1
|
Souto-Neto JA, David DD, Zanetti G, Sua-Cespedes C, Freret-Meurer NV, Moraes MN, de Assis LVM, Castrucci AMDL. Light-specific wavelengths differentially affect the exploration rate, opercular beat, skin color change, opsin transcripts, and the oxi-redox system of the longsnout seahorse Hippocampus reidi. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111551. [PMID: 37972916 DOI: 10.1016/j.cbpa.2023.111551] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Light is a strong stimulus for the sensory and endocrine systems. The opsins constitute a large family of proteins that can respond to specific light wavelengths. Hippocampus reidi is a near-threatened seahorse that has a diverse color pattern and sexual dimorphism. Over the years, H. reidi's unique characteristics, coupled with its high demand and over-exploitation for the aquarium trade, have raised concerns about its conservation, primarily due to their significant impact on wild populations. Here, we characterized chromatophore types in juvenile and adult H. reidi in captivity, and the effects of specific light wavelengths with the same irradiance (1.20 mW/cm2) on color change, growth, and survival rate. The xanthophores and melanophores were the major components of H. reidi pigmentation with differences in density and distribution between life stages and sexes. In the eye and skin of juveniles, the yellow (585 nm) wavelength induced a substantial increase in melanin levels compared to the individuals kept under white light (WL), blue (442 nm), or red (650 nm) wavelengths. In addition, blue and yellow wavelengths led to a higher juvenile mortality rate in comparison to the other treatments. Adult seahorses showed a rhythmic color change over 24 h, the highest reflectance values were obtained in the light phase, representing a daytime skin lightening for individuals under WL, blue and yellow wavelength, with changes in the acrophase. The yellow wavelength was more effective on juvenile seahorse pigmentation, while the blue wavelength exerted a stronger effect on the regulation of adult physiological color change. Dramatic changes in the opsin mRNA levels were life stage-dependent, which may infer ontogenetic opsin functions throughout seahorses' development. Exposure to specific wavelengths differentially affected the opsins mRNA levels in the skin and eyes of juveniles. In the juveniles, skin transcripts of visual (rh1, rh2, and lws) and non-visual opsins (opn3 and opn4x) were higher in individuals under yellow light. While in the juvenile's eyes, only rh1 and rh2 had increased transcripts influenced by yellow light; the lws and opn3 mRNA levels were higher in juveniles' eyes under WL. Prolonged exposure to yellow wavelength stimulates a robust increase in the antioxidant enzymes sod1 and sod2 mRNA levels. Our findings indicate that changes in the visible light spectrum alter physiological processes at different stages of life in H. reidi and may serve as the basis for a broader discussion about the implications of artificial light for aquatic species in captivity.
Collapse
Affiliation(s)
- José Araújo Souto-Neto
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Laboratory of Micropollutants, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Cristhian Sua-Cespedes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Maria Nathália Moraes
- Laboratory of Molecular Chronobiology, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil
| | | | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil; Department of Biology, University of Virginia, Charlottesville, United States.
| |
Collapse
|
2
|
Genetic and Neurological Deficiencies in the Visual System of mct8 Mutant Zebrafish. Int J Mol Sci 2022; 23:ijms23052464. [PMID: 35269606 PMCID: PMC8910067 DOI: 10.3390/ijms23052464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 01/27/2023] Open
Abstract
Thyroid hormones (THs; T3 and T4) enter cells using specific transporters and regulate development and metabolism. Mutation in the TH transporter monocarboxylate transporter 8 (MCT8, SLC16A2) is associated with brain hypothyroidism and neurological impairment. We established mct8 mutant (mct8-/-) zebrafish as a model for MCT8 deficiency, which causes endocrinological, neurological, and behavioral alterations. Here, we profiled the transcriptome of mct8-/- larvae. Among hundreds of differentially expressed genes, the expression of a cluster of vision-related genes was distinct. Specifically, the expression of the opsin 1 medium wave sensitive 2 (opn1mw2) decreased in two mct8 mutants: mct8-/- and mct8-25bp-/- larvae, and under pharmacological inhibition of TH production. Optokinetic reflex (OKR) assays showed a reduction in the number of conjugated eye movements, and live imaging of genetically encoded Ca2+ indicator revealed altered neuronal activity in the pretectum area of mct8-25bp-/- larvae. These results imply that MCT8 and THs regulate the development of the visual system and suggest a mechanism to the deficiencies observed in the visual system of MCT8-deficiency patients.
Collapse
|
3
|
Solanki AK, Biswal MR, Walterhouse S, Martin R, Kondkar AA, Knölker HJ, Rahman B, Arif E, Husain S, Montezuma SR, Nihalani D, Lobo GP. Loss of Motor Protein MYO1C Causes Rhodopsin Mislocalization and Results in Impaired Visual Function. Cells 2021; 10:cells10061322. [PMID: 34073294 PMCID: PMC8229726 DOI: 10.3390/cells10061322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/12/2022] Open
Abstract
Unconventional myosins, linked to deafness, are also proposed to play a role in retinal cell physiology. However, their direct role in photoreceptor function remains unclear. We demonstrate that systemic loss of the unconventional myosin MYO1C in mice, specifically causes rhodopsin mislocalization, leading to impaired visual function. Electroretinogram analysis of Myo1c knockout (Myo1c-KO) mice showed a progressive loss of photoreceptor function. Immunohistochemistry and binding assays demonstrated MYO1C localization to photoreceptor inner and outer segments (OS) and identified a direct interaction of rhodopsin with MYO1C. In Myo1c-KO retinas, rhodopsin mislocalized to rod inner segments (IS) and cell bodies, while cone opsins in OS showed punctate staining. In aged mice, the histological and ultrastructural examination of the phenotype of Myo1c-KO retinas showed progressively shorter photoreceptor OS. These results demonstrate that MYO1C is important for rhodopsin localization to the photoreceptor OS, and for normal visual function.
Collapse
Affiliation(s)
- Ashish K. Solanki
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Manas R. Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
| | - Stephen Walterhouse
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Altaf A. Kondkar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia;
| | - Hans-Joachim Knölker
- Faculty of Chemistry, Technische Universität Dresden, Bergstraße 66, 01069 Dresden, Germany; (R.M.); (H.-J.K.)
| | - Bushra Rahman
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Ehtesham Arif
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
| | - Shahid Husain
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
| | - Sandra R. Montezuma
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 516 Delaware Street S.E., 9th Floor, Minneapolis, MN 55455, USA;
| | - Deepak Nihalani
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bldg. 2DEM, Room 6085, 6707 Democracy Blvd., Bethesda, MD 20817, USA
- Correspondence: (D.N.); (G.P.L.)
| | - Glenn Prazere Lobo
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA; (A.K.S.); (S.W.); (B.R.); (E.A.)
- Department of Ophthalmology, Medical University of South Carolina, Charleston, SC 29425, USA;
- Department of Ophthalmology and Visual Neurosciences, Lions Research Building, University of Minnesota, 2001 6th Street S.E., Room 225, Minneapolis, MN 55455, USA
- Correspondence: (D.N.); (G.P.L.)
| |
Collapse
|
4
|
Simon N, Fujita S, Porter M, Yoshizawa M. Expression of extraocular opsin genes and light-dependent basal activity of blind cavefish. PeerJ 2019; 7:e8148. [PMID: 31871836 PMCID: PMC6924323 DOI: 10.7717/peerj.8148] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Animals living in well-lit environments utilize optical stimuli for detecting visual information, regulating the homeostatic pacemaker, and controlling patterns of body pigmentation. In contrast, many subterranean animal species without optical stimuli have evolved regressed binocular eyes and body pigmentation. Interestingly, some fossorial and cave-dwelling animals with regressed eyes still respond to light. These light-dependent responses may be simply evolutionary residuals or they may be adaptive, where negative phototaxis provides avoidance of predator-rich surface environments. However, the relationship between these non-ocular light responses and the underlying light-sensing Opsin proteins has not been fully elucidated. Methods To highlight the potential functions of opsins in a blind subterranean animal, we used the Mexican cave tetra to investigate opsin gene expression in the eyes and several brain regions of both surface and cave-dwelling adults. We performed database surveys, expression analyses by quantitative reverse transcription PCR (RT-qPCR), and light-dependent locomotor activity analysis using pinealectomized fish, one of the high-opsin expressing organs of cavefish. Results Based on conservative criteria, we identified 33 opsin genes in the cavefish genome. Surveys of available RNAseq data found 26 of these expressed in the surface fish eye as compared to 24 expressed in cavefish extraocular tissues, 20 of which were expressed in the brain. RT-qPCR of 26 opsins in surface and cavefish eye and brain tissues showed the highest opsin-expressing tissue in cavefish was the pineal organ, which expressed exo-rhodopsin at 72.7% of the expression levels in surface fish pineal. However, a pinealectomy resulted in no change to the light-dependent locomotor activity in juvenile cavefish and surface fish. Therefore, we conclude that, after 20,000 or more years of evolution in darkness, cavefish light-dependent basal activity is regulated by a non-pineal extraocular organ.
Collapse
Affiliation(s)
- Noah Simon
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Suguru Fujita
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Megan Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| | - Masato Yoshizawa
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, Hawai'i, United States of America
| |
Collapse
|
5
|
Saito T, Koyanagi M, Sugihara T, Nagata T, Arikawa K, Terakita A. Spectral tuning mediated by helix III in butterfly long wavelength-sensitive visual opsins revealed by heterologous action spectroscopy. ZOOLOGICAL LETTERS 2019; 5:35. [PMID: 31890273 PMCID: PMC6915953 DOI: 10.1186/s40851-019-0150-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
Absorption spectra of opsin-based pigments are tuned from the UV to the red regions by interactions of the chromophore with surrounding amino acid residues. Both vertebrates and invertebrates possess long-wavelength-sensitive (LWS) opsins, which underlie color vision involving "red" sensing. The LWS opsins have independently evolved in each lineage, which suggests the existence of diverse mechanisms in spectral tuning. In vertebrate LWS opsins, the mechanisms underlying spectral tuning have been well characterized by spectroscopic analyses with recombinant pigments of wild type (WT) and mutant opsins. However in invertebrate LWS opsins including insect ones, the mechanisms are largely unknown due to the difficulty in obtaining recombinant pigments. Here we have overcome the problem by analyzing heterologous action spectra based on light-dependent changes in the second messenger in opsin-expressing cultured cells. We found that WTs of two LWS opsins of the butterfly, Papilio xuthus, PxRh3 and PxRh1 have the wavelengths of the absorption maxima at around 570 nm and 540 nm, respectively. Analysis of a series of chimeric mutants showed that helix III is crucial to generating a difference of about 15 nm in the wavelength of absorption maxima of these LWS opsins. Further site-directed mutations in helix III revealed that amino acid residues at position 116 and 120 (bovine rhodopsin numbering system) are involved in the spectral tuning of PxRh1 and PxRh3, suggesting a different spectral tuning mechanism from that of primate LWS opsins.
Collapse
Affiliation(s)
- Tomoka Saito
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
| | - Mitsumasa Koyanagi
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
- The Osaka City University Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585 Japan
| | - Tomohiro Sugihara
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
| | - Takashi Nagata
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
| | - Kentaro Arikawa
- Laboratory of Neuroethology, SOKENDAI (The Graduate University for Advanced Studies), Shonan Village, Hayama, 240-0115 Japan
| | - Akihisa Terakita
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, Osaka, 558-8585 Japan
- The Osaka City University Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, 558-8585 Japan
| |
Collapse
|
6
|
Knudsen JL, Kluge A, Bochenkova AV, Kiefer HV, Andersen LH. The UV-visible action-absorption spectrum of all-trans and 11-cis protonated Schiff base retinal in the gas phase. Phys Chem Chem Phys 2018; 20:7190-7194. [PMID: 29480305 DOI: 10.1039/c7cp07512j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The UV-visible absorption of retinal in its protonated Schiff-base form is studied in the gas phase. In particular, transitions to highly-excited electronic states, Sn, in the all-trans and 11-cis forms are considered, and several new states are discovered. Their positions and strengths are compared to state of the art quantum calculations. The location of these states are particularly important when new fs pump-probe experiments are designed to investigate the fast excited-state dynamics of retinal chromophores.
Collapse
|
7
|
Arne JM, Widjaja-Adhi MAK, Hughes T, Huynh KW, Silvaroli JA, Chelstowska S, Moiseenkova-Bell VY, Golczak M. Allosteric modulation of the substrate specificity of acyl-CoA wax alcohol acyltransferase 2. J Lipid Res 2017; 58:719-730. [PMID: 28096191 DOI: 10.1194/jlr.m073692] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/06/2017] [Indexed: 01/30/2023] Open
Abstract
The esterification of alcohols with fatty acids is a universal mechanism to form inert storage forms of sterols, di- and triacylglycerols, and retinoids. In ocular tissues, formation of retinyl esters is an essential step in the enzymatic regeneration of the visual chromophore (11-cis-retinal). Acyl-CoA wax alcohol acyltransferase 2 (AWAT2), also known as multifunctional O-acyltransferase (MFAT), is an integral membrane enzyme with a broad substrate specificity that has been shown to preferentially esterify 11-cis-retinol and thus contribute to formation of a readily available pool of cis retinoids in the eye. However, the mechanism by which this promiscuous enzyme can gain substrate specificity is unknown. Here, we provide evidence for an allosteric modulation of the enzymatic activity by 11-cis retinoids. This regulation is independent from cellular retinaldehyde-binding protein (CRALBP), the major cis-retinoid binding protein. This positive-feedback regulation leads to decreased esterification rates for 9-cis, 13-cis, or all-trans retinols and thus enables preferential synthesis of 11-cis-retinyl esters. Finally, electron microscopy analyses of the purified enzyme indicate that this allosteric effect does not result from formation of functional oligomers. Altogether, these data provide the experimental basis for understanding regulation of AWAT2 substrate specificity.
Collapse
Affiliation(s)
- Jason M Arne
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | | | - Taylor Hughes
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Kevin W Huynh
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Josie A Silvaroli
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH
| | - Sylwia Chelstowska
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw, Poland
| | - Vera Y Moiseenkova-Bell
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and
| | - Marcin Golczak
- Department of Pharmacology and School of Medicine, Case Western Reserve University, Cleveland, OH; Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH; and.
| |
Collapse
|
8
|
Tamamis P, Kieslich CA, Nikiforovich GV, Woodruff TM, Morikis D, Archontis G. Insights into the mechanism of C5aR inhibition by PMX53 via implicit solvent molecular dynamics simulations and docking. BMC BIOPHYSICS 2014; 7:5. [PMID: 25170421 PMCID: PMC4141665 DOI: 10.1186/2046-1682-7-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/30/2014] [Indexed: 01/31/2023]
Abstract
Background The complement protein C5a acts by primarily binding and activating the G-protein coupled C5a receptor C5aR (CD88), and is implicated in many inflammatory diseases. The cyclic hexapeptide PMX53 (sequence Ace-Phe-[Orn-Pro-dCha-Trp-Arg]) is a full C5aR antagonist of nanomolar potency, and is widely used to study C5aR function in disease. Results We construct for the first time molecular models for the C5aR:PMX53 complex without the a priori use of experimental constraints, via a computational framework of molecular dynamics (MD) simulations, docking, conformational clustering and free energy filtering. The models agree with experimental data, and are used to propose important intermolecular interactions contributing to binding, and to develop a hypothesis for the mechanism of PMX53 antagonism. Conclusion This work forms the basis for the design of improved C5aR antagonists, as well as for atomic-detail mechanistic studies of complement activation and function. Our computational framework can be widely used to develop GPCR-ligand structural models in membrane environments, peptidomimetics and other chemical compounds with potential clinical use.
Collapse
Affiliation(s)
- Phanourios Tamamis
- Department of Physics, University of Cyprus, PO 20537, CY1678 Nicosia, Cyprus
| | - Chris A Kieslich
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | - Trent M Woodruff
- School of Biomedical Sciences, the University of Queensland, St Lucia 4072, Australia
| | - Dimitrios Morikis
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Georgios Archontis
- Department of Physics, University of Cyprus, PO 20537, CY1678 Nicosia, Cyprus
| |
Collapse
|
9
|
|
10
|
Abstract
Rhodopsins are photochemically reactive membrane proteins that covalently bind retinal chromophores. Type I rhodopsins are found in both prokaryotes and eukaryotic microbes, whereas type II rhodopsins function as photoactivated G-protein coupled receptors (GPCRs) in animal vision. Both rhodopsin families share the seven transmembrane α-helix GPCR fold and a Schiff base linkage from a conserved lysine to retinal in helix G. Nevertheless, rhodopsins are widely cited as a striking example of evolutionary convergence, largely because the two families lack detectable sequence similarity and differ in many structural and mechanistic details. Convergence entails that the shared rhodopsin fold is so especially suited to photosensitive function that proteins from separate origins were selected for this architecture twice. Here we show, however, that the rhodopsin fold is not required for photosensitive activity. We engineered functional bacteriorhodopsin variants with novel folds, including radical noncircular permutations of the α-helices, circular permutations of an eight-helix construct, and retinal linkages relocated to other helices. These results contradict a key prediction of convergence and thereby provide an experimental attack on one of the most intractable problems in molecular evolution: how to establish structural homology for proteins devoid of discernible sequence similarity.
Collapse
|
11
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
12
|
Taddese B, Simpson LM, Wall ID, Blaney FE, Reynolds CA. Modeling Active GPCR Conformations. Methods Enzymol 2013; 522:21-35. [DOI: 10.1016/b978-0-12-407865-9.00002-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
13
|
Orekhov PS, Shaytan AK, Shaitan KV. Calculation of spectral shifts of the mutants of bacteriorhodopsin by QM/MM methods. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
14
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
15
|
|
16
|
Terakita A, Kawano-Yamashita E, Koyanagi M. Evolution and diversity of opsins. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/wmts.6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
17
|
|
18
|
Tsukamoto H, Terakita A. Diversity and functional properties of bistable pigments. Photochem Photobiol Sci 2010; 9:1435-43. [PMID: 20852774 DOI: 10.1039/c0pp00168f] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Rhodopsin and related opsin-based pigments, which are photosensitive membrane proteins, have been extensively studied using a wide variety of techniques, with rhodopsin being the most understood G protein-coupled receptor (GPCR). Animals use various opsin-based pigments for vision and a wide variety of non-visual functions. Many functionally varied pigments are roughly divided into two kinds, based on their photoreaction: bistable and monostable pigments. Bistable pigments are thermally stable before and after photo-activation, but monostable pigments are stable only before activation. Here, we review the diversity of bistable pigments and their molecular characteristics. We also discuss the mechanisms underlying different molecular characteristics of bistable and monostable pigments. In addition, the potential of bistable pigments as a GPCR model is proposed.
Collapse
Affiliation(s)
- Hisao Tsukamoto
- Department of Biology and Geosciences, Graduate School of Science, Osaka City University, 3-3-138, Sugimoto, Osaka, Osaka 558-8585, Japan
| | | |
Collapse
|
19
|
McLaughlin SK, McKinnon PJ, Robichon A, Spickofsky N, Margolskee RF. Gustducin and transducin: a tale of two G proteins. CIBA FOUNDATION SYMPOSIUM 2007; 179:186-96; discussion 196-200. [PMID: 8168377 DOI: 10.1002/9780470514511.ch12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the vertebrate taste cell, heterotrimeric guanine nucleotide-binding proteins (G proteins) are involved in the transduction of both bitter and sweet taste stimulants. The bitter compound denatonium raises the intracellular Ca2+ concentration in rat taste cells, apparently via G protein-mediated increases in inositol trisphosphate. Sucrose causes a G protein-dependent generation of cAMP in rat taste bud membranes; elevation of cAMP levels leads to taste cell depolarization. To identify and characterize those proteins involved in the taste transduction process, we have cloned G protein alpha subunit (G alpha) cDNAs from rat taste cells. Using degenerate primers corresponding to conserved regions of G proteins, we used the polymerase chain reaction to amplify and clone taste cell G alpha cDNAs. Eight distinct G alpha cDNAs were isolated, cloned and sequenced from a taste cell library. Among these clones was alpha gustducin, a novel taste G alpha closely related to the transducins. In addition to alpha gustducin, we cloned rod and cone transducins from taste cells. This is the first identification of transducin expression outside photoreceptor cells. The primary sequence of alpha gustducin shows similarities to the transducins in the receptor interaction domain and the phosphodiesterase activation site. These sequence similarities suggest that gustducin and transducin regulate taste cell phosphodiesterase, probably in bitter taste transduction.
Collapse
Affiliation(s)
- S K McLaughlin
- Roche Research Center, Roche Institute of Molecular Biology, Nutley, NJ 07110-1199
| | | | | | | | | |
Collapse
|
20
|
Singh AK, Mahalaxmi GR. Excited State Properties of α,ω-Diphenylpolyenes: Photophysical and Photochemical Studies of Donor-Acceptor Diarylbutadienes. Photochem Photobiol 2007. [DOI: 10.1562/0031-8655(2000)0710387espodp2.0.co2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
21
|
Singh AK, Hota PK. Development of Bacteriorhodopsin Analogues and Studies of Charge Separated Excited States in the Photoprocesses of Linear Polyenes†. Photochem Photobiol 2007; 83:50-62. [PMID: 16872254 DOI: 10.1562/2006-03-11-ir-844] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of bacteriorhodopsin (bR) analogues employing chromophore substitution technique for the purpose of characterizing the binding site of bR and generating bR analogues with novel opto-electronic properties for applications as photoactive element in nanotechnical devices are described. Additionally, the photophysical and photochemical properties of variously substituted diarylpolyenes as models of photobiologically relevant linear polyenes are discussed. The role of charge separated dipolar excited states in the photoprocesses of linear polyenes is highlighted.
Collapse
Affiliation(s)
- Anil K Singh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India.
| | | |
Collapse
|
22
|
Khasawneh FT, Huang JS, Turek JW, Le Breton GC. Differential Mapping of the Amino Acids Mediating Agonist and Antagonist Coordination with the Human Thromboxane A2 Receptor Protein. J Biol Chem 2006; 281:26951-65. [PMID: 16837469 DOI: 10.1074/jbc.m507469200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the well documented involvement of thromboxane A(2) receptor (TPR) signaling in the pathogenesis of thrombotic diseases, there are currently no rationally designed antagonists available for clinical use. To a large extent, this derives from a lack of knowledge regarding the topography of the TPR ligand binding pocket. On this basis, the purpose of the current study was to identify the specific amino acid residues in the TPR protein that regulate ligand coordination and binding. The sites selected for mutation reside within or in close proximity to a region we previously defined as a TPR ligand binding region (i.e. the C terminus of the second extracellular loop and the leading edge of the fifth transmembrane domain). Mutation of these residues caused varying effects on the TPR-ligand coordination process. Specifically, the D193A, D193Q, and D193R mutants lost SQ29,548 (antagonist) binding and exhibited a dramatically reduced calcium response, which could not be restored by elevated U46619 (agonist) doses. The F184Y mutant lost SQ29,548 binding and exhibited a reduced calcium response (which could be restored by elevated U46619); and the T186A and S191T mutants lost SQ29,548 binding and retained a normal U46619-induced calcium response. Furthermore, these last three mutants also revealed a divergence in the binding of two structurally different antagonists, SQ29,548 and BM13.505. Two separate mutants that exhibited SQ29,548 binding yielded either a normal (F196Y) or reduced (S201T) U46619 response. Finally, mutation of other residues directly adjacent to those described above (e.g. E190A and F200A) produced no detectable effects on either SQ29,548 binding or the U46619-induced response. In summary, these results identify key amino acids (in particular Asp(193)) involved in TPR ligand coordination. These findings also demonstrate that TPR-specific ligands interact with different residues in the ligand-binding pocket.
Collapse
Affiliation(s)
- Fadi T Khasawneh
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois 60612
| | | | | | | |
Collapse
|
23
|
Carafa M, Marianecci C, Codeca A, Squillaci P, Scalzo M, Cerreto F, Santucci E. Retinyl palmitate-loaded vesicles: influence on vitamin light-induced degradation. J Drug Deliv Sci Technol 2006. [DOI: 10.1016/s1773-2247(06)50080-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
24
|
Fanelli F, De Benedetti PG. Computational Modeling Approaches to Structure−Function Analysis of G Protein-Coupled Receptors. Chem Rev 2005; 105:3297-351. [PMID: 16159154 DOI: 10.1021/cr000095n] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute and Department of Chemistry, University of Modena and Reggio Emilia, via Campi 183, 41100 Modena, Italy.
| | | |
Collapse
|
25
|
Fluorescence and photoisomerization studies ofp-nitrophenyl-substituted ethenylindoles. J PHYS ORG CHEM 2005. [DOI: 10.1002/poc.987] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Affiliation(s)
- Dave R van Staveren
- Institut für Pharmazie und Molekulare Biotechnologie, Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | |
Collapse
|
27
|
Terakita A, Koyanagi M, Tsukamoto H, Yamashita T, Miyata T, Shichida Y. Counterion displacement in the molecular evolution of the rhodopsin family. Nat Struct Mol Biol 2004; 11:284-9. [PMID: 14981504 DOI: 10.1038/nsmb731] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 01/05/2004] [Indexed: 11/08/2022]
Abstract
The counterion, a negatively charged amino acid residue that stabilizes a positive charge on the retinylidene chromophore, is essential for rhodopsin to receive visible light. The counterion in vertebrate rhodopsins, Glu113 in the third transmembrane helix, has an additional role as an intramolecular switch to activate G protein efficiently. Here we show on the basis of mutational analyses that Glu181 in the second extracellular loop acts as the counterion in invertebrate rhodopsins. Like invertebrate rhodopsins, UV-absorbing parapinopsin has a Glu181 counterion in its G protein-activating state. Its G protein activation efficiency is similar to that of the invertebrate rhodopsins, but significantly lower than that of bovine rhodopsin, with which it shares greater sequence identity. Thus an ancestral vertebrate rhodopsin probably acquired the Glu113 counterion, followed by structural optimization for efficient G protein activation during molecular evolution.
Collapse
Affiliation(s)
- Akihisa Terakita
- Department of Biophysics, Graduate School of Science, Kyoto University,and Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Kyoto 606-8502, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Cowing JA, Poopalasundaram S, Wilkie SE, Robinson PR, Bowmaker JK, Hunt DM. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. Biochem J 2002; 367:129-35. [PMID: 12099889 PMCID: PMC1222874 DOI: 10.1042/bj20020483] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2002] [Revised: 07/02/2002] [Accepted: 07/05/2002] [Indexed: 11/17/2022]
Abstract
The short-wave-sensitive (SWS) visual pigments of vertebrate cone photoreceptors are divided into two classes on the basis of molecular identity, SWS1 and SWS2. Only the SWS1 class are present in mammals. The SWS1 pigments can be further subdivided into violet-sensitive (VS), with lambda(max) (the peak of maximal absorbance) values generally between 400 and 430 nm, and ultraviolet-sensitive (UVS), with a lambda(max)<380 nm. Phylogenetic evidence indicates that the ancestral pigment was UVS and that VS pigments have evolved separately from UVS pigments in the different vertebrate lineages. In this study, we have examined the mechanism of evolution of VS pigments in the mammalian lineage leading to present day ungulates (cow and pig). Amino acid sequence comparisons of the UVS pigments of teleost fish, amphibia, reptiles and rodents show that site 86 is invariably occupied by Phe but is replaced in bovine and porcine VS pigments by Tyr. Using site-directed mutagenesis of goldfish UVS opsin, we have shown that a Phe-86-->Tyr substitution is sufficient by itself to shift the lambda(max) of the goldfish pigment from a wild-type value of 360 nm to around 420 nm, and the reverse substitution of Tyr-86-Phe into bovine VS opsin produces a similar shift in the opposite direction. The substitution of this single amino acid is sufficient to account therefore for the evolution of bovine and porcine VS pigments. The replacement of Phe with polar Tyr at site 86 is consistent with the stabilization of Schiff-base protonation in VS pigments and the absence of protonation in UVS pigments.
Collapse
Affiliation(s)
- Jill A Cowing
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, U.K
| | | | | | | | | | | |
Collapse
|
29
|
Turek JW, Halmos T, Sullivan NL, Antonakis K, Le Breton GC. Mapping of a ligand-binding site for the human thromboxane A2 receptor protein. J Biol Chem 2002; 277:16791-7. [PMID: 11877412 DOI: 10.1074/jbc.m105872200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human thromboxane A(2) (TP) receptor, a member of the G protein-coupled receptor superfamily, consists of seven transmembrane segments. Attempts to elucidate the specific segment(s) that define the receptor ligand-binding pocket have produced less than definitive and sometimes conflicting results. On this basis, the present work identified an amino acid sequence of the TP receptor that is directly involved in ligand binding. Mapping of this domain was confirmed by two separate approaches: photoaffinity labeling and site-specific antibodies. The newly synthesized, biotinylated photoaffinity probe, SQBAzide, was first shown to specifically label TP receptor protein. Sequential digestion of this protein with CNBr/trypsin revealed photolabeling of a 2.9-kDa peptide. Using anti-peptide antibodies directed against different regions of the receptor protein, it was established that this peptide represents the predicted cleavage product for CNBr/trypsin and corresponds to amino acids Arg(174)-Met(202) of the receptor protein. Furthermore, antibody screening revealed that inhibition of the amino acid region Cys(183)-Asp(193) was critical for radioligand binding and platelet aggregation, whereas inhibition of Gly(172)-Cys(183) was not. Collectively these findings provide evidence that ligands interact with amino acids contained within the C-terminal portion of the third extracellular domain (ED3) of the receptor protein. This information should be of significant value in the study of TP receptor structure and signaling.
Collapse
Affiliation(s)
- Joseph W Turek
- Department of Pharmacology, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | |
Collapse
|
30
|
Lee HM, Kim J, Kim CJ, Kim KS. Ab initio study of the isomerization of retinal chromophore and its derivatives. J Chem Phys 2002. [DOI: 10.1063/1.1459705] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
31
|
Davies A, Gowen BE, Krebs AM, Schertler GF, Saibil HR. Three-dimensional structure of an invertebrate rhodopsin and basis for ordered alignment in the photoreceptor membrane. J Mol Biol 2001; 314:455-63. [PMID: 11846559 DOI: 10.1006/jmbi.2001.5167] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Invertebrate rhodopsins activate a G-protein signalling pathway in microvillar photoreceptors. In contrast to the transducin-cyclic GMP phosphodiesterase pathway found in vertebrate rods and cones, visual transduction in cephalopod (squid, octopus, cuttlefish) invertebrates is signalled via Gq and phospholipase C. Squid rhodopsin contains the conserved residues of the G-protein coupled receptor (GPCR) family, but has only 35% identity with mammalian rhodopsins. Unlike vertebrate rhodopsins, cephalopod rhodopsin is arranged in an ordered lattice in the photoreceptor membranes. This organization confers sensitivity to the plane of polarized light and also provides the optimal orientation of the linear retinal chromophores in the cylindrical microvillar membranes for light capture. Two-dimensional crystals of squid rhodopsin show a rectilinear arrangement that is likely to be related to the alignment of rhodopsins in vivo.Here, we present a three-dimensional structure of squid rhodopsin determined by cryo-electron microscopy of two-dimensional crystals. Docking the atomic structure of bovine rhodopsin into the squid density map shows that the helix packing and extracellular plug structure are conserved. In addition, there are two novel structural features revealed by our map. The linear lattice contact appears to be made by the transverse C-terminal helix lying on the cytoplasmic surface of the membrane. Also at the cytoplasmic surface, additional density may correspond to a helix 5-6 loop insertion found in most GPCRs relative to vertebrate rhodopsins. The similarity supports the conservation in structure of rhodopsins (and other G-protein-coupled receptors) from phylogenetically distant organisms. The map provides the first indication of the structural basis for rhodopsin alignment in the microvillar membrane.
Collapse
Affiliation(s)
- A Davies
- Crystallography Department, Birkbeck College, Malet Street, London, WC1E 7HX, UK
| | | | | | | | | |
Collapse
|
32
|
Millner PA. Are guanine nucleotide-binding proteins involved in regulation of thylakoid protein kinase activity? FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)80570-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Hunt DM, Dulai KS, Partridge JC, Cottrill P, Bowmaker JK. The molecular basis for spectral tuning of rod visual pigments in deep-sea fish. J Exp Biol 2001; 204:3333-44. [PMID: 11606607 DOI: 10.1242/jeb.204.19.3333] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Most species of deep-sea fish possess of a rod-only retina with a pigment that is generally shortwave shifted in λmax towards the blue region of the spectrum. In addition, the λmax values of different species tend to cluster at particular points in the spectrum. In this study, the rod opsin gene sequences from 28 deep-sea fish species drawn from seven different Orders are compared. The λmax values of the rod pigments vary from approximately 520 nm to <470 nm, with the majority lying between 490 nm and 477 nm. The 520 nm pigment in two species of dragon fish is associated with a Phe261Tyr substitution, whereas the shortwave shifts of the pigments in the other 26 species are accountable by substitutions at a further eight sites (83, 122, 124, 132, 208, 292, 299 and 300). Clustering of λmax values does not, however, involve a common subset of these substitutions in the different species. A phylogenetic analysis predicts that the pigment in the ancestral species would have had a λmax of approximately 480 nm. A total of 27 changes is required to generate the pattern of substitutions seen in the different species, with many sites undergoing multiple changes.
Collapse
Affiliation(s)
- D M Hunt
- Department of Molecular Genetics, University College London, Bath Street, London, EC1V 9EL, UK.
| | | | | | | | | |
Collapse
|
34
|
Katragadda M, Chopra A, Bennett M, Alderfer JL, Yeagle PL, Albert AD. Structures of the transmembrane helices of the G-protein coupled receptor, rhodopsin. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 58:79-89. [PMID: 11454172 DOI: 10.1034/j.1399-3011.2001.00904.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An hypothesis is tested that individual peptides corresponding to the transmembrane helices of the membrane protein, rhodopsin, would form helices in solution similar to those in the native protein. Peptides containing the sequences of helices 1, 4 and 5 of rhodopsin were synthesized. Two peptides, with overlapping sequences at their termini, were synthesized to cover each of the helices. The peptides from helix 1 and helix 4 were helical throughout most of their length. The N- and C-termini of all the peptides were disordered and proline caused opening of the helical structure in both helix 1 and helix 4. The peptides from helix 5 were helical in the middle segment of each peptide, with larger disordered regions in the N- and C-termini than for helices 1 and 4. These observations show that there is a strong helical propensity in the amino acid sequences corresponding to the transmembrane domain of this G-protein coupled receptor. In the case of the peptides from helix 4, it was possible to superimpose the structures of the overlapping sequences to produce a construct covering the whole of the sequence of helix 4 of rhodopsin. As similar superposition for the peptides from helix 1 also produced a construct, but somewhat less successfully because of the disordering in the region of sequence overlap. This latter problem was more severe for helix 5 and therefore a single peptide was synthesized for the entire sequence of this helix, and its structure determined. It proved to be helical throughout. Comparison of all these structures with the recent crystal structure of rhodopsin revealed that the peptide structures mimicked the structures seen in the whole protein. Thus similar studies of peptides may provide useful information on the secondary structure of other transmembrane proteins built around helical bundles.
Collapse
Affiliation(s)
- M Katragadda
- Department of Biophysics, Roswell Park Cancer Institute, Buffalo, USA
| | | | | | | | | | | |
Collapse
|
35
|
Halford S, Freedman MS, Bellingham J, Inglis SL, Poopalasundaram S, Soni BG, Foster RG, Hunt DM. Characterization of a novel human opsin gene with wide tissue expression and identification of embedded and flanking genes on chromosome 1q43. Genomics 2001; 72:203-8. [PMID: 11401433 DOI: 10.1006/geno.2001.6469] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As part of an ongoing search to identify novel mammalian photopigments that may mediate nonvisual tasks such as circadian entrainment and acute suppression of pineal melatonin levels, a number of recently cloned nonvisual opsin sequences were used to search dbEST. panopsin (OPN3) was one of the clones identified using this approach. Expression analysis detects two transcripts of approximately 2.1 and 2.5 kb, in a wide range of tissues including brain, liver, and retina, which encode a predicted protein of 403 amino acids. The gene was localized to the region of chromosome 1q43 also encompassing the kynurenine monooxygenase (KMO) and choroideremia-like Rab escort protein 2 (CHML) genes. KMO and panopsin overlap at their 3' ends but are transcribed in opposite directions. CHML, an intronless gene, lies in intron 1 of panopsin.
Collapse
Affiliation(s)
- S Halford
- Department of Molecular Genetics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Modelling G-protein coupled receptors. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s1380-7323(01)80010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Excited state properties of alpha,omega-diphenylpolyenes: photophysical and photochemical studies of donor-acceptor diarylbutadienes. Photochem Photobiol 2000; 71:387-96. [PMID: 10824588 DOI: 10.1562/0031-8655(2000)071<0387:espodp>2.0.co;2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alpha,omega-Diphenylpolyenes have attracted a great deal of attention as models of retinyl polyenes that are related to natural photoreceptors involved in energy and sensory phototransductions. Of particular interest have been the topics of their excited state electronic structure and spectroscopic properties. However, the exact nature of the lowest excited state in terms of their structure and energetics is not clearly known. Examination of the photophysics and photochemistry of donor-acceptor diphenylpolyenes can aid in understanding the excited states and photoprocesses of linear polyenes. In this paper are described the absorption, fluorescence and photoisomerization studies of donor-acceptor diarylbutadienes, namely: p-(N,N-dimethylamino)-p'-cyano-1,4-diphenylbuta-1E,3E-diene (1), p-(N,N-dimethylamino)-p'-nitro-1,4-diphenylbuta-1E,3E-diene (2), p-(N,N-dimethylamino)-m'-nitro-1,4-diphenylbuta-1E,3E-diene (3), p-(N,N-dimethylamino)-o'-nitro-1,4-diphenylbuta-1E,3E-diene (4). Absorption properties are affected as expected due to mesomeric stabilization by the substituent; however, solvent polarity does not significantly affect the absorption properties of these dienes. In contrast, a pronounced solvatochromic fluorescence behavior of these dienes in organic solvents is observed. Time-resolved fluorescence is characterized by a single exponential fluorescence decay with generally increasing lifetime in polar solvents. The fluorescence quantum yields are very low, particularly in polar solvents, but do not show any clear trend. Irradiation of 1E,3E- 1-4 in organic solvents yields the corresponding 1E,3Z-isomer due to one-photon-one-bond isomerization of the C=C double bond lying closer to the acceptor group. The photoisomerization also depended on the solvent polarity and on the concentration of diene. The photoisomerization efficiency of dienes 1 and 2 under direct irradiation condition is greater than dienes 3 and 4. In comparison to the efficiency of photoisomerization under direct irradiation condition, the photosensitized isomerization efficiency is much less, particularly for dienes 1 and 2. The results are discussed in terms of the involvement of excited-state intramolecular charge transfer and conformationally relaxed polar excited states in the photoprocesses of linear polyenes.
Collapse
|
38
|
David-Gray ZK, Cooper HM, Janssen JW, Nevo E, Foster RG. Spectral tuning of a circadian photopigment in a subterranean 'blind' mammal (Spalax ehrenbergi). FEBS Lett 1999; 461:343-7. [PMID: 10567724 DOI: 10.1016/s0014-5793(99)01455-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The atrophied subcutaneous eyes of Spalax ehrenbergi (the blind mole rat) express a long wavelength sensitive (LWS) cone opsin. Our data provide strong evidence that this photopigment is spectrally tuned to enhance photon capture in the red light environment of the eye. Furthermore, novel mechanisms appear partially responsible for this sensory fine-tuning. These data support the hypothesis that the LWS opsin of Spalax acts as a functional photopigment and that it is not a 'residue' of the pre-subterranean visual system. As the eye of Spalax has only one known function, the entrainment of circadian rhythms to environmental light, the LWS photopigment is implicated in this task. These results, together with our recent findings that rod and cone photopigments are not required for murine photoentrainment, suggest that multiple photopigments (classical and novel) mediate the effects of light on the mammalian circadian system.
Collapse
Affiliation(s)
- Z K David-Gray
- Sir Alexander Fleming Building, Department of Biology, Imperial College of Science, Technology and Medicine, Imperial College Road, London, UK.
| | | | | | | | | |
Collapse
|
39
|
Heitz F, Holzwarth JA, Gies JP, Pruss RM, Trumpp-Kallmeyer S, Hibert MF, Guenet C. Site-directed mutagenesis of the putative human muscarinic M2 receptor binding site. Eur J Pharmacol 1999; 380:183-95. [PMID: 10513578 DOI: 10.1016/s0014-2999(99)00439-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Experimental probing of the model of the muscarinic M2 receptor binding site proposed by Hibert et al. [Hibert, M.F., Trumpp-Kallmeyer, S., Bruinsvels, A., Hoflak, K., 1991. Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol. Pharmacol. 40, 8-15.] was achieved by mutating each amino-acid proposed to interact with muscarinic ligands. Pharmacological analysis of the different mutant receptors transiently expressed in human embryonic kidney (HEK/293) cells was performed with a variety of agonists and antagonists. D103A, Y403A and N404A mutations prevented binding of [3H] N-methylscopolamine and [3H] quinuclidinyl benzilate with a reduction in affinity greater than 100-fold, indicating essential contributions of these residues to the binding site for the radioligands. W400A and W155A mutations had very large effects on the binding of [3H] N-methylscopolamine (150-fold, 960-fold) but modest effects on the binding of [3H] quinuclidinyl benzilate (4-fold, 17-fold). In addition, binding of oxotremorine-M, oxotremorine, arecoline and pilocarpine to W155A resulted in a greater than 100-fold decrease in affinity. Threonine mutations (T187A and T190A) alter binding of most agonists but not of antagonists. W99 makes little contribution (< 10-fold) to the binding site of the M2 receptor. D103, W155, W400, Y403 and N404 are likely to be part of the binding site for N-methylscopolamine and also to contribute to the binding site for quinuclidinyl benzilate. Some of the predicted residues do not seem to be part of the M2 receptor binding site but W155 is important for proper ligand binding on the muscarinic M2 receptor, as predicted by the proposed model.
Collapse
Affiliation(s)
- F Heitz
- Marion Merrell Research Institute, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Das D, Wilkie SE, Hunt DM, Bowmaker JK. Visual pigments and oil droplets in the retina of a passerine bird, the canary Serinus canaria: microspectrophotometry and opsin sequences. Vision Res 1999; 39:2801-15. [PMID: 10492811 DOI: 10.1016/s0042-6989(99)00023-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The visual receptors of the passeriform bird Serinus canaria, the canary, have been examined microspectrophotometrically and the sequences of the opsins determined. Rods have a maximum absorbance (lambda max) at 506 nm. Four spectral classes of single cone are present: long-wave-sensitive (LWS) containing a photopigment with lambda max at 569 nm, middle-wave-sensitive (MWS) with lambda max at 505 nm, short-wave-sensitive (SWS) with lambda max at 442 nm, and ultraviolet-sensitive (UVS) with lambda max at about 366 nm. Double cones possess the 569-nm pigment in both members. Typical combinations of photopigment and oil droplet occur in most cone classes. An ambiguity exists in the oil droplet of the single LWS cones. In some birds, LWS cones are paired with an R-type droplet, whereas in the majority of canaries the LWS pigment is paired with a droplet similar to the P-type of double cones. Mechanisms of spectral tuning within each opsin class are discussed.
Collapse
Affiliation(s)
- D Das
- Department of Visual Science, University College London, UK
| | | | | | | |
Collapse
|
41
|
Donohue PJ, Sainz E, Akeson M, Kroog GS, Mantey SA, Battey JF, Jensen RT, Northup JK. An aspartate residue at the extracellular boundary of TMII and an arginine residue in TMVII of the gastrin-releasing peptide receptor interact to facilitate heterotrimeric G protein coupling. Biochemistry 1999; 38:9366-72. [PMID: 10413511 DOI: 10.1021/bi990544h] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mammalian bombesin receptor subfamily of G protein-coupled receptors currently consists of the gastrin-releasing peptide receptor (GRP-R), neuromedin B receptor, and bombesin receptor subtype 3. All three receptors contain a conserved aspartate residue (D98) at the extracellular boundary of transmembrane domain II and a conserved arginine residue (R309) near the extracellular boundary of transmembrane domain VII. To evaluate the functional role of these residues, site-directed GRP-R mutants were expressed in fibroblasts and assayed for their ability to both bind agonist and catalyze exchange of guanine nucleotides. Alanine substitution at GRP-R position 98 or 309 reduced agonist binding affinity by 24- and 56-fold, respectively, compared to wild-type GRP-R. Single swap GRP-R mutations either resulted in no receptor expression in the membrane (D98R) or the protein was not able to bind agonist (R309D). In contrast, the double swap mutation (D98R/R309D) had high-affinity agonist binding, reduced from wild-type GRP-R by only 6-fold. In situ reconstitution of urea-extracted membranes expressing either wild-type or mutant (D98A or R309A) GRP-R with G(q) indicated that alanine substitution greatly reduced G protein catalytic exchange compared to wild-type GRP-R. The D98R/R309D GRP-R had both a higher intrinsic basal activity and a higher overall catalytic exchange activity compared to wild-type; however, the wild-type GRP-R produced a larger agonist-stimulated response relative to the double swap mutant. Taken together, these data show that GRP-R residues D98 and R309 are critical for efficient coupling of GRP-R to G(q). Furthermore, our findings are consistent with a salt bridge interaction between these two polar and oppositely charged amino acids that maintains the proper receptor conformation necessary to interact with G proteins.
Collapse
Affiliation(s)
- P J Donohue
- Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Hulme EC, Lu ZL, Ward SD, Allman K, Curtis CA. The conformational switch in 7-transmembrane receptors: the muscarinic receptor paradigm. Eur J Pharmacol 1999; 375:247-60. [PMID: 10443581 DOI: 10.1016/s0014-2999(99)00297-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The rhodopsin-like superfamily of 7-transmembrane receptors is the largest class of signalling molecules in the mammalian genome. Recently, a combination of mutagenesis, biophysical and modelling studies have suggested a credible model for the alpha-carbon backbone in the transmembrane region of the 7-transmembrane receptors, and have started to reveal the structural basis of the conformational switch from the inactive to the active state. A key feature may be the replacement of a network of radial constraints, centred on transmembrane helix three, which stabilise the inactive ground state of the receptor by a new set of axial interactions which help to stabilise the activated state. Transmembrane helix three may act as a rotary switch in the activation mechanism.
Collapse
Affiliation(s)
- E C Hulme
- Division of Physical Biochemistry, National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK.
| | | | | | | | | |
Collapse
|
43
|
Singh AK, Das J. Liposome encapsulated vitamin A compounds exhibit greater stability and diminished toxicity. Biophys Chem 1998; 73:155-62. [PMID: 9697303 DOI: 10.1016/s0301-4622(98)00158-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Absorption and fluorescence studies of retinol (vitamin A alcohol) and retinol palmitate (vitamin A palmitate) intercalated in phosphatidylcholine (PC) liposomes show that these compounds are bound to the lipid bilayer. It is further found that retinol binds liposomes with greater affinity as compared to retinol palmitate. In addition, the delivery of liposome-incorporated retinoids to the blood has also been studied and it is found that these systems reduce blood viscosity and cause less lysis of red blood cells than retinoid compounds not complexed in liposomes.
Collapse
Affiliation(s)
- A K Singh
- Department of Chemistry, Indian Institute of Technology, Bombay, Powai, India.
| | | |
Collapse
|
44
|
Singh AK, Majumdar N. Role of metal cations in colour transition and hydrolysis of the chromophores of retinal-binding photoreceptor proteins. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 1997. [DOI: 10.1016/s1011-1344(96)00013-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Abstract
We describe the identification of a novel opsin gene isolated from the eyes of Atlantic salmon. The cDNA sequence predicts a protein that has the key features of an opsin, but shows only 32-42% amino acid identity to the known opsin families. Phylogenetic analysis suggests that this opsin is a member of a hitherto unrecognised opsin family that diverged early in the evolution of vertebrate photopigments. We have tentatively called this opsin family the vertebrate ancient (VA) opsins. The identification of VA opsin may ultimately help to resolve some of the uncharacterised photoreceptor functions of the eye, which include the regulation of circadian rhythms, pupil size and corneal pigmentation.
Collapse
Affiliation(s)
- B G Soni
- Imperial College of Science, Technology and Medicine, Department of Biology, London, UK
| | | |
Collapse
|
46
|
Bremner DH, Ringan NS, Wishart G. Modeling of the agonist binding site of serotonin human 5-HT1A, 5-HT1Dα and 5-HT1Dβ receptors. Eur J Med Chem 1997. [DOI: 10.1016/s0223-5234(97)84362-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Helmreich EJ, Hofmann KP. Structure and function of proteins in G-protein-coupled signal transfer. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1286:285-322. [PMID: 8982287 DOI: 10.1016/s0304-4157(96)00013-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- E J Helmreich
- Department of Clinical Biochemistry and Pathobiochemistry, University of Würzburg, Germany
| | | |
Collapse
|
48
|
Fu D, Ballesteros JA, Weinstein H, Chen J, Javitch JA. Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice. Biochemistry 1996; 35:11278-85. [PMID: 8784181 DOI: 10.1021/bi960928x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The binding site of the dopamine D2 receptor, like that of other homologous G-protein-coupled receptors, is contained within a water-accessible crevice formed among its seven membrane-spanning segments. Using the substituted-cysteine accessibility method, we previously mapped the residues that form the surface of the binding-site crevice in the third and fifth membrane-spanning segments (M3 and M5). We have now mutated to cysteine, one at a time, 26 consecutive residues in and flanking the seventh membrane-spanning segment (M7) and expressed the mutant receptors in HEK 293 cells. Nine of these mutants reacted with charged, hydrophilic, lipophobic, sulfhydryl-specific reagents, added extracellularly, and were protected from reaction by a reversible dopamine antagonist, sulpiride. Thus, we infer that the side chains of these residues are in the water-accessible surface of the binding-site crevice. The pattern of accessibility of the cysteine-substitution mutants is consistent with M7 being a kinked alpha-helix.
Collapse
Affiliation(s)
- D Fu
- Center for Molecular Recognition, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
49
|
Strange PG. Dopamine receptors: Studies on structure and function. ADVANCES IN DRUG RESEARCH 1996. [DOI: 10.1016/s0065-2490(96)80008-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
50
|
Negishi M, Sugimoto Y, Ichikawa A. Molecular mechanisms of diverse actions of prostanoid receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1259:109-19. [PMID: 7492609 DOI: 10.1016/0005-2760(95)00146-4] [Citation(s) in RCA: 316] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review summarizes recent advances in the molecular characterization of prostanoid receptors. Prostanoids exert versatile actions in diverse tissues and cells through specific cell surface receptors. Molecular biological studies revealed the primary structure of eight types and subtypes of prostanoid receptor from various species. These include the thromboxane A2 receptor, prostacyclin receptor, prostaglandin (PG) F receptor, PGD receptor and four subtypes of PGE receptors. They are coupled to different signal transduction systems. In addition, multiple isoforms of PGE receptor EP3 subtype have been identified in various species. They are produced through alternative RNA splicing from a single gene and differ only in their carboxy-terminal tails. These isoforms differ in the efficiency of G protein activation, in the specificity of coupling to G proteins or in sensitivity to desensitization. This molecular characterization is useful for understanding the diverse physiological roles of prostanoids.
Collapse
Affiliation(s)
- M Negishi
- Department of Physiological Chemistry, Faculty of Pharmaceutical Sciences, Kyoto University, Japan
| | | | | |
Collapse
|