OPMD.
Collapse
Affiliation(s)
- Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| | - Nicola Cirillo
- Melbourne Dental School, University of Melbourne, 720 Swanson Street, Melbourne, VIC 3053, Australia
| | - E. Kenneth Parkinson
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK
- Correspondence: (S.S.P.); (E.K.P.)
| |
Collapse
|
20
|
Ren X, Liu Y, Zhao Y, Li B, Bai D, Bou G, Zhang X, Du M, Wang X, Bou T, Shen Y, Dugarjaviin M. Analysis of the Whole-Genome Sequences from an Equus Parent-Offspring Trio Provides Insight into the Genomic Incompatibilities in the Hybrid Mule. Genes (Basel) 2022; 13:genes13122188. [PMID: 36553455 PMCID: PMC9778318 DOI: 10.3390/genes13122188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Interspecific hybridization often shows negative effects on hybrids. However, only a few multicellular species, limited to a handful of plants and animals, have shown partial genetic mechanisms by which hybridization leads to low fitness in hybrids. Here, to explore the outcome of combining the two genomes of a horse and donkey, we analyzed the whole-genome sequences from an Equus parent-offspring trio using Illumina platforms. We generated 41.39× and 46.21× coverage sequences for the horse and mule, respectively. For the donkey, a 40.38× coverage sequence was generated and stored in our laboratory. Approximately 24.86 million alleles were discovered that varied from the reference genome. Single nucleotide polymorphisms were used as polymorphic markers for assigning alleles to their parental genomic inheritance. We identified 25,703 Mendelian inheritance error single nucleotide polymorphisms in the mule genome that were not inherited from the parents through Mendelian inheritance. A total of 555 de novo single nucleotide polymorphisms were also identified. The rate of de novo single nucleotide polymorphisms was 2.21 × 10-7 in the mule from the Equus parent-offspring trio. This rate is obviously higher than the natural mutation rate for Equus, which is also consistent with the previous hypothesis that interracial crosses may have a high mutation rate. The genes associated with these single nucleotide polymorphisms are mainly involved in immune processes, DNA repair, and cancer processes. The results of the analysis of three genomes from an Equus parent-offspring trio improved our knowledge of the consequences of the integration of parental genomes in mules.
Collapse
|
21
|
Sparks A, Kelly CJ, Saville MK. Ubiquitin receptors play redundant roles in the proteasomal degradation of the p53 repressor MDM2. FEBS Lett 2022; 596:2746-2767. [PMID: 35735670 PMCID: PMC9796813 DOI: 10.1002/1873-3468.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 01/07/2023]
Abstract
Much remains to be determined about the participation of ubiquitin receptors in proteasomal degradation and their potential as therapeutic targets. Suppression of the ubiquitin receptor S5A/PSMD4/hRpn10 alone stabilises p53/TP53 but not the key p53 repressor MDM2. Here, we observed S5A and the ubiquitin receptors ADRM1/PSMD16/hRpn13 and RAD23A and B functionally overlap in MDM2 degradation. We provide further evidence that degradation of only a subset of ubiquitinated proteins is sensitive to S5A knockdown because ubiquitin receptor redundancy is commonplace. p53 can be upregulated by S5A modulation while degradation of substrates with redundant receptors is maintained. Our observations and analysis of Cancer Dependency Map (DepMap) screens show S5A depletion/loss substantially reduces cancer cell line viability. This and selective S5A dependency of proteasomal substrates make S5A a target of interest for cancer therapy.
Collapse
Affiliation(s)
| | - Christopher J. Kelly
- School of MedicineUniversity of DundeeUK,Institute of Infection, Immunity and InflammationUniversity of GlasgowUK
| | - Mark K. Saville
- School of MedicineUniversity of DundeeUK,Silver River EditingDundeeUK
| |
Collapse
|
22
|
Lee SH, Choi D. Transforming Stimulated Clone 22 (TSC-22) Interacts Directly with Bromodomain-Containing Protein 7 (BRD7) to Enhance the Inhibition of Extracellular Signal-Regulate Kinase (ERK) Pathway in Ovarian Cancer. Dev Reprod 2022; 26:117-126. [PMID: 36285148 PMCID: PMC9578317 DOI: 10.12717/dr.2022.26.3.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/08/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022]
Abstract
Bromodomain-containing protein 7 (BRD7) participates in many cellular processes
and embryo development. BRD7 is down-regulated in various cancers and evidence
of its tumor suppressor function has been accumulating. Here, we identified
transforming stimulated clone 22 (TSC-22) as a novel BRD7 interacting protein
and show its novel function as a positive regulator of BRD7. We found that
TSC-22 expression potentiated the inactivation of the extracellular
signal-regulate kinase (ERK) pathway by BRD7. Our data establishes TSC-22 as a
modulator of BRD7 and unravels the molecular mechanisms that drive the
synergistic tumor-suppressing effects of TSC-22 and BRD7. Our findings may open
new avenues for developing novel molecular therapies for tumors exhibiting
down-regulated BRD7 and/or TSC-22.
Collapse
Affiliation(s)
- Seung-Hoon Lee
- Department of Life Science, YongIn
University, Yongin 17092, Korea,Corresponding author Seung-Hoon
Lee, Department of Life Science, YongIn University, Yongin 17092, Korea. Tel:
+82-31-8020-2780, E-mail:
| | - Donchan Choi
- Department of Life Science, YongIn
University, Yongin 17092, Korea
| |
Collapse
|
23
|
Xiong Y, Xu S, Fu B, Tang W, Zaky MY, Tian R, Yao R, Zhang S, Zhao Q, Nian W, Lin X, Wu H. Vitamin C-induced competitive binding of HIF-1α and p53 to ubiquitin E3 ligase CBL contributes to anti-breast cancer progression through p53 deacetylation. Food Chem Toxicol 2022; 168:113321. [PMID: 35931247 DOI: 10.1016/j.fct.2022.113321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 10/16/2022]
Abstract
Vitamin C (VC), in regard to its effectiveness against tumors, has had a controversial history in cancer treatment. However, the anticancer mechanisms of VC are not fully understood. Here, we reported that VC exerted an anticancer effect on cancer cell and xenograft models via inhibiting HIF-1α-dependent cell proliferation and promoting p53-dependent cell apoptosis. To be specific, VC modulated the competitive binding of HIF-1α and p53 to their common E3 ubiquitin ligase CBL, thereby inhibiting tumorigenesis. Moreover, VC treatment activated SIRT1, resulting in p53 deacetylation and CBL-p53 complex dissociation, which in turn facilitated CBL recruitment of HIF-1α for ubiquitination in a proteasome-dependent manner. Altogether, our results provided a mechanistic rationale for exploring the therapeutic use of VC in cancer therapy.
Collapse
Affiliation(s)
- Yan Xiong
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shiyao Xu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Beibei Fu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Wanyan Tang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Mohamed Y Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rong Tian
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Rui Yao
- Department of Pathology, Chongqing Hygeia Hospital, Chongqing, 401331, China
| | - Shanfu Zhang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Qingting Zhao
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Weiqi Nian
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Xiaoyuan Lin
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| | - Haibo Wu
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
24
|
Sivaperumal P, Sekaran S, Kamala K, Ganapathy D. Marine bioactive compounds as potential therapeutic inhibitor for oral squamous cell carcinoma (OSCC). Oral Oncol 2022; 131:105971. [PMID: 35716647 DOI: 10.1016/j.oraloncology.2022.105971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Pitchiah Sivaperumal
- Marine Biomedical Research Lab & Environmental Toxicology Unit, Cellular and Molecular Research Centre, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India.
| | - Saravanan Sekaran
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Kannan Kamala
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Dhanraj Ganapathy
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
25
|
Zong C, Yang M, Guo X, Ji W. Chronic restraint stress promotes gastric epithelial malignant transformation by activating the Akt/p53 signaling pathway via ADRB2. Oncol Lett 2022; 24:300. [PMID: 35949623 PMCID: PMC9353258 DOI: 10.3892/ol.2022.13420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/07/2022] [Indexed: 11/06/2022] Open
Abstract
The etiology of gastric cancer is associated with infectious, environmental and dietary factors, as well as genetic background. Additionally, emerging evidence has supported the vital role of chronic emotional stress on gastric carcinogenesis; however, the underlying mechanism remains unclear. The present study aimed to investigate the effects of chronic stress and a detrimental diet on gastric malignant epithelial transformation in rats. Therefore, 26 Wistar rats were randomly divided into the following four groups: i) Control; ii) detrimental diet (DD); iii) detrimental diet with chronic restraint (DR) and iv) detrimental diet with chronic restraint and propranolol treatment (DRP). ELISA was performed to detect the serum levels of epinephrine and norepinephrine. Epithelial cell apoptosis was analyzed using the TUNEL assay. The mRNA and protein expression levels of Akt and p53 were detected using reverse transcription quantitative PCR and western blotting, respectively. Pathological changes were analyzed using hematoxylin and eosin staining (H&E). The H&E staining results showed that dysplasia in the gastric mucosa occurred in two of eight rats in the DD group and in four of five rats in the DR group, whereas no dysplasia was detected in the DRP group. The apoptotic ratios of gastric epithelial cells were significantly decreased in all treatment groups compared with the control group. Adrenoceptor β2 (ADRB2) protein expression levels were increased significantly only in the DR group and this effect was significantly reduced in the DRP group. The mRNA expression levels of Akt and p53 were significantly upregulated in the DD group, and Akt mRNA expression was further elevated in the DR group. With regard to protein expression, the levels of Akt and p-Akt were significantly increased in the DR group, whereas these effects were reversed in the DRP group. Furthermore, the ratio of p-p53/p53 protein was significantly reduced in the DD or DR groups, but was reversed in the DRP group. Collectively, the findings of the present study suggested that chronic restraint stress potentially aggravates the gastric epithelial malignant transformation induced by a detrimental diet, at least partially via the Akt/p53 signaling pathway mediated via ADRB2.
Collapse
Affiliation(s)
- Chuanju Zong
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Maoquan Yang
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xiaojing Guo
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wansheng Ji
- Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
26
|
Wang J, Yang W, He X, Zhang Z, Zheng X. Assembling p53 Activating Peptide With CeO2 Nanoparticle to Construct a Metallo-Organic Supermolecule Toward the Synergistic Ferroptosis of Tumor. Front Bioeng Biotechnol 2022; 10:929536. [PMID: 35837547 PMCID: PMC9273839 DOI: 10.3389/fbioe.2022.929536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022] Open
Abstract
Inducing lipid peroxidation and subsequent ferroptosis in cancer cells provides a potential approach for anticancer therapy. However, the clinical translation of such therapeutic agents is often hampered by ferroptosis resistance and acquired drug tolerance in host cells. Emerging nanoplatform-based cascade engineering and ferroptosis sensitization by p53 provides a viable rescue strategy. Herein, a metallo-organic supramolecular (Nano-PMI@CeO2) toward p53 restoration and subsequent synergistic ferroptosis is constructed, in which the radical generating module-CeO2 nanoparticles act as the core, and p53-activator peptide (PMI)-gold precursor polymer is in situ reduced and assembled on the CeO2 surface as the shell. As expected, Nano-PMI@CeO2 effectively reactivated the p53 signaling pathway in vitro and in vivo, thereby downregulating its downstream gene GPX4. As a result, Nano-PMI@CeO2 significantly inhibited tumor progression in the lung cancer allograft model through p53 restoration and sensitized ferroptosis, while maintaining favorable biosafety. Collectively, this work develops a tumor therapeutic with dual functions of inducing ferroptosis and activating p53, demonstrating a potentially viable therapeutic paradigm for sensitizing ferroptosis via p53 activation. It also suggests that metallo-organic supramolecule holds great promise in transforming nanomedicine and treating human diseases.
Collapse
Affiliation(s)
- Jingmei Wang
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Wenguang Yang
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Talent Highland, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
| | - Xinyuan He
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Zhang Zhang
- General Surgery Department, Tang Du Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Zhang Zhang, ; Xiaoqiang Zheng,
| | - Xiaoqiang Zheng
- Institute for Stem Cell & Regenerative Medicine, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Department of Medical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Zhang Zhang, ; Xiaoqiang Zheng,
| |
Collapse
|
27
|
Examples of Inverse Comorbidity between Cancer and Neurodegenerative Diseases: A Possible Role for Noncoding RNA. Cells 2022; 11:cells11121930. [PMID: 35741059 PMCID: PMC9221903 DOI: 10.3390/cells11121930] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer is one of the most common causes of death; in parallel, the incidence and prevalence of central nervous system diseases are equally high. Among neurodegenerative diseases, Alzheimer’s dementia is the most common, while Parkinson’s disease (PD) is the second most frequent neurodegenerative disease. There is a significant amount of evidence on the complex biological connection between cancer and neurodegeneration. Noncoding RNAs (ncRNAs) are defined as transcribed nucleotides that perform a variety of regulatory functions. The mechanisms by which ncRNAs exert their functions are numerous and involve every aspect of cellular life. The same ncRNA can act in multiple ways, leading to different outcomes; in fact, a single ncRNA can participate in the pathogenesis of more than one disease—even if these seem very different, as cancer and neurodegenerative disorders are. The ncRNA activates specific pathways leading to one or the other clinical phenotype, sometimes with obvious mechanisms of inverse comorbidity. We aimed to collect from the existing literature examples of inverse comorbidity in which ncRNAs seem to play a key role. We also investigated the example of mir-519a-3p, and one of its target genes Poly (ADP-ribose) polymerase 1, for the inverse comorbidity mechanism between some cancers and PD. We believe it is very important to study the inverse comorbidity relationship between cancer and neurodegenerative diseases because it will help us to better assess these two major areas of human disease.
Collapse
|
28
|
Ketogenic diet inhibits tumor growth by enhancing immune response, attenuating immunosuppression, inhibiting angiogenesis and EMT in CT26 colon tumor allografts mouse model. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
29
|
Kalinina EV, Gavriliuk LA, Pokrovsky VS. Oxidative Stress and Redox-Dependent Signaling in Prostate Cancer. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:413-424. [PMID: 35790374 DOI: 10.1134/s0006297922050030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tumor emergence and progression is complicated by the dual role of reactive oxygen species (ROS). Low concentrations of ROS are essential for many intracellular metabolic processes and cell proliferation, while excessive ROS generation disrupts the mechanisms of cancer suppression, leading to the cell damage and death. A long-term imbalance in the ROS/antioxidant ratio and upregulation of the ROS generation due to the reduced efficacy of the antioxidant defense system cause chronic oxidative stress resulting in the damage of proteins, lipid, and DNA molecules and cancer development. Numerous data demonstrate that prostate cancer (the most common cancer in males) is associated with the development of oxidative stress. However, the reasons for the emergence of prostate cancer, as well as changes in the redox signaling and cellular redox homeostasis in this disease, are still poorly understood. The review examines the role of prooxidant and antioxidant enzyme systems, the imbalance in their activity leading to the oxidative stress development, changes in the key components of redox signaling, and the role of microRNAs in the modulation of redox status of cancer cells in prostate cancer.
Collapse
Affiliation(s)
- Elena V Kalinina
- Peoples's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.
| | - Ludmila A Gavriliuk
- Peoples's Friendship University of Russia (RUDN University), Moscow, 117198, Russia
| | - Vadim S Pokrovsky
- Peoples's Friendship University of Russia (RUDN University), Moscow, 117198, Russia.,N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| |
Collapse
|
30
|
Activation of Esterase D by FPD5 Inhibits Growth of A549 Lung Cancer Cells via JAB1/p53 Pathway. Genes (Basel) 2022; 13:genes13050786. [PMID: 35627173 PMCID: PMC9141839 DOI: 10.3390/genes13050786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Esterase D (ESD) is widely distributed in mammals, and it plays an important role in drug metabolism, detoxification, and biomarkers and is closely related to the development of tumors. In our previous work, we found that a chemical small-molecule fluorescent pyrazoline derivative, FPD5, an ESD activator, could inhibit tumor growth by activating ESD, but its molecular mechanism is still unclear. Here, by using RNA interference (RNAi), andco-immunoprecipitation techniques, we found that ESD suppressed the nucleus exportation of p53 through reducing the interaction between p53 and JAB1. The protein level of p53 in the nucleus was upregulated and the downstream targets of p53 were found by Human Gene Expression Array. p53 inhibited the expression of CDCA8 and CDC20. Lastly, the cell cycle of A549 cells was arrested at the G0/G1 phase. Together, our data suggest that ESD inhibited the cancer cell growth by arresting the cell cycle of A549 cells via the JAB1/p53 signaling pathway. Our findings provide a new insight into how to inhibit the growth of lung cancer with the activation of ESD by FPD5.
Collapse
|
31
|
Mazloum-Ravasan S, Mohammadi M, Hiagh EM, Ebrahimi A, Hong JH, Hamishehkar H, Kim KH. Nano-liposomal zein hydrolysate for improved apoptotic activity and therapeutic index in lung cancer treatment. Drug Deliv 2022; 29:1049-1059. [PMID: 35363101 PMCID: PMC8979517 DOI: 10.1080/10717544.2022.2057618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Lung cancer is one of the most common cancers in the world with a high mortality rate. Zein is a protein compound whose protein isolate is not useful and whose protein hydrolysis produces biological activity. By encapsulating this bioactive compound inside the nanoparticles (NPs), it causes itself to reach the tumor site and destroy it rapidly. In this study, the effects of zein hydrolysate (ZH) and nano-liposomal ZH (N-ZH) were investigated on the human A549 cell line. Western blotting and cell cycle analyses showed that ZH and N-ZH caused cytotoxicity. They induced apoptosis via cell cycle arrest at the G0 phase, as well as significant increases in pro-apoptotic genes, such as Bax, caspase-3, -8, -9, and p53, accompanied with significant decreases in the anti-apoptotic marker Bcl-2. Based on the results, the cytotoxic and anticancer effects of N-ZH were higher than those of free ZH. In conclusion, liposomes improved the performance of ZH and dramatically reduced the IC50 value of ZH. These findings provided the experimental evidence that N-ZH with favorable anticancer activity can be used as a therapeutic agent and strategy for lung cancer treatment in future clinical trials.
Collapse
Affiliation(s)
| | - Maryam Mohammadi
- Department of Food Science and Engineering, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Madadi Hiagh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran.,Pediatrics III, University Hospital Essen, Essen, Germany
| | - Alireza Ebrahimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Joo-Hyun Hong
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
32
|
Chen G, Jia G, Chao F, Xie F, Zhang Y, Hou C, Huang Y, Tang H, Yu J, Zhang J, Jia S, Xu G. Urine- and Blood-Based Molecular Profiling of Human Prostate Cancer. Front Oncol 2022; 12:759791. [PMID: 35402245 PMCID: PMC8984469 DOI: 10.3389/fonc.2022.759791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/02/2022] [Indexed: 12/12/2022] Open
Abstract
Objective Prostate cancer (PCa) is one of the most common malignant tumors, accounting for 20% of total tumors ranked first in males. PCa is usually asymptomatic at the early stage and the specificity of the current biomarkers for the detection of PCa is low. The present study evaluates circulating tumor DNA (ctDNA) in blood or urine, which can be used as biomarkers of PCa and the combination of these markers may increase the sensitivity and specificity of the detection of PCa. Methods Tissue, blood, and urine samples were collected from patients with PCa. All prostate tissue specimens underwent pathological examination. A hybrid-capture-based next-generation sequencing assay was used for plasma and urinary ctDNA profiling. Sequencing data were analyzed by an in-house pipeline for mutation calling. Mutational profiles of PCa and BPH were compared in both plasma and urine samples. Associations of detected mutations and clinical characteristics were statistically analyzed. Results A significant association of mutation allele frequencies (MAFs) in the blood samples with patients with metastatic PCa rather than patients with primary PCa, and MAFs are changed after treatment in patients with PCa. Further, the number of mutations in urine is not associated with clinical characteristics of PCa patients, but the frequencies of mutation alleles in the urine are associated with patient age. Comparison of cfDNA aberration profiles between urine and blood reveals more alterations in urine than in blood, including TP53, AR, ATM, MYC, and SPOP mutations. Conclusion This work provides the potential clinical application of urine, in addition to blood, as a powerful and convenient non-invasive approach in personalized medicine for patients with PCa.
Collapse
Affiliation(s)
- Gang Chen
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Gang Chen, ; Guoxiong Xu,
| | - Guojin Jia
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Fan Chao
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Feng Xie
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Yue Zhang
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Chuansheng Hou
- Department of Urology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yong Huang
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Haoran Tang
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Jianjun Yu
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Jihong Zhang
- Research Center for Clinical Research, Jinshan Hospital, Fudan University, Shanghai, China
| | - Shidong Jia
- Huidu Shanghai Medical Sciences Ltd, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Research, Jinshan Hospital, Fudan University, Shanghai, China
- *Correspondence: Gang Chen, ; Guoxiong Xu,
| |
Collapse
|
33
|
Chen J, Zhang Q, Zhuang Y, Liu S, Zhou X, Zhang G. Molecular mechanism of GANT61 combined with doxorubicin in the treatment of gliomas based on network pharmacology. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Ryniawec JM, Rogers GC. Centrosome instability: when good centrosomes go bad. Cell Mol Life Sci 2021; 78:6775-6795. [PMID: 34476544 PMCID: PMC8560572 DOI: 10.1007/s00018-021-03928-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
The centrosome is a tiny cytoplasmic organelle that organizes and constructs massive molecular machines to coordinate diverse cellular processes. Due to its many roles during both interphase and mitosis, maintaining centrosome homeostasis is essential to normal health and development. Centrosome instability, divergence from normal centrosome number and structure, is a common pathognomonic cellular state tightly associated with cancers and other genetic diseases. As novel connections are investigated linking the centrosome to disease, it is critical to understand the breadth of centrosome functions to inspire discovery. In this review, we provide an introduction to normal centrosome function and highlight recent discoveries that link centrosome instability to specific disease states.
Collapse
Affiliation(s)
- John M Ryniawec
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA
| | - Gregory C Rogers
- University of Arizona Cancer Center, University of Arizona, 1515 N. Campbell Ave., Tucson, AZ, 85724, USA.
| |
Collapse
|
35
|
Transcriptome Analysis of Cells Exposed to Actinomycin D and Nutlin-3a Reveals New Candidate p53-Target Genes and Indicates That CHIR-98014 Is an Important Inhibitor of p53 Activity. Int J Mol Sci 2021; 22:ijms222011072. [PMID: 34681730 PMCID: PMC8538697 DOI: 10.3390/ijms222011072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Co-treatment with actinomycin D and nutlin-3a (A + N) strongly activates p53. Previously we reported that CHIR-98014 (GSK-3 kinase inhibitor), acting in cells exposed to A + N, prevents activation of TREM2-an innate immunity and p53-regulated gene associated with Alzheimer’s disease. In order to find novel candidate p53-target genes and genes regulated by CHIR-98014, we performed RNA-Seq of control A549 cells and the cells exposed to A + N, A + N with CHIR-98014 or to CHIR-98014. We validated the data for selected genes using RT-PCR and/or Western blotting. Using CRISPR/Cas9 technology we generated p53-deficient cells. These tools enabled us to identify dozens of candidate p53-regulated genes. We confirmed that p53 participates in upregulation of BLNK, APOE and IRF1. BLNK assists in activation of immune cells, APOE codes for apolipoprotein associated with Alzheimer’s disease and IRF1 is activated by interferon gamma and regulates expression of antiviral genes. CHIR-98014 prevented or inhibited the upregulation of a fraction of genes stimulated by A + N. Downregulation of GSK-3 did not mimic the activity of CHIR-98014. Our data generate the hypothesis, that an unidentified kinase inhibited by CHIR-98014, participates in modification of p53 and enables it to activate a subset of its target genes, e.g., the ones associated with innate immunity.
Collapse
|
36
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
37
|
Ikeda M, Ide T, Tadokoro T, Miyamoto HD, Ikeda S, Okabe K, Ishikita A, Sato M, Abe K, Furusawa S, Ishimaru K, Matsushima S, Tsutsui H. Excessive Hypoxia-Inducible Factor-1α Expression Induces Cardiac Rupture via p53-Dependent Apoptosis After Myocardial Infarction. J Am Heart Assoc 2021; 10:e020895. [PMID: 34472375 PMCID: PMC8649270 DOI: 10.1161/jaha.121.020895] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Apoptosis plays a pivotal role in cardiac rupture after myocardial infarction (MI), and p53 is a key molecule in apoptosis during cardiac rupture. Hif‐1α (hypoxia‐inducible factor‐1α), upregulated under hypoxia, is a known p53 inducer. However, the role of Hif‐1α in the regulatory mechanisms underlying p53 upregulation, apoptosis, and cardiac rupture after MI is unclear. Methods and Results We induced MI in mice by ligating the left anterior descending artery. Hif‐1α and p53 expressions were upregulated in the border zone at day 5 after MI, accompanied by apoptosis. In rat neonatal cardiomyocytes, treatment with cobalt chloride (500 μmol/L), which mimics severe hypoxia by inhibiting PHD (prolyl hydroxylase domain‐containing protein), increased Hif‐1α and p53, accompanied by myocyte death with caspase‐3 cleavage. Silencing Hif‐1α or p53 inhibited caspase‐3 cleavage, and completely prevented myocyte death under PHD inhibition. In cardiac‐specific Hif‐1α hetero‐knockout mice, expression of p53 and cleavage of caspase‐3 and poly (ADP‐ribose) polymerase were reduced, and apoptosis was suppressed on day 5. Furthermore, the cleavage of caspase‐8 and IL‐1β (interleukin‐1β) was also suppressed in hetero knockout mice, accompanied by reduced macrophage infiltration and matrix metalloproteinase/tissue inhibitor of metalloproteinase activation. Although there was no intergroup difference in infarct size, the cardiac rupture and survival rates were significantly improved in the hetero knockout mice until day 10 after MI. Conclusions Hif‐1α plays a pivotal role in apoptosis, inflammation, and cardiac rupture after MI, in which p53 is a critical mediator, and may be a prospective therapeutic target for preventing cardiac rupture.
Collapse
Affiliation(s)
- Masataka Ikeda
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Tomomi Ide
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Tomonori Tadokoro
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroko Deguchi Miyamoto
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Soichiro Ikeda
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Kosuke Okabe
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Akihito Ishikita
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Midori Sato
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Ko Abe
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Shun Furusawa
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Kosei Ishimaru
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Shouji Matsushima
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine Faculty of Medical Sciences Kyushu University Fukuoka Japan.,Division of Cardiovascular Medicine Research Institute of Angiocardiology Faculty of Medical Sciences Kyushu University Fukuoka Japan
| |
Collapse
|
38
|
Nguyen D, Yang K, Chiao L, Deng Y, Zhou X, Zhang Z, Zeng SX, Lu H. Inhibition of tumor suppressor p73 by nerve growth factor receptor via chaperone-mediated autophagy. J Mol Cell Biol 2021; 12:700-712. [PMID: 32285119 PMCID: PMC7749740 DOI: 10.1093/jmcb/mjaa017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 01/08/2023] Open
Abstract
The tumor suppressr p73 is a homolog of p53 and is capable of inducing cell cycle arrest and apoptosis. Here, we identify nerve growth factor receptor (NGFR, p75NTR, or CD271) as a novel negative p73 regulator. p73 activates NGFR transcription, which, in turn, promotes p73 degradation in a negative feedback loop. NGFR directly binds to p73 central DNA-binding domain and suppresses p73 transcriptional activity as well as p73-mediated apoptosis in cancer cells. Surprisingly, we uncover a previously unknown mechanism of NGFR-facilitated p73 degradation through the chaperone-mediated autophagy (CMA) pathway. Collectively, our studies demonstrate a new oncogenic function for NGFR in inactivating p73 activity by promoting its degradation through the CMA.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Kun Yang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lucia Chiao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yun Deng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Department of Radiation Oncology, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA.,Institute of Biomedical Sciences, Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Zhen Zhang
- Department of Radiation Oncology, Shanghai Cancer Center, Department of Oncology, Shanghai Medical School, Fudan University, Shanghai 200032, China
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
39
|
Zhang H, Zhang H, Cao S, Sui C, Song Y, Zhao Y, Liu S. Knockout of p53 leads to a significant increase in ALV-J replication. Poult Sci 2021; 100:101374. [PMID: 34411963 PMCID: PMC8377548 DOI: 10.1016/j.psj.2021.101374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 01/27/2023] Open
Abstract
Avian leukemia is a common malignant disease, and and its regulatory mechanism is complex. As the most extensive tumor suppressor gene in cancer research, p53 can control multiple functions such as that of DNA repair, induction of apoptosis, cell cycle arrest and so on. In view of the diversity associated with varied function of p53, this study analyzed the possible effect of gene on ALV-J replication and its regulatory mechanism. We successfully constructed a p53 knockout DF-1 cell line (p53-KO-DF-1 cells) by using CRISPR-Cas9 system. When ALV-J was co-infected with DF-1 and p53-KO-DF-1 cells, it was found that compared with wild-type DF-1 cells, the viral copy number of p53-KO-DF-1 cells infected with ALV-J increased significantly 48 h after infection, whereas the expression of innate immune factors such as Il-2,TNF- α, IFN- γ and MX1 decreased significantly. Detection of p53-related tumor genes indicated that after p53 deletion, the expression of c-myc, bcl-2, and bak increased significantly, while the expression of p21 and p27 was noted to be decreased. The cell cycle distribution and apoptosis of the 2 cell lines was detected by flow cytometry analysis. The results showed that p53 knockout prevented G0/G1 and G2 M phase arrest induced by ALV-J, and substantially decreased the rate of apoptosis. Overall, the results indicated that p53 gene can effectively inhibits ALV-J replication by regulating important cellular processes, and p53 gene related proteins involved in cell cycle activity may function as the key targets for the prevention and treatment of ALV-J.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Huixia Zhang
- School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China
| | - Shengliang Cao
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chao Sui
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yinuo Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Yiran Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Sidang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China.
| |
Collapse
|
40
|
Huang NC, Huang RL, Huang XF, Chang KF, Lee CJ, Hsiao CY, Lee SC, Tsai NM. Evaluation of anticancer effects of Juniperus communis extract on hepatocellular carcinoma cells in vitro and in vivo. Biosci Rep 2021; 41:BSR20211143. [PMID: 34151367 PMCID: PMC8276093 DOI: 10.1042/bsr20211143] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and accounts for the fourth leading cause of all cancer deaths. Scientific evidence has found that plant extracts seem to be a reliable choice due to their multitarget effects against HCC. Juniperus communis has been used for centuries in traditional medicine and its anticancer properties have been reported. As a result, the purpose of the study was to investigate the anticancer effect and mechanism of J. communis extract (JCo extract) on HCC in vitro and in vivo. In the present study, we found that JCo extract inhibited the growth of human HCC cells by inducing cell cycle arrest at the G0/G1 phase, extensive apoptosis and suppressing metastatic protein expressions in HCC cells. Moreover, the combinational treatment of JCo and VP-16 was found to enhance the anticancer effect, revealing that JCo extract might have the potential to be utilized as an adjuvant to promote HCC treatment. Furthermore, in vivo study, JCo extract significantly suppressed HCC tumor growth and extended the lifespan with no or low systemic and pathological toxicity. JCo extract significantly up-regulated the expression of pro-apoptotic proteins and tumor suppressor p53, suppressed VEGF/VEGFR autocrine signaling, down-regulated cell cycle regulatory proteins and MMP2/MMP9 proteins. Overall, our results provide a basis for exploiting JCo extract as a potential anticancer agent against HCC.
Collapse
Affiliation(s)
- Nan-Chieh Huang
- Department of Information Engineering, I-Shou University, Kaohsiung 84001, Taiwan, R.O.C
- Division of Family Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung 81342, Taiwan, R.O.C
| | - Ru-Lai Huang
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 60002, Taiwan, R.O.C
| | - Xiao-Fan Huang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Kai-Fu Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Chien-Ju Lee
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
| | - Chih-Yen Hsiao
- Division of Nephrology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi 60002, Taiwan, R.O.C
- Department of Hospital and Health Care Administration, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, R.O.C
| | - Shan-Chih Lee
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| | - Nu-Man Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan, R.O.C
- Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan, R.O.C
| |
Collapse
|
41
|
Wu D, Wei C, Li Y, Yang X, Zhou S. Pyroptosis, a New Breakthrough in Cancer Treatment. Front Oncol 2021; 11:698811. [PMID: 34381721 PMCID: PMC8350724 DOI: 10.3389/fonc.2021.698811] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/02/2021] [Indexed: 12/11/2022] Open
Abstract
The way of cell death can be roughly divided into two categories: cell necrosis and PCD(programmed cell death). Pyroptosis is a kind of PCD, its occurrence depends on the gasdermin protein family and it will produce inflammatory response. With constant research in recent years, more and more evidences show that pyroptosis is closely related to the occurrence and development of tumors. The treatment of tumors is a big problem worldwide. We focus on whether we can discover new potential tumor markers and new therapeutic targets from the mechanism. If we can understand the mechanism of pyroptosis and clear the relationship between pyroptosis and the development of tumors, this may provide a new reference for clinical cancer treatment.
Collapse
Affiliation(s)
- Dengqiang Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Changhong Wei
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yujie Li
- Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China
| | - Xuejia Yang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Sufang Zhou
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Department of Biochemistry and Molecular Biology, School of Pre-Clinical Science, Guangxi Medical University, Nanning, China
| |
Collapse
|
42
|
Surien O, Ghazali AR, Masre SF. Chemopreventive effects of pterostilbene through p53 and cell cycle in mouse lung of squamous cell carcinoma model. Sci Rep 2021; 11:14862. [PMID: 34290382 PMCID: PMC8295275 DOI: 10.1038/s41598-021-94508-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/13/2021] [Indexed: 12/30/2022] Open
Abstract
Cell proliferation and cell death abnormalities are strongly linked to the development of cancer, including lung cancer. The purpose of this study was to investigate the effect of pterostilbene on cell proliferation and cell death via cell cycle arrest during the transition from G1 to S phase and the p53 pathway. A total of 24 female Balb/C mice were randomly categorized into four groups (n = 6): N-nitroso-tris-chloroethyl urea (NTCU) induced SCC of the lungs, vehicle control, low dose of 10 mg/kg PS + NTCU (PS10), and high dose of 50 mg/kg PS + NTCU (PS50). At week 26, all lungs were harvested for immunohistochemistry and Western blotting analysis. Ki-67 expression is significantly lower, while caspase-3 expression is significantly higher in PS10 and PS50 as compared to the NTCU (p < 0.05). There was a significant decrease in cyclin D1 and cyclin E2 protein expression in PS10 and PS50 when compared to the NTCU (p < 0.05). PS50 significantly increased p53, p21, and p27 protein expression when compared to NTCU (p < 0.05). Pterostilbene is a potential chemoprevention agent for lung SCC as it has the ability to upregulate the p53/p21 pathway, causing cell cycle arrest.
Collapse
Affiliation(s)
- Omchit Surien
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Ahmad Rohi Ghazali
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia
| | - Siti Fathiah Masre
- Programme of Biomedical Science, Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia (UKM), Kuala Lumpur, Malaysia.
| |
Collapse
|
43
|
Chakraborty K, Francis P. Apoptotic effect of chromanone derivative, hyrtiosone A from marine demosponge Hyrtios erectus in hepatocellular carcinoma HepG2 cells. Bioorg Chem 2021; 114:105119. [PMID: 34252861 DOI: 10.1016/j.bioorg.2021.105119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 03/31/2021] [Accepted: 06/19/2021] [Indexed: 01/18/2023]
Abstract
The tumor suppressor proteins p53 and p27 exhibited a significant role in the survival of cells and regulation of cellular division and growth. In majority of the human tumors, particularly in hepatocellular carcinoma, these proteins are inactivated by mutation or deletion, and are considered to predict the pathophysiology related to liver cancer. The present study evaluated the activation of the p53 and p27 pathways as a useful therapeutic tool to attenuate hepatocellular carcinoma. Three undescribed homologous chromanone derivatives, hyrtiosones A-C were isolated from the organic extract of marine demosponge Hyrtios erectus (family Thorectidae). Preliminary bioactivity assessments found that hyrtiosone A exhibited prospective anti-inflammatory (IC50 1.02-1.86 mM) and antioxidant (IC50 0.74-0.83 mM) properties. Molecular docking analysis of the hyrtiosones using p53-murine double minute complex revealed lesser docking parameters for hyrtiosone A (binding energy -11.12 kcal mol-1, docking score -12.18 kcal mol-1) thereby attributing its greater bioactivity. Hyrtiosone A was furthermore analyzed for in vitro anticancer activity in hepatocellular carcinoma HepG2 cells. Morphological assessment of hyrtiosone A treated HepG2 cell line by acridine orange/ethidium bromide fluorescence staining revealed greater number of apoptotic cells, and was found to be comparable with the cells treated with the standard doxorubicin. Further the Annexin V-fluorescein isothiocyanate assay of hyrtiosone A treated HepG2 cell line by flow cytometry displayed greater number of early apoptotic cells (51.24%) than that exhibited by the standard (21.45%). Cell cycle distribution analysis showed that hyrtiosone A arrested the S and G2/M phase of cell cycle and upregulate the gene expression of p53 and p27 in hepatocellular carcinoma HepG2 cells.
Collapse
Affiliation(s)
- Kajal Chakraborty
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India.
| | - Prima Francis
- Marine Bioprospecting Section of Marine Biotechnology Division, Central Marine Fisheries Research Institute, Ernakulam North, P.B. No. 1603, Cochin 682018, Kerala State, India
| |
Collapse
|
44
|
Cui X, Pan G, Chen Y, Guo X, Liu T, Zhang J, Yang X, Cheng M, Gao H, Jiang F. The p53 pathway in vasculature revisited: A therapeutic target for pathological vascular remodeling? Pharmacol Res 2021; 169:105683. [PMID: 34019981 DOI: 10.1016/j.phrs.2021.105683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
Pathological vascular remodeling contributes to the development of restenosis following intraluminal interventions, transplant vasculopathy, and pulmonary arterial hypertension. Activation of the tumor suppressor p53 may counteract vascular remodeling by inhibiting aberrant proliferation of vascular smooth muscle cells and repressing vascular inflammation. In particular, the development of different lines of small-molecule p53 activators ignites the hope of treating remodeling-associated vascular diseases by targeting p53 pharmacologically. In this review, we discuss the relationships between p53 and pathological vascular remodeling, and summarize current experimental data suggesting that drugging the p53 pathway may represent a novel strategy to prevent the development of vascular remodeling.
Collapse
Affiliation(s)
- Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Guopin Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China; Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Ye Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaosun Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Tengfei Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jing Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xiaofan Yang
- Department of Pediatrics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
45
|
Yang X, Cao JL, Yang FN, Li XF, Tao LM, Wang F. Decreased expression of CLCA2 and the correlating with immune infiltrates in patients with cervical squamous cell carcinoma: A bioinformatics analysis. Taiwan J Obstet Gynecol 2021; 60:480-486. [PMID: 33966732 DOI: 10.1016/j.tjog.2021.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2020] [Indexed: 12/09/2022] Open
Abstract
OBJECTIVE Calcium-activated chloride channel 2 (CLCA2) is closely related to the invasion, metastasis, and prognosis of some common malignant tumors. The present study aimed to evaluate the role of CLCA2 in cervical squamous cell carcinoma (CESC) using bioinformatics analysis. MATERIALS AND METHODS The mRNA sequencing data and the corresponding clinical data were obtained from Gene Expression Omnibus (GEO) database and The Cancer Genome Atlas (TCGA) database respectively. Then univariate analysis of variance was used to analyze the differential mRNA expression of CLCA2 between normal, cervical Intraepithelial neoplasia (CIN), and CESC tissues and clinicopathological characteristics. The Gene Expression Profiling Interactive Analysis (GEPIA) was used to assess the association between CLCA2 and Disease-Free Survival (DFS), overall survival (OS). The Gene Set Enrichment Analysis (GSEA) was used to explore the associated signaling pathways. The Tumor Immune Estimation Resource (TIMER) was used to predict the potential biological roles of CLCA2 in tumor-immune of CESC. RESULTS CLCA2 expression was significantly decreased in CESC tissues compared with normal and CIN tissues (P < 0.05). Meanwhile, obese patients had lower levels of CLCA2 expression than normal-weight CESC patients (P < 0.05). However, there was no significant difference in the expression level of CLCA2 in patients with different T stage, lymph node status, metastasis, and FIGO stage in CC(P > 0.05). The survival analysis indicated that for DFS, CESC with high CLCA2 expression was associated with better prognoses compared with those with low expression levels (P < 0.05). But for the OS, there was no difference. GSEA revealed that 4 pathways exhibited significant differential enrichment in the CLCA2 high-expression phenotype, including the P53 signaling pathway, the ERBB signaling pathway, the NOTCH signaling pathway, and the ubiquitin-mediated proteolysis. The TIMER reveals the expression of CLCA2 showed a significant inverse association with the number of B cells, Macrophage cells, and Dendritic Cell infiltration. CONCLUSION The present study indicates that CLCA2 expression may be a potential prognostic marker for patients with CESC.
Collapse
Affiliation(s)
- Xin Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Jin-Long Cao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Feng-Na Yang
- Lanzhou University Second Hospital, Lanzhou, China
| | - Xiao-Feng Li
- Lanzhou University Second Hospital, Lanzhou, China
| | - Li-Mei Tao
- Lanzhou University Second Hospital, Lanzhou, China
| | - Fang Wang
- Lanzhou University Second Hospital, Lanzhou, China.
| |
Collapse
|
46
|
Dunphy K, Dowling P, Bazou D, O’Gorman P. Current Methods of Post-Translational Modification Analysis and Their Applications in Blood Cancers. Cancers (Basel) 2021; 13:1930. [PMID: 33923680 PMCID: PMC8072572 DOI: 10.3390/cancers13081930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/04/2021] [Accepted: 04/14/2021] [Indexed: 12/12/2022] Open
Abstract
Post-translational modifications (PTMs) add a layer of complexity to the proteome through the addition of biochemical moieties to specific residues of proteins, altering their structure, function and/or localization. Mass spectrometry (MS)-based techniques are at the forefront of PTM analysis due to their ability to detect large numbers of modified proteins with a high level of sensitivity and specificity. The low stoichiometry of modified peptides means fractionation and enrichment techniques are often performed prior to MS to improve detection yields. Immuno-based techniques remain popular, with improvements in the quality of commercially available modification-specific antibodies facilitating the detection of modified proteins with high affinity. PTM-focused studies on blood cancers have provided information on altered cellular processes, including cell signaling, apoptosis and transcriptional regulation, that contribute to the malignant phenotype. Furthermore, the mechanism of action of many blood cancer therapies, such as kinase inhibitors, involves inhibiting or modulating protein modifications. Continued optimization of protocols and techniques for PTM analysis in blood cancer will undoubtedly lead to novel insights into mechanisms of malignant transformation, proliferation, and survival, in addition to the identification of novel biomarkers and therapeutic targets. This review discusses techniques used for PTM analysis and their applications in blood cancer research.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Paul Dowling
- Department of Biology, National University of Ireland, W23 F2K8 Maynooth, Ireland; (K.D.); (P.D.)
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| | - Peter O’Gorman
- Department of Haematology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland;
| |
Collapse
|
47
|
Pokorná Z, Vysloužil J, Hrabal V, Vojtěšek B, Coates PJ. The foggy world(s) of p63 isoform regulation in normal cells and cancer. J Pathol 2021; 254:454-473. [PMID: 33638205 DOI: 10.1002/path.5656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/19/2022]
Abstract
The p53 family member p63 exists as two major protein variants (TAp63 and ΔNp63) with distinct expression patterns and functional properties. Whilst downstream target genes of p63 have been studied intensively, how p63 variants are themselves controlled has been relatively neglected. Here, we review advances in understanding ΔNp63 and TAp63 regulation, highlighting their distinct pathways. TAp63 has roles in senescence and metabolism, and in germ cell genome maintenance, where it is activated post-transcriptionally by phosphorylation cascades after DNA damage. The function and regulation of TAp63 in mesenchymal and haematopoietic cells is less clear but may involve epigenetic control through DNA methylation. ΔNp63 functions to maintain stem/progenitor cells in various epithelia and is overexpressed in squamous and certain other cancers. ΔNp63 is transcriptionally regulated through multiple enhancers in concert with chromatin modifying proteins. Many signalling pathways including growth factors, morphogens, inflammation, and the extracellular matrix influence ΔNp63 levels, with inconsistent results reported. There is also evidence for reciprocal regulation, including ΔNp63 activating its own transcription. ΔNp63 is downregulated during cell differentiation through transcriptional regulation, while post-transcriptional events cause proteasomal degradation. Throughout the review, we identify knowledge gaps and highlight discordances, providing potential explanations including cell-context and cell-matrix interactions. Identifying individual p63 variants has roles in differential diagnosis and prognosis, and understanding their regulation suggests clinically approved agents for targeting p63 that may be useful combination therapies for selected cancer patients. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zuzana Pokorná
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jan Vysloužil
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Václav Hrabal
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic.,Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Borˇivoj Vojtěšek
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Philip J Coates
- Research Centre of Applied Molecular Oncology (RECAMO), Masaryk Memorial Cancer Institute, Brno, Czech Republic
| |
Collapse
|
48
|
Detection of Post-translationally Modified p53 by Western Blotting. Methods Mol Biol 2021. [PMID: 33786782 DOI: 10.1007/978-1-0716-1217-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The p53 tumor suppressor has a central role in many key cellular processes including the DNA damage response, aging, stem cell differentiation, and fertility. p53 undergoes extensive regulatory post-translational modification through events such as phosphorylation, acetylation, methylation, and ubiquitylation. Here, we describe western blotting-based methodology for the detection and relative quantification of individual phosphorylation events in p53. While we focus on well-established N-terminal modifications for the purpose of illustration, this approach can be used to investigate other post-translational modifications of the protein, drawing upon a broad range of commercially available modification-specific antibodies.
Collapse
|
49
|
Liang ZJ, Wan Y, Zhu DD, Wang MX, Jiang HM, Huang DL, Luo LF, Chen MJ, Yang WP, Li HM, Wei CY. Resveratrol Mediates the Apoptosis of Triple Negative Breast Cancer Cells by Reducing POLD1 Expression. Front Oncol 2021; 11:569295. [PMID: 33747905 PMCID: PMC7970754 DOI: 10.3389/fonc.2021.569295] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Resveratrol (RSV) is known to possess anticancer properties in many types of cancers like breast cancer, in which POLD1 may serve as a potential target. However, the anticancer mechanism of RSV on triple negative breast cancer (TNBC) remains unclear. In the present study, the antitumor effects and mechanism of RSV on TNBC cells were analyzed by RNA sequencing (RNA-seq), which was then verified via cell counting kit-8 (CCK8), immunofluorescence, immunohistochemistry, Western Blot (WB), flow cytometry, and hematoxylin-eosin (HE) staining. According to the corresponding findings, the survival rate of MDA-MB-231 cells gradually decreased as RSV treatment concentration increased. The RNA-seq analysis results demonstrated that genes affected by RSV treatment were mainly involved in apoptosis and the p53 signaling pathway. Moreover, apoptosis of MDA-MB-231 cells induced by RSV was observed to be mainly mediated by POLD1. When treated with RSV, the expression levels of full length PARP1, PCNA, and BCL-2 were found to be significantly reduced, and the expression level of Cleaved-PARP1 as well as Cleaved-Caspase3 increased significantly. Additionally, the mRNA expression of POLD1 was significantly reduced after treatment with RSV, and the protein expression level was also inhibited by RSV in a concentration-dependent manner. The prediction of domain interaction suggested that RSV may bind to at least five functional domains of the POLD1 protein (6s1m, 6s1n, 6s1o, 6tny and 6tnz). Furthermore, after RSV treatment, the anti-apoptotic index (PCNA, BCL-2) of MDA-MB-231 cells was found to decrease while the apoptosis index (caspase3) increased. Moreover, the overexpression of POLD1 reduced the extent of apoptosis observed in MDA-MB-231 cells following RSV treatment. Moreover, animal experimental results showed that RSV had a significant inhibitory effect on the growth of live tumors, while POLD1 overexpression was shown to antagonize this inhibitory effect. Accordingly, this study’s findings reveal that RSV may promote the apoptosis of TNBC cells by reducing the expression of POLD1 to activate the apoptotic pathway, which may serve as a potential therapy for the treatment of TNBC.
Collapse
Affiliation(s)
- Zhi-Jie Liang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China.,Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Yan Wan
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Dan-Dan Zhu
- Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Meng-Xin Wang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hong-Mian Jiang
- Department of Pathology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Dong-Lin Huang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Li-Feng Luo
- Department of Pathology, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Mao-Jian Chen
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Wei-Ping Yang
- Department of Ultrasonography, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hong-Mian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Chang-Yuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
50
|
Zhang C, Liu J, Wang J, Zhang T, Xu D, Hu W, Feng Z. The Interplay Between Tumor Suppressor p53 and Hypoxia Signaling Pathways in Cancer. Front Cell Dev Biol 2021; 9:648808. [PMID: 33681231 PMCID: PMC7930565 DOI: 10.3389/fcell.2021.648808] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Hypoxia is a hallmark of solid tumors and plays a critical role in different steps of tumor progression, including proliferation, survival, angiogenesis, metastasis, metabolic reprogramming, and stemness of cancer cells. Activation of the hypoxia-inducible factor (HIF) signaling plays a critical role in regulating hypoxic responses in tumors. As a key tumor suppressor and transcription factor, p53 responds to a wide variety of stress signals, including hypoxia, and selectively transcribes its target genes to regulate various cellular responses to exert its function in tumor suppression. Studies have demonstrated a close but complex interplay between hypoxia and p53 signaling pathways. The p53 levels and activities can be regulated by the hypoxia and HIF signaling differently depending on the cell/tissue type and the severity and duration of hypoxia. On the other hand, p53 regulates the hypoxia and HIF signaling at multiple levels. Many tumor-associated mutant p53 proteins display gain-of-function (GOF) oncogenic activities to promote cancer progression. Emerging evidence has also shown that GOF mutant p53 can promote cancer progression through its interplay with the hypoxia and HIF signaling pathway. In this review, we summarize our current understanding of the interplay between the hypoxia and p53 signaling pathways, its impact upon cancer progression, and its potential application in cancer therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ, United States
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers-State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|