1
|
Chetot T, Serfaty X, Carret L, Kriznik A, Sophie-Rahuel-Clermont, Grand L, Jacolot M, Popowycz F, Benoit E, Lambert V, Lattard V. Splice variants of protein disulfide isomerase - identification, distribution and functional characterization in the rat. Biochim Biophys Acta Gen Subj 2023; 1867:130280. [PMID: 36423740 DOI: 10.1016/j.bbagen.2022.130280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 10/28/2022] [Accepted: 11/13/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Protein Disulfide Isomerase (PDI) enzyme is an emerging therapeutic target in oncology and hematology. Although PDI reductase activity has been studied with isolated fragments of the protein, natural structural variations affecting reductase activity have not been addressed. METHODS In this study, we discovered four coding splice variants of the Pdi pre-mRNA in rats. In vitro Michaelis constants and apparent maximum steady-state rate constants after purification and distribution in different rat tissues were determined. RESULTS The consensus sequence was found to be the most expressed splice variant while the second most expressed variant represents 15 to 35% of total Pdi mRNA. The third variant shows a quasi-null expression profile and the fourth was not quantifiable. The consensus sequence splice variant and the second splice variant are widely expressed (transcription level) in the liver and even more present in males. Measurements of the reductase activity of recombinant PDI indicate that the consensus sequence and third splice variant are fully active variants. The second most expressed variant, differing by a lack of signal peptide, was found active but less than the consensus sequence. GENERAL SIGNIFICANCE Our work emphasizes the importance of taking splice variants into account when studying PDI-like proteins to understand the full biological functionalities of PDI.
Collapse
Affiliation(s)
- Thomas Chetot
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Xavier Serfaty
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Léna Carret
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | | | | | - Lucie Grand
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Maïwenn Jacolot
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Florence Popowycz
- Univ Lyon, INSA Lyon, Université Lyon 1, CNRS, CPE Lyon, UMR 5246, ICBMS, 69621 Villeurbanne Cedex, France
| | - Etienne Benoit
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Véronique Lambert
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France
| | - Virginie Lattard
- USC 1233 RS2GP, VetAgro Sup, INRAe, Université de Lyon, 69280 Marcy l'étoile, France.
| |
Collapse
|
2
|
Mechanisms of Disulfide Bond Formation in Nascent Polypeptides Entering the Secretory Pathway. Cells 2020; 9:cells9091994. [PMID: 32872499 PMCID: PMC7565403 DOI: 10.3390/cells9091994] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
Disulfide bonds are an abundant feature of proteins across all domains of life that are important for structure, stability, and function. In eukaryotic cells, a major site of disulfide bond formation is the endoplasmic reticulum (ER). How cysteines correctly pair during polypeptide folding to form the native disulfide bond pattern is a complex problem that is not fully understood. In this paper, the evidence for different folding mechanisms involved in ER-localised disulfide bond formation is reviewed with emphasis on events that occur during ER entry. Disulfide formation in nascent polypeptides is discussed with focus on (i) its mechanistic relationship with conformational folding, (ii) evidence for its occurrence at the co-translational stage during ER entry, and (iii) the role of protein disulfide isomerase (PDI) family members. This review highlights the complex array of cellular processes that influence disulfide bond formation and identifies key questions that need to be addressed to further understand this fundamental process.
Collapse
|
3
|
Abstract
We attempted to identify the total proteome in sesame lipid droplets. Results from two-dimensional electrophoresis showed 139 protein spots in lipid droplet samples. Each spot was isolated, digested with trypsin, and applied to liquid chromatography–tandem mass spectrometry (Q-Tof Premier). As a result, 103 spots were identified. Although oleosin, caleosin, and steroleosin are known major components of the lipid droplet, many other proteins were also found in the lipid droplet. In addition to the three major proteins, TAG factor protein, glyceraldehyde-3-phosphate dehydrogenase, F1 ATPase, 70-kDa heat shock protein, seed maturation protein PM24, and 11S globulin precursor isoforms 3 and 4 were found in the lipid droplet. Three types of oleosins, 15-, 15.5-, and 17-kDa were present in the sesame lipid droplet, and the 15.5-kDa oleosin had high homology with oleosin from Coffea canephora. It has been shown by acid phosphatase treatment that oleosin proteins contain phosphate groups. Protein disulfide-isomerase 2 precursor, calreticulin-1, and BiP, which are known as marker proteins of the endoplasmic reticulum, were found as the components of the lipid droplet. Immunoconfocal microscopy was used to show that 11S globulin precursor isoform 3 and 4 were indeed localized in the lipid droplet. The presence of 11S globulin in the lipid droplets suggested a new mechanism for the lipid droplet formation.
Collapse
|
4
|
Chong SJF, Lai JXH, Eu JQ, Bellot GL, Pervaiz S. Reactive Oxygen Species and Oncoprotein Signaling-A Dangerous Liaison. Antioxid Redox Signal 2018; 29:1553-1588. [PMID: 29186971 DOI: 10.1089/ars.2017.7441] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
SIGNIFICANCE There is evidence to implicate reactive oxygen species (ROS) in tumorigenesis and its progression. This has been associated with the interplay between ROS and oncoproteins, resulting in enhanced cellular proliferation and survival. Recent Advances: To date, studies have investigated specific contributions of the crosstalk between ROS and signaling networks in cancer initiation and progression. These investigations have challenged the established dogma of ROS as agents of cell death by demonstrating a secondary function that fuels cell proliferation and survival. Studies have thus identified (onco)proteins (Bcl-2, STAT3/5, RAS, Rac1, and Myc) in manipulating ROS level as well as exploiting an altered redox environment to create a milieu conducive for cancer formation and progression. CRITICAL ISSUES Despite these advances, drug resistance and its association with an altered redox metabolism continue to pose a challenge at the mechanistic and clinical levels. Therefore, identifying specific signatures, altered protein expressions, and modifications as well as protein-protein interplay/function could not only enhance our understanding of the redox networks during cancer initiation and progression but will also provide novel targets for designing specific therapeutic strategies. FUTURE DIRECTIONS Not only a heightened realization is required to unravel various gene/protein networks associated with cancer formation and progression, particularly from the redox standpoint, but there is also a need for developing more sensitive tools for assessing cancer redox metabolism in clinical settings. This review attempts to summarize our current knowledge of the crosstalk between oncoproteins and ROS in promoting cancer cell survival and proliferation and treatment strategies employed against these oncoproteins. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Stephen Jun Fei Chong
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jolin Xiao Hui Lai
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore
| | - Jie Qing Eu
- 2 Cancer Science Institute , Singapore, Singapore
| | - Gregory Lucien Bellot
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,3 Department of Hand and Reconstructive Microsurgery, National University Health System , Singapore, Singapore
| | - Shazib Pervaiz
- 1 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,4 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,5 National University Cancer Institute, National University Health System , Singapore, Singapore .,6 School of Biomedical Sciences, Curtin University , Perth, Australia
| |
Collapse
|
5
|
Bechtel TJ, Weerapana E. From structure to redox: The diverse functional roles of disulfides and implications in disease. Proteomics 2017; 17. [PMID: 28044432 DOI: 10.1002/pmic.201600391] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/02/2016] [Accepted: 12/28/2016] [Indexed: 12/16/2022]
Abstract
This review provides a comprehensive overview of the functional roles of disulfide bonds and their relevance to human disease. The critical roles of disulfide bonds in protein structure stabilization and redox regulation of protein activity are addressed. Disulfide bonds are essential to the structural stability of many proteins within the secretory pathway and can exist as intramolecular or inter-domain disulfides. The proper formation of these bonds often relies on folding chaperones and oxidases such as members of the protein disulfide isomerase (PDI) family. Many of the PDI family members catalyze disulfide-bond formation, reduction, and isomerization through redox-active disulfides and perturbed PDI activity is characteristic of carcinomas and neurodegenerative diseases. In addition to catalytic function in oxidoreductases, redox-active disulfides are also found on a diverse array of cellular proteins and act to regulate protein activity and localization in response to oxidative changes in the local environment. These redox-active disulfides are either dynamic intramolecular protein disulfides or mixed disulfides with small-molecule thiols generating glutathionylation and cysteinylation adducts. The oxidation and reduction of redox-active disulfides are mediated by cellular reactive oxygen species and activity of reductases, such as glutaredoxin and thioredoxin. Dysregulation of cellular redox conditions and resulting changes in mixed disulfide formation are directly linked to diseases such as cardiovascular disease and Parkinson's disease.
Collapse
Affiliation(s)
- Tyler J Bechtel
- Department of Chemistry, Boston College, Chestnut Hill, MA, USA
| | | |
Collapse
|
6
|
Verma P, Doharey PK, Yadav S, Omer A, Singh P, Saxena JK. Molecular cloning and characterization of protein disulfide isomerase of Brugia malayi, a human lymphatic filarial parasite. EXCLI JOURNAL 2017; 16:824-839. [PMID: 28827998 PMCID: PMC5547380 DOI: 10.17179/excli2017-214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/11/2017] [Indexed: 11/29/2022]
Abstract
Lymphatic filariasis results in an altered lymphatic system and the abnormal enlargement of body parts, causing pain, serious disability and social stigma. Effective vaccines are still not available nowadays, drugs against the disease is required. Protein disulfide isomerase (PDI) is an essential catalyst of the endoplasmic reticulum which is involved in folding and chaperone activities in different biological systems. Here, we report the enzymatic characterization of a Brugia malayi Protein disulfide isomerase (BmPDI), which was expressed and purified from Escherichia coli BL21 (DE3). Western blotting analysis showed the recombinant BmPDI could be recognized by anti-BmPDI Rabbit serum. The rBmPDI exhibited an optimum activity at pH 8 and 40 °C. The enzyme was inhibited by aurin and PDI inhibitor. Recombinant BmPDI showed interaction with recombinant Brugia malayi calreticulin (rBmCRT). The three-dimensional model for BmPDI and BmCRT was generated by homology modelling. A total of 25 hydrogen bonds were found to be formed between two interfaces. There are 259 non-bonded contacts present in the BmPDI-BmCRT complex and 12 salt bridges were formed in the interaction.
Collapse
Affiliation(s)
- Pravesh Verma
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Pawan Kumar Doharey
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sunita Yadav
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ankur Omer
- Division of Toxicology, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Poonam Singh
- Division of Toxicology, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Jitendra Kumar Saxena
- Division of Biochemistry, CSIR-Central Drug Research Institute, BS10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| |
Collapse
|
7
|
Szarka A, Lőrincz T. The role of ascorbate in protein folding. PROTOPLASMA 2014; 251:489-97. [PMID: 24150425 DOI: 10.1007/s00709-013-0560-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/02/2013] [Indexed: 05/13/2023]
Abstract
Ascorbate was linked to protein folding a long time ago. At the first level of this connection, it had been shown that ascorbate functions as an essential cofactor in the hydroxylation enzymes involved in collagen synthesis. Although the hydroxylation reactions catalyzed by the members of the prolyl 4-hydroxylase family are considered to be ascorbate dependent, the hydroxylation of proline alone does not need ascorbate. Prolyl 4-hydroxylases participate in two catalytic reactions: one in which proline residues are hydroxylated, while 2-oxoglutarate is decarboxylated and molecular oxygen is consumed. This reaction is ascorbate independent. However, in another reaction, prolyl 4-hydroxylases catalyze the decarboxylation of 2-oxoglutarate uncoupled from proline hydroxylation but still needing molecular oxygen. At this time, ferrous iron is oxidized and the protein is rendered catalytically inactive until reduced by ascorbate. At the second level of the connection, the oxidation and the oxidized form of ascorbate, dehydroascorbate, is involved in the formation of disulfide bonds of secretory proteins. The significance of the dehydroascorbate reductase activity of protein disulfide isomerase was debated because protein disulfide isomerase as a dehydroascorbate reductase was found to be too slow to be the major route for the reduction of dehydroascorbate (and formation of disulfides) in the endoplasmic reticulum lumen. However, very recently, low tissue ascorbate levels and a noncanonical scurvy were observed in endoplasmic reticulum thiol oxidase- and peroxiredoxin 4-compromised mice. This novel observation implies that ascorbate may be involved in oxidative protein folding and creates a link between the disulfide bond formation (oxidative protein folding) and hydroxylation.
Collapse
Affiliation(s)
- András Szarka
- Department of Applied Biotechnology and Food Science, Laboratory of Biochemistry and Molecular Biology, Budapest University of Technology and Economics, 1111 Szent Gellért tér 4, Budapest, Hungary,
| | | |
Collapse
|
8
|
Hyperoxidized peroxiredoxin 2 interacts with the protein disulfide- isomerase ERp46. Biochem J 2013; 453:475-85. [DOI: 10.1042/bj20130030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prx (peroxiredoxin) 2 protects cells from deleterious oxidative damage. It catalyses the breakdown of hydroperoxides through a highly reactive cysteine residue and has been linked to chaperone activity that promotes cell survival under conditions of oxidative stress. It may also be involved in redox signalling by binding to other proteins. In the present study we have searched for binding partners of Prx2 in H2O2-treated Jurkat and human umbilical vein endothelial cells and discovered that the hyperoxidized form selectively co-precipitated with the protein disulfide-isomerase ERp46. Mutant analyses revealed that loss of the peroxidative cysteine residue of Prx2 also facilitated complex formation with ERp46, even without H2O2 treatment, whereas the resolving cysteine residue of Prx2 was indispensible for the interaction to occur. The complex involved a stable non-covalent interaction that was disassociated by the reduction of intramolecular disulfides in ERp46, or by disruption of the decameric structure of hyperoxidized Prx2. This is the first example of a protein interaction dependent on the hyperoxidized status of a Prx.
Collapse
|
9
|
Hecht KA, Wytiaz VA, Ast T, Schuldiner M, Brodsky JL. Characterization of an M28 metalloprotease family member residing in the yeast vacuole. FEMS Yeast Res 2013; 13:471-84. [PMID: 23679341 DOI: 10.1111/1567-1364.12050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/29/2013] [Accepted: 05/09/2013] [Indexed: 11/26/2022] Open
Abstract
The systematic and complete characterization of the Saccharomyces cerevisiae genome and proteome has been stalled in some cases by misannotated genes. One such gene is YBR074W, which was initially annotated as two independent open reading frames (ORFs). We now report on Ybr074, a metalloprotease family member that was initially predicted to reside in the endoplasmic reticulum (ER). Therefore, we tested the hypothesis that Ybr074 may be an ER quality control protease. Instead, indirect immunofluorescence images indicate that Ybr074 is a vacuolar protein, and by employing protease protection assays, we demonstrate that a conserved M28 metalloprotease domain is oriented within the lumen. Involvement of Ybr074 in ER protein quality control was ruled out by examining the stabilities of several well-characterized substrates in strains lacking Ybr074. Finally, using a proteomic approach, we show that disrupting Ybr074 function affects the levels of select factors implicated in vacuolar trafficking and osmoregulation. Together, our data indicate that Ybr074 is the only multispanning vacuolar membrane protease found in the yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Karen A Hecht
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
10
|
Liu J, Li F, Rozovsky S. The intrinsically disordered membrane protein selenoprotein S is a reductase in vitro. Biochemistry 2013; 52:3051-61. [PMID: 23566202 DOI: 10.1021/bi4001358] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Selenoprotein S (SelS or VIMP) is an intrinsically disordered membrane enzyme that provides protection against reactive oxidative species. SelS is a member of the endoplasmic reticulum-associated protein degradation pathway, but its precise enzymatic function is unknown. Because it contains the rare amino acid selenocysteine, it belongs to the family of selenoproteins, which are typically oxidoreductases. Its exact enzymatic function is key to understanding how the cell regulates the response to oxidative stress and thus influences human health and aging. To identify its enzymatic function, we have isolated the selenocysteine-containing enzyme by relying on the aggregation of forms that do not have this reactive residue. That allows us to establish that SelS is primarily a thioredoxin-dependent reductase. It is capable of reducing hydrogen peroxide but is not an efficient or broad-spectrum peroxidase. Only the selenocysteine-containing enzyme is active. In addition, the reduction potential of SelS was determined to be -234 mV using electrospray ionization mass spectrometry. This value is consistent with SelS being a partner of thioredoxin. On the basis of this information, SelS can directly combat reactive oxygen species but is also likely to participate in a signaling pathway, via a yet unidentified substrate.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | | | | |
Collapse
|
11
|
Besnoitia besnoiti protein disulfide isomerase (BbPDI): molecular characterization, expression and in silico modelling. Exp Parasitol 2011; 129:164-74. [PMID: 21756909 DOI: 10.1016/j.exppara.2011.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 06/22/2011] [Accepted: 06/28/2011] [Indexed: 11/24/2022]
Abstract
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Collapse
|
12
|
Gray matter NG2 cells display multiple Ca2+-signaling pathways and highly motile processes. PLoS One 2011; 6:e17575. [PMID: 21455301 PMCID: PMC3063786 DOI: 10.1371/journal.pone.0017575] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 02/09/2011] [Indexed: 01/23/2023] Open
Abstract
NG2 cells, the fourth type of glia in the mammalian CNS, receive synaptic input from neurons. The function of this innervation is unknown yet. Postsynaptic changes in intracellular Ca(2+)-concentration ([Ca(2+)](i)) might be a possible consequence. We employed transgenic mice with fluorescently labeled NG2 cells to address this issue. To identify Ca(2+)-signaling pathways we combined patch-clamp recordings, Ca(2+)-imaging, mRNA-transcript analysis and focal pressure-application of various substances to identified NG2-cells in acute hippocampal slices. We show that activation of voltage-gated Ca(2+)-channels, Ca(2+)-permeable AMPA-receptors, and group I metabotropic glutamate-receptors provoke [Ca(2+)](i)-elevations in NG2 cells. The Ca(2+)-influx is amplified by Ca(2+)-induced Ca(2+)-release. Minimal electrical stimulation of presynaptic neurons caused postsynaptic currents but no somatic [Ca(2+)](i) elevations, suggesting that [Ca(2+)](i) elevations in NG2 cells might be restricted to their processes. Local Ca(2+)-signaling might provoke transmitter release or changes in cell motility. To identify structural prerequisites for such a scenario, we used electron microscopy, immunostaining, mRNA-transcript analysis, and time lapse imaging. We found that NG2 cells form symmetric and asymmetric synapses with presynaptic neurons and show immunoreactivity for vesicular glutamate transporter 1. The processes are actin-based, contain ezrin but not glial filaments, microtubules or endoplasmic reticulum. Furthermore, we demonstrate that NG2 cell processes in situ are highly motile. Our findings demonstrate that gray matter NG2 cells are endowed with the cellular machinery for two-way communication with neighboring cells.
Collapse
|
13
|
Sugiura Y, Araki K, Iemura SI, Natsume T, Hoseki J, Nagata K. Novel thioredoxin-related transmembrane protein TMX4 has reductase activity. J Biol Chem 2010; 285:7135-42. [PMID: 20056998 DOI: 10.1074/jbc.m109.082545] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the endoplasmic reticulum (ER), a number of thioredoxin (Trx) superfamily proteins are present to enable correct disulfide bond formation of secretory and membrane proteins via Trx-like domains. Here, we identified a novel transmembrane Trx-like protein 4 (TMX4), in the ER of mammalian cells. TMX4, a type I transmembrane protein, was localized to the ER and possessed a Trx-like domain that faced the ER lumen. A maleimide alkylation assay showed that a catalytic CXXC motif in the TMX4 Trx-like domain underwent changes in its redox state depending on cellular redox conditions, and, in the normal state, most of the endogenous TMX4 existed in the oxidized form. Using a purified recombinant protein containing the Trx-like domain of TMX4 (TMX4-Trx), we confirmed that this domain had reductase activity in vitro. The redox potential of this domain (-171.5 mV; 30 degrees C at pH 7.0) indicated that TMX4 could work as a reductase in the environment of the ER. TMX4 had no effect on the acceleration of ER-associated degradation. Because TMX4 interacted with calnexin and ERp57 by co-immunoprecipitation assay, the role of TMX4 may be to enable protein folding in cooperation with these proteins consisting of folding complex in the ER.
Collapse
Affiliation(s)
- Yoshimi Sugiura
- Department of Molecular and Cellular Biology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
14
|
Hatahet F, Ruddock LW. Protein disulfide isomerase: a critical evaluation of its function in disulfide bond formation. Antioxid Redox Signal 2009; 11:2807-50. [PMID: 19476414 DOI: 10.1089/ars.2009.2466] [Citation(s) in RCA: 508] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Disulfide bond formation is probably involved in the biogenesis of approximately one third of human proteins. A central player in this essential process is protein disulfide isomerase or PDI. PDI was the first protein-folding catalyst reported. However, despite more than four decades of study, we still do not understand much about its physiological mechanisms of action. This review examines the published literature with a critical eye. This review aims to (a) provide background on the chemistry of disulfide bond formation and rearrangement, including the concept of reduction potential, before examining the structure of PDI; (b) detail the thiol-disulfide exchange reactions that are catalyzed by PDI in vitro, including a critical examination of the assays used to determine them; (c) examine oxidation and reduction of PDI in vivo, including not only the role of ERo1 but also an extensive assessment of the role of glutathione, as well as other systems, such as peroxide, dehydroascorbate, and a discussion of vitamin K-based systems; (d) consider the in vivo reactions of PDI and the determination and implications of the redox state of PDI in vivo; and (e) discuss other human and yeast PDI-family members.
Collapse
Affiliation(s)
- Feras Hatahet
- Department of Biochemistry, University of Oulu , Oulu, Finland
| | | |
Collapse
|
15
|
Lovat PE, Corazzari M, Armstrong JL, Martin S, Pagliarini V, Hill D, Brown AM, Piacentini M, Birch-Machin MA, Redfern CPF. Increasing melanoma cell death using inhibitors of protein disulfide isomerases to abrogate survival responses to endoplasmic reticulum stress. Cancer Res 2008; 68:5363-9. [PMID: 18593938 DOI: 10.1158/0008-5472.can-08-0035] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Exploiting vulnerabilities in the intracellular signaling pathways of tumor cells is a key strategy for the development of new drugs. The activation of cellular stress responses mediated by the endoplasmic reticulum (ER) allows cancer cells to survive outside their normal environment. Many proteins that protect cells against ER stress are active as protein disulfide isomerases (PDI) and the aim of this study was to test the hypothesis that apoptosis in response to ER stress can be increased by inhibiting PDI activity. We show that the novel chemotherapeutic drugs fenretinide and velcade induce ER stress-mediated apoptosis in melanoma cells. Both stress response and apoptosis were enhanced by the PDI inhibitor bacitracin. Overexpression of the main cellular PDI, procollagen-proline, 2-oxoglutarate-4-dioxygenase beta subunit (P4HB), resulted in increased PDI activity and abrogated the apoptosis-enhancing effect of bacitracin. In contrast, overexpression of a mutant P4HB lacking PDI activity did not increase cellular PDI activity or block the effects of bacitracin. These results show that inhibition of PDI activity increases apoptosis in response to agents which induce ER stress and suggest that the development of potent, small-molecule PDI inhibitors has significant potential as a powerful tool for enhancing the efficacy of chemotherapy in melanoma.
Collapse
Affiliation(s)
- Penny E Lovat
- Dermatological Sciences, School of Clinical and Laboratory Sciences Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pamp K, Kerkweg U, Korth HG, Homann F, Rauen U, Sustmann R, de Groot H, Petrat F. Enzymatic reduction of labile iron by organelles of the rat liver. Superior role of an NADH-dependent activity in the outer mitochondrial membrane. Biochimie 2008; 90:1591-601. [PMID: 18627785 DOI: 10.1016/j.biochi.2008.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 06/17/2008] [Indexed: 01/13/2023]
Abstract
The enzymatic system mainly responsible for the reduction of labile iron ions in mammalian cells is still unknown. Using isolated organelles of the rat liver, i.e. mitochondria, microsomes, nuclei and the cytosol, we here demonstrate that Fe(III), added as Fe(III)-ATP complex, is predominantly reduced by an NADH-dependent enzyme system associated with mitochondria (65% of the overall enzymatic Fe(III) reduction capacity within liver cells). Microsomes showed a significantly smaller Fe(III) reduction capacity, whereas the cytosol and nuclei hardly reduced Fe(III). Studying the mitochondrial iron reduction, this NADH-dependent process was not mediated by superoxide, ascorbic acid, or NADH itself, excluding low-molecular-weight reductants. No evidence was found for the involvement of complex I and III of the respiratory chain. Submitochondrial preparations revealed the highest specific activity reducing Fe(III) in the outer membrane fraction. In conclusion, an NADH-dependent mitochondrial enzyme system, most likely the NADH-cytochrome c reductase system, located at the outer membrane, should decisively contribute to the enzymatic reduction of labile iron within liver cells, especially under pathological conditions.
Collapse
Affiliation(s)
- K Pamp
- Institut für Physiologische Chemie, Universitätsklinikum, Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Nardai G, Stadler K, Papp E, Korcsmáros T, Jakus J, Csermely P. Diabetic changes in the redox status of the microsomal protein folding machinery. Biochem Biophys Res Commun 2006; 334:787-95. [PMID: 16023999 DOI: 10.1016/j.bbrc.2005.06.172] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
Changes in assisted protein folding are largely unexplored in diabetes. In the present studies, we have identified a reductive shift in the redox status of rat liver microsomes after 4 weeks of streptozotocin-induced diabetes. This change was reflected by a significant increase in the total- and protein-sulfhydryl content, as well as in the free sulfhydryl groups of the major protein disulfide isomerases (PDIs), the 58 kDa PDI and the 57 kDa ERp57 but not other chaperones. A parallel decrease of the protein-disulfide oxidoreductase activity was detected in the microsomal fraction of diabetic livers. The oxidant of PDI, Ero1-Lalpha showed a more oxidized status in diabetic rats. Our results reveal major changes in the redox status of the endoplasmic reticulum and its redox chaperones in diabetic rats, which may contribute to the defective protein secretion of the diabetic liver.
Collapse
Affiliation(s)
- Gábor Nardai
- Department of Medical Chemistry, Semmelweis University, P.O. Box 260, H-1444 Budapest 8, Hungary
| | | | | | | | | | | |
Collapse
|
18
|
Carvalho AP, Fernandes PA, Ramos MJ. Similarities and differences in the thioredoxin superfamily. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2005; 91:229-48. [PMID: 16098567 DOI: 10.1016/j.pbiomolbio.2005.06.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/05/2005] [Indexed: 01/23/2023]
Abstract
There is growing interest in the proteins involved in protein folding. This is mainly due to the large number of human diseases related to defects in folding, which include cystic fibrosis, Alzheimer's and cancer. However, equally important as the oxidation and concomitant formation of disulfide bridges of the extracellular or secretory proteins is the reduction and maintenance in the reduced state of the proteins within the cell. Interestingly, the proteins that are responsible for maintenance of the reduced state belong to the same superfamily as those responsible for the formation of disulfide bridges: all are members of the thioredoxin superfamily. In this article, we highlight the main features of those thioredoxin-like proteins directly involved in the redox reactions. We describe their biological functions, cytoplasmic location, mechanisms of action, structures and active site features, and discuss the principal hypotheses concerning origins of the different reduction potentials and unusual pK(a)'s of the catalytic residues.
Collapse
Affiliation(s)
- Alexandra P Carvalho
- Requimte, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Portugal.
| | | | | |
Collapse
|
19
|
Li PP, Nakanishi A, Clark SW, Kasamatsu H. Formation of transitory intrachain and interchain disulfide bonds accompanies the folding and oligomerization of simian virus 40 Vp1 in the cytoplasm. Proc Natl Acad Sci U S A 2002; 99:1353-8. [PMID: 11805304 PMCID: PMC122194 DOI: 10.1073/pnas.032668699] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pentamer formation by Vp1, the major capsid protein of simian virus 40, requires an interdigitation of structural elements from the Vp1 monomers [Liddington, R. C., Yan, Y., Moulai, J., Sahli, R., Benjamin, T. L. & Harrison, S. C. (1991) Nature (London) 354, 278-284]. Our analyses reveal that disulfide-linked Vp1 homooligomers are present in the simian virus 40-infected cytoplasm and that they are derived from a 41-kDa monomeric intermediate containing an intrachain disulfide bond(s). The 41-kDa species, emerging within 5 min of pulse labeling with [(35)S]methionine, is converted into a 45-kDa, disulfide-free Vp1 monomer and disulfide-bonded dimers through pentamers. The covalent oligomer formation is blocked in the presence of a sulfhydryl-modifying reagent. We propose that there are two stages in this Vp1 disulfide bonding. First, the newly synthesized Vp1 monomers acquire intrachain bonds as they fold and begin to interact. Next, these bonds are replaced with intermolecular bonds as the monomers assemble into pentamers. This sequential appearance of transitory disulfide bonds is consistent with a role for sulfhydryl-disulfide redox reactions in the coordinate folding of Vp1 chains into pentamers. The cytoplasmic Vp1 does not colocalize with marker proteins of the endoplasmic reticulum. This paper demonstrates in vivo disulfide formations and exchanges coupled to the folding and oligomerization of a mammalian protein in the cytoplasm, outside the secretory pathway. Such disulfide dynamics may be a general phenomenon for other cysteine-bearing mammalian proteins that fold in the cytoplasm.
Collapse
Affiliation(s)
- Peggy P Li
- Molecular Biology Institute and Department of Molecular, Cell, and Developmental Biology, University of California, 405 Hilgard Avenue, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
20
|
Zai A, Rudd MA, Scribner AW, Loscalzo J. Cell-surface protein disulfide isomerase catalyzes transnitrosation and regulates intracellular transfer of nitric oxide. J Clin Invest 1999; 103:393-9. [PMID: 9927500 PMCID: PMC407899 DOI: 10.1172/jci4890] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Since thiols can undergo nitrosation and the cell membrane is rich in thiol-containing proteins, we considered the possibility that membrane surface thiols may regulate cellular entry of NO. Recently, protein disulfide isomerase (PDI), a protein that catalyzes thio-disulfide exchange reactions, has been found on the cell-surface membrane. We hypothesized that cell-surface PDI reacts with NO, catalyzes S-nitrosation reactions, and facilitates NO transfer from the extracellular to intracellular compartment. We observed that PDI catalyzes the S-nitrosothiol-dependent oxidation of the heme group of myoglobin (15-fold increase in the rate of oxidation compared with control), and that NO reduces the activity of PDI by 73.1 +/- 21.8% (P < 0.005). To assess the role of PDI in the cellular action of NO, we inhibited human erythroleukemia (HEL) cell-surface PDI expression using an antisense phosphorothioate oligodeoxynucleotide directed against PDI mRNA. This oligodeoxynucleotide decreased cell-surface PDI content by 74.1 +/- 9.3% and PDI folding activity by 46.6 +/- 3.5% compared with untreated or "scrambled" phosphorothioate oligodeoxynucleotide-treated cells (P < 0.0001). This decrease in cell-surface PDI was associated with a significant decrease in cyclic guanosine monophosphate (cGMP) generation after S-nitrosothiol exposure (65.4 +/- 26.7% reduction compared with control; P < 0.05), with no effect on cyclic adenosine monophosphate (cAMP) generation after prostaglandin E1 exposure. These data demonstrate that the cellular entry of NO involves a transnitrosation mechanism catalyzed by cell-surface PDI. These observations suggest a unique mechanism by which extracellular NO gains access to the intracellular environment.
Collapse
Affiliation(s)
- A Zai
- Evans Department of Medicine, Whitaker Cardiovascular Institute, Boston University Medical Center, Boston, Massachusetts 02118-2394, USA
| | | | | | | |
Collapse
|
21
|
de Virgilio M, Weninger H, Ivessa NE. Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 1998; 273:9734-43. [PMID: 9545309 DOI: 10.1074/jbc.273.16.9734] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the endoplasmic reticulum (ER), an efficient "quality control system" operates to ensure that mutated and incorrectly folded proteins are selectively degraded. We are studying ER-associated degradation using a truncated variant of the rough ER-specific type I transmembrane glycoprotein, ribophorin I. The truncated polypeptide (RI332) consists of only the 332 amino-terminal amino acids of the protein corresponding to most of its luminal domain and, in contrast to the long-lived endogenous ribophorin I, is rapidly degraded. Here we show that the ubiquitin-proteasome pathway is involved in the destruction of the truncated ribophorin I. Thus, when RI332 that itself appears to be a substrate for ubiquitination was expressed in a mutant hamster cell line harboring a temperature-sensitive mutation in the ubiquitin-activating enzyme E1 affecting ubiquitin-dependent proteolysis, the protein is dramatically stabilized at the restrictive temperature. Moreover, inhibitors of proteasome function effectively block the degradation of RI332. Cell fractionation experiments indicate that RI332 accumulates in the cytosol when degradation is prevented by proteasome inhibitors but remains associated with the lumen of the ER under ubiquitination-deficient conditions, suggesting that the release of the protein into the cytosol is ubiquitination-dependent. Accordingly, when ubiquitination is impaired, a considerable amount of RI332 binds to the ER chaperone calnexin and to the Sec61 complex that could effect retro-translocation of the polypeptide to the cytosol. Before proteolysis of RI332, its N-linked oligosaccharide is cleaved in two distinct steps, the first of which might occur when the protein is still associated with the ER, as the trimmed glycoprotein intermediate efficiently interacts with calnexin and Sec61. From our data we conclude that the steps that lead a newly synthesized luminal ER glycoprotein to degradation by the proteasome are tightly coupled and that especially ubiquitination plays a crucial role in the retro-translocation of the substrate protein for proteolysis to the cytosol.
Collapse
Affiliation(s)
- M de Virgilio
- Department of Molecular Genetics, University and Biocenter Vienna, A-1030 Vienna, Austria
| | | | | |
Collapse
|
22
|
Kaymer M, Debes A, Kress H, Kurzik-Dumke U. Sequence, molecular organization and products of the Drosophila virilis homologs of the D. melanogaster nested genes lethal(2) tumorous imaginal discs [1(2)tid] and lethal(2) neighbour of tid [1(2)not]. Gene X 1997; 204:91-103. [PMID: 9434170 DOI: 10.1016/s0378-1119(97)00528-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we describe the isolation of the Drosophila virilis (Dvir) 6201-bp genomic fragment homologous to a 7047-bp genomic region of D. melanogaster (Dmel) that harbors the nested genes lethal(2) tumorous imaginal discs (l(2)tid), lethal(2) neighbour of tid (l(2)not) and lethal(2) relative of tid (l(2)rot). The isolated fragment, which maps at the cytogenetic position 50A5 on chromosome 5, carries the Dvir homologs of the Dmel genes l(2)tid and l(2)not. In both cases, the interspecific comparison of the determined sequences reveals a high homology regarding the protein coding regions and a high degree of evolutionary divergence concerning the intronic parts of the genes. In the two distantly related species, the particular gene within gene arrangement of the two genes is conserved, namely, Dvir tid is located in the intron of Dvir not, on the non-coding DNA strand. Interestingly, the Dvir homolog of the Dmel l(2)rot gene residing in the l(2)not intron on its coding strand, opposite l(2)tid, is not present in the 6201-bp genomic fragment. The protein predicted from the Dvir tid sequence, Dvir Tid58, exhibits 76.5% identity with the putative Tid56 protein of Dmel. The putative Dvir Not58 protein shows 71% identity with its Dmel homolog Not56. The developmental transcript and protein patterns, as well as the characteristics of the protein products encoded by the genes Dvir tid and Dvir not are similar to those identified for their Dmel homologs.
Collapse
Affiliation(s)
- M Kaymer
- Institut für Genetik, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | |
Collapse
|
23
|
Takahashi M, Inoue N, Ohishi K, Maeda Y, Nakamura N, Endo Y, Fujita T, Takeda J, Kinoshita T. PIG-B, a membrane protein of the endoplasmic reticulum with a large lumenal domain, is involved in transferring the third mannose of the GPI anchor. EMBO J 1996; 15:4254-61. [PMID: 8861954 PMCID: PMC452151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many eukaryotic cell surface proteins are bound to the membrane via the glycosylphosphatidylinositol (GPI) anchor that is covalently linked to their carboxy-terminus. The GPI anchor precursor is synthesized in the endoplasmic reticulum (ER) and post-translationally linked to protein. We cloned a human gene termed PIG-B (phosphatidylinositol glycan of complementation class B) that is involved in transferring the third mannose. PIG-B encodes a 554 amino acid, ER transmembrane protein with an amino-terminal portion of approximately 60 amino acids on the cytoplasmic side and a large carboxy-terminal portion of 470 amino acids within the ER lumen. A mutant PIG-B lacking the cytoplasmic portion remains active, indicating that the functional site of PIG-B resides on the lumenal side of the ER membrane. The PIG-B gene was localized to chromosome 15 at q21-q22. This autosomal location would explain why PIG-B is not involved in the defective GPI anchor synthesis in paroxysmal nocturnal hemoglobinuria, which is always caused by a somatic mutation of the X-linked PIG-A gene.
Collapse
Affiliation(s)
- M Takahashi
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Lambert N, Chambers SJ, Plumb GW, Williamson G. Human cytochrome P450's are pro-oxidants in iron/ascorbate-initiated microsomal lipid peroxidation. Free Radic Res 1996; 24:177-85. [PMID: 8728119 DOI: 10.3109/10715769609088015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have examined the effect of human cytochrome P450's (1A1,1A2,3A4,2A6,2B6,2D6,2E1) on ascorbate/iron-induced lipid peroxidation. Using microsomes prepared from human lymphoblastic cells enriched in recombinant cytochrome P450 isoenzymes, we have shown that the degree of peroxidation is a function of the amount of P450 present rather than the presence of any specific isoenzyme. Incorporated P450 increased the amount of peroxidation products by up to 2.1-fold compared to the control microsomes with no P450. It is therefore concluded that cytochrome P450's play a significant role in ascorbate/iron peroxidation.
Collapse
Affiliation(s)
- N Lambert
- Department of Food Molecular Biochemistry, Norwich Research Park, Colney, UK
| | | | | | | |
Collapse
|
25
|
Terada K, Manchikalapudi P, Noiva R, Jauregui HO, Stockert RJ, Schilsky ML. Secretion, surface localization, turnover, and steady state expression of protein disulfide isomerase in rat hepatocytes. J Biol Chem 1995; 270:20410-6. [PMID: 7657616 DOI: 10.1074/jbc.270.35.20410] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Protein disulfide isomerase in isolated rat hepatocytes was present at a concentration of 7 micrograms/mg cell protein, representing a approximately 2-fold enrichment compared to isolated hepatic non-parenchymal cells. Though localized mainly in microsomal fractions of hepatocytes, direct immunofluorescence and cell surface radioiodination followed by immunoprecipitation revealed the presence of M(r) 57,000 disulfide isomerase at the cell surface. Electrostatic interaction of the protein with the cell surface was suggested by susceptibility to carbonate washing. Metabolic radiolabeling and immunoprecipitation studies also indicated that some of the newly synthesized M(r) 57,000 disulfide isomerase was secreted. Treatment of cells with colchicine markedly reduced the recovery of disulfide isomerase from the media, indicating microtubular-directed secretion of the protein. Partial staphlococcal V8 proteolytic digestion of the secreted protein revealed a peptide pattern similar to that of the cellular protein. Immunoprecipitation with antibody specific to the -KDEL peptide retention sequence confirmed the presence of this sequence in the secreted protein. Studies of the turnover of disulfide isomerase revealed a half-life of approximately 96 h. Treatment of cells with tunicamycin or heat shock resulted in an increased recovery of newly synthesized disulfide isomerase from cell lysates but diminished recovery from the media. The secretion and cell surface distribution of disulfide isomerase in hepatocytes may be important for the pathogenesis of immune mediated liver injury.
Collapse
Affiliation(s)
- K Terada
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
26
|
Chen K, Detwiler TC, Essex DW. Characterization of protein disulphide isomerase released from activated platelets. Br J Haematol 1995; 90:425-31. [PMID: 7794766 DOI: 10.1111/j.1365-2141.1995.tb05169.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Protein disulphide isomerase (PDI) activity is released by activated platelets. In this study, PDI was purified from platelets and found to have an apparent mass, pI and N-terminal sequence similar to those for other human PDIs. Rabbit antibodies were generated and used to establish that, on activation, platelets release a protein immunologically identical to PDI in platelets. Approximately 10% of total platelet PDI was released by thrombin and 20% by calcium ionophore. The antibody was used to demonstrate PDI on the external surface of platelets by electron microscopy. Flow cytometry was used to demonstrate that upon activation of platelets with ionophore PDI was released by vesiculation. Since platelets are present and become activated at sites of vascular injury, platelet PDI may play a role in the various haemostatic and tissue remodelling processes in which platelets are involved.
Collapse
Affiliation(s)
- K Chen
- Department of Biochemistry, State University of New York, Brooklyn 11203, USA
| | | | | |
Collapse
|
27
|
Bose S, Freedman RB. Peptidyl prolyl cis-trans-isomerase activity associated with the lumen of the endoplasmic reticulum. Biochem J 1994; 300 ( Pt 3):865-70. [PMID: 8010971 PMCID: PMC1138245 DOI: 10.1042/bj3000865] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peptidyl prolyl cis-trans-isomerase (PPI) activity was detected in microsomal fractions from bovine and rat liver. Extensive washing, proteinase and sonication treatments indicated that although some of this activity was due to adsorbed cytosolic enzymes, there was also an active but latent microsomal PPI activity. Density-gradient subfractionation indicated that activity was associated with vesicles derived from both the rough and the smooth endoplasmic reticulum (ER), suggesting that the activity was located within the ER lumen. The luminal PPI activity was inhibited by cyclosporin A and was active towards an unfolded protein substrate as well as towards the standard peptide substrate.
Collapse
Affiliation(s)
- S Bose
- Research School of Biosciences, Biological Laboratory, University of Kent, Canterbury, U.K
| | | |
Collapse
|
28
|
Joly JC, Swartz JR. Protein folding activities of Escherichia coli protein disulfide isomerase. Biochemistry 1994; 33:4231-6. [PMID: 8155639 DOI: 10.1021/bi00180a017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DsbA is an Escherichia coli periplasmic protein that mediates disulfide bond formation in newly secreted proteins in vivo. Addition of thiol reagents to purified dsbA reduces its disulfide bond and yields disulfide isomerase activity after removal of the thiol reagent. DsbA can catalyze the conversion of a stable misfolded protein, misfolded IGF-I (mis-IGF-I), to its correctly folded conformation under physiological conditions. This conversion is the result of breaking and re-forming two disulfide bonds. The uncatalyzed rate of this reaction is undetectable. Kinetic analysis of the reaction yielded a Km of 43 microM and a kcat of 0.2 min-1. The oxidized form of dsbA stimulates the oxidative folding of completely reduced IGF-I at pH 7.0. Thus, dsbA has two possible functions depending on its redox state. The reduced form of the protein is a disulfide isomerase while the oxidized protein can assist formation of disulfide bonds in reduced substrates under physiological conditions.
Collapse
Affiliation(s)
- J C Joly
- Department of Cell Culture and Fermentation, Research and Development, Genentech, Inc., South San Francisco, California 94080
| | | |
Collapse
|
29
|
Alcalde J, Egea G, Sandoval IV. gp74 a membrane glycoprotein of the cis-Golgi network that cycles through the endoplasmic reticulum and intermediate compartment. J Cell Biol 1994; 124:649-65. [PMID: 8120089 PMCID: PMC2119951 DOI: 10.1083/jcb.124.5.649] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A monoclonal antibody CC92 (IgM), raised against a fraction of rat liver enriched in Golgi membranes, recognizes a novel Endo H-resistant 74-kD membrane glycoprotein (gp74). The bulk of gp74 is confined to the cis-Golgi network (CGN). Outside the Golgi gp74 is found in tubulovesicular structures and ER foci. In cells incubated at 37 degrees C the majority of gp74 is segregated from the intermediate compartment (IC) marker p58. However, in cells treated with organelle perturbants such as low temperature, BFA, and [AIF4]- the patterns of the two proteins become indistinguishable. Both proteins are retained in the Golgi complex at 20 degrees C and in the IC at 15 degrees C. Incubation of cells with BFA results in relocation of gp74 to p58 positive IC elements. [AIF4]- induces the redistribution of gp74 from the Golgi to p58-positive vesicles and does not retard the translocation of gp74 to IC elements in cells treated with BFA. Disruption of microtubules by nocodazol results in the rapid disappearance of the Golgi elements stained by gp74 and redistribution of the protein into vesicle-like structures. The responses of gp74 to cell perturbants are in sharp contrast with those of cis/middle and trans-Golgi resident proteins whose location is not affected by low temperatures or [AIF4]-, are translocated to the ER upon addition of BFA, and stay in slow disintegrating Golgi elements in cells treated with nocodazol. The results suggest that gp74 is an itinerant protein that resides most of the time in the CGN and cycles through the ER/IC following the pathway used by p58.
Collapse
Affiliation(s)
- J Alcalde
- Centro de Biologia Molecular Severo Ochoa, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
30
|
Thijssen HH, Janssen YP, Vervoort LT. Microsomal lipoamide reductase provides vitamin K epoxide reductase with reducing equivalents. Biochem J 1994; 297 ( Pt 2):277-80. [PMID: 8297331 PMCID: PMC1137825 DOI: 10.1042/bj2970277] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This study was undertaken to search for the endogenous dithiol cofactor of the reductases of the vitamin K cycle. As a starting point, the redox-active lipophilic endogenous compounds lipoic acid and lipoamide were looked at. The study shows that microsomes contain NADH-dependent lipoamide reductase activity. Reduced lipoamide stimulates microsomal vitamin K epoxide reduction with kinetics comparable with those for the synthetic dithiol dithiothreitol (DTT). Reduced lipoic acid shows higher (4-fold) Km values. No reductase activity with lipoic acid was found to be present in microsomes or cytosol. The reduced-lipoamide-stimulated vitamin K epoxide reductase is as sensitive to warfarin and salicylate inhibition as is the DTT-stimulated one. Both vitamin K epoxide reductase and lipoamide reductase activity are recovered in the rough microsomes. NADH/lipoamide-stimulated vitamin K epoxide reduction is uncoupled by traces of Triton X-100, suggesting that microsomal lipoamide reductase and vitamin K epoxide reductase are associated. The results suggest that the vitamin K cycle obtains reducing equivalents from NADH through microsomal lipoamide reductase.
Collapse
Affiliation(s)
- H H Thijssen
- Department of Pharmacology, University of Limburg, Maastricht, The Netherlands
| | | | | |
Collapse
|
31
|
Yokoi T, Nagayama S, Kajiwara R, Kawaguchi Y, Horiuchi R, Kamataki T. Identification of protein disulfide isomerase and calreticulin as autoimmune antigens in LEC strain of rats. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1158:339-44. [PMID: 8251535 DOI: 10.1016/0304-4165(93)90033-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Long Evans Cinnamon (LEC) rats, showing spontaneous hereditary hepatitis and hepatic carcinoma, were found to possess autoimmune antibodies to liver microsomal proteins, particularly to proteins with the molecular weight of 56kD and 55kD. The antibodies occurred in association with acute lethal hepatitis in the LEC rats in our previous study. Two-dimensional immunoblot analysis of the antigenic proteins revealed that the 56kDa and 55kDa proteins showed 4.2 and 4.0 pI values and were estimated to be protein disulfide isomerase (PDI) and calreticulin, respectively, from NH2-terminal amino acid sequence analysis. These proteins were further identified by immunoblot analyses using purified proteins and specific antibodies. PDI was a major autoimmune antigenic protein.
Collapse
Affiliation(s)
- T Yokoi
- Division of Drug Metabolism, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
32
|
Bulleid NJ. Protein disulfide-isomerase: role in biosynthesis of secretory proteins. ADVANCES IN PROTEIN CHEMISTRY 1993; 44:125-50. [PMID: 8317296 DOI: 10.1016/s0065-3233(08)60566-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- N J Bulleid
- Department of Biochemistry and Molecular Biology, University of Manchester, England
| |
Collapse
|
33
|
Zapun A, Creighton TE, Rowling PJ, Freedman RB. Folding in vitro of bovine pancreatic trypsin inhibitor in the presence of proteins of the endoplasmic reticulum. Proteins 1992; 14:10-5. [PMID: 1384031 DOI: 10.1002/prot.340140104] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rates of folding and disulfide bond formation in reduced BPTI were measured in vitro in the presence and absence of total protein from the endoplasmic reticulum. The rates were increased substantially by the endoplasmic reticulum proteins, but only to the extent expected from the known content and activity of protein-disulfide-isomerase. No effects of added ATP or Ca2+ were observed, even though protein-disulfide-isomerase binds Ca2+ tightly.
Collapse
Affiliation(s)
- A Zapun
- MRC Laboratory of Molecular Biology, Cambridge, England, United Kingdom
| | | | | | | |
Collapse
|
34
|
Kenna JG, Martin JL, Pohl LR. The topography of trifluoroacetylated protein antigens in liver microsomal fractions from halothane treated rats. Biochem Pharmacol 1992; 44:621-9. [PMID: 1510711 DOI: 10.1016/0006-2952(92)90395-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Sera from patients with halothane hepatitis contain immunoglobulin G (IgG) antibodies to trifluoroacetylated liver microsomal proteins of 100, 76, 59, 57 and 54 kDa, which are produced as a consequence of metabolism of halothane to trifluoroacetyl halide by cytochrome(s) P450. In the present study, the membrane topographies of the various antigens in rat liver microsomal fractions were investigated. Liver microsomal fractions from rats treated with halothane in vivo, and rat liver microsomal fractions which had been incubated with halothane in vitro, were used as the source of trifluoroacetyl antigens. The antigens were detected by immunoblotting. Whereas the 100, 76, 59 and 57 kDa antigens were solubilized from the microsomal membrane by either 0.1 M sodium carbonate or 0.1% (w/v) sodium deoxycholate, the 54 kDa antigen was not solubilized by 0.1% (w/v) sodium deoxycholate. In intact microsomal fractions, the 100, 76, 59 and 57 kDa antigens were not degraded appreciably by trypsin unless detergent was added to permeabilize the microsomal membrane. These results indicate that the 54 kDa antigen is an integral membrane protein, whereas the 100, 76, 59 and 57 kDa antigens are peripheral membrane proteins situated within the lumen of microsomal vesicles, and hence presumably located within the lumen of the endoplasmic reticulum in vivo.
Collapse
Affiliation(s)
- J G Kenna
- Department of Pharmacology and Toxicology, St Mary's Hospital Medical School (Imperial College), London, U.K
| | | | | |
Collapse
|
35
|
Padilla CA, Martínez-Galisteo E, López-Barea J, Holmgren A, Bárcena JA. Immunolocalization of thioredoxin and glutaredoxin in mammalian hypophysis. Mol Cell Endocrinol 1992; 85:1-12. [PMID: 1526311 DOI: 10.1016/0303-7207(92)90119-q] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Thioredoxin (TRX) and glutaredoxin (GRX) are two small proteins catalyzing thiol-disulfide oxidoreductions. A role of both proteins in secretory processes has been suggested and recently it has been demonstrated that thioredoxin functions as a growth factor for lymphocytes in cell cultures. Here we report on the immunolocalization by light microscopy of both proteins in the hypophysis of mammals. We have used affinity purified specific antibodies that give a single band on immunoblots against crude extracts from pig and calf neurohypophysis and adenohypophysis. Thioredoxin was prominently localized in the folliculo-stellatae cells of the adenohypophysis while only a minor proportion of the glandular cells were positive. In the neurohypophysis, thioredoxin immunoreactivity was very intense in the pituicytes and moderate in the clusters of synaptic terminals. Glutaredoxin localization in the adenohypophysis resembled that of thioredoxin whereas in the neurohypophysis there was a clear differential localization: the neurosecretory terminals and Herring bodies were intensely stained for glutaredoxin but not the pituicytes. These results suggest that thioredoxin may be involved in the paracrine modulatory action of folliculo-stellatae cells and that these cells and pituicytes may have similar functions in their respective parts of the hypophysis; the association of glutaredoxin with secretory processes is further documented.
Collapse
Affiliation(s)
- C A Padilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad de Córdoba, Spain
| | | | | | | | | |
Collapse
|
36
|
Noiva R, Lennarz W. Protein disulfide isomerase. A multifunctional protein resident in the lumen of the endoplasmic reticulum. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50556-7] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
37
|
Soute BA, Groenen-van Dooren MM, Holmgren A, Lundström J, Vermeer C. Stimulation of the dithiol-dependent reductases in the vitamin K cycle by the thioredoxin system. Strong synergistic effects with protein disulphide-isomerase. Biochem J 1992; 281 ( Pt 1):255-9. [PMID: 1731762 PMCID: PMC1130670 DOI: 10.1042/bj2810255] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It has been shown previously that the thioredoxin system (thioredoxin + thioredoxin reductase + NADPH) may replace dithiothreitol (DTT) as a cofactor for vitamin KO and K reductase in salt-washed detergent-solubilized bovine liver microsomes. Here we demonstrate that the system can be improved further by adding protein disulphide-isomerase (PDI) to the components mentioned above. Moreover, NADPH may be replaced by reduced RNAase as a hydrogen donor. In our in vitro system the various protein cofactors were required at concentrations 2-5 orders of magnitude lower than that of DDT, whereas the maximal reaction rate was about 3-fold higher. PDI stimulated the thioredoxin-driven reaction about 10-fold, with an apparent Km value of 8 microM. These data suggest that in the vitro system the formation of disulphide bonds is somehow linked to the vitamin K-dependent carboxylation of glutamate residues. In vivo, both disulphide formation and vitamin K-dependent carboxylation are post-translational modifications taking place at the luminal side of the endoplasmic reticulum of mammalian secretory cells. The possibility that the reactions are also coupled in vivo is discussed.
Collapse
Affiliation(s)
- B A Soute
- Department of Biochemistry, University of Limburg, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
38
|
Ceriotti A, Colman A. Trimer formation determines the rate of influenza virus haemagglutinin transport in the early stages of secretion in Xenopus oocytes. J Biophys Biochem Cytol 1990; 111:409-20. [PMID: 2380242 PMCID: PMC2116180 DOI: 10.1083/jcb.111.2.409] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that influenza haemagglutinin (HA) acquires Endo H resistance en route to the cell surface after microinjection of its mRNA into Xenopus oocytes (Ceriotti, A. and A. Colman. 1989. J. Cell Biol. 109:1439-1444.) In this paper we use the injection of varying amounts of mRNA (0.05-5 ng/oocyte) to effect a 30-fold change in HA protein synthesis within the oocyte. Using the Endo H assay as an indicator of protein movement from the ER to the medial Golgi we find that this movement is reduced, sometimes dramatically, when intracellular HA levels fall. This reduction in movement is closely correlated with a decreased rate of trimer formation as assessed both by trypsin resistance and sedimentation analysis, leading us to conclude that trimer formation is not only, as has been shown before essential for ER-Golgi complex movement, but is the major rate limiting step in this movement. Interestingly at least 50% of unassembled HA monomers that accumulate after low HA synthesis can be rescued into trimers over 24 h later, after a second injection of concentrated HA mRNA. In contrast when we repeated this experiment with another membrane protein, the human low density lipoprotein, or with murine secretory immunoglobulin we found that the rate of movement was insensitive to the protein concentration. This latter result seemed surprising since earlier work had shown that unassembled IgG heavy chains (like monomeric HA) remain in the oocyte ER; however in these present experiments we have been unable to detect any unassembled heavy chains even at the lowest expression levels, indicating that tetramerization of Ig is much faster than trimerization of HA.
Collapse
Affiliation(s)
- A Ceriotti
- School of Biochemistry, University of Birmingham, United Kingdom
| | | |
Collapse
|
39
|
Vermeer C. Gamma-carboxyglutamate-containing proteins and the vitamin K-dependent carboxylase. Biochem J 1990; 266:625-36. [PMID: 2183788 PMCID: PMC1131186 DOI: 10.1042/bj2660625] [Citation(s) in RCA: 209] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- C Vermeer
- Department of Biochemistry, University of Limburg, Maastricht, The Netherlands
| |
Collapse
|
40
|
Schoenmakers CH, Pigmans IG, Hawkins HC, Freedman RB, Visser TJ. Rat liver type I iodothyronine deiodinase is not identical to protein disulfide isomerase. Biochem Biophys Res Commun 1989; 162:857-68. [PMID: 2757644 DOI: 10.1016/0006-291x(89)92389-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study was done to test the recent hypothesis (Boado et al. (1988) Biochem. Biophys. Res. Commun. 155, 1297-1304) that type I iodothyronine deiodinase (ID-I) is identical to protein disulfide isomerase (PDI). Autoradiograms of rat liver microsomal proteins, labeled with N-bromoacetyl-[125I]triiodothyronine (BrAc[125I]T3) and separated by SDS-PAGE, show predominantly 2 radioactive bands of Mr 27 and 56 kDa. Substrates and inhibitors of ID-I inhibited labeling of the 27 kDa band but not that of the 56 kDa band. Treatment of microsomes with trypsin abolished labeling of the 27 kDa protein and destroyed the activity of ID-I but did not prevent labeling of the 56 kDa protein. Following treatment of microsomes at pH 8.0-9.5 or with 0.05% deoxycholate (DOC) PDI content and labeling of the 56 kDa protein were strongly diminished but ID-I activity and labeling of the 27 kDa protein were not affected. The latter decreased in parallel after treatment at pH greater than or equal to 10. Rat pancreas microsomes contain high amounts of PDI but show no ID-I activity. Reaction of these microsomes with BrAc[125I]T3 results in extensive labeling of a 56 kDa protein but no labeling of a 27 kDa protein. Pure PDI (Mr 56 kDa) was readily labeled by BrAc[125I]T3 but showed no deiodinase activity. These results strongly suggest that the 27 kDa band represents (a subunit of) ID-I while the 56 kDa band represents PDI. From these and other data it is concluded that PDI and ID-I are not identical proteins.
Collapse
Affiliation(s)
- C H Schoenmakers
- Department of Internal Medicine III, Erasmus University Medical School, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Paver JL, Hawkins HC, Freedman RB. Preparation and characterization of dog pancreas microsomal membranes specifically depleted of protein disulphide-isomerase. Biochem J 1989; 257:657-63. [PMID: 2930476 PMCID: PMC1135638 DOI: 10.1042/bj2570657] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
1. The selective release of protein disulphide-isomerase from dog pancreas and rat liver microsomal membranes was studied to throw light on the mechanisms of retention of this enzyme within the endoplasmic reticulum, and in order to prepare microsomal membranes specifically depleted of the enzyme. 2. Protein disulphide-isomerase was quantitatively released from dog pancreas microsomal membranes by washing at pH 9 and above, as demonstrated both by enzyme assay and by immunoblotting analysis. 3. Integral membrane proteins implicated in the process of translocation and segregation of secretory proteins were retained in pH 9-washed dog pancreas microsomal membranes. 4. After pH 9 washing, dog pancreas microsomal membranes were fully active in the translocation, segregation and processing of nascent secretory proteins; these membranes therefore provide a useful experimental system for testing the action of protein disulphide-isomerase on nascent secretory proteins. 5. Protein disulphide-isomerase was not released from rat liver microsomal membranes by pH 9 washing, and was much less readily released from these membranes by sonication, washing etc. than from dog pancreas microsomal membranes. 6. The mechanism of retention of protein disulphide-isomerase, and of other resident proteins of the lumen of the endoplasmic reticulum, is discussed in the light of these findings.
Collapse
Affiliation(s)
- J L Paver
- Biological Laboratory, University of Kent, Canterbury, U.K
| | | | | |
Collapse
|
42
|
Paver JL, Freedman RB, Parkhouse RM. Induction of expression of protein disulphide-isomerase during lymphocyte maturation stimulated by bacterial lipopolysaccharide. FEBS Lett 1989; 242:357-62. [PMID: 2783673 DOI: 10.1016/0014-5793(89)80501-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein disulphide-isomerase (PDI) activity, and the level of immunodetectable PDI protein, were monitored in splenic lymphocytes and in BCL1 cells during culture in the presence of various activating factors. Bacterial lipopolysaccharide stimulated induction of PDI in splenic B cells and BCL1 cells. The time-course and specificity of induction indicated that the increase in expression of PDI is closely coupled to the final stages of B cell differentiation into antibody-producing plasma cells. The system will prove valuable in studies on the control of expression of PDI.
Collapse
Affiliation(s)
- J L Paver
- Biological Laboratory, University of Kent, Canterbury, England
| | | | | |
Collapse
|
43
|
Bulleid NJ, Freedman RB. Defective co-translational formation of disulphide bonds in protein disulphide-isomerase-deficient microsomes. Nature 1988; 335:649-51. [PMID: 3173483 DOI: 10.1038/335649a0] [Citation(s) in RCA: 280] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The formation of disulphide bonds in mammalian secretory and cell-surface proteins occurs in the lumen of the endoplasmic reticulum and is believed to be catalysed by the enzyme protein disulphide-isomerase (PDI). The evidence for this physiological role for PDI is circumstantial and relates to the cell and tissue distribution of the enzyme, its developmental behaviour and its catalytic properties in vitro. A clear requirement for PDI in the correct folding or assembly of disulphide-bonded proteins during biosynthesis has not been demonstrated. We have prepared dog pancreas microsomes which are deficient in soluble lumenal proteins, including PDI, but which are still able to translocate and process proteins synthesized in vitro. Using the formation of intramolecular disulphide bonds during the in vitro synthesis of gamma-gliadin, a wheat storage protein, as a model, we have demonstrated that these microsomes are defective in co-translational formation of disulphide bonds. Reconstitution of these microsomes with purified PDI reverses this defect.
Collapse
Affiliation(s)
- N J Bulleid
- Biological Laboratory, The University, Canterbury, Kent, UK
| | | |
Collapse
|
44
|
Olson TS, Bamberger MJ, Lane MD. Post-translational changes in tertiary and quaternary structure of the insulin proreceptor. Correlation with acquisition of function. J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)68648-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
45
|
Biosynthesis and Sorting of Proteins of the Endoplasmic Reticulum. PROTEIN TRANSFER AND ORGANELLE BIOGENESIS 1988. [PMCID: PMC7155527 DOI: 10.1016/b978-0-12-203460-2.50010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
|
47
|
Olson TS, Lane MD. Post-translational acquisition of insulin binding activity by the insulin proreceptor. Correlation to recognition by autoimmune antibody. J Biol Chem 1987. [DOI: 10.1016/s0021-9258(18)48318-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
48
|
Kaetzel CS, Rao CK, Lamm ME. Protein disulphide-isomerase from human placenta and rat liver. Purification and immunological characterization with monoclonal antibodies. Biochem J 1987; 241:39-47. [PMID: 3566712 PMCID: PMC1147521 DOI: 10.1042/bj2410039] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The purification of human placenta and rat liver protein disulphide-isomerase (PDI, EC 5.3.4.1) and the production of a panel of monoclonal antibodies against these proteins are described. The physical and enzymic properties of human PDI and rat PDI were similar; immunological characterization revealed the presence of unique, as well as shared, antigenic determinants. Although purified rat liver PDI was present as three forms differing slightly in Mr value, evidence was presented that the multiple forms represent proteolytic degradation products of a single 59,000-Mr species. Purified human PDI had an apparent Mr of 61,200. Two of the monoclonal antibodies against human PDI partially inactivated the enzyme, and one of these in indirect immunoprecipitation led to the precipitation of all glutathione:insulin transhydrogenase activity from a crude extract of human placenta. Results of immunofluorescence experiments with HT-29 human colon carcinoma cells were consistent with localization of PDI in the nuclear membrane and cell cytoplasm.
Collapse
|
49
|
Kivirikko KI, Myllylä R. Recent developments in posttranslational modification: intracellular processing. Methods Enzymol 1987; 144:96-114. [PMID: 3041180 DOI: 10.1016/0076-6879(87)44175-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
50
|
Koivu J, Myllylä R. Protein disulfide-isomerase retains procollagen prolyl 4-hydroxylase structure in its native conformation. Biochemistry 1986; 25:5982-6. [PMID: 3024699 DOI: 10.1021/bi00368a022] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein disulfide-isomerase was isolated as a homogeneous protein from 15-day-old chick embryos. The enzyme has a molecular weight of 56,000 in SDS-polyacrylamide gel electrophoresis. Its Km value for randomly cross-linked ribonuclease, a protein used as a substrate for the enzyme, was 0.3 microM, and the Km value for DTT was 1.0 microM. Its optimum pH was 7.5 and its optimum temperature, 33 degrees C. The maximal velocity of pure protein disulfide-isomerase from chick embryos under optimal conditions was about 29,000 units/g. Protein disulfide-isomerase was able to activate purified prolyl 4-hydroxylase 2- to 3-fold, the activation being higher for enzyme stored for a longer time. This activation is probably due to the repairing of disulfide exchanges occurring in the prolyl 4-hydroxylase structure during purification and storage. Prolyl 4-hydroxylase activity was very stable in microsomes, however, and protein disulfide-isomerase was unable to increase the microsomal prolyl 4-hydroxylase activity, suggesting that prolyl 4-hydroxylase retains its native conformation in microsomes. Protein disulfide-isomerase was able to reactivate prolyl 4-hydroxylase inactivated by mild H2O2 treatment. The activity obtained after this treatment and protein disulfide-isomerase incubation corresponded to the amount of prolyl 4-hydroxylase tetramer found after H2O2 treatment. The data suggest that protein disulfide-isomerase is able to activate only the tetramer part of the enzyme preparation.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|