1
|
de-Souza-Ferreira E, Rios-Neto IM, Martins EL, Galina A. Mitochondria-coupled glucose phosphorylation develops after birth to modulate H 2 O 2 release and calcium handling in rat brain. J Neurochem 2019; 149:624-640. [PMID: 31001830 DOI: 10.1111/jnc.14705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/20/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022]
Abstract
The adult brain is a high-glucose and oxygen-dependent organ, with an extremely organized network of cells and large energy-consuming synapses. To reach this level of organization, early stages in development must include an efficient control of cellular events and regulation of intracellular signaling molecules and ions such as hydrogen peroxide (H2 O2 ) and calcium (Ca2+ ), but in cerebral tissue, these mechanisms of regulation are still poorly understood. Hexokinase (HK) is the first enzyme in the metabolism of glucose and, when bound to mitochondria (mtHK), it has been proposed to have a role in modulation of mitochondrial H2 O2 generation and Ca2+ handling. Here, we have investigated how mtHK modulates these signals in the mitochondrial context during postnatal development of the mouse brain. Using high-resolution respirometry, western blot analysis, spectrometry and resorufin, and Calcium Green fluorescence assays with brain mitochondria purified postnatally from day 1 to day 60, we demonstrate that brain HK increases its coupling to mitochondria and to oxidative phosphorylation to induce a cycle of ADP entry/ATP exit of the mitochondrial matrix that leads to efficient control over H2 O2 generation and Ca2+ uptake during development until reaching plateau at day 21. This contrasts sharply with the antioxidant enzymes, which do not increase as mitochondrial H2 O2 generation escalates. These results suggest that, as its use of glucose increases, the brain couples HK to mitochondria to improve glucose metabolism, redox balance and Ca2+ signaling during development, positioning mitochondria-bound hexokinase as a hub for intracellular signaling control.
Collapse
Affiliation(s)
- Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Izac Miranda Rios-Neto
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduarda Lopes Martins
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Acetyl-CoA the key factor for survival or death of cholinergic neurons in course of neurodegenerative diseases. Neurochem Res 2013; 38:1523-42. [PMID: 23677775 PMCID: PMC3691476 DOI: 10.1007/s11064-013-1060-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 12/24/2022]
Abstract
Glucose-derived pyruvate is a principal source of acetyl-CoA in all brain cells, through pyruvate dehydogenase complex (PDHC) reaction. Cholinergic neurons like neurons of other transmitter systems and glial cells, utilize acetyl-CoA for energy production in mitochondria and diverse synthetic pathways in their extramitochondrial compartments. However, cholinergic neurons require additional amounts of acetyl-CoA for acetylcholine synthesis in their cytoplasmic compartment to maintain their transmitter functions. Characteristic feature of several neurodegenerating diseases including Alzheimer’s disease and thiamine diphosphate deficiency encephalopathy is the decrease of PDHC activity correlating with cholinergic deficits and losses of cognitive functions. Such conditions generate acetyl-CoA deficits that are deeper in cholinergic neurons than in noncholinergic neuronal and glial cells, due to its additional consumption in the transmitter synthesis. Therefore, any neuropathologic conditions are likely to be more harmful for the cholinergic neurons than for noncholinergic ones. For this reason attempts preserving proper supply of acetyl-CoA in the diseased brain, should attenuate high susceptibility of cholinergic neurons to diverse neurodegenerative conditions. This review describes how common neurodegenerative signals could induce deficts in cholinergic neurotransmission through suppression of acetyl-CoA metabolism in the cholinergic neurons.
Collapse
|
3
|
Xing G, Ren M, Watson WD, Watson WA, O'Neill JT, O'Neil JT, Verma A. Traumatic brain injury-induced expression and phosphorylation of pyruvate dehydrogenase: a mechanism of dysregulated glucose metabolism. Neurosci Lett 2009; 454:38-42. [PMID: 19429050 DOI: 10.1016/j.neulet.2009.01.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 12/11/2008] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
Abstract
Dysregulated brain glucose metabolism and lactate accumulation are seen following traumatic brain injury (TBI). The underlying molecular mechanism is poorly understood. Pyruvate dehydrogenase (PDH), the rate-limiting enzyme coupling cytosolic glycolysis to mitochondrial citric acid cycle, plays a critical role in maintaining homeostasis of brain glucose metabolism. PDH activity is maintained by the expression of its E1alpha1 subunit 1 (PDHE1alpha1) and is inhibited by the phosphorylation of PDHE1alpha1 (p-PDHE1alpha1). We hypothesized that PDHE1alpha1 expression and phosphorylation was altered in rat brain following controlled cortical impact (CCI)-induced TBI. Compared to naïve controls (=100%), PDHE1alpha1 protein decreased significantly ipsilateral to CCI (62%, P<0.05; 75%, P<0.05; 57%, P<0.05; and 39%, P<0.01) and contralateral to CCI (77%, 78%, 78% and 36% P<0.01) at 4h, 24h, 3- and 7-day post-CCI, respectively. PDHE1alpha1 protein phosphorylation level also decreased significantly ipsilateral to CCI (31%, P<0.01; 102%, P>0.05; 64%, P<0.05; and 14%, P<0.01) and to contralateral CCI (35%, 74%, P<0.05; 60%, P<0.05; 20%, P<0.01) at 4h, 24h, 3- and 7-day post-CCI, respectively. Similar reduction in PDHE1alpha1 and p-PDHE1alpha1 protein was found in the craniotomy (sham CCI) group. TBI-induced change in PDHE1alpha1 expression and phosphorylation could alter brain PDH activity and glucose metabolism.
Collapse
Affiliation(s)
- Guoqiang Xing
- Department of Psychiatry, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, United States.
| | | | | | | | | | | | | |
Collapse
|
4
|
Changes in dihydrolipoamide dehydrogenase expression and activity during postnatal development and aging in the rat brain. Mech Ageing Dev 2008; 129:282-90. [PMID: 18316113 DOI: 10.1016/j.mad.2008.01.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 12/19/2007] [Accepted: 01/23/2008] [Indexed: 02/06/2023]
Abstract
Brain energy metabolism is increased during postnatal development and diminished in neurodegenerative diseases linked to senescence. The objective of this study was to determine if these conditions could involve postnatal or senescence-related shifts in activity or expression of dihydrolipoamide dehydrogenase (DLDH), a key mitochondrial oxidoreductase. Rats ranging from 10 to 60 days of age were used in studies of postnatal development, whereas rats aged 5 or 30 months were used in the aging studies. The expression of DLDH was determined by Western blot analysis using anti-DLDH antibodies and DLDH diaphorase activity was measured by an in-gel activity staining method using nitroblue tetrazolium (NBT)/NADH. Activity of DLDH dehydrogenase was measured as NAD+ oxidation of dihydrolipoamide. When these measures were considered in separate groups of 10-, 20-, 30-, or 60-day-old rats, all three showed an increase between 10 and 20 days of age. However, dehydrogenase activity of DLDH showed a further, progressive increase from 20 days to adulthood, in the absence of any further change in DLDH expression or diaphorase activity. No age-related decline in DLDH activity or expression was evident over the period from 5 to 30 months of age. Moreover, aging did not render DLDH more susceptible to oxidative inactivation by mitochondria-generated reactive oxygen species (ROS). Taken together, results of the present study indicate that (1) brain DLDH expression and activity undergo independent postnatal maturational increases; (2) senescence does not confer any detectable change in the activity of DLDH or its susceptibility to inactivation by mitochondrial oxidative stress.
Collapse
|
5
|
Robertson CL, Saraswati M, Fiskum G. Mitochondrial dysfunction early after traumatic brain injury in immature rats. J Neurochem 2007; 101:1248-57. [PMID: 17403141 DOI: 10.1111/j.1471-4159.2007.04489.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mitochondria play central roles in acute brain injury; however, little is known about mitochondrial function following traumatic brain injury (TBI) to the immature brain. We hypothesized that TBI would cause mitochondrial dysfunction early (<4 h) after injury. Immature rats underwent controlled cortical impact (CCI) or sham injury to the left cortex, and mitochondria were isolated from both hemispheres at 1 and 4 h after TBI. Rates of phosphorylating (State 3) and resting (State 4) respiration were measured with and without bovine serum albumin. The respiratory control ratio was calculated (State 3/State 4). Rates of mitochondrial H(2)O(2) production, pyruvate dehydrogenase complex enzyme activity, and cytochrome c content were measured. Mitochondrial State 4 rates (ipsilateral/contralateral ratios) were higher after TBI at 1 h, which was reversed with bovine serum albumin. Four hours after TBI, pyruvate dehydrogenase complex activity and cytochrome c content (ipsilateral/contralateral ratios) were lower in TBI mitochondria. These data demonstrate abnormal mitochondrial function early (<or=4 h) after TBI in the developing brain. Future studies directed at reversing mitochondrial abnormalities could guide neuroprotective interventions after pediatric TBI.
Collapse
Affiliation(s)
- Courtney L Robertson
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
6
|
Wolfman JC, Planchon SM, Liao J, Wolfman A. Structural and functional consequences of c-N-Ras constitutively associated with intact mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:1108-24. [PMID: 16996152 DOI: 10.1016/j.bbamcr.2006.07.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Revised: 07/19/2006] [Accepted: 07/27/2006] [Indexed: 12/22/2022]
Abstract
We demonstrate that both c-N-Ras and c-K(B)-Ras are constitutively associated with purified mitochondria. c-K(B)-Ras is associated with the mitochondrial outer membrane, and c-N-Ras is associated with both the outer membrane and inner mitochondrial compartments. The mitochondrial morphology is abnormal in both c-N-Ras negative and K-Ras negative cells. Normal mitochondrial morphology was restored by targeting N-Ras to both the inner and outer mitochondrial compartments, or by ectopically expressing c-K(B)-Ras. Impaired mitochondrial function can result in increased CHOP and NFkappaB activity, typical for a retrograde signaling response. Both are constitutively elevated in the N-Ras negative cells, but not in the K-Ras negative background, and are restored by c-N-Ras targeted exclusively to the inner mitochondrial compartment. Surprisingly, both targeting and the ability to functionally reduce retrograde transcriptional activity were found to be independent of c-N-Ras farnesylation. Overall, these data demonstrate for the first time a (1) farnesylation independent function for c-N-Ras and (2) that N-Ras within the inner mitochondrial compartment is an essential component of the retrograde signaling system between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Janice C Wolfman
- Department of Cell Biology, NC10, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | | | | | |
Collapse
|
7
|
Erecinska M, Cherian S, Silver IA. Energy metabolism in mammalian brain during development. Prog Neurobiol 2004; 73:397-445. [PMID: 15313334 DOI: 10.1016/j.pneurobio.2004.06.003] [Citation(s) in RCA: 222] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 06/09/2004] [Indexed: 12/28/2022]
Abstract
Production of energy for the maintenance of ionic disequilibria necessary for generation and transmission of nerve impulses is one of the primary functions of the brain. This review attempts to link the plethora of information on the maturation of the central nervous system with the ontogeny of ATP metabolism, placing special emphasis on variations that occur during development in different brain regions and across the mammalian species. It correlates morphological events and markers with biochemical changes in activities of enzymes and pathways that participate in the production of ATP. The paper also evaluates alterations in energy levels as a function of age and, based on the tenet that ATP synthesis and utilization cannot be considered in isolation, investigates maturational profiles of the key processes that utilize energy. Finally, an attempt is made to assess the relevance of currently available animal models to improvement of our understanding of the etiopathology of various disease states in the human infant. This is deemed essential for the development and testing of novel strategies for prevention and treatment of several severe neurological deficits.
Collapse
Affiliation(s)
- Maria Erecinska
- Department of Anatomy, School of Veterinary Science, Southwell Street, Bristol BS2 8EJ, UK.
| | | | | |
Collapse
|
8
|
Roche TE, Baker JC, Yan X, Hiromasa Y, Gong X, Peng T, Dong J, Turkan A, Kasten SA. Distinct regulatory properties of pyruvate dehydrogenase kinase and phosphatase isoforms. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 70:33-75. [PMID: 11642366 DOI: 10.1016/s0079-6603(01)70013-x] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The mammalian pyruvate dehydrogenase complex (PDC) plays central and strategic roles in the control of the use of glucose-linked substrates as sources of oxidative energy or as precursors in the biosynthesis of fatty acids. The activity of this mitochondrial complex is regulated by the continuous operation of competing pyruvate dehydrogenase kinase (PDK) and pyruvate dehydrogenase phosphatase (PDP) reactions. The resulting interconversion cycle determines the fraction of active (nonphosphorylated) pyruvate dehydrogenase (E1) component. Tissue-specific and metabolic state-specific control is achieved by the selective expression and distinct regulatory properties of at least four PDK isozymes and two PDP isozymes. The PDK isoforms are members of a family of serine kinases that are not structurally related to cytoplasmic Ser/Thr/Tyr kinases. The catalytic subunits of the PDP isoforms are Mg2+-dependent members of the phosphatase 2C family that has binuclear metal-binding sites within the active site. The dihydrolipoyl acetyltransferase (E2) and the dihydrolipoyl dehydrogenase-binding protein (E3BP) are multidomain proteins that form the oligomeric core of the complex. One or more of their three lipoyl domains (two in E2) selectively bind each PDK and PDP1. These adaptive interactions predominantly influence the catalytic efficiencies and effector control of these regulatory enzymes. When fatty acids are the preferred source of acetyl-CoA and NADH, feedback inactivation of PDC is accomplished by the activity of certain kinase isoforms being stimulated upon preferentially binding a lipoyl domain containing a reductively acetylated lipoyl group. PDC activity is increased in Ca2+-sensitive tissues by elevating PDP1 activity via the Ca2+-dependent binding of PDP1 to a lipoyl domain of E2. During starvation, the irrecoverable loss of glucose carbons is restricted by minimizing PDC activity due to high kinase activity that results from the overexpression of specific kinase isoforms. Overexpression of the same PDK isoforms deleteriously hinders glucose consumption in unregulated diabetes.
Collapse
Affiliation(s)
- T E Roche
- Department of Biochemistry, Kansas State University, Manhattan 66506-3702, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Buerstatte CR, Behar KL, Novotny EJ, Lai JC. Brain regional development of the activity of alpha-ketoglutarate dehydrogenase complex in the rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2000; 125:139-45. [PMID: 11154769 DOI: 10.1016/s0165-3806(00)00134-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study was initiated to test the hypothesis that the development of alpha-ketoglutarate dehydrogenase complex (KGDHC) activity, like that of pyruvate dehydrogenase complex, is one of the late developers of tricarboxylic acid (TCA) cycle enzymes. The postnatal development of KGDHC in rat brain exhibits four distinct region-specific patterns. The age-dependent increases in olfactory bulb (OB) and hypothalamus (HYP) form one pattern: low in postnatal days (P) 2 and 4, KGDHC activity rose linearly to attain adult level at P30. The increases in mid-brain (MB) and striatum (ST) constitute a second pattern: being <40% of adult level at P2 and P4, KGDHC activity rose steeply between P10 and P17 and attained adult level by P30. The increases in cerebellum (CB), cerebral cortex (CC), and hippocampus (HIP) form a third pattern: being 25-30% of adult level at P2 and P4, KGDHC activity doubled between P10 and P17 and rose to adult level by P30. KGDHC activity development is unique in pons and medulla (PM): being >60% of the adult level at P2, it rose rapidly to adult level by P10. Thus, KGDHC activity develops earlier in phylogenetically older regions (PM) than in phylogenetically younger regions (CB, CC, HIP). Being lowest in activity among all TCA cycle enzymes, KGDHC activity in any region at any age will exert a limit on the maximum TCA cycle flux therein. The results may have functional and pathophysiological implications in control of brain glucose oxidative metabolism, energy metabolism, and neurotransmitter syntheses.
Collapse
Affiliation(s)
- C R Buerstatte
- Department of Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Campus Box 8334, Pocatello, ID 83209-8334, USA
| | | | | | | |
Collapse
|
10
|
Amessou M, Fouque F, Soussi N, Desbuquois B, Hainaut I, Girard J, Benelli C. Longitudinal study of tissue- and subunit-specific obesity-induced regulation of the pyruvate dehydrogenase complex. Mol Cell Endocrinol 1998; 144:139-47. [PMID: 9863634 DOI: 10.1016/s0303-7207(98)00132-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The tissue-specific expression of the mitochondrial pyruvate dehydrogenase complex (PDHc) has been studied in an animal model of obesity with hyperinsulinemia, the obese (fa/fa) Zucker rat. Liver and heart were obtained from 4 and 8 week-old obese rats and age-matched lean animals, and in each tissue the following parameters were analyzed: (1) total activity of the mitochondrial PDHc; (2) abundance of the mitochondrial PDHc subunits on Western blots; and (3) abundance of the E1alpha and E1beta subunit mRNAs on Northern blots and semi-quantitative RT-PCR. Regardless of age, obese rats showed an increase in liver total PDHc activity and a coordinate increase in liver E1alpha and E1beta PDHc subunit abundance. At 4 weeks, obese rats also showed an increase in liver PDH E1alpha mRNA level, but regardless of age E1beta mRNA level was unchanged. In contrast, neither total PDHc activity nor the concentration of its protein subunits were increased in heart of obese rats. Thus, obese Zucker rats display a liver-specific early increase in PDHc which results from a selective up-regulation of the E1alpha gene expression.
Collapse
Affiliation(s)
- M Amessou
- INSERM U 30, Hôpital des Enfants Malades, Paris, France
| | | | | | | | | | | | | |
Collapse
|
11
|
Medina JM, Tabernero A, Tovar JA, Martín-Barrientos J. Metabolic fuel utilization and pyruvate oxidation during the postnatal period. J Inherit Metab Dis 1996; 19:432-42. [PMID: 8884567 DOI: 10.1007/bf01799104] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The transplacental supply of nutrients is interrupted at birth, which diverts maternal metabolism to lactation. After birth, energy homeostasis is rapidly regained through milk nutrients which supply the newborn with the fatty acids and ketone bodies required for neonatal development. However, immediately after birth and before the onset of suckling there is a time lapse in which the newborn undergoes a unique kind of starvation. During this period glucose is scarce and ketone bodies are not available owing to the delay in ketogenesis. Under these circumstances, the newborn is supplied with another metabolic fuel, lactate, which is utilized as a source of energy and carbon skeletons. Neonatal rat lung, heart, liver and brain utilize lactate for energy production and lipogenesis. Lactate is also utilized by the brain of human babies with type I glycogenosis. Both rat neurons and astrocytes in primary culture actively use lactate as an oxidizable substrate and as a precursor of phospholipids and sterols. Lactate oxidation is enhanced by dichloroacetate, an inhibitor of the pyruvate dehydrogenase kinase in neurons but not in astrocytes, suggesting that the pyruvate dehydrogenase is regulated differently in each type of cell. Despite the low activity of this enzyme in newborn brain, pyruvate decarboxylation is the main fate of glucose in both neurons and astrocytes. The occurrence of a yeast-like pyruvate decarboxylase activity in neonatal brain may explain these results.
Collapse
Affiliation(s)
- J M Medina
- Departmento de Bioquímica Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | | | |
Collapse
|
12
|
Cullingford TE, Clark JB, Phillips IR. The pyruvate dehydrogenase complex: cloning of the rat somatic E1 alpha subunit and its coordinate expression with the mRNAs for the E1 beta, E2, and E3 catalytic subunits in developing rat brain. J Neurochem 1994; 62:1682-90. [PMID: 8158120 DOI: 10.1046/j.1471-4159.1994.62051682.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We report the isolation of cDNA clones encoding the somatic form of the E1 alpha subunit of the pyruvate dehydrogenase complex of rat. The deduced amino acid sequence has 99.5, 98, and 97% identity, respectively, with the orthologous proteins of mouse, human, and pig and 98.5% identity with a rat E1 alpha sequence reported previously. The cDNAs isolated in this and earlier studies predict different E1 alpha subunit mRNA sizes and amino acid sequences. These differences have been investigated by PCR, northern blot hybridization, and RNase protection. We have used our E1 alpha cDNA, in conjunction with cDNA probes to the E1 beta, E2, and E3 catalytic subunits of rat pyruvate dehydrogenase complex and also to rat citrate synthase, to perform RNase protection assays of developing rat whole brain RNA. The results show a 2.5-fold increase in the concentration of each of the subunit mRNAs and a 1.2-fold increase in citrate synthase mRNA from late foetal stage to 5 days post partum. Thereafter, the mRNA levels remained constant. These data indicate that the respective six- and threefold increases in the amounts of pyruvate dehydrogenase complex and citrate synthase found to occur in rat brain between birth and adulthood are mediated principally by translational and/or posttranslational mechanisms.
Collapse
Affiliation(s)
- T E Cullingford
- Department of Biochemistry, Queen Mary and Westfield College, London, England
| | | | | |
Collapse
|
13
|
Abstract
The metabolism of lactate in isolated cells from early neonatal rat brain has been studied. In these circumstances, lactate was mainly oxidized to CO2, although a significant portion was incorporated into lipids (78% sterols, 4% phosphatidylcholine, 2% phosphatidylethanolamine, and 1% phosphatidylserine). The rate of lactate incorporation into CO2 and lipids was higher than those found for glucose and 3-hydroxybutyrate. Lactate strongly inhibited glucose oxidation through the pyruvate dehydrogenase-catalyzed reaction and the tricarboxylic acid cycle while scarcely affecting glucose utilization by the pentose phosphate pathway. Lipogenesis from glucose was strongly inhibited by lactate without relevant changes in the rate of glycerol phosphate synthesis. These results suggest that lactate inhibits glucose utilization at the level of the pyruvate dehydrogenase-catalyzed reaction, which may be a mechanism to spare glucose for glycerol and NADPH synthesis. The effect of 3-hydroxybutyrate inhibiting lactate utilization only at high concentrations of 3-hydroxybutyrate suggests that before ketogenesis becomes active, lactate may be the major fuel for the neonatal brain. (-)-Hydroxycitrate and aminooxyacetate markedly inhibited lipogenesis from lactate, suggesting that the transfer of lactate carbons through the mitochondrial membrane is accomplished by the translocation of both citrate and N-acetylaspartate.
Collapse
Affiliation(s)
- C Vicario
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | |
Collapse
|
14
|
Vicario C, Arizmendi C, Malloch G, Clark JB, Medina JM. Lactate utilization by isolated cells from early neonatal rat brain. J Neurochem 1991; 57:1700-7. [PMID: 1919582 DOI: 10.1111/j.1471-4159.1991.tb06370.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The utilization of lactate, glucose, 3-hydroxybutyrate, and glutamine has been studied in isolated brain cells from early newborn rats. Isolated brain cells actively utilized these substrates, showing saturation at concentrations near physiological levels during the perinatal period. The rate of lactate utilization was 2.5-fold greater than that observed for glucose, 3-hydroxybutyrate, or glutamine, suggesting that lactate is the main metabolic substrate for the brain immediately after birth. The apparent Km for glucose utilization suggested that this process is limited by the activity of hexokinase. However, lactate, 3-hydroxybutyrate, and glutamine utilization seems to be limited by their transport through the plasma membrane. The presence of fatty acid-free bovine serum albumin (BSA) in the incubation medium significantly increased the rate of lipogenesis from lactate or 3-hydroxybutyrate, although this was balanced by the decrease in their rates of oxidation in the same circumstances. BSA did not affect the rate of glucose utilization. The effect of BSA was due not to the removal of free fatty acid, but possibly to the binding of long-chain acyl-CoA, resulting in the disinhibition of acetyl-CoA carboxylase and citrate carrier.
Collapse
Affiliation(s)
- C Vicario
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Salamanca, Spain
| | | | | | | | | |
Collapse
|
15
|
Cain ST, Akers RF, Routtenberg A. Functional regulation of brain pyruvate dehydrogenase: Postnatal development, anesthesia and food-deprivation. Neurochem Int 1991. [DOI: 10.1016/0197-0186(91)90075-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
MALLOCH GDA, PHILLIPS IR, CLARK JB. Developmental Regulation of the Pyruvate Dehydrogenase Complex in the Rat Brain. Ann N Y Acad Sci 1989. [DOI: 10.1111/j.1749-6632.1989.tb15024.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Hodgson JA, De Marcucci OG, Lindsay JG. Structure function studies on the lipoate-acetyltransferase--component-X-core assembly of the ox heart pyruvate dehydrogenase complex. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 171:609-14. [PMID: 3345747 DOI: 10.1111/j.1432-1033.1988.tb13831.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Component X, the recently recognised subunit of mammalian pyruvate dehydrogenase complex, was shown by immune blotting to be present in all of nine tissues dissected from rat. This finding indicated that component X was not an isoenzyme of the lipoate acetyltransferase (E2) associated with one or a limited number of tissues. Native pyruvate dehydrogenase complex was shown to bind IgG raised to isolated component X, indicating that there were at least some regions of the X subunit exposed at the periphery of the complex. Lipoyl groups of ox heart pyruvate dehydrogenase complex were specifically cross-linked by reaction with phenylene-o-bismaleimide in the presence of pyruvate and the subunits contributing to the products of cross-linking were identified by immune blotting. Species with very high Mr containing both E2 and component X, were formed in high yield, as well as apparent E2/E2 and E2/X dimers and trimers and an X/X dimer. These results showed that acetylated lipoyl groups of different E2 and X subunits were able to interact in all possible combinations. The types of cross-linked E2 products formed suggested that two thiols, reactible with phenylene-o-bismaleimide, were rapidly generated in the presence of pyruvate. The results were most easily explained by the presence of two acetylatable lipoyl groups on each E2 polypeptide.
Collapse
Affiliation(s)
- J A Hodgson
- Department of Biochemistry, University of Glasgow
| | | | | |
Collapse
|