1
|
Proteomic and Mutant Analysis of the CO 2 Concentrating Mechanism of Hydrothermal Vent Chemolithoautotroph Thiomicrospira crunogena. J Bacteriol 2017; 199:JB.00871-16. [PMID: 28115547 DOI: 10.1128/jb.00871-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/12/2017] [Indexed: 12/21/2022] Open
Abstract
Many autotrophic microorganisms are likely to adapt to scarcity in dissolved inorganic carbon (DIC; CO2 + HCO3- + CO32-) with CO2 concentrating mechanisms (CCM) that actively transport DIC across the cell membrane to facilitate carbon fixation. Surprisingly, DIC transport has been well studied among cyanobacteria and microalgae only. The deep-sea vent gammaproteobacterial chemolithoautotroph Thiomicrospira crunogena has a low-DIC inducible CCM, though the mechanism for uptake is unclear, as homologs to cyanobacterial transporters are absent. To identify the components of this CCM, proteomes of T. crunogena cultivated under low- and high-DIC conditions were compared. Fourteen proteins, including those comprising carboxysomes, were at least 4-fold more abundant under low-DIC conditions. One of these proteins was encoded by Tcr_0854; strains carrying mutated copies of this gene, as well as the adjacent Tcr_0853, required elevated DIC for growth. Strains carrying mutated copies of Tcr_0853 and Tcr_0854 overexpressed carboxysomes and had diminished ability to accumulate intracellular DIC. Based on reverse transcription (RT)-PCR, Tcr_0853 and Tcr_0854 were cotranscribed and upregulated under low-DIC conditions. The Tcr_0853-encoded protein was predicted to have 13 transmembrane helices. Given the mutant phenotypes described above, Tcr_0853 and Tcr_0854 may encode a two-subunit DIC transporter that belongs to a previously undescribed transporter family, though it is widespread among autotrophs from multiple phyla.IMPORTANCE DIC uptake and fixation by autotrophs are the primary input of inorganic carbon into the biosphere. The mechanism for dissolved inorganic carbon uptake has been characterized only for cyanobacteria despite the importance of DIC uptake by autotrophic microorganisms from many phyla among the Bacteria and Archaea In this work, proteins necessary for dissolved inorganic carbon utilization in the deep-sea vent chemolithoautotroph T. crunogena were identified, and two of these may be able to form a novel transporter. Homologs of these proteins are present in 14 phyla in Bacteria and also in one phylum of Archaea, the Euryarchaeota Many organisms carrying these homologs are autotrophs, suggesting a role in facilitating dissolved inorganic carbon uptake and fixation well beyond the genus Thiomicrospira.
Collapse
|
2
|
Flemming D, Stolpe S, Schneider D, Hellwig P, Friedrich T. A Possible Role for Iron-Sulfur Cluster N2 in Proton Translocation by the NADH:Ubiquinone Oxidoreductase (Complex I). J Mol Microbiol Biotechnol 2006; 10:208-22. [PMID: 16645316 DOI: 10.1159/000091566] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. The enzyme mechanism is still unknown due to the lack of a high-resolution structure and its complicated composition. The complex from Escherichia coli is made up of 13 subunits called NuoA through NuoN and contains one FMN and nine iron-sulfur (Fe/S) clusters as redox groups. The pH dependence of the midpoint redox potential of the Fe/S cluster named N2 and its spin-spin interaction with ubiquinone radicals made it an ideal candidate for a key component in redox-driven proton translocation. During the past years we have assigned the subunit localization of cluster N2 to subunit NuoB by site-directed mutagenesis and predicted its ligation by molecular simulation. Redox-induced FT-IR spectroscopy has shown that its redox reaction is accompanied by the protonation and deprotonation of individual amino acid residues. These residues have been identified by site-directed mutagenesis. The enzyme catalytic activity depends on the presence of cluster N2 and is coupled with major conformational changes. From these data a model for redox-induced conformation-driven proton translocation has been derived.
Collapse
Affiliation(s)
- Dirk Flemming
- Institut für Organische Chemie und Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | | | | | | | | |
Collapse
|
3
|
Hinttala R, Uusimaa J, Remes AM, Rantala H, Hassinen IE, Majamaa K. Sequence analysis of nuclear genes encoding functionally important complex I subunits in children with encephalomyopathy. J Mol Med (Berl) 2005; 83:786-94. [PMID: 16142472 DOI: 10.1007/s00109-005-0712-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Accepted: 08/05/2005] [Indexed: 12/28/2022]
Abstract
Complex I has a vital role in the energy production of the cell, and the clinical spectrum of complex I deficiency varies from severe lactic acidosis in infants to muscle weakness in adults. It has been estimated that the cause of complex I deficiency, especially in children, is often a mutation in the nuclear-encoded genes and, more rarely, in the genes encoded by mitochondrial DNA. We sequenced nine complex I subunit coding genes, NDUFAB1, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7, NDUFS8, NDUFV1 and NDUFV2, in 13 children with defined complex I deficiency. Two novel substitutions were found: a synonymous replacement 201A>T in NDUFV2 and a non-synonymous base exchange 52C>T in NDUFS8. The 52C>T substitution produced the replacement Arg18Cys in the leading peptide of the TYKY subunit. This novel missense mutation was found as a heterozygote in one patient and her mother, but not among 202 healthy controls nor among 107 children with undefined encephalomyopathy. Bioinformatic analyses suggested that Arg18Cys could lead to marked changes in the physicochemical properties of the mitochondrial-targeting peptide of TYKY, but we could not see changes in the assembly or activity of complex I or in the transcription of NDUFS8 in the fibroblasts of our patient. We suggest that Arg18Cys in the leading peptide of the TYKY subunit is not solely pathogenic, and that other genetic factors contribute to the disease-causing potential of this mutation.
Collapse
|
4
|
Kao MC, Di Bernardo S, Matsuno-Yagi A, Yagi T. Characterization of the membrane domain Nqo11 subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans. Biochemistry 2002; 41:4377-84. [PMID: 11914084 DOI: 10.1021/bi025525d] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans consists of at least 14 unlike subunits (designated Nqo1-14). The NDH-1 is composed of two segments (the peripheral and membrane segments). The membrane domain segment appears to be made up of seven subunits (Nqo7, -8, -10-14). In this report, the characterization of the Paracoccus Nqo11 subunit has been investigated. An antibody against the C-terminal 12 amino acid residues of the Paracoccus Nqo11 subunit (Nqo11c) has been raised. The Nqo11c antibody reacted with a single band (11 kDa) of the Paracoccus membranes and cross-reacted with Rhodobactor capsulatus membranes. The Nqo11 subunit was not able to be extracted from the Paracoccus membranes by NaI or alkaline treatment, unlike the peripheral subunits (Nqo1 and Nqo6). The C-terminal region of the Paracoccus Nqo11 is exposed to the cytoplasmic phase. For further characterization of the Paracoccus Nqo11 subunit, the subunit was overexpressed in Escherichia coli by using the maltose-binding protein (MBP) fusion system. The MBP-fused Nqo11 subunit was expressed in the E. coli membranes (but not in soluble phase) and was extracted by Triton X-100. The isolated MBP-fused Nqo11 subunit interacted with the phospholipid vesicles and suppressed their membrane fluidity. Topological studies of the Nqo11 subunit expressed in E. coli membranes have been performed by using cysteine mapping and immunochemical analyses. The data suggest that the Nqo11 subunit has three transmembrane segments and its C-terminus protrudes into the cytoplasmic phase.
Collapse
Affiliation(s)
- Mou-Chieh Kao
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
5
|
Albracht SP, Hedderich R. Learning from hydrogenases: location of a proton pump and of a second FMN in bovine NADH--ubiquinone oxidoreductase (Complex I). FEBS Lett 2000; 485:1-6. [PMID: 11086155 DOI: 10.1016/s0014-5793(00)02172-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hydrogenases have clear evolutionary links to the much more complex NADH-ubiquinone oxidoreductases (Complex I). Certain membrane-bound [NiFe]-hydrogenases presumably pump protons. From a detailed comparison of hydrogenases and Complex I, it is concluded here that the TYKY subunit in these enzymes is a special 2[4Fe-4S] ferredoxin, which functions as the electrical driving unit for a proton pump. The comparison further revealed that the flavodoxin fold from [NiFe]-hydrogenases is presumably conserved in the PSST subunit of Complex I. It is proposed that bovine Complex I and the soluble NAD(+)-reducing hydrogenase from Ralstonia eutropha each contain a second FMN group.
Collapse
Affiliation(s)
- S P Albracht
- Swammerdam Institute for Life Sciences, Biochemistry, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
6
|
Zickermann V, Kurki S, Kervinen M, Hassinen I, Finel M. The NADH oxidation domain of complex I: do bacterial and mitochondrial enzymes catalyze ferricyanide reduction similarly? BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1459:61-8. [PMID: 10924899 DOI: 10.1016/s0005-2728(00)00113-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The hexammineruthenium (HAR) and ferricyanide reductase activities of Complex I (H+-translocating NADH:ubiquinone reductase) from Paracoccus denitrificans and bovine heart mitochondria were studied. The rates of HAR reduction are high, and its steady-state kinetics is similar in both P. denitrificans and bovine Complex I. The deamino-NADH:HAR reductase activity of Complex I from both sources is significantly higher than the respective activity in the presence of NADH. The HAR reductase activity of the bacterial and mitochondrial Complex I is similarly and strongly pH dependent. The pK(a) of this activity could not be determined, however, due to low stability of the enzymes at pH values above 8.0. In contrast to the high similarity between bovine and P. denitrificans Complex I as far as HAR reduction is concerned, the ferricyanide reductase activity of the bacterial enzyme is much lower than in mitochondria. Moreover, ferricyanide reduction in P. denitrificans, but not bovine mitochondria, is partially sensitive to dicyclohexylcarbodiimide (T. Yagi, Biochemistry 26 (1987) 2822-2828). On the other hand, the inhibition of ferricyanide reduction by high concentration of NADH, a typical phenomenon in bovine Complex I, is much weaker in the bacterial enzyme. The functional differences between the two enzymes might be linked to the properties of their binuclear Fe-S clusters.
Collapse
Affiliation(s)
- V Zickermann
- Department of Medical Chemistry, Institute of Biomedical Sciences and Biocentrun Helsinki, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
7
|
Uusimaa J, Remes AM, Rantala H, Vainionpää L, Herva R, Vuopala K, Nuutinen M, Majamaa K, Hassinen IE. Childhood encephalopathies and myopathies: a prospective study in a defined population to assess the frequency of mitochondrial disorders. Pediatrics 2000; 105:598-603. [PMID: 10699115 DOI: 10.1542/peds.105.3.598] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES To assess the frequency of mitochondrial abnormalities in muscle histology, defects in respiratory chain enzyme activities, and mutations in mitochondrial DNA (mtDNA) in children with unexplained psychomotor retardation in the population of Northern Finland. BACKGROUND The frequency of mitochondrial diseases among patients with childhood encephalopathies and myopathies is not known. Frequencies are difficult to estimate because the clinical presentation of these disorders is variable. METHODS A total of 116 consecutive patients with undefined encephalopathies and myopathies were enrolled during a 7-year period in a hospital serving as the only neurologic unit for a pediatric population of 97 609 and as the only tertiary level neurologic unit for a pediatric population of 48 873. Biochemical and morphologic investigations were performed on muscle biopsy material, including oximetric and spectrophotometric analyses of oxidative phosphorylation, histochemistry, electron microscopy, and molecular analysis of mtDNA. RESULTS Ultrastructural changes in the mitochondria were the most common finding in the muscle biopsies (71%). Ragged-red fibers were found in 4 cases. An oxidative phosphorylation defect was found in 26 children (28%), complex I (n = 15) and complex IV (n = 13) defects being the most common. Fifteen percent of patients (n = 17/116) with unexplained encephalomyopathy or myopathy had a probable mitochondrial disease. Common pathogenic mutations were found in the mtDNA of only 1 patient (.9%). CONCLUSIONS The common known mutations in mtDNA are rarely causes of childhood encephalomyopathies, which is in contrast to the considerable frequency of the common MELAS mutation observed among adults in the same geographical area. Biochemically and morphologically verified mitochondrial disorders were nevertheless common among the children, making the analysis of a muscle biopsy very important for clinical diagnostic purposes.
Collapse
Affiliation(s)
- J Uusimaa
- Departments of Medical Biochemistry, University of Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Takano S, Yano T, Yagi T. Structural studies of the proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans: identity, property, and stoichiometry of the peripheral subunits. Biochemistry 1996; 35:9120-7. [PMID: 8703916 DOI: 10.1021/bi9605853] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The proton-translocating NADH-quinone oxidoreductase (NDH-1) of Paracoccus denitrificans is composed of at least 14 unlike subunits and contains one FMN and at least five EPR-detectable iron-sulfur clusters. The 14 subunits are designated NQO1 through NQO14. The expression and partial characterization of the NQO4, -5, and -6 subunits have been performed. The NQO4, -5, and -6 subunits were individually expressed in Escherichia coli. The NQO4 subunit was expressed in both the cytoplasmic phase and membrane fraction, the NQO5 subunit in the cytoplasmic phase only, and the NQO6 subunit in the membrane fraction only. The NQO4 and NQO5 subunits were purified from cytoplasmic phase. Neither subunit contains non-heme iron or acid-labile sulfide, suggesting that the NQO4 or NQO5 subunit is not an iron-sulfur subunit. The antibodies against the NQO4, -5, and -6 subunits cross-reacted with their counterpart subunits in bovine heart complex I. The NQO4, -5, and -6 subunits in membrane-bound P. denitrificans NDH-1 were extracted by treatment at alkaline pH ( > or = 10) or with chaotropes (NaBr, Nal, and urea), suggesting that these subunits are localized in the peripheral part (not in the membrane sector) of the enzyme complex similar to the NQO1, -2, and -3 subunits. In addition, the subunit stoichiometry of NQO1 through -6 of the membrane-bound P. denitrificans NDH-1 has been determined by radioimmunoassays. There is 1 mol each of the NQO1 through -6 subunits per mol of the P. denitrificans NDH-1.
Collapse
Affiliation(s)
- S Takano
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
9
|
Li CY, Watkins JA, Hamazaki S, Altazan JD, Glass J. Iron binding, a new function for the reticulocyte endosome H(+)-ATPase. Biochemistry 1995; 34:5130-6. [PMID: 7711032 DOI: 10.1021/bi00015a025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The significance of the H(+)-ATPase in iron absorption by rabbit reticulocytes is explored using isolated endosomes, effects of inhibitors, and the purified proton pump. We have recently reported H(+)-ATPase-mediated iron transfer across a liposomal membrane (Li et al., 1994). In this report, the effect of H(+)-ATPase inhibitors on iron mobilization is investigated at pH 6.0 in the presence of 15 microM FCCP in order to dissociate 59Fe(III) from transferrin and eliminate the kinetic effects of acidification by the ATPase. Iron transport by isolated endosomes is decreased 50% by the cation pore inhibitor dicyclohexylcarbodiimide (DCCD) for ascorbate-mediated iron mobilization and increased by 40-50% when NADH and ferrocyanide are used as electron donors. In contrast, the ATPase hydrolysis inhibitors N-methylmaleimide (NEM) and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD) increase iron mobilization when NADH and ferrocyanide are used as reductants but have negligible effects for ascorbate. The differential inhibition or enhancement by DCCD, NEM, and NBD with respect to the reductants used for mobilization indicates that the H(+)-ATPase may be involved in the multiple pathways or iron transport found in isolated rabbit reticulocyte endosomes. Effects of inhibitors of ATP hydrolysis suggest significant structural interactions between the proton pump and sites for iron binding and/or reduction. The isolated H(+)-ATPase binds iron as revealed by using nondenaturing electrophoretic and chromatographic methods. One class of iron binding sites is suggested to be the 17.5 kDa proton pore subunits of the H(+)-ATPase which also covalently react with DCCD.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C Y Li
- Department of Medicine, Louisiana State University Medical Center, Shreveport 71130-3932, USA
| | | | | | | | | |
Collapse
|
10
|
Hassinen IE, Vuokila PT. Reaction of dicyclohexylcarbodiimide with mitochondrial proteins. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1144:107-24. [PMID: 8396439 DOI: 10.1016/0005-2728(93)90164-b] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- I E Hassinen
- Department of Medical Biochemistry, University of Oulu, Finland
| | | |
Collapse
|
11
|
Vinogradov AD. Kinetics, control, and mechanism of ubiquinone reduction by the mammalian respiratory chain-linked NADH-ubiquinone reductase. J Bioenerg Biomembr 1993; 25:367-75. [PMID: 8226718 DOI: 10.1007/bf00762462] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In mammalian cells the membrane-bound NADH-quinone oxidoreductase serves as the entry point for oxidation of NADH in the respiratory chain and as the proton-translocating unit which conserves the free energy of the enzyme intramolecular redox reactions as the free energy of the electrochemical proton gradient across the coupling membrane. This review summarizes the kinetic properties of the mammalian enzyme. Emphasis is placed on the hysteretic properties of the enzyme as related to the possible control of intramitochondrial NADH oxidation and to the mechanism of the enzyme interaction with ubiquinone. Recent evidence for participation of flavin and the protein-bound ubisemiquinone pair in the enzyme-catalyzed proton translocation mechanism are discussed.
Collapse
Affiliation(s)
- A D Vinogradov
- Department of Biochemistry, School of Biology, Moscow State University, Russia
| |
Collapse
|
12
|
Yagi T. The bacterial energy-transducing NADH-quinone oxidoreductases. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1141:1-17. [PMID: 8435434 DOI: 10.1016/0005-2728(93)90182-f] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- T Yagi
- Department of Molecular and Experimental Medicine, Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
13
|
Abstract
The inner membranes of mitochondria contain three multi-subunit enzyme complexes that act successively to transfer electrons from NADH to oxygen, which is reduced to water (Fig. I). The first enzyme in the electron transfer chain, NADH:ubiquinone oxidoreductase (or complex I), is the subject of this review. It removes electrons from NADH and passes them via a series of enzyme-bound redox centres (FMN and Fe-S clusters) to the electron acceptor ubiquinone. For each pair of electrons transferred from NADH to ubiquinone it is usually considered that four protons are removed from the matrix (see section 4.1 for further discussion of this point).
Collapse
Affiliation(s)
- J E Walker
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
14
|
Watkins JA, Altazan JD, Elder P, Li CY, Nunez MT, Cui XX, Glass J. Kinetic characterization of reductant dependent processes of iron mobilization from endocytic vesicles. Biochemistry 1992; 31:5820-30. [PMID: 1535218 DOI: 10.1021/bi00140a018] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The reductant dependence of iron mobilization from isolated rabbit reticulocyte endosomes containing diferric transferrin is reported. The kinetic effects of acidification by a H(+)-ATPase are eliminated by incubating the endosomes at pH 6.0 in the presence of 15 microM FCCP to acidify the intravesicular milieu and to dissociate 59Fe(III) from transferrin. In the absence of reductants, iron is not released from the vesicles, and iron leakage is negligible. The second-order dependence of rate constants and amounts of 59Fe mobilized from endosomes using ascorbate, ferrocyanide, or NADH are consistent with reversible mechanisms. The estimated apparent first-order rate constant for mobilization by ascorbate is (2.7 +/- 0.4) x 10(-3) s-1 in contrast to (3.2 +/- 0.1) x 10(-4) s-1 for NADH and (3.5 +/- 0.6) x 10(-4) s-1 for ferrocyanide. These results support models where multiple reactions are involved in complex processes leading to iron transfer and membrane translocation. A type II NADH dehydrogenase (diaphorase) is present on the endosome outer membrane. The kinetics of extravesicular ferricyanide reduction indicate a bimolecular-bimolecular steady-state mechanism with substrate inhibition. Ferricyanide inhibition of 59Fe mobilization is not detected. Significant differences between mobilization and ferricyanide reduction kinetics indicate that the diaphorase is not involved in 59Fe(III) reduction. Sequential additions of NADH followed by ascorbate or vice versa indicate a minimum of two sites of 59Fe(III) residence; one site available to reducing equivalents from ascorbate and a different site available to NADH. Sequential additions using ferrocyanide and the other reductants suggest interactions among sites available for reduction. Inhibition of ascorbate-mediated mobilization by DCCD and enhancement of ferrocyanide and NADH-mediated mobilization suggest a role for a moiety with characteristics of a proton pore similar to that of the H(+)-ATPase. These data provide significant constraints on models of iron reduction, translocation, and mobilization by endocytic vesicles.
Collapse
Affiliation(s)
- J A Watkins
- Department of Medicine, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | | | | | | | |
Collapse
|
15
|
Chapter 6 NADH-ubiquinone oxidoreductase. ACTA ACUST UNITED AC 1992. [DOI: 10.1016/s0167-7306(08)60174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
16
|
Weiss H, Friedrich T, Hofhaus G, Preis D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 197:563-76. [PMID: 2029890 DOI: 10.1111/j.1432-1033.1991.tb15945.x] [Citation(s) in RCA: 363] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- H Weiss
- Institut für Biochemie, Universität Düsseldorf, Federal Republic of Germany
| | | | | | | |
Collapse
|
17
|
Abstract
In this review, I focus on the bioenergetics of the methanogenic bacteria, with particular attention directed to the roles of transmembrane electrochemical gradients of sodium and proton. In addition, the mechanism of coupling ATP synthesis to methanogenic electron transfer is addressed. Evidence is reviewed which suggests that the methanogens possess great diversity in their bioenergetic machinery. In particular, in some methanogens the primary ion which is translocated coupled to metabolic energy is the proton, while others appear to utilize sodium. In addition, ATP synthesis driven by methanogenic electron transfer is accomplished in some organisms by a chemiosmotic mechanism and is coupled by a more direct mechanism in others. A possible explanation for this diversity (which is consistent with the relatedness of these organisms to each other and to other members of the Archaebacteria as determined by molecular biological techniques) is discussed.
Collapse
Affiliation(s)
- J R Lancaster
- Department of Chemistry and Biochemistry, Utah State University, Logan 84322-0300
| |
Collapse
|
18
|
Vuokila PT, Hassinen IE. DCCD sensitivity of electron and proton transfer by NADH: ubiquinone oxidoreductase in bovine heart submitochondrial particles--a thermodynamic approach. BIOCHIMICA ET BIOPHYSICA ACTA 1989; 974:219-22. [PMID: 2540836 DOI: 10.1016/s0005-2728(89)80375-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The sensitivity of the H+/2e- ratio of the redox-driven proton pumping by the NADH: ubiquinone reductase (complex I) of the submitochondrial particles to dicyclohexylcarbodiimide (DCCD) was studied by a thermodynamic approach, measuring the membrane potential and delta pH across the membrane and the redox potential difference across the complex I span of the respiratory chain. The delta Gr/delta muH+ ratio did not decrease upon additions of 50 or 100 nmol of DCCD per mg protein in the presence of oligomycin although the H+/2e- ratio has been demonstrated to decrease upon DCCD addition in kinetic experiments with mitochondria. Complex I then becomes reminiscent of the cytochrome bc1 complex, which shows DCCD sensitivity of the kinetically but not thermodynamically determined H+/2e- ratio.
Collapse
Affiliation(s)
- P T Vuokila
- Department of Medical Biochemistry, University of Oulu, Finland
| | | |
Collapse
|
19
|
Yagi T, Hatefi Y. Identification of the dicyclohexylcarbodiimide-binding subunit of NADH-ubiquinone oxidoreductase (Complex I). J Biol Chem 1988. [DOI: 10.1016/s0021-9258(18)37571-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|