1
|
Kramer BJ, Jankowiak JG, Nanjappa D, Harke MJ, Gobler CJ. Nitrogen and phosphorus significantly alter growth, nitrogen fixation, anatoxin-a content, and the transcriptome of the bloom-forming cyanobacterium, Dolichospermum. Front Microbiol 2022; 13:955032. [PMID: 36160233 PMCID: PMC9490380 DOI: 10.3389/fmicb.2022.955032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/19/2022] [Indexed: 11/27/2022] Open
Abstract
While freshwater cyanobacteria are traditionally thought to be limited by the availability of phosphorus (P), fixed nitrogen (N) supply can promote the growth and/or toxin production of some genera. This study characterizes how growth on N2 (control), nitrate (NO3 -), ammonium (NH4 +), and urea as well as P limitation altered the growth, toxin production, N2 fixation, and gene expression of an anatoxin-a (ATX-A) - producing strain of Dolichospermum sp. 54. The transcriptomes of fixed N and P-limited cultures differed significantly from those of fixed N-deplete, P-replete (control) cultures, while the transcriptomes of P-replete cultures amended with either NH4 + or NO3 - were not significantly different relative to those of the control. Growth rates of Dolichospermum (sp. 54) were significantly higher when grown on fixed N relative to without fixed N; growth on NH4 + was also significantly greater than growth on NO3 -. NH4 + and urea significantly lowered N2 fixation and nifD gene transcript abundance relative to the control while cultures amended with NO3 - exhibited N2 fixation and nifD gene transcript abundance that was not different from the control. Cultures grown on NH4 + exhibited the lowest ATX-A content per cell and lower transcript abundance of genes associated ATX-A synthesis (ana), while the abundance of transcripts of several ana genes were highest under fixed N and P - limited conditions. The significant negative correlation between growth rate and cellular anatoxin quota as well as the significantly higher number of transcripts of ana genes in cultures deprived of fixed N and P relative to P-replete cultures amended with NH4 + suggests ATX-A was being actively synthesized under P limitation. Collectively, these findings indicate that management strategies that do not regulate fixed N loading will leave eutrophic water bodies vulnerable to more intense and toxic (due to increased biomass) blooms of Dolichospermum.
Collapse
Affiliation(s)
- Benjamin J. Kramer
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | | | - Deepak Nanjappa
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| | - Matthew J. Harke
- Gloucester Marine Genomics Institute, Gloucester, MA, United States
| | - Christopher J. Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, Southampton, NY, United States
| |
Collapse
|
2
|
Burén S, Jiménez-Vicente E, Echavarri-Erasun C, Rubio LM. Biosynthesis of Nitrogenase Cofactors. Chem Rev 2020; 120:4921-4968. [PMID: 31975585 PMCID: PMC7318056 DOI: 10.1021/acs.chemrev.9b00489] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Indexed: 12/30/2022]
Abstract
Nitrogenase harbors three distinct metal prosthetic groups that are required for its activity. The simplest one is a [4Fe-4S] cluster located at the Fe protein nitrogenase component. The MoFe protein component carries an [8Fe-7S] group called P-cluster and a [7Fe-9S-C-Mo-R-homocitrate] group called FeMo-co. Formation of nitrogenase metalloclusters requires the participation of the structural nitrogenase components and many accessory proteins, and occurs both in situ, for the P-cluster, and in external assembly sites for FeMo-co. The biosynthesis of FeMo-co is performed stepwise and involves molecular scaffolds, metallochaperones, radical chemistry, and novel and unique biosynthetic intermediates. This review provides a critical overview of discoveries on nitrogenase cofactor structure, function, and activity over the last four decades.
Collapse
Affiliation(s)
- Stefan Burén
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Emilio Jiménez-Vicente
- Department
of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, United States
| | - Carlos Echavarri-Erasun
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Luis M. Rubio
- Centro
de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM), Instituto
Nacional de Investigación y Tecnología Agraria
y Alimentaria (INIA), Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
3
|
Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from azotobacter vinelandii. Nature 2015; 360:553-60. [PMID: 25989647 DOI: 10.1038/360553a0] [Citation(s) in RCA: 389] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The crystal structure of the nitrogenase molybdenum–iron protein from Azotobacter vinelandii has been determined at 2.7 Å resolution. The α- and β-subunits in this α (2) β (2) tetramer have similar polypeptide folds. The FeMo-cofactor is completely encompassed by the α-subunit, whereas the P-cluster pair occurs at the interface between α- and β-subunits. Structural similarities are apparent between nitrogenase and other electron transfer systems, including hydrogenases and the photosynthetic reaction centre
Collapse
|
4
|
Zhuang BT, Lan AJ, He LJ, Huang LR. Synthesis and characterization of a new Mo-Fe-S cluster compound containing MoO3S3 unit and mixed-valent Mo atoms [Et4N]2[Mo2Fe(CO)4(S,O-C6H4-1,2)3Cl2]. CHINESE J CHEM 2010. [DOI: 10.1002/cjoc.19940120603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Dean DR, Brigle KE. Azotobacter vinelandii nifD- and nifE-encoded polypeptides share structural homology. Proc Natl Acad Sci U S A 2010; 82:5720-3. [PMID: 16593596 PMCID: PMC390623 DOI: 10.1073/pnas.82.17.5720] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Azotobacter vinelandii nifE gene was isolated and its complete nucleotide sequence was determined. The amino acid sequences deduced from the A. vinelandii nifE and nifD gene sequences were compared and found to share striking primary sequence homology. This homology implies a functional and possibly an evolutionary relationship between these two gene products. The structural homology is discussed with regard to the potential FeMo cofactor binding properties of these polypeptides and the possible role of a nifEN product complex as a surrogate MoFe protein.
Collapse
Affiliation(s)
- D R Dean
- Battelle-C. F. Kettering Research Laboratory, 150 East South College Street, Yellow Springs, OH 45387
| | | |
Collapse
|
6
|
Brigle KE, Setterquist RA, Dean DR, Cantwell JS, Weiss MC, Newton WE. Site-directed mutagenesis of the nitrogenase MoFe protein of Azotobacter vinelandii. Proc Natl Acad Sci U S A 2010; 84:7066-9. [PMID: 16593879 PMCID: PMC299230 DOI: 10.1073/pnas.84.20.7066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A strategy has been formulated for the site-directed mutagenesis of the Azotobacter vinelandii nifDK genes. These genes encode the alpha and beta subunits of the MoFe protein of nitrogenase, respectively. Six mutant strains, which produce MoFe proteins altered in their alpha subunit by known single amino acid substitutions, have been produced. Three of these transversion mutations involve cysteine-to-serine changes (at residues 154, 183, and 275), two involve glutamine-to-glutamic acid changes (at residues 151 and 191), and one involves an aspartic acid-to-glutamic acid change (at residue 161). All three possible phenotypic responses are observed within this group- i.e., normal, slow, and no growth in the absence of a fixed-nitrogen source. Two-dimensional gel electrophoresis indicates that all mutants accumulate normal levels of the subunits of both nitrogenase component proteins. Whole-cell and crude-extract acetylene-reduction activities indicate substantial levels of Fe protein activity in all strains. In contrast, MoFe protein activities do not parallel the diazotrophic growth capability for all strains. Two strains appear to exhibit altered substrate discrimination. Such analyses should aid in the identification of metallocluster-binding sites and subunit-subunit interaction domains of the MoFe protein and also provide insight into the mechanistic roles of the various prosthetic groups in catalysis.
Collapse
Affiliation(s)
- K E Brigle
- Department of Anaerobic Microbiology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | | | | | | | | | | |
Collapse
|
7
|
|
8
|
Fisher K, Lowe DJ, Tavares P, Pereira AS, Huynh BH, Edmondson D, Newton WE. Conformations generated during turnover of the Azotobacter vinelandii nitrogenase MoFe protein and their relationship to physiological function. J Inorg Biochem 2007; 101:1649-56. [PMID: 17845818 DOI: 10.1016/j.jinorgbio.2007.07.037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 07/10/2007] [Accepted: 07/13/2007] [Indexed: 11/30/2022]
Abstract
Various S=3/2 EPR signals elicited from wild-type and variant Azotobacter vinelandii nitrogenase MoFe proteins appear to reflect different conformations assumed by the FeMo-cofactor with different protonation states. To determine whether these presumed changes in protonation and conformation reflect catalytic capacity, the responses (particularly to changes in electron flux) of the alphaH195Q, alphaH195N, and alphaQ191K variant MoFe proteins (where His at position 195 in the alpha subunit is replaced by Gln/Asn or Gln at position alpha-191 by Lys), which have strikingly different substrate-reduction properties, were studied by stopped-flow or rapid-freeze techniques. Rapid-freeze EPR at low electron flux (at 3-fold molar excess of wild-type Fe protein) elicited two transient FeMo-cofactor-based EPR signals within 1 s of initiating turnover under N(2) with the alphaH195Q and alphaH195N variants, but not with the alphaQ191K variant. No EPR signals attributable to P cluster oxidation were observed for any of the variants under these conditions. Furthermore, during turnover at low electron flux with the wild-type, alphaH195Q or alphaH195N MoFe protein, the longer-time 430-nm absorbance increase, which likely reflects P cluster oxidation, was also not observed (by stopped-flow spectrophotometry); it did, however, occur for all three MoFe proteins under higher electron flux. No 430-nm absorbance increase occurred with the alphaQ191K variant, not even at higher electron flux. This putative lack of involvement of the P cluster in electron transfer at low electron flux was confirmed by rapid-freeze (57)Fe Mössbauer spectroscopy, which clearly showed FeMo-factor reduction without P cluster oxidation. Because the wild-type, alphaH195Q and alphaH195N MoFe proteins can bind N(2), but alphaQ195K cannot, these results suggest that P cluster oxidation occurs only under high electron flux as required for N(2) reduction.
Collapse
Affiliation(s)
- Karl Fisher
- Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Barney BM, Lukoyanov D, Yang TC, Dean DR, Hoffman BM, Seefeldt LC. A methyldiazene (HN=N-CH3)-derived species bound to the nitrogenase active-site FeMo cofactor: Implications for mechanism. Proc Natl Acad Sci U S A 2006; 103:17113-8. [PMID: 17088552 PMCID: PMC1693872 DOI: 10.1073/pnas.0602130103] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Methyldiazene (HN=N-CH3) isotopomers labeled with 15N at the terminal or internal nitrogens or with 13C or 2H were used as substrates for the nitrogenase alpha-195Gln-substituted MoFe protein. Freeze quenching under turnover traps an S = (1/2) state that has been characterized by EPR and 1H-, 15N-, and 13C-electron nuclear double resonance spectroscopies. These studies disclosed the following: (i) a methyldiazene-derived species is bound to the active-site FeMo cofactor; (ii) this species binds through an [-NHx] fragment whose N derives from the methyldiazene terminal N; and (iii) the internal N from methyldiazene probably does not bind to FeMo cofactor. These results constrain possible mechanisms for reduction of methyldiazene. In the Chatt-Schrock mechanism for N2 reduction, H atoms sequentially add to the distal N before N-N bond cleavage (d-mechanism). In a d-mechanism for methyldiazene reduction, a bound [-NHx] fragment only occurs after reduction by three electrons, which leads to N-N bond cleavage and the release of the first NH3. Thus, the appearance of bound [-NHx] is compatible with the d-mechanism only if it represents a late stage in the reduction process. In contrast are mechanisms where H atoms add alternately to distal and proximal nitrogens before N-N cleavage (a-mechanism) and release of the first NH3 after reduction by five electrons. An [-NHx] fragment would be bound at every stage of methyldiazene reduction in an a-mechanism. Although current information does not rule out the d-mechanism, the a-mechanism is more attractive because proton delivery to substrate has been specifically compromised in alpha-195Gln-substituted MoFe protein.
Collapse
Affiliation(s)
- Brett M. Barney
- *Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322
| | - Dmitriy Lukoyanov
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Tran-Chin Yang
- Department of Chemistry, Northwestern University, Evanston, IL 60208
| | - Dennis R. Dean
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 24061; and
- To whom correspondence may be addressed. E-mail:
, , or
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- To whom correspondence may be addressed. E-mail:
, , or
| | - Lance C. Seefeldt
- *Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322
- To whom correspondence may be addressed. E-mail:
, , or
| |
Collapse
|
10
|
Durrant M, Francis A, Lowe D, Newton W, Fisher K. Evidence for a dynamic role for homocitrate during nitrogen fixation: the effect of substitution at the alpha-Lys426 position in MoFe-protein of Azotobacter vinelandii. Biochem J 2006; 397:261-70. [PMID: 16566750 PMCID: PMC1513279 DOI: 10.1042/bj20060102] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Although it is generally accepted that the active site of nitrogenase is located on the FeMo-cofactor, the exact site(s) of N2 binding and reduction remain the subject of continuing debate, with both molybdenum and iron atoms being suggested as key players. The current consensus favours binding of acetylene and some other non-biologically relevant substrates to the central iron atoms of the FeMo-cofactor [Dos Santos, Igarashi, Lee, Hoffman, Seefeldt and Dean (2005) Acc. Chem. Res. 38, 208-214]. The reduction of N2 is, however, a more demanding process than reduction of these alternative substrates because it has a much higher activation energy and does not bind until three electrons have been accumulated on the enzyme. The possible conversion of bidentate into monodentate homocitrate on this three electron-reduced species has been proposed to free up a binding site for N2 on the molybdenum atom. One of the features of this hypothesis is that alpha-Lys426 facilitates chelate ring opening and subsequent orientation of the monodentate homocitrate by forming a specific hydrogen bond to the homocitrate -CH2CH2CO2- carboxylate group. In support of this concept, we show that mutation of alpha-Lys426 can selectively perturb N2 reduction without affecting acetylene reduction. We interpret our experimental observations in the light of a detailed molecular mechanics modelling study of the wild-type and altered MoFe-nitrogenases.
Collapse
Affiliation(s)
- Marcus C. Durrant
- *Biomolecular and Biomedical Research Centre, School of Applied Sciences, Ellison Building, Northumbria University, Newcastle upon Tyne NE1 8ST, U.K
| | - Amanda Francis
- †Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, U.K
| | - David J. Lowe
- †Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, U.K
- Correspondence may be addressed to either of these authors (email or )
| | - William E. Newton
- ‡Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A
| | - Karl Fisher
- †Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, U.K
- Correspondence may be addressed to either of these authors (email or )
| |
Collapse
|
11
|
Barney BM, Lee HI, Dos Santos PC, Hoffman BM, Dean DR, Seefeldt LC. Breaking the N2 triple bond: insights into the nitrogenase mechanism. Dalton Trans 2006:2277-84. [PMID: 16688314 DOI: 10.1039/b517633f] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Nitrogenase is the metalloenzyme that performs biological nitrogen fixation by catalyzing the reduction of N2 to ammonia. Understanding how the nitrogenase active site metal cofactor (FeMo-cofactor) catalyzes the cleavage of the N2 triple bond has been the focus of intense study for more than 50 years. Goals have included the determination of where and how substrates interact with the FeMo-cofactor, and the nature of reaction intermediates along the reduction pathway. Progress has included the trapping of intermediates formed during turnover of non-physiological substrates (e.g., alkynes, CS2) providing insights into how these molecules interact with the nitrogenase FeMo-cofactor active site. More recently, substrate-derived species have been trapped at high concentrations during the reduction of N2, a diazene, and hydrazine, providing the first insights into binding modes and possible mechanisms for N2 reduction. A comparison of the current state of knowledge of the trapped species arising from non-physiological substrates and nitrogenous substrates is beginning to reveal some of the intricacies of how nitrogenase breaks the N2 triple bond.
Collapse
Affiliation(s)
- Brett M Barney
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA
| | | | | | | | | | | |
Collapse
|
12
|
Fisher K, Newton WE. Nitrogenase proteins from Gluconacetobacter diazotrophicus, a sugarcane-colonizing bacterium. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1750:154-65. [PMID: 15925553 DOI: 10.1016/j.bbapap.2005.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2005] [Revised: 04/27/2005] [Accepted: 04/28/2005] [Indexed: 10/25/2022]
Abstract
Gluconacetobacter diazotrophicus Pal-5 grew well and expressed nitrogenase activity in the absence of NH4+ and at initial O2 concentrations greater than 5% in the culture atmosphere. G. diazotrophicus nitrogenase consisted of two components, Gd1 and Gd2, which were difficult to separate but were purified individually to homogeneity. Their compositions were very similar to those of Azotobacter vinelandii nitrogenase, however, all subunits were slightly smaller in size. The purified Gd1 protein contained a 12:1 Fe/Mo ratio as compared to 14:1 found for Av1 purified in parallel. Both Gd2 and Av2 contained 3.9 Fe atoms per molecule. Dithionite-reduced Gd1 exhibited EPR features at g=3.69, 3.96, and 4.16 compared with 3.64 and 4.27 for Av1. Gd2 gave an S=1/2 EPR signal identical to that of Av2. A Gd1 maximum specific activity of 1600 nmol H2 (min mg of protein)(-1) was obtained when complemented with either Gd2 or Av2, however, more Av2 was required. Gd2 had specific activities of 600 and 1100 nmol H2 (min mg protein)(-1) when complemented with Av1 and Gd1, respectively. The purified G. diazotrophicus nitrogenase exhibited a narrowed pH range for effective catalysis compared to the A. vinelandii nitrogenase, however, both exhibited maximum specific activity at about pH 7. The Gd-nitrogenase was more sensitive to ionic strength than the Av-nitrogenase.
Collapse
Affiliation(s)
- Karl Fisher
- Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
13
|
Maskos Z, Fisher K, Sørlie M, Newton WE, Hales BJ. Variant MoFe proteins of Azotobacter vinelandii: effects of carbon monoxide on electron paramagnetic resonance spectra generated during enzyme turnover. J Biol Inorg Chem 2005; 10:394-406. [PMID: 15887041 DOI: 10.1007/s00775-005-0648-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
The resting state of wild-type nitrogenase MoFe protein exhibits an S=3/2 electron paramagnetic resonance (EPR) signal originating from the FeMo cofactor, the enzyme's active site. When nitrogenase turns over under CO, this signal disappears and one (sometimes two) of three new EPR signals, which also arise from the FeMo cofactor, appears, depending on the CO concentration. The appearance and properties of these CO-inducible EPR signals, which were also generated with variant MoFe proteins (alphaR96Q, alphaR96K, alphaQ191K, alphaR359K, alphaR96K/alphaR359K, alphaR277C, alphaR277H, and DeltanifV) that are impacted around the FeMo cofactor, have been investigated. No new CO-induced EPR signals arise from any variant, suggesting that no new CO-binding sites are produced by the substitutions. All variant proteins, except alphaR277H, produce the lo-CO signal; all, except alphaQ191K, produce the hi(5)-CO signal; but only two (alphaR96Q and DeltanifV) exhibit the hi-CO signal. FeMo cofactor's environment clearly dictates which CO-induced EPR signals are generated; however, none of these EPR signals correlate with CO inhibition of H(2) evolution observed with some of these variants. CO inhibition of H(2) evolution is, therefore, due to CO binding to a different site(s) from those responsible for the CO-induced EPR signals. Some resting-state variants have overlapping S=3/2 EPR signals, whose intensities simultaneously decrease under turnover conditions, indicating that all FeMo cofactor conformations are catalytically active. Moreover, these variants produce a similar number of hi(5)-CO signals after turnover under CO to the number of resting-state S=3/2 signals. The FeMo cofactor associated with the hi(5)-CO signal likely contains two bridging CO molecules.
Collapse
Affiliation(s)
- Zofia Maskos
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | |
Collapse
|
14
|
Henderson RA. Mechanistic Studies on Synthetic Fe−S-Based Clusters and Their Relevance to the Action of Nitrogenases. Chem Rev 2005; 105:2365-437. [PMID: 15941217 DOI: 10.1021/cr030706m] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Dos Santos PC, Dean DR, Hu Y, Ribbe MW. Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev 2004; 104:1159-73. [PMID: 14871152 DOI: 10.1021/cr020608l] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Han J, Newton WE. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction. Biochemistry 2004; 43:2947-56. [PMID: 15005631 DOI: 10.1021/bi035247y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interactions of acetylene with its binding site(s) on the FeMo cofactor of the MoFe protein of Azotobacter vinelandii nitrogenase were probed using C(2)D(2). Specifically, the effects of changing the C(2)D(2) concentration, electron flux, pH, or the individual presence of N(2), ethylene, or CO on the formation of both cis- and trans-1,2-ethylene-d(2) from C(2)D(2) were measured. A hypothesis, involving two acetylene-reduction sites, was developed to explain the changes observed in the stereoselective protonation during both substrate-concentration-dependent and electron-flux-dependent C(2)D(2) reduction. One of these sites is a higher-affinity acetylene-binding site that produces only cis-1,2-ethylene-d(2) from C(2)D(2). The other is a lower-affinity acetylene-binding site, which produces both cis- and trans-1,2-ethylene-d(2). Added N(2) specifically inhibited the production of cis-1,2-ethylene-d(2) from C(2)D(2), which indicates that N(2) binds to (and is reduced at) the higher-affinity acetylene-binding site. High concentrations of added ethylene behaved like very high concentrations of acetylene and inhibited both the electron flux flowing through the enzyme and cis-isomer formation. Added CO, at very low concentrations, did not affect the relative distribution of cis- and trans-isomers, indicating a separate CO-binding site. The results of pH-dependence experiments showed that substrate inhibition at high C(2)D(2) concentrations is enhanced under acidic conditions but is absent under basic conditions and suggest that a low proton flux has a similar impact to that of a low electron flux; both inhibit cis-1,2-ethylene-d(2) formation selectively. Apparently, the factors affecting stereoselective protonation during C(2)D(2) reduction could be the same as those that perturb protonation of the FeMo cofactor when acetylene is reduced. The observed nitrogenase-catalyzed production of ethylene-d(1) from C(2)D(2) implicates a reversible protonation step in the mechanistic pathway.
Collapse
Affiliation(s)
- Jaehong Han
- Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
17
|
Abstract
Biological nitrogen reduction is catalyzed by a complex two-component metalloenzyme called nitrogenase. For the Mo-dependent enzyme, the site of substrate reduction is provided by a [7Fe-9S-Mo-X-homocitrate] metallocluster, where X is proposed to be an N atom. Recent progress with organometallic model compounds, theoretical calculations, and biochemical, kinetic, and biophysical studies on nitrogenase has led to the formulation of two opposing models of where N(2) or alternative substrates might bind during catalysis. One model involves substrate binding to the Mo atom, whereas the other model involves the participation of one or more Fe atoms located in the central region of the metallocluster. Recently gathered evidence that has provided the basis for both models is summarized, and a perspective on future research in resolving this fundamental mechanistic question is presented.
Collapse
Affiliation(s)
- Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84332, USA.
| | | | | |
Collapse
|
18
|
Siemann S, Schneider K, Oley M, Müller A. Characterization of a tungsten-substituted nitrogenase isolated from Rhodobacter capsulatus. Biochemistry 2003; 42:3846-57. [PMID: 12667075 DOI: 10.1021/bi0270790] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the phototrophic non-sulfur bacterium Rhodobacter capsulatus, the biosynthesis of the conventional Mo-nitrogenase is strictly Mo-regulated. Significant amounts of both dinitrogenase and dinitrogenase reductase were only formed when the growth medium was supplemented with molybdate (1 microM). During cell growth under Mo-deficient conditions, tungstate, at high concentrations (1 mM), was capable of partially (approximately 25%) substituting for molybdate in the induction of nitrogenase synthesis. On the basis of such conditions, a tungsten-substituted nitrogenase was isolated from R. capsulatus with the aid of anfA (Fe-only nitrogenase defective) mutant cells and partially purified by Q-sepharose chromatography. Metal analyses revealed the protein to contain an average of 1 W-, 16 Fe-, and less than 0.01 Mo atoms per alpha(2)beta(2)-tetramer. The tungsten-substituted (WFe) protein was inactive in reducing N(2) and marginally active in acetylene reduction, but it was found to show considerable activity with respect to the generation of H(2) from protons. The EPR spectrum of the WFe protein, recorded at 4 K, exhibited three distinct signals: (i) an S = 3/2 signal, which dominates the low-field region of the spectrum (g = 4.19, 3.93) and is indicative of a tungsten-substituted cofactor (termed FeWco), (ii) a marginal S = 3/2 signal (g = 4.29, 3.67) that can be attributed to residual amounts of FeMoco present in the protein, and (iii) a broad S = 1/2 signal (g = 2.09, 1.95, 1.86) arising from at least two paramagnetic species. Redox titrational analysis of the WFe protein revealed the midpoint potential of the FeWco (E(m) < -200 mV) to be shifted to distinctly lower potentials as compared to that of the FeMoco (E(m) approximately -50 mV) present in the native enzyme. The P clusters of both the WFe and the MoFe protein appear indistinguishable with respect to their midpoint potentials. EPR spectra recorded with the WFe protein under turnover conditions exhibited a 20% decrease in the intensity of the FeWco signal, indicating that the cofactor can be enzymatically reduced only to a small extent. The data presented in the current study demonstrate the pivotal role of molybdenum in optimal N(2) fixation and provides direct evidence that the inability of a tungsten-substituted nitrogenase to reduce N(2) is due to the difficulty to effectively reduce the FeW cofactor beyond its semi-reduced state.
Collapse
Affiliation(s)
- Stefan Siemann
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | | | | | | |
Collapse
|
19
|
McLean PA, True A, Nelson MJ, Lee HI, Hoffman BM, Orme-Johnson WH. Effects of substrates (methyl isocyanide, C2H2) and inhibitor (CO) on resting-state wild-type and NifV(-)Klebsiella pneumoniae MoFe proteins. J Inorg Biochem 2003; 93:18-32. [PMID: 12538049 DOI: 10.1016/s0162-0134(02)00580-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We report the use of electron nuclear double resonance (ENDOR) spectroscopy to examine how the metal sites in the FeMo-cofactor cluster of the resting nitrogenase MoFe protein respond to addition of the substrates acetylene and methyl isocyanide and the inhibitor carbon monoxide. 1H, 57Fe and 95Mo ENDOR measurements were performed on the wild-type and the NifV(-)proteins from Klebsiella pneumoniae. Among the molecules tested, only the addition of acetylene to either protein induced widespread changes in the 57Fe ENDOR spectra. Acetylene also induced increases in intensity from unresolved protons in the proton ENDOR spectra. Thus we conclude that acetylene may bind to the resting-state MoFe protein to perturb the FeMo-cofactor environment. On the other hand, the present results show that methyl isocyanide and carbon monoxide do not substantially alter the FeMo cofactor's geometric and electronic structures. We interpret this as lack of interaction between those two molecules and the FeMo cofactor in the resting state MoFe protein. Thus, although it is generally accepted that substrates or inhibitors bind to the FeMo-cofactor only under turnover condition, this work provides evidence that at least one substrate can perturb the active site of nitrogenase under non-catalytic conditions.
Collapse
Affiliation(s)
- Paul A McLean
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
20
|
Rangaraj P, Ludden PW. Accumulation of 99Mo-containing iron-molybdenum cofactor precursors of nitrogenase on NifNE, NifH, and NifX of Azotobacter vinelandii. J Biol Chem 2002; 277:40106-11. [PMID: 12176981 DOI: 10.1074/jbc.m204581200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of the iron-molybdenum cofactor (FeMo-co) of nitrogenase was investigated using the purified in vitro FeMo-co synthesis system and 99Mo. The purified system involves the addition of all components that are known to be required for FeMo-co synthesis in their purified forms. Here, we report the accumulation of a 99Mo-containing FeMo-co precursor on NifNE. Apart from NifNE, NifH and NifX also accumulate 99Mo label. We present evidence that suggests NifH may serve as the entry point for molybdenum incorporation into the FeMo-co biosynthetic pathway. We also present evidence suggesting a role for NifX in specifying the organic acid moiety of FeMo-co.
Collapse
Affiliation(s)
- Priya Rangaraj
- Department of Biochemistry and the Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
21
|
Mayer SM, Gormal CA, Smith BE, Lawson DM. Crystallographic analysis of the MoFe protein of nitrogenase from a nifV mutant of Klebsiella pneumoniae identifies citrate as a ligand to the molybdenum of iron molybdenum cofactor (FeMoco). J Biol Chem 2002; 277:35263-6. [PMID: 12133839 DOI: 10.1074/jbc.m205888200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The x-ray crystal structure of NifV(-) Klebsiella pneumoniae nitrogenase MoFe protein (NifV(-) Kp1) has been determined and refined to a resolution of 1.9 A. This is the first structure for a nitrogenase MoFe protein with an altered cofactor. Moreover, it is the first direct evidence that the organic acid citrate is not just present, but replaces homocitrate as a ligand to the molybdenum atom of the iron molybdenum cofactor (FeMoco). Subsequent refinement of the structure revealed that the citrate was present at reduced occupancy.
Collapse
Affiliation(s)
- Suzanne M Mayer
- Department of Biological Chemistry, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | |
Collapse
|
22
|
Zhou ZH, Yan WB, Wan HL, Tsai KR. Synthesis and characterization of homochiral polymeric S-malato molybdate(VI): toward the potentially stereospecific formation and absolute configuration of iron-molybdenum cofactor in nitrogenase. J Inorg Biochem 2002; 90:137-43. [PMID: 12031805 DOI: 10.1016/s0162-0134(02)00410-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Reaction of sodium or potassium molybdate and excess malic acid in a wide range of pH values (pH 4.0-7.0) resulted in the isolation of two cis-dioxo-bis(malato)-Mo(VI) complexes, viz. Na(3)[MoO(2)H(S-mal)(2)] and K(3)[MoO(2)H(S-mal)(2)].H(2)O (H(3)mal=malic acid). The sodium complex is also characterized by an X-ray structure analysis, showing that the mononuclear Mo units are linked together via very strong symmetric CO(2)...H... O(2)C-hydrogen bond [2.432(5) A], forming a polymeric chain. The molybdenum atoms are quasi-octahedrally coordinated by two cis-oxo groups and two bidentate malate ligands via its alkoxy and alpha-carboxyl groups, while the beta-carboxylic and carboxylate groups remain uncomplexed, as the coordination of vicinal carboxylate and alkoxide of homocitrate in FeMo cofactor of nitrogenase. The absolute configuration of the metal center in this S-malato complex is assigned as Lambda and the homochirality within the chain is established as a homochiral form ...Lambda(S)-Lambda(S)-Lambda(S)-Lambda(S)... . It is proposed that the chiral configuration of the metal center in wild-type FeMo-co biosynthesis might be induced by the early coordination of the chiral R-homocitric acid, while a mixture of raceme might be obtained in the biosynthesis of NifV(-) FeMo-cofactor. The absolute configuration of wild-type FeMo-cofactor is assigned as Delta(R).
Collapse
Affiliation(s)
- Zhao-Hui Zhou
- Department of Chemistry and State Key Laboratory for Physical Chemistry of Solid Surface, Xiamen University, Xiamen 361005, China.
| | | | | | | |
Collapse
|
23
|
Siemann S, Schneider K, Dröttboom M, Müller A. The Fe-only nitrogenase and the Mo nitrogenase from Rhodobacter capsulatus: a comparative study on the redox properties of the metal clusters present in the dinitrogenase components. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1650-61. [PMID: 11895435 DOI: 10.1046/j.1432-1327.2002.02804.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The dinitrogenase component proteins of the conventional Mo nitrogenase (MoFe protein) and of the alternative Fe-only nitrogenase (FeFe protein) were both isolated and purified from Rhodobacter capsulatus, redox-titrated according to the same procedures and subjected to an EPR spectroscopic comparison. In the course of an oxidative titration of the MoFe protein (Rc1Mo) three significant S = 1/2 EPR signals deriving from oxidized states of the P-cluster were detected: (1) a rhombic signal (g = 2.07, 1.96 and 1.83), which showed a bell-shaped redox curve with midpoint potentials (Em) of -195 mV (appearance) and -30 mV (disappearance), (2) an axial signal (g(parallel) = 2.00, g perpendicular = 1.90) with almost identical redox properties and (3) a second rhombic signal (g = 2.03, 2.00, 1.90) at higher redox potentials (> 100 mV). While the 'low-potential' rhombic signal and the axial signal have been both attributed to the one-electron-oxidized P-cluster (P1+) present in two conformationally different proteins, the 'high-potential' rhombic signal has been suggested rather to derive from the P3+ state. Upon oxidation, the FeFe protein (Rc1Fe) exhibited three significant S = 1/2 EPR signals as well. However, the Rc1Fe signals strongly deviated from the MoFe protein signals, suggesting that they cannot simply be assigned to different P-cluster states. (a) The most prominent feature is an unusually broad signal at g = 2.27 and 2.06, which proved to be fully reversible and to correlate with catalytic activity. The cluster giving rise to this signal appears to be involved in the transfer of two electrons. The midpoint potentials determined were: -80 mV (appearance) and 70 mV (disappearance). (b) Under weakly acidic conditions (pH 6.4) a slightly altered EPR signal occurred. It was characterized by a shift of the g values to 2.22 and 2.05 and by the appearance of an additional negative absorption-shaped peak at g = 1.86. (c) A very narrow rhombic EPR signal at g = 2.00, 1.98 and 1.96 appeared at positive redox potentials (Em = 80 mV, intensity maximum at 160 mV). Another novel S = 1/2 signal at g = 1.96, 1.92 and 1.77 was observed on further, enzymatic reduction of the dithionite-reduced state of Rc1Fe with the dinitrogenase reductase component (Rc2Fe) of the same enzyme system (turnover conditions in the presence of N2 and ATP). When the Rc1Mo protein was treated analogously, neither this 'turnover signal' nor any other S = 1/2 signal were detectable. All Rc1Fe-specific EPR signals detected are discussed and tentatively assigned with special consideration of the reference spectra obtained from Rc1Mo preparations.
Collapse
Affiliation(s)
- Stefan Siemann
- Lehrstuhl für Anorganische Chemie I, Fakultät für Chemie der Universität Bielefeld, Bielefeld, Germany
| | | | | | | |
Collapse
|
24
|
Christiansen J, Dean DR, Seefeldt LC. MECHANISTIC FEATURES OF THE MO-CONTAINING NITROGENASE. ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY 2001; 52:269-295. [PMID: 11337399 DOI: 10.1146/annurev.arplant.52.1.269] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nitrogenase is the complex metalloenzyme responsible for biological dinitrogen reduction. This reaction represents the single largest contributor to the reductive portion of the global nitrogen cycle. Recent developments in understanding the mechanism of the Mo-based nitrogenase are reviewed. Topics include how nucleotide binding and hydrolysis are coupled to electron transfer and substrate reduction, how electrons are accumulated and transferred within the MoFe-protein, and how substrates bind and are reduced at the active site metal cluster.
Collapse
Affiliation(s)
- Jason Christiansen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061; e-mail: , Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84332; e-mail:
| | | | | |
Collapse
|
25
|
Fisher K, Newton WE, Lowe DJ. Electron paramagnetic resonance analysis of different Azotobacter vinelandii nitrogenase MoFe-protein conformations generated during enzyme turnover: evidence for S = 3/2 spin states from reduced MoFe-protein intermediates. Biochemistry 2001; 40:3333-9. [PMID: 11258953 DOI: 10.1021/bi0012686] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid-freezing experiments elicited two transient EPR signals, designated 1b and 1c, during Azotobacter vinelandii nitrogenase turnover at 23 degrees C and pH 7.4. The first of the signals to form, signal 1b, exhibited g values of 4.21 and 3.76. Its formation was at the expense of the starting EPR signal (signal 1a with g values of 4.32, 3.66, and 2.01). The second signal to arise, signal 1c, with a characteristic g value of 4.69, formed very slowly and was always of low intensity. Both signals occurred independently of the substrate being reduced. Increased electron flux through the MoFe protein caused these signals to form more rapidly. Moreover, after a MoFe-protein solution had been pretreated (using conditions of extremely low electron flux) to set up an equimolar mixture of its resting state and one-electron reduced state, these signals appeared even more rapidly when this mixture was exposed to an excess of the Fe protein. We have simulated the kinetics of formation of these EPR features using the published kinetic model for nitrogenase catalysis [Lowe, D. J., and Thorneley, R. N. F. (1984) Biochem. J. 224, 887-909] and propose that they arise from reduced states of the MoFe protein and reflect different conformations of the FeMo cofactor with different protonation states.
Collapse
Affiliation(s)
- K Fisher
- Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
26
|
Szilagyi RK, Musaev DG, Morokuma K. Theoretical studies of biological nitrogen fixation. I. Density functional modeling of the Mo-site of the FeMo-cofactor. Inorg Chem 2001; 40:766-75. [PMID: 11225121 DOI: 10.1021/ic000188n] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mo-site and its ligand environment of the FeMo-cofactor (FeMo-co) were studied using the hybrid density functional method B3LYP. The structure and stability of the model complex (S-ligand)3(N-ligand)Mo[(S)-OCH(CH3)C(O)O-] along with its various protonated and reduced/oxidized forms were calculated. Several hypotheses were tested: (i) ligand environment of the Mo-site, (ii) monodentate vs bidentate coordination of the Mo-bound homocitrate ligand, (iii) substrate coordination to the Mo center, and (iv) Mo-His interaction. It was found that the decoordination of one of the homocitrate (lactate in the model) "legs", the bidentate-->monodentate rearrangement, does not occur spontaneously upon either single/double protonation or one-electron reduction. However, it could occur only upon substrate coordination to the Mo-center of the single-protonated forms of the complex. It was shown that one-electron reduction, single-protonation, and substrate coordination facilitate the bidentate<-->monodentate rearrangement of the homocitrate (lactate) ligand of FeMo-co. It was demonstrated that the smallest acceptable model of His ligand in FeMo-co is methylimidazolate (MeIm-). Our studies suggest that the epsilon-N of the FeMo-co-bound His residue is not protonated, and as a consequence the cluster is tightly bound to the protein matrix via a strong Mo-N delta bond.
Collapse
Affiliation(s)
- R K Szilagyi
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
27
|
Fisher K, Dilworth MJ, Newton WE. Differential effects on N(2) binding and reduction, HD formation, and azide reduction with alpha-195(His)- and alpha-191(Gln)-substituted MoFe proteins of Azotobacter vinelandii nitrogenase. Biochemistry 2000; 39:15570-7. [PMID: 11112544 DOI: 10.1021/bi0017834] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In contrast to the wild-type MoFe protein, neither the alpha-195(Asn) nor the alpha-191(Lys) MoFe protein catalyzed N(2) reduction to NH(3), when complemented with wild-type Fe protein. However, N(2) was bound by the alpha-195(Asn) MoFe protein and inhibited the reduction of both protons and C(2)H(2). The alpha-191(Lys) MoFe protein did not interact with N(2). With the alpha-195(Asn) MoFe protein, the N(2)-induced inhibition of substrate reduction was reversed by removing the N(2). Surprisingly, even though added H(2) also relieved N(2) inhibition of substrate reduction, the alpha-195(Asn) MoFe protein did not catalyze HD formation under a N(2)/D(2) atmosphere. This observation is the first indication that these two reactions have different chemical origins, prompting a revision of the current hypothesis that these two reactions are consequences of the same nitrogenase chemistry. A rationale that accounts for the dichotomy of the two reactions is presented. The two altered MoFe proteins also responded quite differently to azide. It was a poor substrate for both but, in addition, azide was an electron-flux inhibitor with the 195(Asn) MoFe protein. The observed reactivity changes are correlated with likely structural changes caused by the amino acid substitutions and provide important details about the interaction(s) of N(2,) H(2), D(2), and azide with Mo-nitrogenase.
Collapse
Affiliation(s)
- K Fisher
- Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | |
Collapse
|
28
|
Fisher K, Dilworth MJ, Kim CH, Newton WE. Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-. Biochemistry 2000; 39:10855-65. [PMID: 10978172 DOI: 10.1021/bi0001628] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Wild-type and three altered Azotobacter vinelandii nitrogenase MoFe proteins, with substitutions either at alpha-195(His) (replaced by alpha-195(Asn) or alpha-195(Gln)) or at alpha-191(Gln) (replaced by alpha-191(Lys)), were used to probe the interactions of HCN and CN(-), both of which are present in NaCN solutions at pH 7.4, with nitrogenase. The first goal was to determine how added C(2)H(2) enhances the rate of CH(4) production from HCN reduction by wild-type nitrogenase. In the absence of C(2)H(2), wild-type Mo-nitrogenase showed a declining total electron flux, which is an overall measure of all products formed, as the NaCN concentration was increased from 1 to 5 mM, whereas the rates of both CH(4) and NH(3) production increased with increasing NaCN concentration. The NH(3) production rate exceeded the CH(4) production rate up to 5 mM NaCN, at which point they became equal. The "excess NH(3)" likely arises from the two-electron reduction of HCN to CH(2)=NH, some of which is released and hydrolyzed to HCHO plus NH(3). With added C(2)H(2), the rate of CH(4) production increased but only until it equaled that of NH(3) production, which remained unchanged. In addition, total electron flux was decreased even more at each NaCN concentration by C(2)H(2). The increased CH(4) production did not arise from the added C(2)H(2). The lowered total electron flux with C(2)H(2) present would decrease the affinity of the enzyme for HCN, making it a poorer competitor for the binding site. Thus, less CH(2)=NH would be displaced, more CH(2)=NH would undergo the full six-electron reduction, and the rate of CH(4) production would be enhanced. A second goal was to gain mechanistic insight into the roles of the amino acid residues in the alpha-subunit of the MoFe protein at positions alpha-191 and alpha-195 in substrate reduction. At 5 mM NaCN and in the presence of excess wild-type Fe protein, the specific activity for CH(4) production by the alpha-195(Asn), alpha-195(Gln), and alpha-191(Lys) MoFe proteins was 59%, 159%, and 6%, respectively, of that of wild type. For the alpha-195(Asn) MoFe protein, total electron flux decreased with increasing NaCN concentration like wild type. However, the rates of both CH(4) and NH(3) production were maximal at 1 mM NaCN, and they remained unequal even at 5 mM NaCN. With the alpha-195(Gln) MoFe protein, the rates of production of both CH(4) and NH(3) were equal at all NaCN concentrations, and total electron flux was hardly affected by changing the NaCN concentration. With the alpha-191(Lys) MoFe protein, the rates of both CH(4) and NH(3) production were very low, but the rate of NH(3) production was higher, and both rates slowly increased with increasing NaCN concentration. A hypothesis, which is based on the varying apparent affinities of the altered MoFe proteins for HCN and CN(-), is advanced to explain the higher rate of NH(3) production versus the rate of CH(4) production and the effect of increasing NaCN concentration on electron flux to products. A new method for CH(3)NH(2) quantification showed that all four MoFe proteins produced CH(3)NH(2). Added CO significantly inhibited both CH(4) and NH(3) production from HCN with all MoFe proteins except for the alpha-191(Lys) MoFe protein, which still manifested its very low rate of NH(3) production but without CH(4) production. All of the MoFe proteins responded differently to the addition of C(2)H(2) to reactions containing NaCN. With the alpha-195(Asn) MoFe protein, added C(2)H(2) decreased the rates of both CH(4) and NH(3) production, but the rate of NH(3) production decreased much less. C(2)H(2) also exacerbated the inhibition of electron flux. With the alpha-195(Gln) MoFe protein, added C(2)H(2) decreased the rates of both CH(4) and NH(3) production substantially and about equally. C(2)H(2) also eliminated the slight decrease in total electron flux that was caused by NaCN. Added C(2)H(2) hardly affected the alpha-191(Lys) MoFe protein. (ABSTRACT TRUNCA
Collapse
Affiliation(s)
- K Fisher
- Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
29
|
Fisher K, Dilworth MJ, Kim CH, Newton WE. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene. Biochemistry 2000; 39:2970-9. [PMID: 10715117 DOI: 10.1021/bi992092e] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Altered MoFe proteins of Azotobacter vinelandii Mo-nitrogenase, with amino acid substitutions in the FeMo-cofactor environment, were used to probe interactions among C(2)H(2), C(2)H(4), CO, and H(2). The altered MoFe proteins used were the alpha-195(Asn) or alpha-195(Gln) MoFe proteins, which have either asparagine or glutamine substituting for alpha-histidine-195, and the alpha-191(Lys) MoFe protein, which has lysine substituting for alpha-glutamine-191. On the basis of K(m) determinations, C(2)H(2) was a particularly poor substrate for the nitrogenase containing the alpha-191(Lys) MoFe protein. Using C(2)D(2), a correlation was shown between the stereospecificity of proton addition to give the products, cis- and trans-C(2)D(2)H(2), and the propensity of nitrogenase to produce ethane. The most extensive loss of stereospecificity occurred with nitrogenases containing either the alpha-195(Asn) or the alpha-191(Lys) MoFe proteins, which also exhibited the highest rate of ethane production from C(2)H(2). These data are consistent with the presence of a common ethylenic intermediate on the enzyme, which is responsible for both ethane production and loss of proton-addition stereochemistry. C(2)H(4) was not a substrate of the nitrogenase with the alpha-191(Lys) MoFe protein and was a poor substrate of the nitrogenases incorporating either the wild-type or the alpha-195(Gln) MoFe protein, both of which had a low V(max) and high K(m) (120 kPa). Ethylene was a somewhat better substrate for the nitrogenase with the alpha-195(Asn) MoFe protein, which exhibited a K(m) of 48 kPa and a specific activity for C(2)H(6) formation from C(2)H(4) 10-fold higher than the others. Neither the wild-type nitrogenase nor the nitrogenase containing the alpha-195(Asn) MoFe protein produced cis-C(2)D(2)H(2) when turned over under trans-C(2)D(2)H(2). These results suggest that the C(2)H(4)-reduction site is affected by substitution at residue alpha-195, although whether the effect is related to the substrate-reduction site directly or is mediated through disturbance of the delivery of electrons/protons is unclear. Ethylene inhibited total electron flux, without uncoupling MgATP hydrolysis from electron transfer, to a similar extent for all four A. vinelandii nitrogenases. This observation indicates that this C(2)H(4) flux-inhibition site is remote from the C(2)H(4)-reduction site. Added CO eliminated C(2)H(4) reduction but did not fully relieve its electron-flux inhibition with all four A. vinelandii nitrogenases, supporting the suggestion that electron-flux inhibition by C(2)H(4) is not directly connected to C(2)H(4) reduction. Thus, C(2)H(4) has two binding sites, and the presence of CO affects only the site at which it binds as a substrate. When C(2)H(2) was added, it also eliminated C(2)H(6) production from C(2)H(4) and also did not relieve electron-flux inhibition fully. Thus, C(2)H(2) and C(2)H(4) are likely reduced at the same site on the MoFe protein. Two schemes are presented to integrate the results of the interactions of C(2)H(2) and C(2)H(4) with the MoFe proteins.
Collapse
Affiliation(s)
- K Fisher
- Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | |
Collapse
|
30
|
Halbleib CM, Zhang Y, Ludden PW. Regulation of dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase-activating glycohydrolase by a redox-dependent conformational change of nitrogenase Fe protein. J Biol Chem 2000; 275:3493-500. [PMID: 10652344 DOI: 10.1074/jbc.275.5.3493] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nitrogenase-regulating enzymes dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase-activating glycohydrolase (DRAG), from Rhodospirillum rubrum, were shown to be sensitive to the redox status of the [Fe(4)S(4)](1+/2+) cluster of nitrogenase Fe protein from R. rubrum or Azotobacter vinelandii. DRAG had <2% activity with oxidized R. rubrum Fe protein relative to activity with reduced Fe protein. The activity of DRAG with oxygen-denatured Fe protein or a low molecular weight substrate, N(alpha)-dansyl-N(omega)-(1,N(6)-etheno-ADP-ribosyl)-arginine methyl ester, was independent of redox potential. The redox midpoint potential of DRAG activation of Fe protein was -430 mV versus standard hydrogen electrode, coinciding with the midpoint potential of the [Fe(4)S(4)] cluster from R. rubrum Fe protein. DRAT was found to have a specificity opposite that of DRAG, exhibiting low (<20%) activity with 87% reduced R. rubrum Fe protein relative to activity with fully oxidized Fe protein. A mutant of R. rubrum in which the rate of oxidation of Fe protein was substantially decreased had a markedly slower rate of ADP-ribosylation in vivo in response to 10 mM NH(4)Cl or darkness stimulus. It is concluded that the redox state of Fe protein plays a significant role in regulation of the activities of DRAT and DRAG in vivo.
Collapse
Affiliation(s)
- C M Halbleib
- Department of Biochemistry, Center for the Study of Nitrogen Fixation, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
31
|
Mayer SM, Lawson DM, Gormal CA, Roe SM, Smith BE. New insights into structure-function relationships in nitrogenase: A 1.6 A resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. J Mol Biol 1999; 292:871-91. [PMID: 10525412 DOI: 10.1006/jmbi.1999.3107] [Citation(s) in RCA: 234] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The X-ray crystal structure of Klebsiella pneumoniae nitrogenase component 1 (Kp1) has been determined and refined to a resolution of 1.6 A, the highest resolution reported for any nitrogenase structure. Models derived from three 1.6 A resolution X-ray data sets are described; two represent distinct oxidation states, whilst the third appears to be a mixture of both oxidized and reduced states (or perhaps an intermediate state). The structures of the protein and the iron-molybdenum cofactor (FeMoco) appear to be largely unaffected by the redox status, although the movement of Ser beta90 and a surface helix in the beta subunit may be of functional significance. By contrast, the 8Fe-7S P-cluster undergoes discrete conformational changes involving the movement of two iron atoms. Comparisons with known component 1 structures reveal subtle differences in the FeMoco environment, which could account for the lower midpoint potential of this cluster in Kp1. Furthermore, a non-proline- cis peptide bond has been identified in the alpha subunit that may have a functional role. It is within 10 A of the FeMoco and may have been overlooked in other component 1 models. Finally, metal-metal and metal-sulphur distances within the metal clusters agree well with values derived from EXAFS studies, although they are generally longer than the values reported for the closely related protein from Azotobacter vinelandii. A number of bonds between the clusters and their ligands are distinctly longer than the EXAFS values, in particular, those involving the molybdenum atom of the FeMoco.
Collapse
Affiliation(s)
- S M Mayer
- John Innes Centre, Nitrogen Fixation Laboratory, Norwich, NR4 7UH, UK
| | | | | | | | | |
Collapse
|
32
|
Almeida VR, Gormal CA, Grönberg KL, Henderson RA, Oglieve KE, Smith BE. Protonation and substitution reactions of Fe–S ‘basket’ clusters including extracted FeMo-cofactor of nitrogenase. Inorganica Chim Acta 1999. [DOI: 10.1016/s0020-1693(99)00103-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
Rangaraj P, Ryle MJ, Lanzilotta WN, Ludden PW, Shah VK. In vitro biosynthesis of iron-molybdenum cofactor and maturation of the nif-encoded apodinitrogenase. Effect of substitution for NifH with site-specifically altered forms of NifH. J Biol Chem 1999; 274:19778-84. [PMID: 10391920 DOI: 10.1074/jbc.274.28.19778] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NifH has three different roles in the nitrogenase enzyme system. Apart from serving as the physiological electron donor to dinitrogenase, NifH is involved in iron-molybdenum cofactor (FeMo-co) biosynthesis and in maturation of the FeMo-co-deficient form of apodinitrogenase to a FeMo-co-activable form (apodinitrogenase maturation). The exact roles of NifH in these processes are not well understood. In the present study, the features of NifH required for the aforementioned processes have been investigated by the use of site-specifically altered forms of the enzyme. The ability of six altered forms of NifH inactive in substrate reduction (K15R, D39N, D43N, L127Delta, D129E, and F135Y) to function in in vitro FeMo-co synthesis and apodinitrogenase maturation reactions was investigated. We report that the ability of NifH to bind and not hydrolyze MgATP is required for it to function in these processes. We also present evidence that the ability of NifH to function in these processes is not dictated by the properties known to be required for its function in electron transfer to dinitrogenase. Evidence toward the existence of separate, overlapping sites on NifH for each of its functions (substrate reduction, FeMo-co biosynthesis, and apodinitrogenase maturation) is presented.
Collapse
Affiliation(s)
- P Rangaraj
- Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
34
|
Allen RM, Roll JT, Rangaraj P, Shah VK, Roberts GP, Ludden PW. Incorporation of molybdenum into the iron-molybdenum cofactor of nitrogenase. J Biol Chem 1999; 274:15869-74. [PMID: 10336491 DOI: 10.1074/jbc.274.22.15869] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The biosynthesis of the iron-molybdenum cofactor (FeMo-co) of dinitrogenase was investigated using 99Mo to follow the incorporation of Mo into precursors. 99Mo label accumulates on dinitrogenase only when all known components of the FeMo-co synthesis system, NifH, NifNE, NifB-cofactor, homocitrate, MgATP, and reductant, are present. Furthermore, 99Mo label accumulates only on the gamma protein, which has been shown to serve as a chaperone/insertase for the maturation of apodinitrogenase when all known components are present. It appears that only completed FeMo-co can accumulate on the gamma protein. Very little FeMo-co synthesis was observed when all known components are used in purified forms, indicating that additional factors are required for optimal FeMo-co synthesis. 99Mo did not accumulate on NifNE under any conditions tested, suggesting that Mo enters the pathway at some other step, although it remains possible that a Mo-containing precursor of FeMo-co that is not sufficiently stable to persist during gel electrophoresis occurs but is not observed. 99Mo accumulates on several unidentified species, which may be the additional components required for FeMo-co synthesis. The molybdenum storage protein was observed and the accumulation of 99Mo on this protein required nucleotide.
Collapse
Affiliation(s)
- R M Allen
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
35
|
Shah VK, Rangaraj P, Chatterjee R, Allen RM, Roll JT, Roberts GP, Ludden PW. Requirement of NifX and other nif proteins for in vitro biosynthesis of the iron-molybdenum cofactor of nitrogenase. J Bacteriol 1999; 181:2797-801. [PMID: 10217770 PMCID: PMC93721 DOI: 10.1128/jb.181.9.2797-2801.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The iron-molybdenum cofactor (FeMo-co) of nitrogenase contains molybdenum, iron, sulfur, and homocitrate in a ratio of 1:7:9:1. In vitro synthesis of FeMo-co has been established, and the reaction requires an ATP-regenerating system, dithionite, molybdate, homocitrate, and at least NifB-co (the metabolic product of NifB), NifNE, and dinitrogenase reductase (NifH). The typical in vitro FeMo-co synthesis reaction involves mixing extracts from two different mutant strains of Azotobacter vinelandii defective in the biosynthesis of cofactor or an extract of a mutant strain complemented with the purified missing component. Surprisingly, the in vitro synthesis of FeMo-co with only purified components failed to generate significant FeMo-co, suggesting the requirement for one or more other components. Complementation of these assays with extracts of various mutant strains demonstrated that NifX has a role in synthesis of FeMo-co. In vitro synthesis of FeMo-co with purified components is stimulated approximately threefold by purified NifX. Complementation of these assays with extracts of A. vinelandii DJ42. 48 (DeltanifENX DeltavnfE) results in a 12- to 15-fold stimulation of in vitro FeMo-co synthesis activity. These data also demonstrate that apart from the NifX some other component(s) is required for the cofactor synthesis. The in vitro synthesis of FeMo-co with purified components has allowed the detection, purification, and identification of an additional component(s) required for the synthesis of cofactor.
Collapse
Affiliation(s)
- V K Shah
- Departments of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Smith B, Durrant M, Fairhurst S, Gormal C, Grönberg K, Henderson R, Ibrahim S, Le Gall T, Pickett C. Exploring the reactivity of the isolated iron-molybdenum cofactor of nitrogenase. Coord Chem Rev 1999. [DOI: 10.1016/s0010-8545(99)00017-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Lanzilotta WN, Parker VD, Seefeldt LC. Thermodynamics of nucleotide interactions with the Azotobacter vinelandii nitrogenase iron protein. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1429:411-21. [PMID: 9989226 DOI: 10.1016/s0167-4838(98)00251-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The nitrogenase iron (Fe) protein binds two molecules of MgATP or MgADP, which results in protein conformational changes that are important for subsequent steps of the nitrogenase reaction mechanism. In the present work, isothermal titration calorimetry has been used to deconvolute the apparent binding constants (K'a1 and K'a2) and the thermodynamic terms (delta H' degree and delta S' degree) for each of the two binding events of MgATP or MgADP to either the reduced or oxidized states of the Fe protein from Azotobacter vinelandii. The Fe protein was found to bind two nucleotides with positive cooperativity and the oxidation state of the [4Fe-4S] cluster of the Fe protein was found to influence the affinity for binding nucleotides, with the oxidized ([4Fe-4S]2+) state having up to a 15-fold higher affinity for nucleotides when compared to the reduced ([4Fe-4S]1+) state. The first nucleotide binding reaction was found to be driven by a large favorable entropy change (delta S' degree = 10-21 cal mol-1 K-1), with a less favorable or unfavorable enthalpy change (delta H' degree = +1.5 to -3.3 kcal mol-1). In contrast, the second nucleotide binding reaction was found to be driven by a favorable change in enthalpy (delta H' degree = -3.1 to -13.0 kcal mol-1), with generally less favorable entropy changes. A plot of the associated enthalpy (-delta H' degree) and entropy terms (-T delta S' degree) for each nucleotide and protein binding reaction revealed a linear relationship with a slope of 1.12, consistent with strong enthalpy-entropy compensation. These results indicate that the binding of the first nucleotide to the nitrogenase Fe protein results in structural changes accompanied by the reorganization of bound water molecules, whereas the second nucleotide binding reaction appears to result in much smaller structural changes and is probably largely driven by bonding interactions. Evidence is presented that the total free energy change (delta G' degree) derived from the binding of two nucleotides to the Fe protein accounts for the total change in the midpoint potential of the [4Fe-4S] cluster.
Collapse
Affiliation(s)
- W N Lanzilotta
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322, USA
| | | | | |
Collapse
|
38
|
Smith BE. Structure, Function, and Biosynthesis of the Metallosulfur Clusters in Nitrogenases. ADVANCES IN INORGANIC CHEMISTRY 1999. [DOI: 10.1016/s0898-8838(08)60078-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Dilworth MJ, Fisher K, Kim CH, Newton WE. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Biochemistry 1998; 37:17495-505. [PMID: 9860864 DOI: 10.1021/bi9812017] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies of the substrate-reducing capabilities of an altered nitrogenase MoFe protein (alpha-195(Gln) instead of alpha-195(His)) from a mutant of Azotobacter vinelandii show, contrary to an earlier report [Kim, C.-H., Newton, W. E., and Dean, D. R. (1995) Biochemistry 34, 2798-2808], that the alpha-195(Gln) MoFe protein can reduce N2 to NH3 but at a rate that is <2% of that of the wild type. The extent of effective binding of N2 by this altered MoFe protein, as monitored by the inhibition of H2 evolution, is markedly increased as temperature is lowered but virtually eliminated at 45 degreesC. This inhibition of H2 evolution results in an increase in the ATP:2e- ratio, i.e., the number of molecules of MgATP hydrolyzed for each electron pair transferred to substrate, from ca. 5 (the wild-type level) at 45 degreesC to nearly 25 at 13 degreesC. Like wild-type nitrogenase, the N2 inhibition of H2 evolution reaches a maximum at an Fe protein:MoFe protein molar ratio of ca. 2.5, suggesting that a highly reduced enzyme may not be necessary for N2 binding. N2 binding to the alpha-195(Gln) MoFe protein retains a hallmark of the wild type by producing HD under a mixed N2/D2 atmosphere. The rate of HD production and the fraction of total electron flow allocated to HD are similar to those for wild-type nitrogenase under the same conditions. However, the electrons forming HD do not come from those normally producing NH3 (as occurs in the wild type) but are equivalent to those whose evolution as H2 had been inhibited by N2. N2 also inhibits C2H2 reduction catalyzed by the alpha-195(Gln) nitrogenase. This inhibition is relieved by added H2, resulting in a lowering of the elevated ATP:2e- ratio to that found under Ar. With solutions of NaCN, which contain both the substrate, HCN, and the inhibitor, CN-, reduction of HCN is not impaired with the alpha-195(Gln) nitrogenase, but the inhibition by CN- of total electron flow to substrate, which is observed with the wild-type MoFe protein, is completely absent. Unlike that of the catalyzed reduction of H+, HCN, or C2H2, the extent of azide reduction to either N2 or N2H4 is markedly decreased (to 5-7% of that of the wild type) with the alpha-195(Gln) nitrogenase. Azide, like N2, inhibits H2 evolution and increases the ATP:2e- ratio. Both effects are freely reversible and abolished by CO. Added D2 does not relieve either effect, implying that N2 produced from N3- is not the inhibitory species. The correlation between the extremely low rates of reduction for both N2 and azide by the alpha-195(Gln) nitrogenase and their common ability to inhibit H2 evolution suggests that alpha-histidine-195 may be an important proton conductor to the FeMo cofactor center and specifically required for reduction of these two substrates.
Collapse
Affiliation(s)
- M J Dilworth
- Department of Biochemistry, The Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | |
Collapse
|
40
|
Grönberg KLC, Gormal CA, Durrant MC, Smith BE, Henderson RA. Why R-Homocitrate Is Essential to the Reactivity of FeMo-Cofactor of Nitrogenase: Studies on NifV--Extracted FeMo-Cofactor. J Am Chem Soc 1998. [DOI: 10.1021/ja981832o] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Karin L. C. Grönberg
- Contribution from the John Innes Centre, Nitrogen Fixation Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| | - Carol A. Gormal
- Contribution from the John Innes Centre, Nitrogen Fixation Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| | - Marcus C. Durrant
- Contribution from the John Innes Centre, Nitrogen Fixation Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| | - Barry E. Smith
- Contribution from the John Innes Centre, Nitrogen Fixation Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| | - Richard A. Henderson
- Contribution from the John Innes Centre, Nitrogen Fixation Laboratory, Norwich Research Park, Colney, Norwich NR4 7UH, U.K
| |
Collapse
|
41
|
Goodwin PJ, Agar JN, Roll JT, Roberts GP, Johnson MK, Dean DR. The Azotobacter vinelandii NifEN complex contains two identical [4Fe-4S] clusters. Biochemistry 1998; 37:10420-8. [PMID: 9671511 DOI: 10.1021/bi980435n] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nifE and nifN gene products from Azotobacter vinelandii form an alpha2beta2 tetramer (NifEN complex) that is required for the biosynthesis of the nitrogenase FeMo cofactor. In the current model for NifEN complex organization and function, the complex is structurally analogous to the nitrogenase MoFe protein and provides an assembly site for a portion of FeMo cofactor biosynthesis. In this work, gene fusion and immobilized metal-affinity chromatography strategies were used to elevate the in vivo production of the NifEN complex and to facilitate its rapid and efficient purification. The NifEN complex produced and purified in this way exhibits an FeMo cofactor biosynthetic activity similar to that previously described for the NifEN complex purified by traditional chromatography methods. UV-visible, EPR, variable-temperature magnetic circular dichroism, and resonance Raman spectroscopies were used to show that the NifEN complex contains two identical [4Fe-4S]2+ clusters. These clusters have a predominantly S = 1/2 ground state in the reduced form, exhibit a reduction potential of -350 mV, and are likely to be coordinated entirely by cysteinyl residues on the basis of spectroscopic properties and sequence comparisons. A model is proposed where each NifEN complex [4Fe-4S] cluster is bridged between a NifE-NifN subunit interface at a position analogous to that occupied by the P clusters in the nitrogenase MoFe protein. In contrast to the MoFe protein P clusters, the NifEN complex [4Fe-4S] clusters are proposed to be asymmetrically coordinated to the NifEN complex where NifE cysteines-37, -62, and -124 and NifN cysteine-44 are the coordinating ligands. On the basis of a homology model of the three-dimensional structure of the NifEN complex, the [4Fe-4S] cluster sites are likely to be remote from the proposed FeMo cofactor assembly site and are unlikely to become incorporated into the FeMo cofactor during its assembly.
Collapse
Affiliation(s)
- P J Goodwin
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA
| | | | | | | | | | | |
Collapse
|
42
|
X-ray absorption spectroscopic studies of the binding of ligands to FeMoco of nitrogenase from Klebsiella pneumoniae. Inorganica Chim Acta 1998. [DOI: 10.1016/s0020-1693(98)00116-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Lanzilotta WN, Parker VD, Seefeldt LC. Electron transfer in nitrogenase analyzed by Marcus theory: evidence for gating by MgATP. Biochemistry 1998; 37:399-407. [PMID: 9425061 DOI: 10.1021/bi971681m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nitrogenase-catalyzed substrate reduction reactions require electron transfer between two component proteins, the iron (Fe) protein and the molybdenum-iron (MoFe) protein, in a reaction that is coupled to the hydrolysis of MgATP. In the present work, electron transfer (Marcus) theory has been applied to nitrogenase electron transfer reactions to gain insights into possible roles for MgATP in this reaction. Evidence is presented indicating that an event associated with either MgATP binding or hydrolysis acts to gate electron transfer between the two component proteins. In addition, evidence is presented that the reaction mechanism can be fundamentally changed such that electron transfer becomes rate-limiting by the alteration of a single amino acid within the nitrogenase Fe protein (deletion of Leu 127, L127 Delta). These studies utilized the temperature dependence of intercomponent electron transfer within two different nitrogenase complexes: the wild-type nitrogenase complex that requires MgATP for electron transfer and the L127 Delta Fe protein-MoFe protein complex that does not require MgATP for electron transfer. It was found that the wild-type nitrogenase electron transfer reaction did not conform to Marcus theory, suggesting that an adiabatic event associated with MgATP interaction precedes electron transfer and is rate-limiting. Application of transition state theory provided activation parameters for this rate-limiting step. In contrast, electron transfer from the L127 Delta Fe protein variant to the MoFe protein (which does not require MgATP hydrolysis) was found to be described by Marcus theory, indicating that electron transfer was rate-limiting. Marcus parameters were determined for this reaction with a reorganization energy (lambda) of 2.4 eV, a coupling constant (HAB) of 0.9 cm-1, a free energy change (Delta G' degrees ) of -22.0 kJ/mol, and a donor-acceptor distance (r) of 14 A. These values are consistent with parameters deduced for electron transfer reactions in other protein-protein systems where electron transfer is rate-limiting. Finally, the electron transfer reaction within the L127 Delta Fe protein-MoFe protein complex was found to be reversible. These results are discussed in the context of models for how MgATP interactions might be coupled to electron transfer in nitrogenase.
Collapse
Affiliation(s)
- W N Lanzilotta
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322, USA
| | | | | |
Collapse
|
44
|
Lanzilotta WN, Seefeldt LC. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Biochemistry 1997; 36:12976-83. [PMID: 9335558 DOI: 10.1021/bi9715371] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
All nitrogenase-catalyzed substrate reduction reactions require the transient association between the iron (Fe) protein component and the molybdenum-iron (MoFe) protein component with concomitant intercomponent electron transfer and MgATP hydrolysis. Understanding the effects of Fe protein-MoFe protein complex formation on the properties of the nitrogenase metal centers is thus essential to understanding the electron transfer reactions. This work presents evidence for significant shifts in midpoint potentials for two of the three nitrogenase metal centers as a result of Fe protein binding to the MoFe protein. The midpoint potentials for the three nitrogenase metal centers, namely the [4Fe-4S] cluster of the Fe protein, and the [8Fe-7S] (or P-) clusters and FeMo cofactors (or M-centers) of the MoFe protein, were determined within a nondissociating nitrogenase complex prepared with a site-specifically altered Fe protein (Leu at position 127 deleted, L127Delta). The midpoint potential for each metal center was determined by mediated redox titrations, with the redox state of each center being monitored by parallel and perpendicular mode EPR spectroscopy. The midpoint potential of the Fe protein [4Fe-4S]2+/1+ cluster couple was observed to change by -200 mV from -420 mV in the uncomplexed L127Delta Fe protein to -620 mV in the L127Delta Fe protein-MoFe protein complex. The midpoint potential of the two electron oxidized couple of the P-clusters (P2+/N) of the MoFe protein was observed to shift by -80 mV upon protein-protein complex formation. No significant change in the midpoint potential of an oxidized state of FeMoco (Mox/N) was observed upon complex formation. These results provide insights into the energetics of intercomponent electron transfer in nitrogenase, suggesting that the energy of protein-protein complex formation is coupled to an increase in the driving force for electron transfer. The results are interpreted in light of the expected changes in the protein environments of the metal centers within the nitrogenase complex.
Collapse
Affiliation(s)
- W N Lanzilotta
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | | |
Collapse
|
45
|
Rangaraj P, Shah VK, Ludden PW. ApoNifH functions in iron-molybdenum cofactor synthesis and apodinitrogenase maturation. Proc Natl Acad Sci U S A 1997; 94:11250-5. [PMID: 9326595 PMCID: PMC23431 DOI: 10.1073/pnas.94.21.11250] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/1997] [Accepted: 08/15/1997] [Indexed: 02/05/2023] Open
Abstract
NifH (dinitrogenase reductase) has three important roles in the nitrogenase enzyme system. In addition to its role as the obligate electron donor to dinitrogenase, NifH is required for the iron-molybdenum cofactor (FeMo-co) synthesis and apodinitrogenase maturation. We have investigated the requirement of the Fe-S cluster of NifH for these processes by preparing apoNifH. The 4Fe-4S cluster of NifH was removed by chelation of the cluster with alpha, alpha'-bipyridyl. The resulting apoNifH was tested in in vitro FeMo-co synthesis and apodinitrogenase maturation reactions and was found to function in both these processes. Thus, the presence of a redox active 4Fe-4S cluster in NifH is not required for its function in FeMo-co synthesis and in apodinitrogenase maturation. This, in turn, implies that the role of NifH in these processes is not one of electron transfer or of iron or sulfur donation.
Collapse
Affiliation(s)
- P Rangaraj
- Department of Biochemistry and Center for the Study of Nitrogen Fixation, College of Agricultural and Life Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | |
Collapse
|
46
|
Zheng L, White RH, Dean DR. Purification of the Azotobacter vinelandii nifV-encoded homocitrate synthase. J Bacteriol 1997; 179:5963-6. [PMID: 9294461 PMCID: PMC179493 DOI: 10.1128/jb.179.18.5963-5966.1997] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The nifV gene product (NifV) from Azotobacter vinelandii was recombinantly expressed at high levels in Escherichia coli and purified. NifV is a homodimer that catalyzes the condensation of acetyl coenzyme A (acetyl-CoA) and alpha-ketoglutarate. Although alpha-ketoglutarate supports the highest level of activity, NifV will also catalyze the condensation of acetyl-CoA and certain other keto acids. E. coli cells in which a high level of nifV expression is induced excrete homocitrate into the growth medium.
Collapse
Affiliation(s)
- L Zheng
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0346, USA
| | | | | |
Collapse
|
47
|
George SJ, Ashby GA, Wharton CW, Thorneley RNF. Time-Resolved Binding of Carbon Monoxide to Nitrogenase Monitored by Stopped-Flow Infrared Spectroscopy. J Am Chem Soc 1997. [DOI: 10.1021/ja971088s] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Shen J, Dean DR, Newton WE. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein. Biochemistry 1997; 36:4884-94. [PMID: 9125509 DOI: 10.1021/bi9628578] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The arginine-277 residue of the alpha-subunit of the nitrogenase MoFe protein was targeted for substitution because it is (i) a close neighbor of alpha-cysteine-275, which is one of only two residues anchoring the FeMo cofactor to the polypeptide, and (ii) a component of a potential channel for entry/exit of substrates/products and for accepting FeMo cofactor during MoFe-protein maturation. Several of the eight mutant strains constructed were capable of good diazotrophic growth and also contained FeMo cofactor as indicated by its biologically unique S = 3/2 EPR spectrum. These observations indicate that the positively charged alpha-arginine-277 residue is not required for acceptance of the negatively charged FeMo cofactor by the separately synthesized, cofactor-deficient, apo-MoFe protein. The wide range of nitrogen-fixation phenotypes shown by these mutant strains generally correlated well with their C2H2- and proton-reduction activities, which range from 5 to 65% of wild-type activity. One notable exception is the histidine-substituted strain, DJ788 (alpha-277His). This strain, although unable to fix N2 and grow diazotrophically, elaborates an altered alpha-277His MoFe protein that catalyzes the reduction of the alternative substrates, C2H2, HCN, HN3, and protons. These observations are best explained if multiple redox levels are available to the MoFe protein but the alpha-277His MoFe protein is incapable of reaching the more-reduced redox levels required for nitrogen fixation. Under nonsaturating CO concentrations, the alpha-277His MoFe-protein-catalyzed reduction of C2H2 showed sigmoidal kinetics, which is consistent with inhibitor-induced cooperativity among two C2H4-evolving sites and indicates the presence of three sites, which can be simultaneously occupied, on the MoFe protein. Similar kinetics were not observed for alpha-277His MoFe-protein-catalyzed reduction of either HCN or HN3 with nonsaturating CO levels, indicating that these substrates are unlikely to share common binding sites with C2H2. Further, CN- did not induce cooperativity in C2H2 reduction and, therefore, CO and CN- are unlikely to share a common binding site. These changed substrate specificities, reinforced by changes in the FeMo-cofactor-derived S = 3/2 EPR spectrum, clearly indicate the importance of the alpha-277 residue in catalysis and the delicate control exerted on the properties of bound FeMo cofactor by its polypeptide environment.
Collapse
Affiliation(s)
- J Shen
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg 24061-0308, USA
| | | | | |
Collapse
|
49
|
Reactions of W2(H)(OR)7, W2(OR)6(py)2 and W4(OCH2cC4H7)12 compounds (R = Pri, CH2But, cC5H9) with azobenzene, 1,2-diphenylhydrazine and 1,1-dimethylhydrazine. Polyhedron 1997. [DOI: 10.1016/s0277-5387(96)00490-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Lanzilotta WN, Fisher K, Seefeldt LC. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39. J Biol Chem 1997; 272:4157-65. [PMID: 9020128 DOI: 10.1074/jbc.272.7.4157] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Nitrogenase-catalyzed substrate reduction reactions require the association of the iron (Fe) protein and the molybdenum-iron (MoFe) protein, electron transfer from the Fe protein to the MoFe protein coupled to the hydrolysis of MgATP, followed by protein-protein complex dissociation. This work examines the role of MgATP hydrolysis and electron transfer in the dissociation of the Fe protein-MoFe protein complex. Alteration of aspartate 39 to asparagine (D39N) in the nucleotide binding site of Azotobacter vinelandii Fe protein by site-directed mutagenesis resulted in an Fe protein-MoFe protein complex that did not dissociate after electron transfer. While the D39N Fe protein-MoFe protein complex was inactive in all substrate reduction reactions, the complex catalyzed both reductant-dependent and reductant-independent MgATP hydrolysis. Once docked to the MoFe protein, the D39N Fe protein was found to transfer one electron to the MoFe protein requiring MgATP hydrolysis, with an apparent first order rate constant of 0.02 s-1 compared with 140 s-1 for the wild-type Fe protein. Only following electron transfer to the MoFe protein did the D39N Fe protein form a tight complex with the MoFe protein, with no detectable dissociation rate. This was in contrast with the dissociation rate constant of the wild-type Fe protein from the MoFe protein following electron transfer of 5 s-1. Chemically oxidized D39N Fe protein with MgADP-bound did not form a tight complex with the MoFe protein, showing a dissociation rate similar to chemically oxidized wild-type Fe protein (3 s-1 for D39N Fe protein and 6 s-1 for wild-type Fe protein). These results suggest that electron transfer from the Fe protein to the MoFe protein within the protein-protein complex normally induces conformational changes which increase the affinity of the Fe protein for the MoFe protein. A model is presented in which Asp-39 participates in a nucleotide signal transduction pathway involved in component protein-protein dissociation.
Collapse
Affiliation(s)
- W N Lanzilotta
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | | | | |
Collapse
|